
DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

VASCO MIGUEL PESSOA BASTOS

Bachelor’s degree in Electrical and Computer Engineering

MODELING OF COMPLEX NONLINEAR
DYNAMIC SYSTEMS USING TEMPORAL
CONVOLUTION NEURAL NETWORKS
AN HYBRID SYSTEM APPROACH

MASTER IN ELECTRICAL AND COMPUTER ENGINEERING

NOVA University Lisbon
March, 2022

DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

MODELING OF COMPLEX NONLINEAR DYNAMIC
SYSTEMS USING TEMPORAL CONVOLUTION NEURAL
NETWORKS
AN HYBRID SYSTEM APPROACH

VASCO MIGUEL PESSOA BASTOS

Bachelor’s degree in Electrical and Computer Engineering

Adviser: Paulo José Carrilho de Sousa Gil
Tenure Assistant Professor, NOVA University Lisbon

Co-adviser: Luís Filipe Figueira Brito Palma
Tenure Assistant Professor, NOVA University of Lisbon

Examination Committee

Chair: Pedro Alexandre da Costa Sousa
Associate Professor, NOVA University of Lisbon

Rapporteur: José António Barata de Oliveira
Associate Professor with Habilitation, NOVA University of Lisbon

Member: Paulo José Carrilho de Sousa Gil
Tenure Assistant Professor, NOVA University Lisbon

MASTER IN ELECTRICAL AND COMPUTER ENGINEERING

NOVA University Lisbon
March, 2022

Modeling of complex nonlinear dynamic systems using temporal convolution
neural networks

Copyright © Vasco Miguel Pessoa Bastos, NOVA School of Science and Technology, NOVA

University Lisbon.

The NOVA School of Science and Technology and the NOVA University Lisbon have the

right, perpetual and without geographical boundaries, to file and publish this dissertation

through printed copies reproduced on paper or on digital form, or by any other means

known or that may be invented, and to disseminate through scientific repositories and

admit its copying and distribution for non-commercial, educational or research purposes,

as long as credit is given to the author and editor.

This document was created with the (pdf/Xe/Lua)LATEX processor and the NOVAthesis template (v6.9.10) [30].

https://github.com/joaomlourenco/novathesis

In memory of my grandfather, Manuel Bastos.
This dissertation is completely dedicated to my respectful

parents, Marília e Pedro Bastos, my sister Inês, my
grandmother Idalina Bastos and my grandparents Conceição e
Manuel Pessoa. They always inspire me. I extend my gratitude
to rest of my family for motivating me throughout my journey.

Acknowledgements

I would like to express my sincere gratitude, throughout the writing of this dissertation,

to everyone who contributed to support, think and discuss with me.

I would first like to thank my supervisor, Professor Paulo Gil, whose expertise was

must in formulating research questions, discuss results and exploring new methodolo-

gies. Your insightful feedback pushed me to sharpen my thinking and made me aim to

challenger objectives.

Following, I would like to extend my thanks to Professor Luís Brito Palma for their

valuable guidance throughout my studies. You provided me with the tools that I needed

to choose the right direction and successfully complete my dissertation.

I am deeply grateful to my parents, whom without this would have not been possible.

You did went above and beyond your responsibilities to provide me all the tools and well

being to pursue my objectives. I also appreciate all the support I received from the rest of

my family without their tremendous understanding and encouragement in the past few

years, it would be impossible for me to complete my study.

In addition, I would like to thank my friends, who provided stimulating discussions

as well as happy distractions to rest my mind outside of my research.

iv

“I’m going to use all my tools, my God-given
ability, and make the best life I can with it. ”

(LeBron James)

Abstract

An increasingly important class of nonlinear systems includes the nonaffine hybrid sys-

tems, in particular those in which the underlying dynamics explicitly depends on a switch-

ing signal. When the inherent complexity is treatable and the phenomena governing the

system dynamics are known an implicit model can be derived to describe its behaviour

over time. Conversely, when these assumptions are not met the system dynamics can still

be approximated by regression-based techniques, provided a dataset comprising inputs

and outputs collected from the system is available. One approach to deal with data driven

modelling relies on computational intelligent frameworks, in which artificial neural net-

works stand out as a prominent class of universal approximation black box models. This

work aims to explore 1D Convolutional Neural Networks capabilities, in which the in-

puts are represented by regressors and structural configuration parameters, to modelling

nonlinear hybrid dynamic systems. Moreover, in order evaluate the intrinsic ability to

transparently approximate hybrid dynamics, this deep neural network architecture is

compared to a shallow multilayer layer perceptron framework, in which each structural

configuration is independently approximated.

Keywords: Nonlinear hybrid systems, switching systems, data driven modelling, con-

volutional neural network, multilayer perceptron

vi

Resumo

Uma classe de sistemas não lineares que tem vindo a ganhar cada vez mais importância

é a dos sistemas híbridos não-afins, em particular aqueles em que a dinâmica subjacente

depende explicitamente de um sinal de comutação. Quando a complexidade inerente é

tratável e os fenómenos que controlam a dinâmica do sistema são conhecidos, é possível

obter-se um modelo implícito para descrever seu comportamento ao longo do tempo.

Por outro lado, quando essas suposições não são cumpridas, a dinâmica do sistema pode

ainda ser aproximada por técnicas baseadas em regressão, desde que um conjunto de da-

dos contendo as entradas e as saídas do sistema esteja disponível. Uma abordagem para

lidar com o problema de modelação experimental recorrendo a técnicas de inteligência

computacional, na quais as redes neuronais artificiais se destacam como uma das classes

proeminentes de aproximadores universais. Este trabalho tem como objetivo explorar

as capacidades de redes neuronais convolutivas 1D, onde as entradas são representadas

por regressores e parâmetros de configuração estrutural. Além disso, para avaliar a ca-

pacidade intrínseca para a aproximação de dinâmicas híbridas, esta arquitetura de rede

neuronal profunda é comparada a uma estrutura neuronal proactivas multicamada, na

qual cada configuração estrutural é independentemente aproximada.

Palavras-chave: Sistemas híbridos não lineares, sistemas de comutação, modelagem

orientada por dados, rede neural convolutiva, perceptron multicamada

vii

Contents

List of Figures x

List of Tables xii

Acronyms xiv

Symbols xv

1 Introduction 1

1.1 Motivation . 2

1.2 Problem Context . 3

1.3 Objectives . 3

1.4 Contributions . 4

1.5 Document Structure . 5

2 State of the Art 6

2.1 Nonlinear Black-box Modeling in System Identification 6

2.1.1 Nonlinear System Identification: Black-box Modeling 6

2.1.2 Nonlinear black-box - structure 7

2.1.3 Nonlinear black-box modeling: Regressors 9

2.1.4 Nonlinear mapping . 10

2.2 Artificial Neural Networks . 11

2.2.1 Multilayer Perceptron (MLP) . 14

2.2.2 Recurrent Neural Network(RNN) 16

2.2.3 Convolutional Neural Network (CNN) 19

2.3 Performance metrics . 24

2.3.1 Mean Square Error (MSE) . 24

2.3.2 Mean Average Error (MAE) . 25

2.3.3 Pearson Correlation Coefficient (PCC) 26

2.4 Related Works . 27

viii

2.4.1 Identification and control for nonlinear systems using a self-evolving

function-link interval type-2 fuzzy neural network 27

2.4.2 Temporal convolutional networks applied to energy-related time

series forecasting . 27

2.4.3 Short-term traffic speed forecasting based on graph attention tem-

poral convolutional networks . 28

2.4.4 Tracking of Dynamical Processes with Model Switching Using Tem-

poral Convolutional Networks . 28

3 Systems Identification 29

3.1 Hybrid Systems . 29

3.1.1 Hybrid Automata . 29

3.1.2 Switching Systems . 31

3.2 Hybrid Systems Identification . 32

3.3 Proposed approach . 34

4 Case Study 36

4.1 Three-Tank System . 36

4.2 Data Preparation . 37

4.3 TCN based Identification . 38

4.4 MLP based Identification . 41

4.5 Discussion . 48

5 Conclusions 54

5.1 Final Remarks . 54

5.2 Future works . 55

Bibliography 56

ix

List of Figures

2.1 Illustration of the white-box, grey-box and black-box concepts (adapted from

[9]). 6

2.2 Illustration of simple neural network (adapted from [12]). 11

2.3 Architecture of a perceptron with a single neuron. 12

2.4 Perceptron architecture composed with two input neurons, one bias neuron

and three output neurons (weights omitted) (adapted from [12]). 12

2.5 MLP Architecture composed with a two input neurons, two bias neurons, one

hidden layer and three output neurons. 14

2.6 Activation functions and their derivatives: MLP [12] 15

2.7 Illustration of a simple neuron recurrent neural network. On the left we the

simple neuron and on the right its progression through the time frames. . . 16

2.8 Illustration of a neuron layer in a recurrent neural network. On the left we the

a layer of neurons and on the right its progression through the time frames. 17

2.9 Representation of convolutional layer and a receptive field between layers

(adapted from [12]). 19

2.10 Connections between convolutional layers with zero padding [12]. 20

2.11 Dimensionality reduction with a stride of two[12]. 20

2.12 Example of a 3x3 filter to be applied in order to get a feature map. 20

2.13 Diagram of a convolutional layer. 21

2.14 Standard Neural Net: Before Dropout . 23

2.15 Standard Neural Net: After Dropout . 23

2.16 Overview of a pooling layer and how it downsamples data[48]. 24

2.17 Correlation graph example. 26

3.1 Hybrid time domain: Solution based on dwell-time wit a dwell constant τD 32

3.2 Proposed architecture . 35

4.1 Three-Tank System AMIRA DTS200 and respective schematic. 36

4.2 Train Data for TCN: Input Data . 39

4.3 Train Data for TCN: Output Data . 39

x

4.4 Input and Output structure for TCN train 40

4.5 Validation Data for TCN: Input Data . 40

4.6 Validation Data for TCN: Output Data . 41

4.7 TCN predicts for tank 1 . 41

4.8 TCN predicts for tank 2 . 42

4.9 TCN predicts for tank 3 . 42

4.10 Train Data for MLP1: Input Data . 43

4.11 Train Data for MLP1: Output Data . 43

4.12 Train Data for MLP2: Input Data . 44

4.13 Train Data for MLP2: Output Data . 44

4.14 Input and Output structure for MLP train 45

4.15 Validation Data for MLP1: Input Data . 45

4.16 Validation Data for MLP1: Output Data . 46

4.17 Validation Data for MLP2: Input Data . 46

4.18 Validation Data for MLP2: Output Data . 47

4.19 MLP2 predicts for tank 1 . 47

4.20 MLP2 predicts for tank 2 . 48

4.21 MLP2 predicts for tank 3 . 48

4.22 MLP2 predicts for tank 1 . 49

4.23 MLP2 predicts for tank 2 . 49

4.24 MLP2 predicts for tank 3 . 50

4.25 Test Data for comparison (TCN vs MLP) : Input Data 50

4.26 Test Data for comparison (TCN vs MLP) : Output Data 51

4.27 TCN and MLP predicts for tank 1 . 51

4.28 TCN and MLP predicts for tank 2 . 52

4.29 TCN and MLP predicts for tank 3 . 52

xi

List of Tables

2.1 A few nonlinear models and possible regressors [46]. 9

2.2 Types of RNNs and examples.[1][12] . 18

4.1 Performance metrics for TCN Validation. 40

4.2 Performance metrics for MLP1. 45

4.3 Performance metrics for MLP2. 47

4.4 Performance metrics. 53

xii

xiii

Acronyms

This document is incomplete. The external file associated with the glossary ‘acronym’

(which should be called output.acr) hasn’t been created.

Check the contents of the file output.acn. If it’s empty, that means you haven’t indexed

any of your entries in this glossary (using commands like \gls or \glsadd) so this list can’t

be generated. If the file isn’t empty, the document build process hasn’t been completed.

Try one of the following:

• Add automake to your package option list when you load glossaries-extra.sty.

For example:

\usepackage[automake]{glossaries-extra}

• Run the external (Lua) application:

makeglossaries-lite.lua "output"

• Run the external (Perl) application:

makeglossaries "output"

Then rerun LATEX on this document.

This message will be removed once the problem has been fixed.

xiv

Symbols

This document is incomplete. The external file associated with the glossary ‘symbols’

(which should be called output.sls) hasn’t been created.

Check the contents of the file output.slo. If it’s empty, that means you haven’t indexed

any of your entries in this glossary (using commands like \gls or \glsadd) so this list can’t

be generated. If the file isn’t empty, the document build process hasn’t been completed.

Try one of the following:

• Add automake to your package option list when you load glossaries-extra.sty.

For example:

\usepackage[automake]{glossaries-extra}

• Run the external (Lua) application:

makeglossaries-lite.lua "output"

• Run the external (Perl) application:

makeglossaries "output"

Then rerun LATEX on this document.

This message will be removed once the problem has been fixed.

xv

1

Introduction

The technological evolution had always the need to model dynamical interactions from

collected data. If we take a look at the real world we can observe that systems are inher-

ently nonlinear in natures constitution.

"Constructing models from observed data is a fundamental element in science [46]".

If we take a look at the definition of a nonlinear system, it is a system where the input

variation does not affect the output in a proportional way. Nonlinear dynamic systems are

a point of interest to many scientists and engineers, describing alterations on variables

over time, which may seem unpredictable or counter-intuitive.

Physical system modeling is almost a requirement for turning novel ideas into pro-

totypes and, eventually, products. Low-order models are essential to comprehend the

interacting behaviors of complex systems at the conceptual phase, and as project contin-

ues into prototyping and testing, more advanced models may be necessary to achieve

good performance in the assigned tasks[33].

Is it possible to model a system based only on observed data with any information

about its structure? The answer is yes, modeling systems that use only input and output

data collected from a system, termed black-box identification will be detailed in the next

chapter.

One of the technologies that is coming to a new era due to the fast development of

computer technology is neural networks. Their popularity and applications are almost

infinite and can achieve very satisfying results. Applying this tool to modeling nonlinear

dynamical systems may be an interesting path to explore.

Some recent research papers show that convolutional architectures can achieve state-

of-the-art accuracy in fields such as audio modeling, machine translation and word-level

language modeling [7], [23], [45]. This let us raise the question on how well can a convo-

lutional architecture perform on a complex modeling task.

1

CHAPTER 1. INTRODUCTION

1.1 Motivation

In the last few years, technology has evolved at an impressive rate. One that had an

important role was the computer, today is possible to simulate reality, it is possible to

recreate behaviors from real systems. Normally a computer follows a set of rules and if

well programmed does the job.

The problem comes with the need to have more subjective rules to be able to represent

more complex problems. Many have patterns that are complex, almost unpredictable and

its is impossible to define rules for every case. Nonlinear systems are one of this complex

problems that need methodologies to help us capture their complex dynamic.

In 2020, Forbes published an article saying the following:

"A look at the evolution of the data landscape, how technology is helping businesses

solve for now, and how the data analysis that’s possible today can provide us with a new

understanding of how we, as a society, can perform better in the future[41]."

In a data-driven world that we live in, the urge to pick up data from any system

and being able to extract or understand their way of operation is tremendous. Said that,

modeling is a task that is more and more necessary.

Either in science as in engineering, data-driven modeling combined with scientific

progress creates a environment of addressing many problems with a different approach.

Various scientific fields have a certain inherent difficulty in describing phenomena and

systems with mathematical equations or laws, so the have been turning to artificial intel-

ligence as a powerful approach in data-driven modeling[35].

Machine learning is a branch of AI that has gained popularity over the years. In

the present research environment, we see applications from image processing to many

other data analyses. Especially deep learning architectures have an huge importance due

to using graph technologies side by side with neuron transformation to get multilayer

learning model that easily learns through the data[40].

Inspired on human neurons and in the way the learn and react to different stimu-

lus, the application of artificial neural networks could be interesting way to deal with

this problem. These architectures have shown real capabilities in handling nonlinear

problems.

The main motivation to develop this thesis is to be able to discover more about the

integration of machine learning techniques with the ability to capture and predict an

hybrid nonlinear dynamic behavior. The focus will be on temporal convolutional neural

network models and their strength deal with temporal data to test their ability to provide

a good system approximator.

2

1.2. PROBLEM CONTEXT

1.2 Problem Context

Nowadays in fields such as the industry 4.0, science and engineering we are observing an

environment of technological evolution and digital transformation. Artificial intelligence

is being applied to almost every object we know. Said that, the control field makes the

connection between the software adaptability and the real world.

A point that can have a huge impact on industry, the accuracy of modeling and pre-

diction of systems behaviors as in many fields, is the ability to incorporate structural or

model reconfigurations into the description of nonlinear systems.

The urge to have models capable to understand and capture dynamics that many

times have a complex nonlinear behavior is leading many fields to pursue the search for

better tools.

One of the methodologies to explore is artificial neural networks. They are gaining a

lot of popularity again because of their good results and due to the evolution in computer

hardware, which allows heavier computing power.

Using convolutional neural networks to capture a real system dynamics and be able to

represent it could lead to cost reductions, increasing effectiveness and time saving. More-

over, the ability to be able to represent a nonlinear process is a key point in optimization

for numerous fields.

1.3 Objectives

One of the approaches, which is around for decades ([22, 46]), relies on data collected

from the system and on regression techniques, associated with black-box structures.

Among possible black-box nonlinear structures neural networks have emerged as an

important class of universal approximators [3]. For instance in [18]. showed that shallow

multilayer feedforward neural networks (MultiLayer Perceptron (MLP)s) with one hidden

layer, using arbitrary squashing functions, are able to approximate any Borel measurable

function from one finite dimensional space to another, with arbitrary degree of accuracy.

In the last few years a new type of neural network topologies has emerged, the so

called deep architectures. They are composed of a multitude of hidden layers, each con-

taining possibly a huge number of processing units. A special case of these topologies is

the convolutional neural network (Convolutional Neural Network (CNN)). These topolo-

gies are essentially multi-layer neural networks, in which each layer is composed of a

number of two-dimensional planes with independent neurons, being a sparse connection

used between layers ([50]). Recently, it has been proven that, like MLPs, CNNs are also

universal approximators [52].

The objective of this dissertation relies on the development of a convolutional neural

network architecture capable of modeling a complex nonlinear dynamic system. The

architecture should handle the spatial-temporal data as well as the structural data.

3

CHAPTER 1. INTRODUCTION

Also, a Multilayer Perceptron architecture will be implemented to compare and ana-

lyze the results from the Convolutional architecture. The MLP architecture is composed

by n MultiLayer Perceptron neural networks for each structural configuration while the

convolutional architecture handles all configurations.

Taking all of this into account, the present work aims to investigate the performance

of CNNs in the context of nonlinear hybrid system identification, by proposing a par-

ticular CNN topology and validating the approach on a benchmark system. Moreover,

in the proposed framework the asynchronous event-driven switching signal is transpar-

ently provided to the network as an additional input, while each subsystem dynamics is

internally approximated considering spatio-temporal information, under the form of re-

gressors and the underlying outputs. The proposed identification framework is compared

against a shallow MLP topology, in which the switching between structural configura-

tions is externally managed by assigning the current configuration to the corresponding

MLP approximator.

To accomplish this objectives, it was developed a convolutional neural network archi-

tecture in Python 3.9.7 using libraries such as TensorFlow 2.8.0, Keras 2.8.0 with Keras
Preprocessing 1.1.2 and Scikit-learn 1.0.2.

1.4 Contributions

The present work presents a few contributions:

• Ability to be able to represent a nonlinear process is a key point in optimization for

numerous fields,

• Supports systems that have structural reconfiguration,

• Could be a tool that is very effective in testing industrial processes in simulation,

which translate in cost reduction,

• Development and implementation a CNN topology oriented to the context of non-

linear hybrid system identification. In the proposed framework the asynchronous

event-driven switching signal is transparently provided to the network as an addi-

tional input, while each subsystem dynamics is internally approximated consider-

ing spatio-temporal information,

• Development and implementation a shallow MLP topology oriented to the context

of nonlinear hybrid system identification where the structural configurations is

externally managed by assigning the current configuration to the corresponding

MLP approximator,

4

1.5. DOCUMENT STRUCTURE

1.5 Document Structure

This dissertation is organized in the following way:

• This introductory chapter (Chapter 1),

• Initially some literature review has been made in order to collect information about

the dissertation subject and which approaches could we use to reach our goal in the

second chapter, State of the Art (Chapter 2),

• Then, we have the third chapter (Chapter 3) related to hybrid system, their identifi-

cation, and proposed architecture.

• The fourth chapter (Chapter 4) is purely dedicated to the Case Study approach,

where we apply the proposed architecture to the three-tank system. It shows how

the system can be described and processed by the neural networks,

• Finally, the last chapter (Chapter 5) where we make some final considerations about

the results and where the conclusions are drawn. Also, some prospective lines of

research are presented.

5

2

State of the Art

2.1 Nonlinear Black-box Modeling in System Identification

2.1.1 Nonlinear System Identification: Black-box Modeling

The search for a desirable model structure where we can build a good model is one of the

main problems in system identification. In most cases, it is easier to fit a model in given

structure / parameter estimation than searching for a model structure.

"A basic rule in estimation is not to estimate what you already know. In other words,

one should utilize prior knowledge and physical insight about the system when selecting

the model structure"[46].

To make the distinction between the type of model structure, it is usually color en-

coded in levels of prior knowledge2.1:

• White-box

• Grey-box

• Black-box

Figure 2.1: Illustration of the white-box, grey-box and black-box concepts (adapted from
[9]).

6

2.1. NONLINEAR BLACK-BOX MODELING IN SYSTEM IDENTIFICATION

2.1.1.1 White-box Models

The white-box models are mainly based system knowledge, the model is completely

known and its construction only requires prior knowledge and physical grounds. For

example, deterministic equations, detailed sub models and physical knowledge.

2.1.1.2 Grey-box Models

Grey-box models could be viewed as a white-box and black-box combination. Sometimes

all the physical insights are not available, therefore it is necessary to estimate a-few

parameters bond on collected data. Mainly there are two typical sub cases:

• Physical modeling⇒ Based on the laws of physics, but with some parameters which

require to be found on data.

• Semi physical modeling⇒ Using physical perceptiveness, nonlinear combinations

are build from measure data signals.

2.1.1.3 Black-box Models

Black-box models can be used in many structures based on, for example neural networks,

gradient boosting models, fuzzy models and others [46]. Most of them very often provide

great accuracy. No physical insight is necessary.

One simple way to divide black-box models is break them up in two classes, linear

models and nonlinear models.

On one hand, we have the linear black-box models, where time series models and

transfer functions prevail. To find the parameters of the black-box model, we just need

data and various techniques used to find linear parameters. On the other hand, nonlinear

models are much more complex compared to the linear ones. The explanation behind

this situation is that all is considered, resulting in wide spectrum of possible model

descriptions. In this category, time-series features are predominant and often they are

combined with neural network models. It is important to note the increasing use of neural

networks in building models due to the accessibility of computer power and the evolving

technologies.

2.1.2 Nonlinear black-box - structure

When working with nonlinear black-box models, it may be assumed that a system iden-

tification problem starts with the series inputs such as u(t) and y(t) observed from the

system dynamic [46].

ut =
[
u(1) u(2) u(3) . . . u(t)

]
(2.1)

7

CHAPTER 2. STATE OF THE ART

yt =
[
y(1) y(2) y(3) . . . y(t)

]
(2.2)

Analysing past observations [ut−1, yt−1] and the outputs y(t) yet to be known, the goal

is to find the underlying correlation [46]:

y(t) = g(ut−1, yt−1) + v(t) (2.3)

From equation 2.3, it is easily noticed a new term v(t). As expected the output y(t) will

not be exactly like past observations, it may have a few changes, so this addiction comes

in compensation. This value should be as small as possible, to be sure that g(ut−1, yt−1) is

a good representation of past data and consequently a good prediction.

The other important factor is the function g(ut−1, yt−1), and our next step is to use a

finite dimensional parameter to parameterize this function, mind that this is an approxi-

mation [46].

g(ut−1, yt−1,θ) (2.4)

To assess θ, it should be formulated the optimization problem. Using means to fit the

recorded data with the model, it obtains the quality of θ[46]. Said that the optimization

problem can be defined by:

θ̂ = argmin
θ

V (t) (2.5)

V (t) =
N∑
t=1

∥∥∥∥y(t)− g
(
ut−1, yt−1,θ

)∥∥∥∥2
(2.6)

Due to the generality of the model structure, it could be good to rewrite the function

g as a combination between two mapping: one that takes past entries u′, y′ transform

them and maps a finite dimensional vector ϕ and another one which uses the vector to

map the outputs [46]:

g(ut−1, yt−1,θ) = g(ϕ(t),θ) (2.7)

where the variable ϕ is as follows [46],

8

2.1. NONLINEAR BLACK-BOX MODELING IN SYSTEM IDENTIFICATION

ϕ(t) = ϕ(ut−1, yt−1,η) (2.8)

This equation is a parameterized version of the regression vector. Therefore, the new

short form of ϕ (used in (2.7)) is ϕ(t,η).

Now we will address the two decomposed problems regarding the nonlinear mapping

in (2.4):

• ϕ(t)⇒ Regression vector from past I/O.

• g(ϕ)⇒ Nonlinear mapping of the regressor on to the space of outputs.

2.1.3 Nonlinear black-box modeling: Regressors

Lets consider the following structure for the nonlinear black-box modeling [46]:

y(t|θ) = g(ϕ(t),θ) (2.9)

Note that in the equation 2.9 g(ϕ(t),θ) refer to the parameterized function.

The regression vector ϕ(t) is characterized by [46]:

ϕ(t) =
[
u(t − 1) u(t − 2) u(t − 3) . . . u(t − k)

]
(2.10)

Nonlinear models
Model Regressors
NFIR u(t − k)
NARX u(t − k) y(t − k)
NOE u(t − k) ŷu(t − k|θ)
NARMAX u(t − k) y(t − k) ε(t − k|θ)
NBJ u(t − k) ŷ(t − k|θ) ε(t − k|θ) εu(t − k|θ)

Table 2.1: A few nonlinear models and possible regressors [46].

9

CHAPTER 2. STATE OF THE ART

The previous models abbreviations are reffering to Nonlinear Finite Impulse Response

model (NFIR), Nonlinear autoregressive exogenous model (NARX), Nonlinear Output

Error model (NOE),Nonlinear Autoregressive Moving Average with eXogenous inputs

model (NARMAX) and Nonlinear Box–Jenkins model (NBJ).

Additional notes to the previous table:

• In the NOE models, the output is ŷ(t|θ).

• In the NBJ models, using the equation (2.10), we get the simulated output ŷu by

exchanging ε and εu with a regression vector ϕ(t,θ) with zeros.

Following Ljung[29] perspective on system identification and Sjöberg[46], common

model can be generalized by:

A(q)y(t) =
B(q)
F(q)

u(t) +
C(q)
D(q)

e(t) (2.11)

Said that, in table 2.1:

• u(t − k) is related with polynomial B,

• y(t − k) is related with polynomial A,

• ŷu(t − k) is related with polynomial F, predicted output from past u,

• ϵ(t − k) = y(t − k) − ŷ(t − k|θ) is related with polynomial C, which is the prediction

errors,

• ϵu(t − k) = y(t − k)− ŷu(t − k|θ) is related with polynomial D, which is the prediction

errors,

2.1.4 Nonlinear mapping

For the nonlinear mapping the objective here is for any θ it goes from R
d to R

p. Inde-

pendently of the chosen regression vector ϕ =
[
ϕ1 . . . ϕd

]T
, this will be a vector in

R
d[46].

g(ϕ,θ) (2.12)

The parameterized function extension is denotated by[46]:

g(ϕ,θ) =
∑

αkgk(ϕ) (2.13)

where gk is a basis function.

The expansion above with different basis function and various choices of regressors,

will act like an unified framework for working on many nonlinear black-box structures.

10

2.2. ARTIFICIAL NEURAL NETWORKS

2.2 Artificial Neural Networks

The initial idea behind artificial neural networks (ANN) began as a machine learning

model inspired by the networks of biological neurons found in our brains. The first

neuron model was developed by McCulloch and Pitts in 1943[34]. This model was com-

posed of an artificial neuron that did a weighted sum of the inputs and, according to the

value of that sum, the neuron is activated or not. Since 1943, Artificial Neural Network

(ANN)s have evolved a lot and this section describes neural network models and their

applications.

In this kind of technology, a network that has weights on it that can be adjusted

during the training process to achieve the greatest results, has real capabilities. ANNs

are currently being applied to a vast number of fields, such as in image recognition,

time-series, computer vision, in control applications and many others[32].

"The success of ANNs arises from their ability to effectively learn static representations

from complex data and in building relationships between features and outputs"[36].

Figure 2.2: Illustration of simple neural network (adapted from [12]).

One of the simplest ANN architectures is the perceptron (check Fig. 2.2 and Fig. 2.3).

The inputs neurons and other neurons have connections between them with a weight

associated. Then the perceptron makes a weighted sum with the inputs [12].

z = w1x1 +w2x2 + · · ·+wnxn = XTW (2.14)

after that, it uses a step function and outputs the outcome [12]:

hw(X) = step(z) (2.15)

11

CHAPTER 2. STATE OF THE ART

Figure 2.3: Architecture of a perceptron with a single neuron.

Usually the common step functions are heaviside step function and the sign function

(shown below)(assuming threshold = 0)[12].

heaviside(z) =

0, if z < 0

1, if z ≥ 0
sgn(z) =

−1, if z < 0

0, if z = 0

1, if z > 0

Lets look at a case of a perceptron neural network built to classify the inputs into

three binary classes (which is a classifier multi-output) in Fig. 2.4:

Figure 2.4: Perceptron architecture composed with two input neurons, one bias neuron
and three output neurons (weights omitted) (adapted from [12]).

In order to get the output of a fully connected layer of neurons for multiple instances

in perceptron architecture, we have [12]:

12

2.2. ARTIFICIAL NEURAL NETWORKS

hW,b(X) = φ(WX + b) (2.16)

X is the matrix of inputs. With one column per feature and one row per instance. W is

naturally a matrix with the respective connection weights except the ones referring to the

bias neuron. Regarding the bias vector b, it has all weights associated with connections

from the bias neuron to other artificial neurons.

The inspiration for the perceptron training algorithm comes from Hebb’s Rule and it

was introduced by Rosenblatt in 1958.

"The Hebb’s Rule is a learning rule that describes how the neuronal activities influ-

ence the connection between neurons, i.e., the synaptic strength. It provides an algorithm

to update weights of neuronal connections within neural network."[12]

Later summarized in the catchy phrase "Cells that fire together, wire together", that is,

when two neurons fire up at the same time their connection weights are likely to increase.

Based on this rule the perceptrons are trained using a similar method, the rule reinforces

the connections that help reduce the error [12].

The perceptron learning rule is formulated as [12]:

w
(next step)
i,j = wi,j + η

(
yj − ŷj

)
xi (2.17)

To better understand the previous equation lets set a ground on the nomenclature,

the ith refers to the th input neuron same for jth output neuron. So xi is the value of

the current input of the training instance, while ŷj is the value of current output of the

training instance. The other yj is the target value to be achieve on that training instance.

The learning rate is given by η.

Taking into account that the boundaries of each output neuron are linear, the per-

ceptrons are unable to learn more complex designs (for example classifiers like Logistic

Regressors). Its important to note that perceptrons do not output classes probabilities,

they make decisions based on a threshold.

One solution to the perceptrons limitations is to stack multiple perceptrons. This

result in a kind of ANN is called Multilayer Perceptron (MLP) [12].

13

CHAPTER 2. STATE OF THE ART

It will be addressed three particular artificial neural networks:

1. MLP

2. Recurrent Neural Network (RNN)

3. CNN

2.2.1 Multilayer Perceptron (MLP)

The first kind that we are going to look is the Multilayer Perceptron neural network (MLP).

A MLP has in its constitution one (passthrough) input layer, can have a few hidden layers

and one last layer named output layer. Excluding the output layer (mind a few particular

cases), every layer will have a bias neuron even if not shown and is fully connected to

next in line(see Fig. 2.5).

Figure 2.5: MLP Architecture composed with a two input neurons, two bias neurons, one
hidden layer and three output neurons.

2.2.1.1 Training MPLs

For a several years, researchers had struggled in the search for a training method for

MLPs, without success. In 1986, a paper that was cutting edge to the time, introduced

a new learning method, the back-propagation, for networks with neuron units. This

method repeatedly try to adjust the weights of connections to minimize a measure of the

difference between the target output and the result that we are getting [39].

14

2.2. ARTIFICIAL NEURAL NETWORKS

Let’s take a closer look on the back-propagation algorithm:

• The algorithm goes through the training set various times (epochs) handing a batch

at a time.

• In each epoch, this batch is fed to the input layer which passes it through to the first

hidden layer. Then each neuron computes each output and forwards to the layer in

line until it reaches the output layer.

• The next step is to calculate the predicted output error (desired output vs actual

output).

• Now begin the back-propagation part, the algorithm computes the contribution of

each output to the error.

• Then it computes the error contributions of each connection to layer below. Working

backward until it reaches the input layer. The reverse pass calculates the error

gradient of the network.

• Finally, in order to tweak the weights of the connections, it performs a gradient

descent step with all gradient calculated.

That summarizes the back-propagation algorithm. To make this algorithm work prop-

erly, it is not possible to use step function because they are flat segments, so the gradient

descent will not move on flat area. To solve this, replace the activation function with a

function with a well-defined non-zero derivative (see Fig. 2.6).

Figure 2.6: Activation functions and their derivatives: MLP [12]

In case of classification problems or regression prediction problems, MLPs are very

suitable. They are flexible and generally good for basic operations such as data visualiza-

tion, encryption and data compression.

15

CHAPTER 2. STATE OF THE ART

2.2.2 Recurrent Neural Network(RNN)

Until now, we have seen feed forward architectures which means that the information

only flows from the input in direction to the output layer. In this section, it will be

covered a ANN known as recurrent neural network.

"Recurrent Neural Network (RNN) is a Deep learning algorithm and it is a type of Arti-

ficial Neural Network architecture that is specialized for processing sequential data"[19].

Imagine a network similar to the one previously discussed but with the particularity

that it also has backward connections. Looking at the smallest RNN possible, network

with one recurrent neuron which will receive an input, compute an output outcome and

then propagate it. To better understand this consider the illustration in Fig. 2.7.

Figure 2.7: Illustration of a simple neuron recurrent neural network. On the left we the
simple neuron and on the right its progression through the time frames.

It is noticeable that the output from the last time frame is used as an input to the next.

frame. Usually in the first time frame, the first last output is considered zero.

As we should expect, recurrent neurons also have weights associated with the connec-

tions between neurons. In this case, we will have two types of weights: the ones referring

to the inputs of the neuron and others to balance the previous outputs.

Another point to cover is grouping neurons to create a recurrent layer. It works exactly

in the same way as before but instead of a having an input value and the previous output

value, it will receive a couple of vectors, one for inputs values for the neurons of that layer

and a previous output vector with the values regarding the last time frame (see Fig. 2.8).

16

2.2. ARTIFICIAL NEURAL NETWORKS

Figure 2.8: Illustration of a neuron layer in a recurrent neural network. On the left we
the a layer of neurons and on the right its progression through the time frames.

Logically, the weights associated with the connection are now the respective vectors

with weights matrices, Wx and Wy . To compute the outputs of a recurrent layer, we use

the following equations, (2.16) for a single instance and (2.17) for multiples instances[12].

y(t) = φ
(
W⊤

x x(t) + W⊤
y y(t−1) + b

)
(2.18)

Y(t) = φ
(
WxX(t) + WyY(t−1)Wy + b

)
= φ

W

 X(t)

Y(t−1)

+ b

 with W =
[

WxWy

] (2.19)

Regarding the previous equation:

• Starting with Y(t−1), it corresponds to the layer output matrix for the t time frame,

for each instance in a batch (m - instances times n - neurons).

• The X(t) refers to the input matrix of all instances. (n -> inputs features times m ->

instances).

• Wx is the matrix of the weights focused of the inputs.

• Wy is the matrix of connection weights minding the previous time frame output.

• b is again the vector for the bias neuron values.

• Note that Wx and Wy are combined into a matrix of weights W sized (n -> inputs

plus n -> neurons) times n -> neurons.

Since RNNs can learn from the previous outputs at each time frame and propagate

it through the time framework, it can be said that it has memory capability. A zone in a

neural network that saves some kind data across the time is named memory cell.

17

CHAPTER 2. STATE OF THE ART

2.2.2.1 I/O Sequencing

RNNs can tolerate a few types of input / output sequencing resulting in different models

of network such as one to one network, one to many network, vector-to-sequence and

encoder / decoder network.

Type of RNN Illustration Example

Seq-to-Seq Name entity recognition

Vector-to-Seq Music Generation RNN

Seq-to-Vector Sentiment classification

Encoder-Decoder Machine translation

Table 2.2: Types of RNNs and examples.[1][12]

Note that the encoder-decoder network is used in implementations where the need

to see a batch of data to understand it, for example, to make a accurate translation it is

necessary to know at least the full sentence.

2.2.2.2 Training RNNs

Following the MLPs training logic, the algorithm behind the training process is called

back-propagation through time (BPTT). Similar to the normal back-propagation. There is

a first pass through the network. Then a cost function is calculated based on the output.

Mind that the cost function can ignore some outputs dependent one the network. After

that all the gradients of the cost function go in backwards through the network. To

conclude it updates the the model.

18

2.2. ARTIFICIAL NEURAL NETWORKS

2.2.3 Convolutional Neural Network (CNN)

Convolutional neural networks (CNN) were pioneered by Yann LeCun, in 1980s/1990s

[6]. The subjective experience is not to be trusted, perception is a hard thing to describe,

it’s not trivial at all [12]. A CNN form is inspired on the connectivity pattern of neurons

and in the organization of the human visual cortex. One of the very first CNNs, LeNet5

was a result from the LeCun’s work [27]. The LeNet5 architecture was fundamental to the

research and development of more complex models. The enormous growth in computer

power made possible the search for more architectures and more applications of CNN,

such as in computer vision, image/video recognition, classification, natural language

processing and time-series analysis [42] [43].

2.2.3.1 Convolutional Layer

In a CNN constitution, the principal block is the convolutional layer, in opposition to

the previous ANN architectures, these layers only establish connections within their re-

spective receptive fields instead of being connected to every single unit. These operations

allow the concentration of small features in the first layer and then move on to larger and

higher-level features in the next layers(Fig. 2.9).

Figure 2.9: Representation of convolutional layer and a receptive field between layers
(adapted from [12]).

Imagine that you want to establish a connection between neuron (row i, column j) in

a certain layer and the group of neurons within the receptive field in the previous layer

(row i to i + fh - 1, column j to j + fw - 1). In the figure below (Fig. 2.10) fh and fw refer to

height and width of the receptive field.

19

CHAPTER 2. STATE OF THE ART

Figure 2.10: Connections between convolutional layers with zero padding [12].

In order to reduce the model complexity, it is possible to define a stride parameter

which means to shift one or more receptive fields in line. This results in significant re-

duction in the model computational complexity. To establish connection between neuron

(row i, column j) in a certain layer and the group of neurons within the receptive field in

the previous layer (row i x sh to i x sh + fh - 1, column j x sw to j x sw + fw - 1). In the figure

below (Fig. 2.11)sh and sw are referring to the strides, both horizontal and vertical.

Figure 2.11: Dimensionality reduction with a stride of two[12].

2.2.3.2 Filters

Filters or convolution kernels are the representation of weights in CNNs. They are the

size of the receptive field. Take a look at the filter below (Fig. 2.12):

Figure 2.12: Example of a 3x3 filter to be applied in order to get a feature map.

The use of the same filter through the neurons in convolutional layer will output a

20

2.2. ARTIFICIAL NEURAL NETWORKS

feature map, which means that areas where the filter has 1’s will be enhanced in contrast

to where the filter has 0’s.

2.2.3.3 Multiple Feature Mapping

A convolutional layer can have multiple filters which will result in an output of one

feature map per filter. One neuron per pixel in each feature map and each neuron has

the same parameters. A convolutional layer applies multiple filters which will be trained

with inputs in order to be able to detect multiple features across data (see Fig. 2.13).

Figure 2.13: Diagram of a convolutional layer.

To calculate the output of a neuron in a convolutional layer, it can used the following

equation [12]:

zi,j,k = bk +
fh−1∑
u=0

fw−1∑
v=0

fn′−1∑
k′=0

xi′ ,j ′ ,k′ ·wu,v,k′ ,k with

 i′ = i × sh +u

j ′ = j × sw + v
(2.20)

21

CHAPTER 2. STATE OF THE ART

Regarding the previous equation:

• Staring with zi,j,k , corresponds to the neuron (row i, column j, feature map k, layer

l) output.

• xi′ ,j ′ ,k′ , corresponds to the neuron (row i’, column j’, feature map k’, layer - 1) output.

• bk is a bias term per feature map k in layer l.

• wu,v,k′ ,k is the weight of the connection between a neuron (feature map k, layer l)

and the input located at row u, column v (relative to the receptive field), and the

feature map k’.

2.2.3.4 Dropout layer

A very common element in artificial neural network architectures is the dropout layer. It

simply drops out or randomly ignores a unit, which means temporarily hide them from

the network, plus its connections to other elements[47].

"With unlimited computation, the best way to regularize a fixed-sized model is to

average the predictions of all possible settings of the parameters, weighting each setting

by its posterior probability given the training data"[47].

Dropout relies on nodes in a layer to assume less or more responsibility for the inputs

during the training procedure making it noisier, on a probabilistic basis.

Dropout will attempt to deal with instances in which network layers co-adapt to

rectify previous layers’ mistakes, resulting in a more robust model.

If we look at keras dropout leyer class [8], the dropout layer is meant to avoid over-

fitting during training process, it will set the input to 0 with certain frequency f at each

time step.

The other inputs are scaled up by 1/(1 − f) such that the sum over all inputs is un-

changed.

2.2.3.5 Pooling layers

Usually used in CNN, pooling layers are used to consolidate features learned by the

convolutional layer feature map. It helps preventing over-fitting. Pooling layers are not

very complicate because frequently it only involves average or maximum values of input

to downsample data[48].

Commonly used pooling layers:

• Max Pooling layer ⇒ Usually used to extract low-level features from data, max

pooling chooses the maximum values in the section captured by the filter in any

feature map.

22

2.2. ARTIFICIAL NEURAL NETWORKS

Figure 2.14: Standard Neural Net: Before Dropout

Figure 2.15: Standard Neural Net: After Dropout

• Average Pooling layer⇒ This layer is used to helps to extract the smooth features,

average pooling chooses the average of values in the section captured by the filter

in any feature map.

• Global Max/Average Pooling layer⇒ Both global average and global max layers are

used in place of the the flatten layer to prevent over-fitting. Also, the global average

pooling can be viewed as a structural regularizer that enforces features maps to be

confidence maps of categories. Basically, the flobal pooling layer take the max or

average values of each features map and send them to the activation layer.

The pooling operation (see Fig. 2.14 and Fig. 2.15) consists in passing a two dimen-

sional filter across a three-dimensional feature map and sum up the features that come

in shape of filter. Said that, if it is used a feature map sized h ∗wc, the output retrieved

from the pooling is (see Fig 2.16):

dim(output) = (h− f + 1)/s ∗ (w − f + 1) ∗ c (2.21)

In which variable represents:

23

CHAPTER 2. STATE OF THE ART

• h is the height of the feature map

• w is the width of the feature map

• c is the feature map channel

• s is the length of the stride

Figure 2.16: Overview of a pooling layer and how it downsamples data[48].

2.3 Performance metrics

In this section, it will be reviewed some performance metrics used during this dissertation,

namely Mean Square Error (MSE), Mean Average Error (MAE) and Pearson Correlation

Coefficient (PCC).

2.3.1 Mean Square Error (MSE)

The mean square error is aimed to measure the amount of error in model. It calculated

the average square difference between the observed values and the predicted values.

For instance, if we want to predict the value of an unobserved variable X given that

we observed Y = y. We can say that:

x̂ = g(y) (2.22)

The error in our predict is given by:

X̃ = X − x̂ = X − g(y) (2.23)

The MSE of an estimator is given by:

24

2.3. PERFORMANCE METRICS

E
[
(X − x̂)2 | Y = y

]
= E

[
(X − g(y))2 | Y = y

]
(2.24)

The objective to minimize the MSE in order to get the best prediction, we are looking

for the estimator with the lowest MSE among all possible estimators:

X̂M = E[X | Y] (2.25)

2.3.2 Mean Average Error (MAE)

The mean average error measures the average magnitude of errors in model. MAE is teh

average over the absolute values of the difference between predicted values and observed

values.

For instance, if we want to predict the value of an unobserved variable X given that

we observed Y = y. We can say that:

x̂ = g(y) (2.26)

The error in our predict is given by:

X̃ = X − x̂ = X − g(y) (2.27)

The MAE of an estimator is given by:

E [|X − x̂| | Y = y] = E [(|X − g(y)| | Y = y] (2.28)

The objective to minimize the MAE in order to get the best prediction, we are looking

for the estimator with the lowest MAE among all possible estimators:

X̂M = E[X | Y] (2.29)

25

CHAPTER 2. STATE OF THE ART

Figure 2.17: Correlation graph example.

2.3.3 Pearson Correlation Coefficient (PCC)

Correlation coefficients are usually aimed to discover how strong is a relationship between

data. Frequently, formulas return values between -1 and 1 (see Fig. 2.17).

The Pearson Correlation Coefficient (PCC) shows the linear relationship between two

sets of data being the ratio between the covarience of two variables and the product of

their deviations.

The PCC ratio is given by:

r =
∑

(xi − x̄) (yi − ȳ)√∑
(xi − x̄)2∑ (yi − ȳ)2

(2.30)

where,

• r is the correlation coefficient

• xi are the values of the x-variable

• x̄ is the mean of the values associated with x-variable

• yi are the values of the y-variable

• ȳ is the mean of the values associated with y-variable

26

2.4. RELATED WORKS

2.4 Related Works

In this section, it will be covered some related projects which are interesting to take a

look at, in order to understand applications and methodologies used.

2.4.1 Identification and control for nonlinear systems using a self-evolving
function-link interval type-2 fuzzy neural network

This research work says that, in recent years, many researchers have conducted studies

regarding the combination of a fuzzy inference system and artificial neural networks,

namely fuzzy neural networks(FNN)[28].

One crucial aspect in these FNN that can be difficult is selecting its network size.

The authors developed a self-evolving function-link interval type-2 fuzzy neural network

which builds a rule base autonomously.

The function-link is applied to an interval type-2 fuzzy neural network, in order to get

a closer approximation to the function. The steepest descent gradient approach is used

to establish the adaptive laws for the proposed system. The authors based themselves on

a Lyapunov function technique to ensure the system is stable.

Finally, the system performance is verified using numerical simulations of nonlin-

ear system identification and control of time-varying plants. Notice that, the proposed

method performed above other methods. [28].

2.4.2 Temporal convolutional networks applied to energy-related time series
forecasting

The presented work in [26], explored the use of TCNs to predict a time-series model in

comparison with LSTM (Long Short Term Memory) models. They refer that many deep

learning models have been introduced to interact with this kind of data but recurrent or

convolutional network can learn and predict complex patterns over time-series. Temporal

convolutional neural networks are specialized architectures which are able to understand

various patterns using dilated convolutions and residual blocks, capturing longer-term

dependencies while managing information loss.[26]

The results of this article showed that TCNs dilated causual convolutions outperforms

the recurrent LSTM units. The results were conclusive on the performance of TCNs.

Aspects to take in mind:

• Importance of the past observations input size window.

• The use of residual blocks the better handling of longer sequences, but LSTMs have

shown more accuracy when using smaller windows.

• TCNs models have many trainable parameters which make them a bit costly, but

they pay off in terms of performance.

27

CHAPTER 2. STATE OF THE ART

2.4.3 Short-term traffic speed forecasting based on graph attention temporal
convolutional networks

The importance of traffic prediction in real-time motivated Ge Guo and Wei Yuan to

present an interesting combination of a graph attention network and a temporal convo-

lutional network termed Graph Attention Temporal Neural Network (GATCN) to search

for an answer to the issue in their paper[15].

This paper introduces an interesting DP architecture which will learn from the input

data, all possible spatial-temporal features, process all information and output the traffic

speed forecast.

The capability of combining two modules results in a better spatial-temporal corre-

lation of data. "Comparisons using several benchmark models show the advantage of

GATCN in capturing the spatiotemporal characteristics for traffic forecast."[15].

2.4.4 Tracking of Dynamical Processes with Model Switching Using
Temporal Convolutional Networks

The paper[14] made in collaboration with the Department of Engineering and Design

Western Washington University and the Department of ECE Worcester Polytechnic Insti-

tute reflects the problem of modeling and predicting a dynamical process with model

switching. To address this, they developed a study of TCNs structural advantage in

time-series sequence prediction problems [14].

With the application of TCNs to predict states of dynamical systems with model

switching, they come to the conclusion that without any prior knowledge of the system

model TCNs demonstrate to be at least as good as the classical algorithms. TCNs research

is advancing at fast pace, and they are showing great results.

28

3

Systems Identification

3.1 Hybrid Systems

Many dynamical systems arrange in a combination of interactions which are common

in continuous-time systems with typical interactions from discrete-time systems. For

example, if we observe things such as an switched electric circuit, both voltage and current

have continuous behaviors align with classical electrical laws but when the switches open

or close it create an discontinuous change. If we take our thinking a little bit further,

generally systems that combine both analog and digital components are a big group of

examples. Also, in modern literature, control algorithms lead to both, continuous and

discrete behaviors due to decision making encoded in the algorithm, logic or simply

digital components used in their implementation[13].

3.1.1 Hybrid Automata

Imagine a hybrid system model divided into two parts:

• A discrete state s which makes reference to the configuration of the system,

• A continuous state ξ representing the continuous behaviour of the system.

Note that, the values that appear in s may depend on the system but for good compre-

hension, let assume, for example, LED control system, this system have an "ON"configuration

and "OFF"configuration which is our s while our ξ the amount of light produced. Gener-

ally, we can say that continuous state usually changes during flows however they also can

happen during jumps. While discrete state only changes during jumps. These kind of

system have been named as hybrid automata, differential automata or commonly hybrid

systems[13].

There few key data points to an hybrid automata:

• the set of configurations S,

• the domain map, domain: S ⇒ R
n, for each s ∈ S, the set domain(q) where the

continuous state ξ will express its behavior,

29

CHAPTER 3. SYSTEMS IDENTIFICATION

• the flow map, f : S ×Rn → R
n, expressing the continuous behavior of ξ through

differential equations,

• the set of edges, Edg ⊂ S × S, which corresponds to the set of pairs (s, s′) where a

transitions from configuration s to configuration s′ is possible,

• the guard map, GM(s, s′)⇒R
n, which corresponds for each set of pairs (s, s′) ∈ Edg

to the continuous state ξ it must belong for the configuration shift from s to s′ to

occur.

• the reset map, Reset : Edg × Rn → R
n, which corresponds for each set of pairs

(s, s′) ∈ Edg to the value set in the continuous state ξ ∈ Rn during a configuration

shift. If the continuous state stays constant after a jump from s to s′, it is assumed

that the reset map, Reset, can be considered to be the identity, Reset (s, s′ , ·).

Lets formulate a hybrid automata as an hybrid system with clear configurations.

Therefore, for every s ∈ S, we will have:

Cs = Domain(s) (3.1)

Ds =
⋃

(s,s′)∈ Edg

GM(s, s′) (3.2)

Fs(ξ) = f (s,ξ), for all ξ ∈ Cs (3.3)

Gs(ξ) =
⋃

{s′ :ξ∈GM(s,s′)}

(Reset(s, s′ ,ξ) , s′) , for all ξ ∈Ds (3.4)

Whenever ξ is part of two different guard maps, GM(s, s′) and GM(s, s′′), Gs(ξ) has a

minimum of two points, therefore Gs is not null[13]. With 3.1, 3.2, 3.3 and 3.4, we can

define a hybrid system with state (ξ,s) ∈Rn ×R by:

ξ̇ = Fs(ξ), s ∈ S,ξ ∈ Cs (3.5)

(ξ+, s+) ∈ Gs(ξ), s ∈ S,ξ ∈Ds (3.6)

30

3.1. HYBRID SYSTEMS

3.1.2 Switching Systems

A switching system is within a group of hybrid systems in which combine continuous and

discrete dynamic systems. Examples include applications such as manufacturing control

systems [38], communication networks and car control systems and aircraft control[2]. To

be able to model these systems we cannot focus only on continuous methods or discrete

methods, their behavior require a more open approach.

"A switching system is a differential equation whose right-hand side is chosen from a

family of functions based on a switching signal[13]", which implies that every time there

is a switching signal, the model will be defined as a time-varying differential equation.

In the work bench of hybrid systems, info related to the switching signal is many times

embedebed into data using timers and reset rules.

Let us define a switched systems as:

ξ̇ = fs(ξ) (3.7)

Where, for every s ∈ S = {1,2, . . . , smax} , fs : Rn → R
n will be the corresponding

continuous function.

So a solution to 3.7 may consist in:

• ξ : R≥0→R
n, a locally continuous function,

• s : R≥0 → S, for each time step interval, this is a constant with a finite number

of discontinuities which fulfill the requirements for ξ̇(t) = fs(t)(ξ(t)) for almost all

t ∈R≥0

Consider the following, for the next example, I is number of discontinuities in s, with

the possibility of I may be infinite, t0 = 0 and {ti}′i=1 be the crescent sequence of times at

which s is not continuous[13]. As an example, we present a solution (ξ,s) to 3.7 named

dwell-time solution with dwell time characterized by (see Fig. 3.1):

τD > 0 if ti+1 − ti ≥ τD for all i = 1,2, . . . , I − 1 (3.8)

Note that, τD refers to the minimum time that separates switchings. Every dwell-time

answer to the problem can be created as part of the hybrid system:

x = (ξ,s,τ) ∈Rn+2 (3.9)

provided through equations 3.10 and 3.11.

31

CHAPTER 3. SYSTEMS IDENTIFICATION

ξ̇ = fs(ξ)

ṡ = 0

τ̇ ∈ [0,1/τD]

 =: F(x),x ∈ C := R
n × S × [0,1] (3.10)

ξ+ = ξ

s+ ∈ S
τ+ = 0

 =: G(x),x ∈D := R
n × S × {1} (3.11)

Figure 3.1: Hybrid time domain: Solution based on dwell-time wit a dwell constant τD

3.2 Hybrid Systems Identification

Modeling [16, 5], stability analysis [21, 5], control [5][31][4], verification , and fault

detection [44] [11] have dominated the majority of the hybrid systems literature.

Hybrid systems emerge from the cooperation of continuous and discontinuous pro-

cesses. A system like this produces a combination of continuous and discrete signals,

with values in a continuum (like the real numbers R and a finite set (like a,b,c), respec-

tively. Therefore, a hybrid dynamical system is one where the behavior is influenced

by integrating continuous and discrete dynamics. Hybrid dynamical systems produce

variables or signals, which are created from continuous or discrete values, time signals,

with other systems and the environment through them. Further to that, independent

variables, which might be continuous or discrete, may be dependent on these continuous

or discrete-valued signals. Another point to emphasis is that some of the signals could be

time-driven, while others could be asynchronously event-driven.

When portions of a model are unknown, however, identification requires a param-

eterization of the uncertainty. The universal function approximator property of neural

networks[17], has made them ubiquitous[10].

32

3.2. HYBRID SYSTEMS IDENTIFICATION

There are various advantages to identifying continuous time system dynamics over

discretized alternatives. Physical systems’ dynamics are frequently influenced by con-

tinuous dynamics, making modeling and identification in continuous time natural. Not

only does this mean that continuous model parameters are closely related to real physical

features, but it also means that inherent structure, such as sparsity, may be captured in a

continuous time model, but a discretized version would lose it [10].

In many circumstances, discrete events alter the dynamics, necessitating the use of

hybrid models. In many real-world situations, for example, open loop identification is

impossible, and a discrete time controller must be included in the model[10].

Let us start by defining the equation which represents a discrete time switching sys-

tem:

x(k + 1) = fσ (k)(x(k),u(k)), k ∈N (3.12)

x(0) = ξ (3.13)

Notice that x(k) ∈ Rn,n is a positive integer; u(k) ∈ Rm is the input and m is also a

positive integer. The function σ from N to S, where S = {1,2, . . . ,p} is finite set and p

is also a positive integer. If any j ∈ S, fj : Rn ×Rm → R
n is a locally Lipschitz function,

complying with fj(0,0) = 0;ξ ∈Rn[37].

Lets consider a finite group of pairs (i, j) ∈ S × S, E(S) to be able to switch between a

system fi and another system fj [25]:

1. The group of indexes in S corresponding to the set of vertices.

2. A set of edges E(S) containing on one hand, a directed edge (i, j) When it is possible

to switch between a vertex (system) i and other vertex (system) j such that i, j ∈
S, i , j and on other hand a self-loop (j, j) at vertex (system) j when it stays on

vertex (system) j for range from two to∞ consecutive time steps.

Said that, the set of sequences are described by:

MS = {σ : N→ S | (σ (k),σ (k + 1)) ∈ E(S),∀k ∈N} (3.14)

Mu = {u : N→R
m} (3.15)

MB =
{
v : N→ Bm

1
}

(3.16)

33

CHAPTER 3. SYSTEMS IDENTIFICATION

It is also important to mention a constraint to any switching signal σ ∈MS in order

to comply with the provided switched digraph. We defined x(k,ξ,σ ,u), k ∈ N as the

solution to 3.12 associated with the initial condition ξ, the switching signal σ and the

corresponding input signal u[20].

3.3 Proposed approach

On this thesis, the main goal is to implement a temporal convolutional neural network

architecture capable of capturing the dynamic of a nonlinear system, with structural

reconfiguration.

This architecture will have two principal objectives:

1. Capture the spatio-temporal nonlinear system dynamics.

2. Reflect the system configuration structure associated with the dynamical changes.

As there aren’t any scientific rules with a good support theory to design an ideal deep

neural network structures, it was necessary to search for proper network scheme that

suits the objectives[51].

The design of a new deep neural network structure is never trivial, being commonly

oriented by the required performance and computational burden [51]. As there is no

design support framework, to the best of the author knowledge, to help researchers not

only tuning hyperparameters but also in layers topology selection, namely convolution

layers and pooling layers, and the underlying activation functions and dropout mecha-

nisms, the synthesis approach is usually carried out under a trial-and-error heuristics or

meta-heuristics [24].

In this work several candidate topologies were first analysed and the most fitted ar-

chitecture in terms of generalization capability and lower computational complexity was

the one to be chosen. This topology is schematically presented in Fig. 3.2. The first part

of the structure consists of a 1D convolutional layer, followed by a dropout layer, and by

a three cascaded 1D convolutional layers, a max polling 1D layer and two dense layers.

With respect to the input to the CNN neural network, it consists of two types of informa-

tion, namely the structural configuration and regressors, which comprise previous inputs

to the plant and outputs. As the CNN input includes tapped delay lines based on the

system inputs and outputs, the proposed architecture will be denote, in the following, as

temporal convolutional neural network (TCN).

34

3.3. PROPOSED APPROACH

Figure 3.2: Proposed architecture

35

4

Case Study

4.1 Three-Tank System

The case study experiment consists of a three-tank system benchmark with the main goal

of modeling the nonlinear dynamics in tanks using the proposed architecture.

The nonlinear controlled system AMIRA© DTS 200 three-tank system benchmark

(see Fig. 4.1) consists in three plexiglas cylindrical tanks with identical cross-section

supplied with distilled water. The water levels, respectively h1, h2 and h3 are measured

by piezoresistive transducers. The middle tank T3 is connected to the other two tanks

by means of circular cross-section pipes provided with manually adjustable ball valves.

The connecting pipes and the tanks are additionally equipped with manually adjustable

valves and outlets for the purpose of simulating clogs as well as leaks. The main outlet

of the system is located in the tank T2, which is directly connected to the collecting

reservoir by means of a circular cross-section pipe provided with an outflow ball valve.

Additionally, this system includes two pumps u1 and u2 for feeding tanks T1 and T2 with

water.

Figure 4.1: Three-Tank System AMIRA DTS200 and respective schematic.

The nonlinear dynamics of the three-tank system can be described by following equa-

tions:

36

4.2. DATA PREPARATION

dh1
dt

=
1
At

[
q1− ξ1,3Spsgn (h1− h3)

√
2g |h1− h3|

−ξ1,0Sp
√

2gh1

]
dh2
dt

=
1
At

[
q2 + ξ3,2Spsgn (h3− h2)

√
2g |h3− h2|

−ξ2,0Sp
√

2gh2

]
(4.1)

dh3
dt

=
1
At

[
ξ1,3Spsgn (h1− h3)

√
2g |h1− h3|

−ξ3,2Spsgn (h3− h2)
√

2g |h3− h2|

−ξ3,0Sp
√

2gh3

]
where:

• Tank levels are noted as hi , i = 1,2,3,

• Cross section of each tank as At,

• The cross section interconnection pipes , Sp,

• qj , j = 1,2 is the flow pump rate,

• The acceleration of gravity g,

Note that sgn stands for "sign"and | · | the absolute value notation.

4.2 Data Preparation

One important step in modeling the dynamics of a system is the way we collect data. As

explained in the previous section, the system has two inputs: the first pump u1 and the

second pump u2 so to collect our dataset we will send input signals to generate some

behaviour in the tank system.

To generate the values for the pumps, u1andu2, which means the input signal of the

system, it was chosen a random number between 1 and 5 (minimum and maximum values

for each pumps).

This signal will be sent to the system until a maximum water level is reached or if

the system becomes unchanged for at least two minutes. After one of these situation, the

system will jump to another set of pump values. In case of the first one, the system will

wait until water levels are at least at half the maximum capacity.

For the Temporal Convolutional Neural Network (TCN) training and test data, the

structural configuration has made after 25 different pump values sets.

For the MLP training and test data, a dataset was collected per configuration in order

to train each MLP separately.

37

CHAPTER 4. CASE STUDY

Regarding the outputs of the system, it was saved the water level for each tank h1, h2,
h3.

Summing up, the datasets that we extract from the system to be able to train, validate

and test follow the structure in 4.2, for each time sample k:

[
k u1 u2 h1 h2 h3

]
(4.2)

4.3 TCN based Identification

For training the temporal convolutional neural network, it was collected a dataset from

the three-tank system with 20.000 samples, going thought two different structural con-

figurations two times each.

The structural configuration of the valves was incorporated in a vector S containing

six values (0 or 1) associated with a state of the six valves, in which zero means closed

and one means the corresponding value is open.

S1 =
[

1 1 1 0 0 0
]

(4.3)

S2 =
[

1 1 0 0 1 0
]

(4.4)

Concerning the other data collected from the system, which means the pump values

and the sensor data regarding the water level, there were normalized between 0 and 1.

In order to capture the three-tank system dynamics, a dataset collected from this

system was first obtained by feeding the 2 pumps with a sequence of inputs {u1,u2} as

shown in Fig. 4.2, and sampling the levels of the 3 tanks, {h1,h2,h3}, as presented in Fig.

4.3, while using a sampling period of 1 s. In the course of the excitation of the system

its structural configuration, defined by a binary array S [1 : 6] ,X [i] = {0,1}, and dictated

by the status of the valves, is alternated every 5000 samples between configuration 1,

defined by S1 and configuration 2, defined by S2.

Besides the input S provided to the TCN, five additional vectors were considered as

inputs, consisting of fifth order tapped delay lines associated to ui , i = 1,2 and hj , j = 1,2,3.

This data structure is schematically presented in Fig. 4.4.

In this supervised training, we will have an input shaped as (31,1) to an output of the

3 tank water levels. After this preparation of data, it is fitted into the model. To tune the

neural network, it was conducted some grid searches to look for better hyperparameters

such as number of epochs, the learning rate or batch size. For the optimizer it was made

some tests using Adam, NAdam and RMSProp, the one that achieved the best results

during training was the NAdam.

38

4.3. TCN BASED IDENTIFICATION

Figure 4.2: Train Data for TCN: Input Data

Figure 4.3: Train Data for TCN: Output Data

One important step in assessing the quality of the training process is the validation

process that consists in a prediction with a new dataset. For this process we will use the

signals shown in Fig. 4.5 and Fig. 4.6 as well as the structural configuration as the input

to the TCN and compare it with the real outputs.

39

CHAPTER 4. CASE STUDY

Figure 4.4: Input and Output structure for TCN train

Figure 4.5: Validation Data for TCN: Input Data

We present the TCN predictions made for the water level in the tank 1, tank 2 and

tank 3:

As we can observe in Fig.4.7, Fig.4.8 and Fig.4.9, our convolutional architecture fol-

lows the real values closely as we can conclude through the elaboration of table4.1.

Model Metric h1 h2 h3 Average

TCN
MSE 4.70311× 10−5 4.25167× 10−5 5.15767× 10−5 4.70415× 10−5

MAE 4.73700× 10−3 4.64720× 10−3 4.49151× 10−3 4.62524× 10−3

PCC 9.99721× 10−1 9.99693× 10−1 9.99509× 10−1 9.99641× 10−1

Table 4.1: Performance metrics for TCN Validation.

40

4.4. MLP BASED IDENTIFICATION

Figure 4.6: Validation Data for TCN: Output Data

Figure 4.7: TCN predicts for tank 1

4.4 MLP based Identification

Since the dataset collected for TCN training is not suitable to be used in the train of MLP

networks, as it reflects the effect of structural switching, two new datasets, concerning

configurations S1 and S2 were collected, as presented in Fig. 4.10, Fig. 4.11, Fig. 4.12 and

Fig. 4.13.

The two MLPs, each associated with one of the configurations, include as inputs a

fifth order tapped delay lines formed with ui , i = 1,2 and hj , j = 1,2,3 (see Fig. 4.14), but

41

CHAPTER 4. CASE STUDY

Figure 4.8: TCN predicts for tank 2

Figure 4.9: TCN predicts for tank 3

unlike the TCN topology, there is no configuration selection. In this case it is externally

provided by choosing the appropriate MLP. As such, the MLPs concerning each one of

the configurations, S1 and S2, are trained separately using the corresponding datasets.

With respect to the internal layers, both MLPs include 2 layers, comprising 20 neu-

rons, in the first layer and 10 in the second one, with hyperbolic tangent functions. The

output layer contains 3 neurons, corresponding to the number of the tank levels, and

presenting RELU activation functions. In the training stage the Adam algorithm was

used as optimiser.

42

4.4. MLP BASED IDENTIFICATION

So for the training of multilayer perceptron neural networks, it was present two

datasets with 10.000 samples, one for each structural configuration, presented in Fig. 4.10,

Fig. 4.11, Fig. 4.12 and Fig. 4.13.

Figure 4.10: Train Data for MLP1: Input Data

Figure 4.11: Train Data for MLP1: Output Data

Both of these MLPs will have a similar input and output format to the TCN, except the

structural configuration vector S. Therefore, it leaves us with a 25 inputs if we consider a

regressor containing 5 past observations.

In order to prepare all the data as the input for both MLPs as well as incorporate into

43

CHAPTER 4. CASE STUDY

Figure 4.12: Train Data for MLP2: Input Data

Figure 4.13: Train Data for MLP2: Output Data

the data the temporal information, it was used a regressor of k (in this case, it was k = 5)

past observations to predict the level of water in the tanks. Which means that the input

of the neural network will have 5 entries per each k past observations. So, we end up with

a twenty-five entries as the network input and three as the output at the time k.

For the validation of MLP networks, to reflect the effect of structural switching,

two new datasets, concerning configurations S1 and S2 were collected, as presented in

Fig. 4.15, Fig. 4.16, Fig. 4.17 and Fig. 4.18.

Here, we present the MLP1 predictions made from the respective validation dataset

44

4.4. MLP BASED IDENTIFICATION

Figure 4.14: Input and Output structure for MLP train

Figure 4.15: Validation Data for MLP1: Input Data

Model Metric h1 h2 h3 Average

MLP1
MSE 3.44120× 10−5 7.30357× 10−6 9.3354× 10−6 1.70170× 10−5

MAE 4.56637× 10−3 1.84189× 10−3 2.35174× 10−3 2.92000× 10−3

PCC 9.99911× 10−1 9.99918× 10−1 999913× 10−1 9.99914× 10−1

Table 4.2: Performance metrics for MLP1.

for the water level in the tank 1, tank 2 and tank 3:

In order to quantify the error of the MLP1 network, three metrics have been consid-

ered, namely, the mean squared error (MSE), mean absolute error (MAE) and Pearson’s

correlation coefficient (PCC). As it can be observed from Table 4.2, the identification

framework based on a multilayer perceptron network show a good approximation for

configuration 1.

Here, we present the MLP2 predictions made from the respective validation dataset

for the water level in the tank 1, tank 2 and tank 3:

45

CHAPTER 4. CASE STUDY

Figure 4.16: Validation Data for MLP1: Output Data

Figure 4.17: Validation Data for MLP2: Input Data

In order to quantify the error of the MLP2 network, three metrics have been consid-

ered, namely, the mean squared error (MSE), mean absolute error (MAE) and Pearson’s

correlation coefficient (PCC). As it can be observed from Table 4.3, the identification

framework based on a multilayer perceptron network show a good approximation for

configuration 2.

46

4.4. MLP BASED IDENTIFICATION

Figure 4.18: Validation Data for MLP2: Output Data

Figure 4.19: MLP2 predicts for tank 1

Model Metric h1 h2 h3 Average

MLP2
MSE 7.87857× 10−6 8.61725× 10−6 1.35906× 10−5 1.00288× 10−5

MAE 2.02687× 10−3 1.99963× 10−3 2.74633× 10−3 2.25762× 10−3

PCC 9.99944× 10−1 9.99946× 10−1 9.99887× 10−1 9.99926× 10−1

Table 4.3: Performance metrics for MLP2.

47

CHAPTER 4. CASE STUDY

Figure 4.20: MLP2 predicts for tank 2

Figure 4.21: MLP2 predicts for tank 3

4.5 Discussion

In this section, we present the prediction experiments that allows to truly find out if our

proposed architecture can manage to predict the system dynamic comparing to the MLP

architecture.

After the training and validation stages have been completed, the TCN and the

MLP-based frameworks were tested on a new dataset consisting of a data quadruplet

Z = Z {k,S,u1,u2,h1,h2,h3}. The time response of the two frameworks is presented in

48

4.5. DISCUSSION

Figure 4.22: MLP2 predicts for tank 1

Figure 4.23: MLP2 predicts for tank 2

Fig. 4.27, for tank 1, Fig. 4.28, for tank 2 and Fig. 4.29 for tank 3. As can be observed

from these figures, both frameworks can effectively approximate the system response,

even in conditions not presented to the networks during the training stages. Neverthe-

less, it is noticed that the MLP-based predictors exhibit a response deterioration in the

neighbourhood of pump transitions, particularly in the case of tank 3.

As mentioned above, multilayer perceptron architecture models nonlinear data, but

its numbers of parameters can grow very high and it disregards spatial information. Mean-

while, convolutional architecture is simpler and cleaner than recurrent architecture. It

49

CHAPTER 4. CASE STUDY

Figure 4.24: MLP2 predicts for tank 3

Figure 4.25: Test Data for comparison (TCN vs MLP) : Input Data

makes the convolutional architecture a good candidate for modelling complex sequence

data[49]. Thus, we compare the two architectures to prove the merit of our method.

To proceed with verification of the reliability of the model proposed in this disserta-

tion, we will use the new test dataset, Fig 4.25 and Fig 4.26, feed the input data thought

the proposed frameworks.

As comparison, we present graphs for the water level prediction results on a test set

for both architectures.

If we analyse the figures 4.27, 4.28 and 4.29 of the systems predictions, respectively

50

4.5. DISCUSSION

Figure 4.26: Test Data for comparison (TCN vs MLP) : Output Data

Figure 4.27: TCN and MLP predicts for tank 1

51

CHAPTER 4. CASE STUDY

Figure 4.28: TCN and MLP predicts for tank 2

Figure 4.29: TCN and MLP predicts for tank 3

52

4.5. DISCUSSION

Model Metric h1 h2 h3 Average

TCN
MSE 4.70311× 10−5 4.25167× 10−5 5.15767× 10−5 4.70415× 10−5

MAE 4.73700× 10−3 4.64720× 10−3 4.49151× 10−3 4.62524× 10−3

PCC 9.99721× 10−1 9.99693× 10−1 9.99509× 10−1 9.99641× 10−1

MLP
MSE 8.53658× 10−5 5.89277× 10−5 7.23104× 10−5 7.22013× 10−5

MAE 6.81670× 10−3 4.72254× 10−3 6.31358× 10−3 5.95094× 10−3

PCC 9.99747× 10−1 9.99806× 10−1 9.99599× 10−1 9.99717× 10−1

Table 4.4: Performance metrics.

for the water level in the tank 1, 2 and 3, we can see that for both architectures, the TCN

and the MLP predictions follow quite good the real outputs. The MLP have a bit more

trouble following the real output when the change is too abrupt or in transitions.

In order to quantify performances, three metrics have been considered, namely, the

mean squared error (MSE), mean absolute error (MAE) and Pearson’s correlation coeffi-

cient (PCC). AS can be observed from Table 4.4, the identification framework based on

a temporal convolutional network topology outperforms the approach propped up on

MLPs, in which each one of the neural network is trained to emulate a given structural

configuration. On the other hand, as the trigger signal, under the form of a topological

change, is transparently incorporated into the TCN architecture, as an additional input,

it confers an extra degree of plasticity to the switching system predictor.

53

5

Conclusions

5.1 Final Remarks

The present work dealt with the problem of data driven-based hybrid systems modelling,

in particular of those subject to structural modification or parametrical change induced

by a switching signal.

The proposed approach relied on a temporal convolutional neural network, whose in-

puts comprise tapped delay lines of inputs and outputs from the system and, additionally,

an extra array specifying the structural configuration.

Results based on a benchmark three-tank system, in which the structural configura-

tion is specified by shut-off valves show clearly the effectiveness and potential of this class

of black-box models, outperforming the approach considered for comparison purposes,

based on two independent feedforward neural networks.

Said that, we can point out the following accomplished objectives:

• The development of an convolutional architecture capable of such kind of nonlinear

modulation,

• This TCN architecture allows to model systems which have subsystems that can be

internally chosen through a configuration variable,

• The development of an comparison architecture using two swallow multilayer per-

ceptron neural networks,

• Relied on a data-driven approach to model the systems statio-temporal information,

as well as, the structural configuration.

54

5.2. FUTURE WORKS

5.2 Future works

This dissertation thesis was focused on the search for a convolutional architecture capable

of complex systems modeling. Modeling system can follow many approaches and this

work was one of them.

However the focus here was to model the dynamic of a system capable for handling a

structural configuration using a convolutional neural network, it was concluded that,in

the future, other works should be conducted to address other issues.

Here, we leave out some paths of discovery that may be interesting to follow:

• A proposed path of investigation should be to test a GATCN (Graph Attention Tem-

poral Convolutional Network) [15], which is a deep learning forecasting framework

based on a graph attention network and a temporal convolutional network. This

might be a good mechanism to handle this type of complex nonlinear modeling.

• Search for new modeling approaches, especially the ones using new technologies

and methodologies such a machine learning, deep learning making use of the avail-

ability of computer power in our days.

• At last but not least, we suggest exploring the implementation of a neural archi-

tecture search to look of better architectures and models. The development of

meta-heuristics for the architectures selecting to be able to feed the search oriented

to specific parameters.

55

Bibliography

[1] A. Afshine and A. Shervine. CS 230 - Recurrent Neural Networks Cheatsheet. 2019.

url: https://stanford.edu/$%5Csim$shervine/teaching/cs-230/cheatsheet-

recurrent-neural-networks (cit. on p. 18).

[2] P. Antsaklis. “Special issue on hybrid systems: theory and applications a brief

introduction to the theory and applications of hybrid systems”. In: Proceedings of
the IEEE 88.7 (2000), pp. 879–887. doi: 10.1109/JPROC.2000.871299 (cit. on p. 31).

[3] A. Barron. “Barron, A.E.: Universal approximation bounds for superpositions

of a sigmoidal function. IEEE Trans. on Information Theory 39, 930-945”. In:

Information Theory, IEEE Transactions on 39 (1993-06), pp. 930–945. doi: 10.1109

/18.256500 (cit. on p. 3).

[4] A. Bemporad and M. Morari. “Control of systems integrating logic, dynamics,

and constraints”. In: Automatica 35.3 (1999), pp. 407–427. issn: 00051098. doi:

10.1016/S0005-1098(98)00178-2 (cit. on p. 32).

[5] M. S. Branicky, V. S. Borkar, and S. K. Mitter. “A unified framework for hybrid

control: Model and optimal control theory”. In: IEEE Transactions on Automatic
Control 43.1 (1998), pp. 31–45. issn: 00189286. doi: 10.1109/9.654885 (cit. on

p. 32).

[6] E. CULURCIELLO. THE HISTORY OF NEURAL NETWORKS. 2019. (Visited on

2021-02-26) (cit. on p. 19).

[7] Y. N. Dauphin et al. “Language Modeling with Gated Convolutional Networks”. In:

(2017). arXiv: arXiv:1612.08083v3 (cit. on p. 1).

[8] Dropout Layer - Keras.io. url: https://keras.io/api/layers/regularization_

layers/dropout/ (cit. on p. 22).

[9] A. K. Duun-Henriksen et al. “Model identification using stochastic differential

equation grey-box models in diabetes”. In: Journal of Diabetes Science and Technol-
ogy 7.2 (2013), pp. 431–440. issn: 19322968. doi: 10.1177/193229681300700220

(cit. on p. 6).

56

https://stanford.edu/$%5Csim$shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
https://stanford.edu/$%5Csim$shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
https://doi.org/10.1109/JPROC.2000.871299
https://doi.org/10.1109/18.256500
https://doi.org/10.1109/18.256500
https://doi.org/10.1016/S0005-1098(98)00178-2
https://doi.org/10.1109/9.654885
https://arxiv.org/abs/arXiv:1612.08083v3
https://keras.io/api/layers/regularization_layers/dropout/
https://keras.io/api/layers/regularization_layers/dropout/
https://doi.org/10.1177/193229681300700220

BIBLIOGRAPHY

[10] M. Fält and P. Giselsson. “System Identification for Hybrid Systems using Neural

Networks”. In: (2019), pp. 1–13. arXiv: 1911.12663. url: http://arxiv.org/abs/

1911.12663 (cit. on pp. 32, 33).

[11] G. Ferrari-Trecate, D. Mignone, and M. Morari. “Moving horizon estimation for

hybrid systems”. In: IEEE Transactions on Automatic Control 47.10 (2002), pp. 1663–

1676. issn: 00189286. doi: 10.1109/TAC.2002.802772 (cit. on p. 32).

[12] A. Gerón. Hands-On Machine Learning with Scikit-Learn, Keras and TensorFlow. Ed.

by R. Roumeliotis and N. Tache. 2nd. O’Reilly Media, Inc, 2019, p. 820 (cit. on

pp. 11–13, 15, 17–21).

[13] R. Goebel, R. G. Sanfelice, and A. R. Teel. “Hybrid Dynamical Systems”. In: IEEE
Control Systems Magazine April (2009) (cit. on pp. 29–31).

[14] A. Grootveld et al. “Tracking of Dynamical Processes with Model Switching Using

Temporal Convolutional Networks”. In: () (cit. on p. 28).

[15] G. Guo and W. Yuan. “Short-term traffic speed forecasting based on graph attention

temporal convolutional networks”. In: Neurocomputing 410 (2020), pp. 387–393.

issn: 18728286. doi: 10.1016/j.neucom.2020.06.001. url: https://doi.org/10

.1016/j.neucom.2020.06.001 (cit. on pp. 28, 55).

[16] W. P. Heemels, B. De Schutter, and A. Bemporad. “On the equivalence of classes of

hybrid dynamical models”. In: Proceedings of the IEEE Conference on Decision and
Control 1 (2001), pp. 364–369. issn: 01912216. doi: 10.1109/CDC.2001.980127

(cit. on p. 32).

[17] K. Hornik. “Approximation capabilities of multilayer feedforward networks”. In:

Neural Networks 4.2 (1991), pp. 251–257. issn: 08936080. doi: 10.1016/0893-608

0(91)90009-T (cit. on p. 32).

[18] K. Hornik, M. Stinchcombe, and H. White. “Multilayer feedforward networks

are universal approximators”. In: Neural Networks 2.5 (1989), pp. 359–366. issn:

0893-6080. doi: https://doi.org/10.1016/0893-6080(89)90020-8. url: https:

//www.sciencedirect.com/science/article/pii/0893608089900208 (cit. on p. 3).

[19] S. Jayawardhana. Sequence Models and Recurrent Neural Networks (RNNs). 2020.

url: https : / / towardsdatascience . com / sequence - models - and - recurrent -

neural-networks-rnns-62cadeb4f1e1 (cit. on p. 16).

[20] Y. W. Jiang, Zhong-Ping. “Input-to-state stability for discrete-time nonlinear sys-

tems”. In: Automatica (2000). issn: 00200255 (cit. on p. 34).

[21] M. Johansson and A. Rantzer. “Computation of piecewise quadratic Lyapunov

functions for hybrid systems”. In: ECC 1997 - European Control Conference (1997),

pp. 2005–2010. doi: 10.23919/ecc.1997.7082399 (cit. on p. 32).

57

https://arxiv.org/abs/1911.12663
http://arxiv.org/abs/1911.12663
http://arxiv.org/abs/1911.12663
https://doi.org/10.1109/TAC.2002.802772
https://doi.org/10.1016/j.neucom.2020.06.001
https://doi.org/10.1016/j.neucom.2020.06.001
https://doi.org/10.1016/j.neucom.2020.06.001
https://doi.org/10.1109/CDC.2001.980127
https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://towardsdatascience.com/sequence-models-and-recurrent-neural-networks-rnns-62cadeb4f1e1
https://towardsdatascience.com/sequence-models-and-recurrent-neural-networks-rnns-62cadeb4f1e1
https://doi.org/10.23919/ecc.1997.7082399

BIBLIOGRAPHY

[22] A. Juditsky et al. “Nonlinear black-box models in system identification: Mathemat-

ical foundations”. In: Automatica 31.12 (1995). Trends in System Identification,

pp. 1725–1750. issn: 0005-1098. doi: https://doi.org/10.1016/0005-1098(95

)00119-1. url: https://www.sciencedirect.com/science/article/pii/00051098

95001191 (cit. on p. 3).

[23] N. Kalchbrenner, L. Espeholt, and K. Simonyan. “Neural Machine Translation in

Linear Time”. In: (2016). arXiv: arXiv:1610.10099v2 (cit. on p. 1).

[24] A. M. Kalteh. “Rainfall-runoff modelling using artificial neural networks (ANNs):

modelling and understanding”. In: 4.1 (2016), pp. 1–23 (cit. on p. 34).

[25] A. Kundu and D. Chatterjee. “A graph theoretic approach to input-to-state stability

of switched systems”. In: European Journal of Control 29 (2016), pp. 44–50. issn:

09473580. doi: 10.1016/j.ejcon.2016.03.003. arXiv: 1509.02668 (cit. on p. 33).

[26] P. Lara-Benítez et al. “Temporal convolutional networks applied to energy-related

time series forecasting”. In: Applied Sciences (Switzerland) 10.7 (2020), pp. 1–17.

issn: 20763417. doi: 10.3390/app10072322 (cit. on p. 27).

[27] Y. Lecun et al. “Gradient-Based Learning Applied to Document Recognition”. In:

proc. OF THE IEEE (1998). url: http://ieeexplore.ieee.org/document/726791

/#full-text-section (cit. on p. 19).

[28] C. M. Lin, T. L. Le, and T. T. Huynh. “Self-evolving function-link interval type-2

fuzzy neural network for nonlinear system identification and control”. In: Neuro-
computing 275 (2018), pp. 2239–2250. issn: 18728286. doi: 10.1016/j.neucom.20

17.11.009. url: https://doi.org/10.1016/j.neucom.2017.11.009 (cit. on p. 27).

[29] L. Ljung. “Perspectives on System Identification”. In: IFAC Proceedings Volumes
41.2 (2008). 17th IFAC World Congress, pp. 7172–7184. issn: 1474-6670. doi:

https://doi.org/10.3182/20080706- 5- KR- 1001.01215. url: https://www.

sciencedirect.com/science/article/pii/S1474667016400984 (cit. on p. 10).

[30] J. M. Lourenço. The NOVAthesis LATEX Template User’s Manual. NOVA University

Lisbon. 2021. url: https://github.com/joaomlourenco/novathesis/raw/master/

template.pdf (cit. on p. ii).

[31] J. Lygeros, C. Tomlin, and S. Sastry. “Controllers for reachability specifications for

hybrid systems”. In: Automatica 35.3 (1999), pp. 349–370. issn: 00051098. doi:

10.1016/S0005-1098(98)00193-9 (cit. on p. 32).

[32] K. Madani. “Industrial and Real World Applications of”. In: (2006), pp. 11–26

(cit. on p. 11).

58

https://doi.org/https://doi.org/10.1016/0005-1098(95)00119-1
https://doi.org/https://doi.org/10.1016/0005-1098(95)00119-1
https://www.sciencedirect.com/science/article/pii/0005109895001191
https://www.sciencedirect.com/science/article/pii/0005109895001191
https://arxiv.org/abs/arXiv:1610.10099v2
https://doi.org/10.1016/j.ejcon.2016.03.003
https://arxiv.org/abs/1509.02668
https://doi.org/10.3390/app10072322
http://ieeexplore.ieee.org/document/726791/#full-text-section
http://ieeexplore.ieee.org/document/726791/#full-text-section
https://doi.org/10.1016/j.neucom.2017.11.009
https://doi.org/10.1016/j.neucom.2017.11.009
https://doi.org/10.1016/j.neucom.2017.11.009
https://doi.org/https://doi.org/10.3182/20080706-5-KR-1001.01215
https://www.sciencedirect.com/science/article/pii/S1474667016400984
https://www.sciencedirect.com/science/article/pii/S1474667016400984
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf
https://doi.org/10.1016/S0005-1098(98)00193-9

BIBLIOGRAPHY

[33] D. Margolis. “The Importance of Physical System Modelling to Industry: System

Models That Could Have Prevented Some Costly Mistakes”. In: IFAC-PapersOnLine
48.21 (2015). 9th IFAC Symposium on Fault Detection, Supervision andSafety for

Technical Processes SAFEPROCESS 2015, pp. 484–491. issn: 2405-8963. doi:

https : / / doi . org / 10 . 1016 / j . ifacol . 2015 . 09 . 573. url: https : / / www .

sciencedirect.com/science/article/pii/S2405896315017024 (cit. on p. 1).

[34] McCulloch, Pitts. “A logical calculus of the ideas immanent in nervous activity”.

In: Bulletin of Mathematical Biophysics 5 (1943), pp. 115–133 (cit. on p. 11).

[35] F. J. Montáns et al. “Data-driven modeling and learning in science and engineering”.

In: Comptes Rendus Mécanique 347.11 (2019). Data-Based Engineering Science and

Technology, pp. 845–855. issn: 1631-0721. doi: https://doi.org/10.1016

/j.crme.2019.11.009. url: https://www.sciencedirect.com/science/article/

pii/S1631072119301809 (cit. on p. 2).

[36] S. Pan and K. Duraisamy. “Long-time predictive modeling of nonlinear dynamical

systems using neural networks”. In: Complexity 2018 (2018). issn: 10990526. doi:

10.1155/2018/4801012. arXiv: 1805.12547 (cit. on p. 11).

[37] P. Pepe. “ISS small-gain theorem for networked discrete-time switching systems”.

In: IFAC-PapersOnLine 53.2 (2020), pp. 1900–1905. issn: 24058963. doi: 10.1016

/j.ifacol.2020.12.2581. url: https://doi.org/10.1016/j.ifacol.2020.12.258

1 (cit. on p. 33).

[38] D. Pepyne and C. Cassandras. “Optimal control of hybrid systems in manufactur-

ing”. In: Proceedings of the IEEE 88.7 (2000), pp. 1108–1123. doi: 10.1109/5.8713

12 (cit. on p. 31).

[39] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. “Learning representations

by back-propagating errors”. In: Nature 323.6088 (1986), pp. 533–536. issn:

00280836. doi: 10.1038/323533a0 (cit. on p. 14).

[40] S. S., J. I. Zong Chen, and S. Shakya. “Survey on Neural Network Architectures with

Deep Learning”. In: Journal of Soft Computing Paradigm 2.3 (2020), pp. 186–194.

doi: 10.36548/jscp.2020.3.007 (cit. on p. 2).

[41] D. Saha. “How The World Became Data-Driven, And What’s Next”. In: Forbes
(2020). url: https://www.forbes.com/sites/googlecloud/2020/05/20/how-the-

world-became-data-driven-and-whats-next/?sh=4ce026e657fc (cit. on p. 2).

[42] S. Saha. A Comprehensive Guide to Convolutional Neural Networks — the ELI5 way.

2018. url: https : / / towardsdatascience . com / a - comprehensive - guide - to -

convolutional-neural-networks-the-eli5-way-3bd2b1164a53 (visited on 2021-

02-26) (cit. on p. 19).

59

https://doi.org/https://doi.org/10.1016/j.ifacol.2015.09.573
https://www.sciencedirect.com/science/article/pii/S2405896315017024
https://www.sciencedirect.com/science/article/pii/S2405896315017024
https://doi.org/https://doi.org/10.1016/j.crme.2019.11.009
https://doi.org/https://doi.org/10.1016/j.crme.2019.11.009
https://www.sciencedirect.com/science/article/pii/S1631072119301809
https://www.sciencedirect.com/science/article/pii/S1631072119301809
https://doi.org/10.1155/2018/4801012
https://arxiv.org/abs/1805.12547
https://doi.org/10.1016/j.ifacol.2020.12.2581
https://doi.org/10.1016/j.ifacol.2020.12.2581
https://doi.org/10.1016/j.ifacol.2020.12.2581
https://doi.org/10.1016/j.ifacol.2020.12.2581
https://doi.org/10.1109/5.871312
https://doi.org/10.1109/5.871312
https://doi.org/10.1038/323533a0
https://doi.org/10.36548/jscp.2020.3.007
https://www.forbes.com/sites/googlecloud/2020/05/20/how-the-world-became-data-driven-and-whats-next/?sh=4ce026e657fc
https://www.forbes.com/sites/googlecloud/2020/05/20/how-the-world-became-data-driven-and-whats-next/?sh=4ce026e657fc
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

BIBLIOGRAPHY

[43] E. Shelhamer, J. Long, and T. Darrell. “Fully Convolutional Networks for Semantic

Segmentation”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
39.4 (2017), pp. 640–651. issn: 01628828. doi: 10.1109/TPAMI.2016.2572683.

arXiv: 1411.4038 (cit. on p. 19).

[44] B. I. Silva et al. “Modeling and verifying hybrid dynamic systems using Check-

Mate”. In: Proceedings of 4th International Conference on Automation of Mixed Pro-
cesses (2000), pp. 323–328 (cit. on p. 32).

[45] K. Simonyan et al. “W n : a g m r a”. In: (2016), pp. 1–15. arXiv: arXiv:1609.0349

9v2 (cit. on p. 1).

[46] J. Sjöberg et al. “Nonlinear black-box modeling in system identification: a unified

overview”. In: Automatica 31.12 (1995), pp. 1691–1724. issn: 00051098. doi:

10.1016/0005-1098(95)00120-8 (cit. on pp. 1, 3, 6–10).

[47] N. Srivastava et al. “Dropout: A Simple Way to Prevent Neural Networks from

Overfitting”. In: Journal of Machine Learning Research 15.56 (2014), pp. 1929–1958.

url: http://jmlr.org/papers/v15/srivastava14a.html (cit. on p. 22).

[48] Y. VERMA. Comprehensive Guide to Different Pooling Layers in Deep Learning. 2021.

url: https://analyticsindiamag.com/comprehensive- guide- to- different-

pooling-layers-in-deep-learning/ (cit. on pp. 22, 24).

[49] P. Wu et al. “Data-driven reduced order model with temporal convolutional neural

network”. In: Computer Methods in Applied Mechanics and Engineering 360 (2020),

p. 112766. issn: 00457825. doi: 10.1016/j.cma.2019.112766. url: https:

//doi.org/10.1016/j.cma.2019.112766 (cit. on p. 50).

[50] Z. Xu et al. “Sparsely-Connected Cascade Recurrent Neural Network-Based Nonlin-

ear Equalizer for a 100-Gb/s PAM4 Optical Interconnect”. In: Asia Communications
and Photonics Conference 2021. Optica Publishing Group, 2021, M5H.4. doi: 10.13

64/ACPC.2021.M5H.4. url: http://opg.optica.org/abstract.cfm?URI=ACPC-2021

-M5H.4 (cit. on p. 3).

[51] X. Yuan et al. “A dynamic CNN for nonlinear dynamic feature learning in soft sen-

sor modeling of industrial process data”. In: Control Engineering Practice 104.Au-

gust (2020), p. 104614. issn: 09670661. doi: 10.1016/j.conengprac.2020.104614.

url: https://doi.org/10.1016/j.conengprac.2020.104614 (cit. on p. 34).

[52] D.-X. Zhou. “Universality of deep convolutional neural networks”. In: Applied
and Computational Harmonic Analysis 48.2 (2020), pp. 787–794. issn: 1063-5203.

doi: https://doi.org/10.1016/j.acha.2019.06.004. url: https://www.

sciencedirect.com/science/article/pii/S1063520318302045 (cit. on p. 3).

This document was created with the (pdf/Xe/Lua)LATEX processor and the NOVAthesis template (v6.9.10) [1]. 12cc90221730b8ba41bb3b1f8b517acd

[1] J. M. Lourenço. The NOVAthesis LATEX Template User’s Manual. NOVA University Lisbon. 2021. URL: https://github.com/joaomlourenco/novathesis/raw/master/template.pdf(cit. on p. 60).

60

https://doi.org/10.1109/TPAMI.2016.2572683
https://arxiv.org/abs/1411.4038
https://arxiv.org/abs/arXiv:1609.03499v2
https://arxiv.org/abs/arXiv:1609.03499v2
https://doi.org/10.1016/0005-1098(95)00120-8
http://jmlr.org/papers/v15/srivastava14a.html
https://analyticsindiamag.com/comprehensive-guide-to-different-pooling-layers-in-deep-learning/
https://analyticsindiamag.com/comprehensive-guide-to-different-pooling-layers-in-deep-learning/
https://doi.org/10.1016/j.cma.2019.112766
https://doi.org/10.1016/j.cma.2019.112766
https://doi.org/10.1016/j.cma.2019.112766
https://doi.org/10.1364/ACPC.2021.M5H.4
https://doi.org/10.1364/ACPC.2021.M5H.4
http://opg.optica.org/abstract.cfm?URI=ACPC-2021-M5H.4
http://opg.optica.org/abstract.cfm?URI=ACPC-2021-M5H.4
https://doi.org/10.1016/j.conengprac.2020.104614
https://doi.org/10.1016/j.conengprac.2020.104614
https://doi.org/https://doi.org/10.1016/j.acha.2019.06.004
https://www.sciencedirect.com/science/article/pii/S1063520318302045
https://www.sciencedirect.com/science/article/pii/S1063520318302045
https://github.com/joaomlourenco/novathesis
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf

Va
sc

o
Ba

st
os

M
od

el
in

g
of

co
m

pl
ex

no
nl

in
ea

r
dy

na
m

ic
sy

st
em

s
us

in
g

te
m

po
ra

lc
on

vo
lu

tio
n

ne
ur

al
ne

tw
or

ks
20

22

	Front Matter
	Cover
	Front Page
	Copyright
	Dedicatory
	Acknowledgements
	Quote
	Abstract
	Resumo
	Contents
	List of Figures
	List of Tables
	Acronyms
	Symbols

	1 Introduction
	1.1 Motivation
	1.2 Problem Context
	1.3 Objectives
	1.4 Contributions
	1.5 Document Structure

	2 State of the Art
	2.1 Nonlinear Black-box Modeling in System Identification
	2.1.1 Nonlinear System Identification: Black-box Modeling
	2.1.2 Nonlinear black-box - structure
	2.1.3 Nonlinear black-box modeling: Regressors
	2.1.4 Nonlinear mapping

	2.2 Artificial Neural Networks
	2.2.1 Multilayer Perceptron (MLP)
	2.2.2 Recurrent Neural Network(RNN)
	2.2.3 Convolutional Neural Network (CNN)

	2.3 Performance metrics
	2.3.1 Mean Square Error (MSE)
	2.3.2 Mean Average Error (MAE)
	2.3.3 Pearson Correlation Coefficient (PCC)

	2.4 Related Works
	2.4.1 Identification and control for nonlinear systems using a self-evolving function-link interval type-2 fuzzy neural network
	2.4.2 Temporal convolutional networks applied to energy-related time series forecasting
	2.4.3 Short-term traffic speed forecasting based on graph attention temporal convolutional networks
	2.4.4 Tracking of Dynamical Processes with Model Switching Using Temporal Convolutional Networks

	3 Systems Identification
	3.1 Hybrid Systems
	3.1.1 Hybrid Automata
	3.1.2 Switching Systems

	3.2 Hybrid Systems Identification
	3.3 Proposed approach

	4 Case Study
	4.1 Three-Tank System
	4.2 Data Preparation
	4.3 TCN based Identification
	4.4 MLP based Identification
	4.5 Discussion

	5 Conclusions
	5.1 Final Remarks
	5.2 Future works

	Bibliography
	Back Matter
	Back Cover
	Spine

