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Resumo Contexto: O aumento da produção de dados genómicos levou a uma
maior necessidade de modelos que possam lidar de forma eficiente com
a compressão sem perdas de biosequências. Aplicações importantes
incluem armazenamento de longo prazo e análise de dados baseada em
compressão. Na literatura, apenas alguns artigos recentes propõem o
uso de uma rede neuronal para compressão de biosequências. No en-
tanto, os resultados ficam aquém quando comparados com ferramen-
tas de compressão de ADN específicas, como o GeCo2. Essa limitação
deve-se à ausência de modelos específicos para sequências de ADN.
Neste trabalho, combinamos o poder de uma rede neuronal com mod-
elos específicos de ADN e aminoácidos. Para isso, criámos o GeCo3 e
o AC2, dois novos compressores de biosequências. Ambos usam uma
rede neuronal para combinar as opiniões de vários modelos específicos.
Resultados: Comparamos o GeCo3 como um compressor de ADN
sem referência em cinco conjuntos de dados, incluindo um conjunto
de dados balanceado de sequências de ADN, o cromossoma Y e o mi-
togenoma humano, duas compilações de genomas de arqueas e vírus,
quatro genomas inteiros e duas coleções de dados FASTQ de um vi-
roma humano e ADN antigo. O GeCo3 atinge uma melhoria sólida
na compressão em relação à versão anterior (GeCo2) de 2,4%, 7,1%,
6,1%, 5,8% e 6,0%, respectivamente. Como um compressor de ADN
baseado em referência, comparamos o GeCo3 em quatro conjuntos
de dados constituídos pela compressão aos pares dos cromossomas
dos genomas de vários primatas. O GeCo3 melhora a compressão em
12,4%, 11,7%, 10,8% e 10,1% em relação ao estado da arte. O custo
desta melhoria de compressão é algum tempo computacional adicional
(1,7 × a 3,0 × mais lento do que GeCo2). A RAM é constante e a
ferramenta escala de forma eficiente, independentemente do tamanho
da sequência. De forma geral, os rácios de compressão superam o es-
tado da arte. Para o AC2, as melhorias e custos em relação ao AC são
semelhantes, o que permite que a ferramenta também supere o estado
da arte.
Conclusões: O GeCo3 e o AC2 são compressores de sequências bi-
ológicas com uma abordagem de mistura baseada numa rede neuronal,
que fornece ganhos adicionais em relação aos biocompressores específi-
cos de topo. O método de mistura proposto é portátil, exigindo apenas
as probabilidades dos modelos como entradas, proporcionando uma fá-
cil adaptação a outros compressores de dados ou ferramentas de análise
baseadas em compressão. O GeCo3 e o AC2 são distribuídos sob GPLv3
e estão disponíveis para download gratuito em https://github.com/
cobilab/geco3 e https://github.com/cobilab/ac2.

https://github.com/cobilab/geco3
https://github.com/cobilab/geco3
https://github.com/cobilab/ac2




Abstract Background: The increasing production of genomic data has led to
an intensified need for models that can cope efficiently with the lossless
compression of biosequences. Important applications include long-term
storage and compression-based data analysis. In the literature, only a
few recent articles propose the use of neural networks for biosequence
compression. However, they fall short when compared with specific
DNA compression tools, such as GeCo2. This limitation is due to the
absence of models specifically designed for DNA sequences. In this
work, we combine the power of neural networks with specific DNA and
amino acids models. For this purpose, we created GeCo3 and AC2, two
new biosequence compressors. Both use a neural network for mixing
the opinions of multiple specific models.
Findings: We benchmark GeCo3 as a reference-free DNA compres-
sor in five datasets, including a balanced and comprehensive dataset
of DNA sequences, the Y-chromosome and human mitogenome, two
compilations of archaeal and virus genomes, four whole genomes, and
two collections of FASTQ data of a human virome and ancient DNA.
GeCo3 achieves a solid improvement in compression over the previous
version (GeCo2) of 2.4%, 7.1%, 6.1%, 5.8%, and 6.0%, respectively.
As a reference-based DNA compressor, we benchmark GeCo3 in four
datasets constituted by the pairwise compression of the chromosomes
of the genomes of several primates. GeCo3 improves the compression in
12.4%, 11.7%, 10.8% and 10.1% over the state-of-the-art. The cost of
this compression improvement is some additional computational time
(1.7× to 3.0× slower than GeCo2). The RAM is constant, and the tool
scales efficiently, independently from the sequence size. Overall, these
values outperform the state-of-the-art. For AC2 the improvements and
costs over AC are similar, which allows the tool to also outperform the
state-of-the-art.
Conclusions: The GeCo3 and AC2 are biosequence compressors with
a neural network mixing approach, that provides additional gains over
top specific biocompressors. The proposed mixing method is portable,
requiring only the probabilities of the models as inputs, providing easy
adaptation to other data compressors or compression-based data anal-
ysis tools. GeCo3 and AC2 are released under GPLv3 and are avail-
able for free download at https://github.com/cobilab/geco3 and
https://github.com/cobilab/ac2.

https://github.com/cobilab/geco3
https://github.com/cobilab/ac2
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Chapter 1

Introduction

But I want to impress on you the notion that two hundred
years from now, we will talk about Watson and Crick the
same way that people talk about Isaac Newton in terms of
physics. And that will be so, because we are only
beginning to perceive the ramifications of this enormous
revolution that was triggered by their discovery. That is
the field of molecular biology and genetics and
biochemistry which has totally changed our perceptions of
how life on Earth is actually organized.

—Prof. Robert A. Weinberg

This chapter provides a description of the main problem this dissertation addresses, the
key idea of our solution and the main results and contributions of our work.

The problem that we will focus on is the lossless compression of biological sequences. In
other words, reducing the number of bits needed to represent deoxyribonucleic acid (DNA)
and amino acid sequences without loss of information. DNA encodes amino acid sequences
(proteins), so given a sequence of DNA, the corresponding amino acids can be obtained,
as seen in Fig. 1.1.

DNA and amino acids have a 3D structure, as seen in Fig. 1.3, however the result
of sequencing them is a linear string of characters, that is normally stored in "FASTQ"
or "FASTA" formats, which are uncompressed text files [1]. Examples of "FASTA" file
contents can be seen in Fig. 1.2.

The problem of biosequence compression is important, because of the exponential in-
crease in sequencing that has been occurring, and is projected to continue in the foreseeable
future [2]. Discarding the sequenced data is not an alternative, given its high importance in
many contexts, specifically in biomedical (e.g., personalized medicine) and anthropological
fields. In this context, compression has three main usages. First, the reduction of storage
costs. Reducing these might seem unjustified given the large memory capacities available
today, but not only is storage currently one of the primary costs of sequencing [3], it is
also projected that by the year 2025 between 2 and 40 exabytes of sequences will be pro-
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Figure 1.1: Translation from DNA to amino acids. Adapted from Jonsta247, licensed under
CC BY-SA 4.0.

>NC_000011.10:c5227071-5225464 Homo sapiens chromosome 11, GRCh38.p13 Primary Assembly
ACATTTGCTTCTGACACAACTGTGTTCACTAGCAACCTCAAACAGACACCATGGTGCATCTGACTCCTGA
GGAGAAGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTGGATGAAGTTGGTGGTGAGGCCCTGGGC
AGGTTGGTATCAAGGTTACAAGACAGGTTTAAGGAGACCAATAGAAACTGGGCATGTGGAGACAGAGAAG
ACTCTTGGGTTTCTGATAGGCACTGACTCTCTCTGCCTATTGGTCTATTTTCCCACCCTTAGGCTGCTGG
TGGTCTACCCTTGGACCCAGAGGTTCTTTGAGTCCTTTGGGGATCTGTCCACTCCTGATGCTGTTATGGG
CAACCCTAAGGTGAAGGCTCATGGCAAGAAAGTGCTCGGTGCCTTTAGTGATGGCCTGGCTCACCTGGAC
AACCTCAAGGGCACCTTTGCCACACTGAGTGAGCTGCACTGTGACAAGCTGCACGTGGATCCTGAGAACT
TCAGGGTGAGTCTATGGGACGCTTGATGTTTTCTTTCCCCTTCTTTTCTATGGTTAAGTTCATGTCATAG
GAAGGGGATAAGTAACAGGGTACAGTTTAGAATGGGAAACAGACGAATGATTGCATCAGTGTGGAAGTCT
CAGGATCGTTTTAGTTTCTTTTATTTGCTGTTCATAACAATTGTTTTCTTTTGTTTAATTCTTGCTTTCT
TTTTTTTTCTTCTCCGCAATTTTTACTATTATACTTAATGCCTTAACATTGTGTATAACAAAAGGAAATA
TCTCTGAGATACATTAAGTAACTTAAAAAAAAACTTTACACAGTCTGCCTAGTACATTACTATTTGGAAT
ATATGTGTGCTTATTTGCATATTCATAATCTCCCTACTTTATTTTCTTTTATTTTTAATTGATACATAAT
CATTATACATATTTATGGGTTAAAGTGTAATGTTTTAATATGTGTACACATATTGACCAAATCAGGGTAA
TTTTGCATTTGTAATTTTAAAAAATGCTTTCTTCTTTTAATATACTTTTTTGTTTATCTTATTTCTAATA
CTTTCCCTAATCTCTTTCTTTCAGGGCAATAATGATACAATGTATCATGCCTCTTTGCACCATTCTAAAG
AATAACAGTGATAATTTCTGGGTTAAGGCAATAGCAATATCTCTGCATATAAATATTTCTGCATATAAAT
TGTAACTGATGTAAGAGGTTTCATATTGCTAATAGCAGCTACAATCCAGCTACCATTCTGCTTTTATTTT
ATGGTTGGGATAAGGCTGGATTATTCTGAGTCCAAGCTAGGCCCTTTTGCTAATCATGTTCATACCTCTT
ATCTTCCTCCCACAGCTCCTGGGCAACGTGCTGGTCTGTGTGCTGGCCCATCACTTTGGCAAAGAATTCA
CCCCACCAGTGCAGGCTGCCTATCAGAAAGTGGTGGCTGGTGTGGCTAATGCCCTGGCCCACAAGTATCA
CTAAGCTCGCTTTCTTGCTGTCCAATTTCTATTAAAGGTTCCTTTGTTCCCTAAGTCCAACTACTAAACT
GGGGGATATTATGAAGGGCCTTGAGCATCTGGATTCTGCCTAATAAAAAACATTTATTTTCATTGCAA

>sp|P68871|HBB_HUMAN Hemoglobin subunit beta OS=Homo sapiens OX=9606 GN=HBB PE=1 SV=2
MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPK
VKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFG
KEFTPPVQAAYQKVVAGVANALAHKYH

Figure 1.2: Example FASTA sequences of DNA (top) and amino acid (bottom) for human
hemoglobin beta. Both begin with a header that contains information of the sequence.
The following lines contain the letters that encode it.
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(a) DNA (b) Hemoglobin beta

Figure 1.3: An illustration of the 3D structure of DNA (Fig. 1.3a) and amino acid sequence
(hemoglobin beta) (Fig. 1.3b). By Zephyris, and Emw licensed under CC BY-SA 3.0.

duced every year. These estimates, put genomics on par with the most demanding domains
(e.g., astronomy) [2]. Researchers often need to download many sequences and this can be
time-consuming and difficult especially, with large files. By using data compression, the
transmission costs can be reduced [4]. Finally, data compression is used for the analysis of
biological sequences [5]. This is something that might not be immediately obvious, but it
was actually one of the first use cases of compression applied to DNA sequences [6, 7] and
remains one of the most important [8]. Compression can be used to identify related species,
segment DNA into homogeneous sequences, find important mutations, among many others
[8, 9].

Biosequence compression can be solved either with general or special purpose compres-
sors. By exploiting the unique characteristics of the sequences, specialized compressors
achieve results that are better in time, memory and resulting size than their general pur-
pose counterparts [10, 11]. Furthermore, in the case of protein compression, using the
sequence (primary structure) along the secondary structure information is more efficient
than compressing just the sequence [12].

Compression can be separated into two main phases: modeling and coding [13, 14].
During modeling, the next symbol of the sequence is predicted. This prediction is then feed
into the encoder along with the actual symbol. A higher probability given to the symbol,
result in fewer bits needed to encode it [15]. Coding is considered a solved problem, but
modeling is not [13]. For coding there are methods that are proved to output the most
efficient representations. This is the case with Huffman coding, in the case of encoding one
symbol at a time with known probability distributions [16]. In the other cases, arithmetic
coding achieves close to optimal coding with a small overhead [17]. On the other hand,
modeling is provably not solvable [13]. The problem of modeling can be reduced to finding

3
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a program that outputs the sequence we want to compress [18]. We can search only for
programs that are smaller than the sequence, but the issue is that some programs don’t
halt and we have no way of knowing which do and which don’t [19].

One way to predict the next symbol is to combine the predictions of multiple experts. If
the mixing is adequate, then the final prediction will be better than any individual expert
over the entire sequence. Deliberate combination of experts’ opinions dates back to at least
753 BC in the Senate of the Roman Kingdom [20]. This was a gathering of elders who voted
on laws and provided advice for the king among other things. Even now, many institutions
use majority voting as a solution for the mixing of opinions. This scheme can be improved
by noticing that, given certain contexts, some experts are more likely to be correct, and so
we assign more importance to their opinion. This is called weighted majority voting [21].
There is a field of artificial intelligence that studies how to create and combine appropriate
experts. It is called ensemble learning or mixture of experts [22].

The GeCo2 [23] and AC [24] are state-of-the-art compressors for DNA and amino acids,
respectively. These data compressors use a number of configurable Markov models along
with substitution tolerant context model [25]. To combine the predictions of these models,
both compressors use an algebraic combiner, where weights are attributed to each model
and updated based on the model performance, with a specific forgetting factor for each.

The key idea of this dissertation is to augment the mixing of GeCo2 and AC with a
stacked generalization approach [26]. This consists of using a learner that receives the
outputs of the models and is trained to give the correct probabilities for the symbols. To
learn the mapping between model outputs and the correct symbol we use a multilayer
perceptron trained online with stochastic gradient descent.

We produce two new tools (GeCo3 and AC2) that incorporate this new mixing method.
To benchmark these, we compare them against a range of state-of-the-art compressors
with balanced, fair and wide datasets. Our results show substantial improvements in the
compressed size at the cost of higher processing time. In the very near future, this cost
should get smaller, due to the inclusion of specialized processing for neural networks in
general purpose CPUs [27, 28]. The mixer used in these tools only needs as inputs the
probabilities of the models, so it can be easily exported to other compressors. To aid in
this process, we also provide instructions on how to integrate the mixer into existing data
compressors. The GeCo3 and AC2 can enable improved analysis, long term storage, and
for the first time, shows the power and cost of advanced expert mixing with specialized
models in the context of biosequence compression.

1.1 Main contributions

The main contributions of this master project include new software:

• The GeCo3 tool, for compression, decompression and analysis of DNA sequences.
Available at https://github.com/cobilab/geco3.
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• The AC2 tool, for compression, decompression and analysis of amino acid sequences.
Available at https://github.com/cobilab/ac2.

• The portable mixer and instructions on how to integrate it into other projects. Avail-
able at https://github.com/cobilab/nn-expert-mixer

Additionally:

• A journal article [29] summarizing the key results of GeCo3.

• The necessary instructions and data for full reproducibility of the article results [30].

1.2 Dissertation overview
This dissertation is structured in five chapters. The first is the present one and contains

an introduction to the problem, the motivation to tackle it, an outline of our approach to
solve it and the qualitative results. The next chapters contain:

• Chapter 2, historical context for the three main threads of this work (data compres-
sion, mixture of experts and biosequences) and a summary of the state-of-the-art in
biosequence compression;

• Chapter 3, a description of the mixer used, its properties and details of the imple-
mentation;

• Chapter 4, the benchmarks for DNA and amino acid sequences compression, with
several datasets, compressors and analysis of these results;

• Chapter 5, some concluding remarks along with future directions.

5
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Chapter 2

Background

This chapter serves to provide an overview and historical context of the necessary tools
needed to achieve our goal of improving biosequence compression. We start with a summary
of the history of data compression and the motivations for applying this technique. We
then move to the problem of biosequence compression, exploring the unique features of
biosequences and how the specialized compressors use them to achieve better results than
the general purpose data compressors. Next we discuss how the mixture of experts can
be done and show how neural networks can be organized and trained. Finally, we try to
answer what type of network is more adequate to use for the mixture of experts.

2.1 Brief history of compression

Data compression is the process by which the number of bits required to represent the
same information is reduced. This modern definition seems to imply that compression
is inherently tied to computers, but actually one of the earliest evidence of deliberate
compression comes from the Athenian Acropolis, fourth century BC, where a system of
abbreviations was used for writing [31, pg. 1425]. Curiously, this is also the time and
place of what can be considered the first computer (Antikythera mechanism), the first
steam engine (aeolipile) among many others [32]. These early signs of tachygraphy are not
considered a fully mature shorthand system. This emerged in the first century BC, where
it was used to record the speeches of Cicero [33]. There are actually two forms of data
compression happening in this instance. The first is lossless compression of the text by
usage of shorthand, and the second is lossy compression of speech.

An important landmark in the history of compression occurs in 1837, when Samuel
Morse created an early version of Morse code. It was used to encode text transmitted by
telegraph [34]. Like many modern encoding schemes, Morse code uses fewer bits to repre-
sent more frequent symbols. This important insight began formalization with the inception
of information theory in 1948, by Claude Shannon [15]. In 1952, Huffman presented a cod-
ing algorithm that is optimal, provided that the symbols are coded individually [16]. In the
same year, one of the first application of compression to telecommunications was proposed
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(a) Ancient shorthand (b) Morse code

Figure 2.1: Fragment of Ancient Roman shorthand encoding scheme, and an excerpt of the
original Morse code patent showing the number of dots and dashes to be used for numbers
and letters.

[35]. By 1967, prototypes existed to compress television broadcast using run-length encod-
ing [36]. Run-length coding consists of noticing that long sequences of repeated symbols
can be substituted by the repeated pattern and a number corresponding to the length of
the repetition [37]. For example, if we have the sequence 0000000000 we can encode it by
(0, 10), which means: repeat the symbol zero ten times.

In 1977 and 1978 a new class of lossless compressors was proposed by Abraham Lempel
and Jacob Ziv [38, 39]. The main idea of the algorithms is to notice that strings of symbols
may occur several times in the sequence to be compressed. For example in English text,
the word "that" is very common. This entire word can be coded by an identifier such as the
relative position of the last occurrence and the length of the word. This forms an implicit
dictionary, but an explicit dictionary can also be used, in that case, the identifier can be
the index of the word. The descendants of these dictionary coders are in widespread use
in image compression (PNG and GIF), in the ubiquitous ZIP format and in many others.

An important coding improvement was introduced with the generalized arithmetic
coder in 1979 [40]. Unlike Huffman coding, symbols are not coded one at a time. This
allows arithmetic coding to get very close to the optimal coding [41].

In 1996, Schmidhuber and Heil introduced a data compressor based on neural networks.
This showed superior compression to dictionary methods, but was thousands of times slower
[42]. In 2000, Mahoney refined this method to use online training and predict one bit at a
time (instead of a character). The resulting algorithm was five orders of magnitude faster.
Two years later saw the birth of the PAQ family of compressors also by Mahoney. The first
PAQ was based on neural networks, but using counts for predictions instead of weights. As
of 2020, PAQ and its descendants are top ranked in various compression challenges. The
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Cmix [43] is one of the derivatives introduced in 2014. It used thousands of independent
models mixed with neural networks and currently holds the record for compression of the
enwik9 corpus [44].

Data compression is pervasive in all types of data stored and transmitted by computers.
Compression is used in websites [45], video games [46], images [47], audio [48] and video
[49]. It is so pervasive that encoders and decoders are implemented in specialized hardware
and included in almost every consumer CPU and GPU [50, 51].

2.2 The advantages of data compression

From the examples we mentioned, two advantages of data compression can be deduced:
storage size and transmission speed. Now we touch upon a third advantage of data com-
pression. We argue that the development of modern mathematical notation, is also an
example of data compression. Before this, mathematical problems where reasoned about
in natural language. As an example, consider the following excerpt from [52]:

What is the square which when taken with ten of its roots will give a sum total
of thirty nine? Now the roots in the problem before us are ten. Therefore
take five, which multiplied by itself gives twenty five, an amount you add to
thirty nine to give sixty four. Having taken the square root of this which is
eight, subtract from this half the roots, five leaving three. The number three
represents one root of this square, which itself, of course is nine. Nine therefore
gives the square.

The modern formulation of this same problem would be:

x2 + 10x = 39, (2.1)

and the solution:

x =

√(10

2

)2

+ 39

− 10

2
= 8− 5 = 3 =⇒ x2 = 9. (2.2)

In this case, data compression is used not as a way to improve transmission or storage
of data, but as tool of thought [53]. It reveals a new structure to mathematical problems
that was previously difficult to see in natural language, and it enables easier manipulation
of the problem and its solution [54].

Another example of compression as a tool of though, comes from programming. During
this activity, compression can be used as a thinking tool to organize and build abstractions
by noticing repetitions or patterns and then removing them, thus compressing the source
code [55].

9



2.3 Data compression of biosequences

Compressors can be classified into two classes: general purpose and specialized. General
purpose compressors address multiple natures of data being characterized by flexibility
while consuming low computational resources, generally, attaining satisfactory compression
rates. Specialized compressors have the advantage of being able to exploit the distinct
characteristics of certain types of data, often these compressors can’t deal with data for
which they were not designed for.

Biosequences have several specific properties, namely high copy number, high hetero-
geneity, high level of substitution mutations, and multiple rearrangements, such as in-
verted repeats [56, 57]. Since these sequences are an output of biochemical and computa-
tional methods, they may have other alteration sources, for example environmental factors
[58, 59], pathogen species [60, 61], and unknown sources [62]. Representing biosequences
requires the ability to model heterogeneous, dynamic, incomplete, and imperfect informa-
tion [63]. These specific characteristics led to the development of the field which studies
and constructs specific DNA and amino acid compressors.

2.3.1 Biosequence properties

We now explain and give examples of some of the defining characteristics of biose-
quences.

• Single Nucleotide Polymorphism (SNP): A place where a single base is changed (sub-
stitution), deleted (deletion) or inserted (addition). E.g. TTC to TTT.

• Insertions and Deletions (Indels): Addition or deletion of multiple bases.

• Tandem Base Mutations: Substitution of multiple adjoining bases.

• Direct repeat: A sequence of bases that repeats, with or without other bases in-
between. The latter is also called a tandem repeat. E.g. TTACG...TTACG.

• Mirror Repeat: A repetition of the reversed sequence, also called a palindrome. E.g.
TTACG...GCATT.

• Pairing Repeat: A repetition of the sequence complement. E.g. TTACG...AATGC.

• Inverted repeat: A repetition of the mirror complement. E.g. TTACG...CGTAA.

• Fusion: Merging of two segments of DNA into a single new segment. For example, the
human chromosome 2 is probably the result of the fusion between the chromosomes
2A and 2B of primates.

• Fission: Splitting of one DNA segment into two or more segments.
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• Translocation: Transfer of a DNA segment from one chromosome to a nonhomologous
chromosome or to a new site on the same chromosome.

• Mutation probabilities: Some mutations are more likely to occur than others. This
is due to the fact that some substitutions either in DNA or amino acids do not
drastically alter the function and others do. These probabilities are known and can
be exploited to improve compression, especially in the case of amino acids [64].

2.3.2 DNA sequence compression

Compression of DNA sequences can be done by applying two main techniques. A se-
quence can be compressed without using additional sequences, this is called reference-free
compression (horizontal mode). A sequence can also be compressed with respect to one
or more reference sequences, in this case the method is reference-based (vertical mode).
Reference-based methods achieve substantial compression ratios when the similarity be-
tween the reference sequence and the target sequence is high. This is the case between
individuals of the same species, related species or in the case of DNA from the same indi-
vidual that was re-sequenced. We now present the main developments of both techniques
separately. There are some algorithms that have both compression types, in that case, they
are mentioned in both sections if there are substantial differences between the horizontal
and vertical mode.

Reference-free compression

The first specialized DNA compressor, Biocompress [65], was introduced in 1993. The
Biocompress algorithm supports both reference-free (horizontal mode) and referential (ver-
tical mode) compression. It is based on the universal lossless data compression algorithm
proposed by Lempel and Ziv (LZ) [38], augmented by the detection of palindromes and
repeats which are then coded by the position and size of the first occurrence. In the fol-
lowing year, Biocompress-2 was introduced. The main difference was the introduction of
an arithmetic encoder of order two [66].

The Cfact algorithm [67] uses a suffix tree to obtain the longest exact repeats combined
with dictionary coding. Two bits are used per symbol on the first occurrence or when no
repeats are detected, otherwise an identifier is used for the repeat.

The CDNA [68] algorithm introduced the notion of approximate repeats, while using a
mixture of experts. The weight of each model is learned by the expectation–maximization
algorithm. ARM [69] models approximate repeats including reverse complement repeats.
Like CDNA, a mixture of experts is also used with expectation–maximization (EM) for
weight updates. A faster alternative to EM is also proposed along the ARM. At the
time they where introduced, the CDNA and ARM algorithms vastly outperformed other
algorithms in resulting compressed size.

GenCompress [70] and DNACompress [71] generalize the Lempel Ziv algorithm to han-
dle approximate repeats.
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NMLComp [72] uses the normalized maximum likelihood to model approximate repeats,
and combines it with a first order Markov model. The combination is done by selecting
the model that produces the shortest code-length. The GeNML algorithm [73] improves
NMLComp both in speed and compression ratio by reducing the match length. This has
the effect of reducing the cost of search and it is also used get smaller code lengths.

XM [74] uses a combination of experts, some specialized in statistical properties
(Markov and context Markov models) and other in repetitions (copy and reverse models),
and the result is encoded with an arithmetic encoder. The combination is done based on
Bayesian averaging and the model weight’s are updated based on the average code length
of the model. In terms of compression ratio this is still one of the best DNA compressors,
at the cost of higher computational resources.

DNASC [75] uses statistical and substitutional methods (based on the LZ algorithm). It
first compresses the DNA horizontally and then vertically by dividing the horizontal result
into blocks. DNACompact [76] converts the DNA sequence into a sequence of words and
then uses Word-Based Tagged Code encoding. FCM-Mx [77] uses multiple finite-context
models combined by mixing the predictions with a dynamically updated weight per model.
The weight is updated according to the probability that the sequence was generated by
that model and follows an exponentially decaying impulse response.

POMA [78] uses substitutional methods for vertical compression. It uses an hybrid
approach based on particle swarm optimization to efficiently design the reference dictionary.
The GenCodex [79] algorithm focuses on compression speed by using a parallel algorithm
that can be executed in multi-core CPUs or GPUs. GenCodex encodes each of the four
DNA symbols into two bit patterns, if there are consecutive byte repetitions then they are
encoded into two bytes, one for the pattern and one for the count of repetitions.

DNA-COMPACT [80] is a vertical and horizontal DNA compressor based on two passes.
The first pass is dedicated to finding repetitions while the second is dedicated to statistical
properties. The latter uses multiple models and combines their predictions using logistic
regression, the result is passed to an arithmetic encoder.

HighFCM [81] relies on pre-analysis of the DNA sequence to find low complexity regions
and then use Markov models with deep contexts (up to 32). These models enable good
compression of highly repetitive sequences while keeping the memory low. Multiple models
with different context are used in a competitive fashion, that is, the predictions of best one
is are selected to encode a given block of fixed size.

CoGI [82] treats the DNA sequence as a binary image and then partitions the image into
black rectangles, encoding their positions and sizes with a static entropy coding scheme.
It supports reference-based and reference-free encoding.

GeCo [83] uses multiple context and substitution tolerant context models with a mix-
ing similar to FCM-Mx. Substitution tolerant context models assume that a number of
point mutations can occur in the sequence before discarding the context. The OCW [84]
algorithm focuses on the mixing of models and more specifically how to weight the context
models and optimize these weights using the least-square algorithm.

OBComp [85] calculates the frequencies of the four DNA symbols and then encodes the
two most frequent with one bit each. The other two are encoded by position in separate files.
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Afterwards, it uses a modified run-length encoding followed by the Huffman algorithm.
GeCo2 [23] is an evolution of GeCo that allows more control over the compression

parameters. Namely, each model can have a specific weight decay, cache-hash sizes can
also be controlled and finally, context models can be made to run only with inverted repeats.
The Jarvis [86] uses context models, substitution tolerant context models and stochastic
repeat models. The mixing of context and repeat models is done with a soft blending
algorithm similar to FCM-Mx/GeCo. The final prediction is chosen in a competitive
fashion between the mixed context and mixed repeat models.

NAF [11] encodes sequences into four bits to be able to represent all possible FASTA
characters and then passes the result to a general-purpose compressor (zstd).

Reference-based compression

DNAzip [4] was an algorithm proposed to allow the compression of the entire refer-
ence human genome down to a size appropriate to be sent as an email attachment. The
motivation was to greatly facilitate the sharing of the genomes. The algorithm assumes
that information about the DNA variations (i.e. point variants, insertions/deletions and
inversions) is provided. It then compresses this information by using four techniques: vari-
able integer sizes for the positions of the variations (VINT), relative instead of absolute
positions (DELTA), SNP mapping (DBSNP) and K-mer partitioning (KMER).

RLZ [87] uses self-indexes, a data structure that provides efficient operations on com-
pressed text, to store the reference sequence as a dictionary and then uses LZ encoding for
all other sequences.

GRS [88] finds the longest common sequences, and encodes the difference using Huffman
coding.

GDC [89] is similar to a variation of the RLZ algorithm, but it uses hashing instead of
self-indexes. Compression is also based on the LZ algorithm with Huffman coding and is
performed on blocks to allow random access.

COMRAD [90] is also based on a dictionary approach with Huffman encoding. The
algorithm uses a general purpose technique that allows random access.

GReEn [91] uses a copy model and a frequency model based only on the properties of
the target sequence. The prediction for the next symbol is selected either from the copy
or the frequency model and feed into an arithmetic encoder.

FRESCO [92] constructs a compressed suffix tree for the reference sequence and uses it
to searches for matches between the reference and target sequence. The matches are delta
encoded. This algorithm is targeted at compressing collections of genomes.

GDC2 [93] is an evolution of GDC. It constructs an hash-table with linear probing for
the reference sequence an uses two-level LZ factoring followed by an arithmetic encoder.
Like FRESCO the main purpose is to compress collections of genomes.

iDoComp [94] consists of three steps: a mapping generator, post-processing of the
mapping and encoding done with and arithmetic encoder. The mapping generator assumes
a suffix array is pre-computed for the reference sequence and then uses greedy parsing to
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produce the matches. This is followed by an heuristic to look for consecutive matches than
can be merged.

ERGC [95] is a multi-stage algorithm suitable for parallel execution. It does this by
dividing the reference and target sequence into blocks and uses an hash-table with delta
encoding.

HiRGC [96] is based on two bit encoding with greedy maximum matching on a hash-
table followed by a PPMD encoder.

HRCM [97] first extracts reference sequence information, then it matches the sequences
using a hash-table and finally delta encodes the information.

2.3.3 Amino acid sequence compression

In this section we discuss the specific amino acid compressors. Some of the DNA
compressors also allow protein compression, therefore, we avoid to repeat them.

One of the first attempts at protein compression was done in 1999 [64]. The main con-
clusion of the paper, reflected by the title ("Protein is incompressible"), was that proteins,
from a single organism, are incompressible. The proposed algorithm (CP) uses multi-
ple models and mixes the predictions according to predetermined weight. Later, a paper
with the opposite title ("Protein is compressible") presented the algorithm ProtComp [98].
ProtComp exploits approximate repeats and uses an hybrid method combining a substi-
tution approach using Huffman coding and a first order Markov model with arithmetic
coding. ProtCompSecS [12], adds to ProtComp a dictionary based method to encode the
secondary information related to proteins.

The algorithm presented in [99] uses the Burrows–Wheeler transform and the sorted
common prefix combined with substitutions to exploit the long range correlation in amino
acid sequences.

CaBLASTP [100] fuses dictionary and sequence alignment methods for the compression
of protein databases. The algorithm searches for good sequence alignments, and when one
exists, stores an index instead of the sequence.

AC [24] uses an ensemble of Markov models (finite context and substitution tolerant)
with adaptive weights per model and arithmetic encoder, the algorithm is similar to the
GeCo2 DNA compressor.

2.3.4 Main ideas

With an overview of the landscape of biocompressors, we can start to distill the main
trends for the compressors. There are three main approaches: dictionary, statistical and
hybrid. Dictionary compressors are based on the LZ algorithm or some variation of it.
The method consists of finding repeated subsequences and then encoding that information.
Statistical methods use one or more context models (or some variation) that predict the
next symbol. Unlike dictionary methods, the sequence is usually processed one symbol at
a time. Hybrid approaches, as the name implies, use some combination of both methods.
In hybrid compressors, the first stage is typically based on a dictionary method and the
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remaining symbols are compressed with statistical models. In Fig. 2.2, a diagram shows
the main steps for dictionary and statistical compressors.

Due to the way dictionary compressors work, the compressor and decompressor are very
different, both in implementation details and performance characteristics. The compressor
needs to do the heavy lifting (search for the optimal subsequences), while the decompressor
needs to copy data from the compressed file and the already partially decoded sequence.
On the other hand, statistical compressors and decompressors are more symmetric. The
work done in the compressors, updating the models and combining the predictions, needs
to be repeated in the decompressor.

For reference-based compression, when the reference sequence and target sequence are
very similar, the best results are often obtained with dictionary methods. With reference-
free compression, statistical methods generally produce better results due to the high adapt-
ability of the models, which allows them to cope with the high occurrence of mutations.

Crucial to all methods that use multiple models is the choice of how to combine the
predictions. Some methods opt for a competition of models, where the model with best
compression for a subsequence is chosen. This method needs to do the compression for
all models and then choose the best, thus the information of the best model needs to be
passed to the decompressor. To amortize this added cost, this method is generally used
with blocks of a fixed size. This leaves room for improvements, as other models can be
better in different parts of the block.

The other method of combining the experts is cooperation. In this case, all models
contribute to the final prediction. The exact way the mixing is done will be discussed in
the next section. Besides the initial parameters for the mixer, no side information is need
for the decompressor, because it will do the same operations as the compressor.

Our objective is to improve the mixing of experts of two statistical compressors: GeCo2
and AC. In the next section we survey the available approaches to solve this problem.
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Create aux search structure
(e.g. suffix array, hash table)

Search for longest matching
subsequence

Encode match

(a) Dictionary compressor.

Predict next symbol
using two or more models

Combine probabilities

Encode symbol according to
its probability

(b) Statistical compressor.

Figure 2.2: The main steps for dictionary and statistical compressors.

2.4 Mixture of experts

Mixture of experts or ensemble learning is a subfield of artificial intelligence concerned
with the creation of models (experts) and the merging of their opinions [101]. These are
typically represented either by probabilities (continuous) or votes (discrete) assigned to
each possible answer. For our purposes we are concerned with the merging of opinions.
This combination can be done statically or dynamically. One of the problems to be solved
in ensemble learning is how to deal with non-stationary (drifting) sources [102, 101]. In non-
stationary sequences, the probability distribution changes over time, due to this dynamic
nature, models and mixers that can adapt online have better performance [102]. This
problem is of great importance to us, because DNA appears to be non-stationary [103].
The GeCo2 and AC already deal with this problem by using a passive approach. Passive
methods do not explicitly detect concept drift, but nevertheless constantly adapt to the
current performance of the models. In GeCo2 and AC, both experts and weights are
updated. Unlike the method proposed in [104], no models are removed or added to the
ensemble.

We now focus on the two main approaches to combination: weighting and meta-
learning.

2.4.1 Weighting

With weighting, the expert opinions are combined by assigning weights to each. The
weights can be updated according to the models’ performance. The simplest weighting
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method is majority voting, that is, the answer with most votes is the final output. As a
refinement, it can be noticed that some models are better than others, and so more weight
is attributed to those models. This scheme is called weighted voting. These methods, and
other variations, work for discrete answers (classes), but in the case of GeCo2 and AC,
the models output continuous values. These algorithms use an algebraic combiner with
weights for each model, updated to reflect their performance. In the literature, this is
called weighted average [22]. Other algebraic combiners are possible, e.g., selecting the
maximum, minimum or mean value for each class. In the case of GeCo2 there are four
classes representing the DNA, in the case of AC the number of classes is around twenty.

Weights can be fixed or dynamic. The former can be determined automatically by
training in a validation set, or manually after analysis of the expected model properties.
Dynamic weights can be updated based on the likelihood of obtaining the model given
the data (Bayesian Model Averaging [105]), the final output confidence [106] or using
optimization techniques to minimize the prediction error [107].

Model 1

Model N

...

Weight 1

...
Weight N

Mixed
output

Algebraic mixer
(e.g. average)

Figure 2.3: An abstract view of the weighting approach which has explicit weights for each
model.

2.4.2 Meta-learning

Meta-learning or stacked generalization [26], uses a learner supplied with the models’
outputs and trained to give the correct answer. At a high level, this is not very different
from using optimization techniques to minimize the error, except that in this case the
weights are not explicit. Not having explicit weights allows the learner to output probabil-
ities outside the range of the models’ predictions. That is, stacked generalization can be
used even with a single model, in this case to correct the output of that model.

The learner used can range from a simple linear regressor, to a more complicated one,
such as a neural network. Neural networks are used in some of the most advanced data
compressors, both as mixers and models [43, 10, 108, 109]. Due to their good results in a
wide range of tasks [110, 111, 112], we have elected to use them for the mixing approach in
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GeCo3 and AC2. Like the previous versions of these algorithms, we will deal with concept
drift in passive way by using online learning (training the network at every new symbol in
the sequence). Another interesting effect of constant training is that besides the adaptation
to concept drift, this might also lead to occasional overfitting [113] which has been reported
to be beneficial in non-stationary sources [114].

Next, we provide an overview of neural networks so that we may choose an appropriate
type for integration with GeCo2 and AC.

Model 1

Model N

... Mixed
output

Learner
(e.g. neural network)

Figure 2.4: In the meta-learning approach, the learner can be viewed as a black box that
takes the model outputs and is trained to output the correct class.

2.5 Neural Networks

The first published work related to artificial neural networks was by McCulloch and
Pitts in 1943 [115]. This early work focused on creating a model of the nervous system,
described by logical calculus based on propositional logic. Despite the initial interest in the
topic, neural networks had two main shortcomings, they could not be trained to do general
computing (e.g., the networks could not compute the XOR function) and the required
resources to run the networks were too high. These problems lead them to falling out
of fashion. To solve the XOR problem, Minsky and Papert [116], showed that multilayer
neural networks were needed, but no training algorithm existed for them. At the time,
only layerless networks could be trained with the algorithm developed in [117].

Backpropagation, introduced in 1974 [118], was the first algorithm to allow the training
of multilayer networks, thus allowing the XOR problem to be solved. Meanwhile, due to
advances in hardware manufacturing and architecture, the computational resources con-
tinued to improve. These compounding advances have allowed a new approach to be used,
called deep learning. This uses many layers with different properties, stacked to achieve
the best results in many tasks [119], including playing games such as Go [120] or Dota2
[121], language models [122], image analysis [123], protein structure prediction [124], and
many others [125]. The advantage of these many layers is to remove the need for manual
feature extraction. The extracted features are many times crucial to obtain good results
with neural networks [119]. With deep learning, the raw data can be feed directly into the
deep network, and the training, along with the different layers, automatically extracts the
necessary features.

We now explain how some of most popular neural networks work. The techniques
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explained are the basic building blocks that can then be used to build more complex
networks.

2.5.1 Multilayer perceptron

Input layer Hidden layer Output layer

(a) Example multilayer perceptron architecture.

0.7

0.2

0.1

0.6

0.2

-0.5

-0.21 0.45

(b) Single perceptron result.

Figure 2.5: In (a), an example multilayer perceptron with two inputs nodes and one output.
This network is organized into three fully connected (dense) layers, meaning that nodes in
previous layers connect to all nodes in the next layer. In (b), an example of the forward pass
calculation for a node (in grey). The left value (-0.21) is the value after the dot product
but before the activation, the right value (0.45) is the value after the sigmoid activation.

One of the simpler neural networks is the multilayer perceptron. This network is com-
posed of two fundamental units, the connections and the neurons. The network can be seen
also as a graph where the connections and neurons are the edges and nodes respectively.
The edges and nodes are typically represented by a floating point number. In Fig. 2.5a,
we show a representation of a multilayer perceptron where each node connects to all nodes
in the next layer. This network has inputs and output nodes corresponding to the values
of the problem to be solved. For example, this network could be used to model a binary
XOR circuit. The network edges are initialized with random numbers.

To obtain the value of a node, the values of all nodes connected to it are multiplied by
the edge values and summed together. Finally, the summation is passed to an activation
function and that is the final node value, as show in Fig. 2.5b. This can be represented by
the following equation:

nodei,j = f

(
n∑

k=1

nodei−1,k × weightk,j
)
, (2.3)

where j and k are indices for nodes in layer i and i− 1, respectively, and n are the number
of nodes in layer i − 1. The activation function is represented by f , some examples of
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these can be see in Fig. 2.6. The calculations are repeated for all nodes in the network.
Organizing these into layers, we can obtain the value for all nodes in one layer by doing a
matrix multiplication of weights by node values of the previous layer.

For this type of network, an important consideration to be taken into account, is the
use of bias neurons. These are nodes that have a fixed value equal to one. They allow
the network to output values different from zero even when all inputs are zero. Another
consideration is the weight initialization, the weights are generally randomly initialized, but
the type of distribution used can help improve the training time. Finally, the activation
function is almost always non-linear to allow the network to model non-linear functions.
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(a) Logistic activation func-
tion.
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(b) Hyperbolic tangent activa-
tion function.
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(c) Rectified linear unit acti-
vation function.

Figure 2.6: Three examples of non-linear activation functions that can be applied to the
neural network nodes.

2.5.2 Recurrent neural networks

One of the first works about recurrent neural networks appeared in 1985 [126]. Recur-
rent neural networks (RNNs) are most useful to deal with sequential data [127]. These
networks are equivalent to feedforward networks (such as the multilayer perceptron) where
the feedforward network is duplicated at each time step. In other words, they have a sim-
ilar architecture to the MLP, but with the main difference being that they propagate the
hidden parameters to the next training step.

In Fig. 2.7, we show a diagram of a recurrent neural network and the same network
unfolded for three time steps. These steps can correspond, for example, to the processing of
three consecutive symbols in a DNA sequence. The hidden nodes in a RNN are connected
to the themselves via weights.

Recurrent networks are difficult to train due to what is called the vanishing and explod-
ing gradients [128]. To deal with exploding gradients, the gradient values can be clipped.
The vanishing gradients can be solved in three ways: by choosing an appropriate activation
function (such as the rectified linear unit show in Fig. 2.6c), by initializing the weights to
the identity matrix and the biases to zero or by using gated cells. This last option leads to
at least two subtypes of RNNs, the long short-term memory (LSTM) [129] and the gated
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Figure 2.7: In (a), a diagram of a simple RNN. The hidden nodes connect to themselves
via weights (Whh). In (b), the same network expanded to three time steps. Each network
at time Ti is a multilayer perceptron where the hidden nodes of the previous step are
connected to the hidden nodes of the next.

recurrent unit (GRU) [130]. The purpose of these gated cells is to control what information
is passed to the next cell.

2.5.3 Convolutional neural networks

Convolutional neural networks (CNNs) are inspired by the visual cortex organization
[131]. They where first introduced by Fukushima under the name neocognitron [132] for
the purpose of image recognition. Later, these types of networks were used for speech
recognition and trained using backpropagation [133]. The current architecture and training
are mainly due to work in 1989 by LeCun [134].

One of the key aspects of these networks is the automatic extraction of features from
raw data. This is specially important in images where the number of features and their
possible transformations (scale, rotation, occlusion, deformation, light) is high. The defin-
ing feature of these networks is the convolutional layer. In Fig. 2.8, we see diagram of a
2D convolutional filter applied to a 2D grid (which can represent an image). This convolu-
tional filter applies pointwise multiplication between the values of the filter and the grid,
followed by summing all products. The filter slides across the grid until the entire grid is
processed.

The convolutional layers can be combined with other layers such as the multilayer
perceptron or pooling layers. When the stacks of layers become very deep, training is
harder and so a strategy to overcome this is to repeat the output of a previous layer to a
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deeper layer, skipping the intervening ones [135]. This is another strategy inspired by the
brain’s organization and the resulting architecture is called residual neural network.
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(e) Grid and convolution fourth step.

Figure 2.8: An example of the several steps necessary to calculate the aplication of the
convolution matrix to a 2D grid. The convolution matrix moves with a stride of one in
both axis.
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2.5.4 Neural network learning

We just described three types of neural networks, but one key ingredient is missing
from the description. By itself, the forward stage is not very useful, because the weights
are randomly initialized. For these to encode useful information regarding a problem,
the networks needs to be trained, i.e., the weights need to be updated. There are some
alternatives to train them, such as neuroevolution and equilibrium propagation, but due
to its efficiency, by far the most popular is gradient descent with backpropagation.

To train the network, we need to know how to adjust the weights, both the direction
(positive or negative) and the magnitude. To do this, we need the correct outputs (ex-
pected) and a measure of how far the current outputs (actual) are from the expected.
This distance is obtained with a loss function and is called the error of the network. The
essential question we are trying to answer is "If this weight is changed, how is the error
affected?". These types of questions can be answered with derivatives, in this case, the
gradient is used because we are interested to know how the output is affected by the change
in many variables (weights). We are also trying to get the output as close to the expected
as possible, so we want to optimize the weights such that they fit the expected outputs.
That is, we are using the gradients to go towards the minimum error. This optimization is
called gradient descent. Backpropagation is used to calculate the gradients for all layers.
It uses the chain rule to propagate the errors in one layer to the next in order to know how
to update the weights.

An important parameter in most gradient descent algorithms is the learning rate. This
parameters controls the magnitude of the weight adjustment. A small step might get the
process stuck in a local minimum. A large step might lead to a divergent process, thus
never finding the minimum. There are algorithms that automatically adjust the size of the
step, but their benefits are largely dependent on the problem [136, 137].

2.5.5 Neural network learning example

To better understand the training procedure, we now walk-through an example of one
complete step of the multilayer perceptron. We will use a network with the topology and
initial weights as shown in Fig. 2.9a. The activation and loss function are the logistic and
squared error, respectively. The logistic is defined as

f(x) =
1

1 + e−x
, (2.4)

and the total error is given by

E =
n∑

i=1

1

2
(ŷi − yi)2, (2.5)

where yi is the value of the output node i and ŷi is the expected output of that node, also
called the target.
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(a) Multilayer perceptron topology.
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(b) Multilayer perceptron output.

Figure 2.9: Example multilayer perceptron network topology and result of forward pass.
The activation for all neurons is done using the logistic function.

In Fig. 2.9b, we show the result of the forward pass with the input vector [1, 0]. The
actual output is 0.49. Assuming we wanted to train this network to calculate the XOR
function, the expected output is one. This means the total error is 1

2
(1 − 0.49)2 = 0.13.

Now we need to know how to adjust each weight connected to the output node so as to
minimize the error. For the weights between the output and hidden layer, we calculate the
partial derivative of the error in relation to a weight, in other words:

∂E

∂wi

, (2.6)

and by applying the chain rule we get

∂E

∂wi

=
∂E

∂y

∂y

∂z

∂z

∂wi

, (2.7)

where z is the output node value before the activation is applied. An example of z value
can be seen in the left side of the grey node in Fig. 2.5b.

Expanding each of the terms of Eq. (2.7), for the first part we obtain

∂E

∂y
= ŷ − y. (2.8)

For the second part, we use the derivative of the logistic function and the result is

∂y

∂z
= f(z)(1− f(z)) = y(1− y), (2.9)

where f is the logistic function. The final part of the derivative is

∂z

∂wi

=
∂(wihj + wi+1hj+1 + wi+2hj+2)

∂wi

= hj. (2.10)
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Putting the three parts together we get the equation for the weight update between the
output and the hidden layer,

∂E

∂wi

= (ŷ − y)y(1− y)hj, (2.11)

where hj is the value of the hidden node connected to the output node by the weight wi.
To update the wi we sum the result of Eq. (2.11) multiplied by the learning rate to the
previous value of wi.

wi := wi + α(ŷ − y)y(1− y)hj, (2.12)

where α is the learning rate. We multiply each term of the total error by 1
2
to simplify the

derivative and this is valid because the result is multiplied by the learning rate, which is
a input parameter. For our example we assume α = 1 and update the weights as show in
Fig. 2.10a.
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(a) Weights updated (hidden, output).
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(b) Node and weight labels.

Figure 2.10: In (a), the updated weights between the hidden and the output layer are
shown. In (b), an example of the mapping of variable names in Eq. (2.17) to the network
being trained.

The weight updates for the next layer can be calculated in a similar fashion,

∂E

∂wj

=
∂E

∂hk

∂hk
∂zk

∂zk
∂wj

, (2.13)

where wj is a weight connecting the input layer to the hidden node k and zk is the value of
hidden node k before activation. This function can be expanded further by applying the
chain rule,

∂E

∂hk
=
∂E

∂z

∂z

∂hk
, (2.14)

and using the chain rule again together with the results from Eqs. (2.8) and (2.9) we have

∂E

∂z
=
∂E

∂y

∂y

∂z
= (ŷ − y)y(1− y). (2.15)
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Using this results we can rewrite Eq. (2.14) into,

∂E

∂hk
= (ŷ − y)y(1− y)

∂z

∂hk
= (ŷ − y)y(1− y)wj. (2.16)

By using this result and following similar calculations as done in Eqs. (2.9) and (2.10) we
get

∂E

∂wj

= (ŷ − y)y(1− y)wz(1− hk)hkxl, (2.17)

where xl is the value of the input node connected to the hidden node hk by weight wj and
wz is the weight connecting hk to the output. It can help to visualize the variables in the
network graph with a diagram as seen in Fig. 2.10b. Using this result we can update the
weights between the input and hidden layer using,

wj := wj + α(ŷ − y)y(1− y)wz(1− hk)hkxl. (2.18)

Applying this function to the remaining weights we get the result seen in Fig. 2.11a. Finally,
we verify what effect this training step had on the error, by applying the forward step as
seen in Fig. 2.11b and then we calculate the value of the loss function, 1

2
(1− 0.55)2 = 0.10.

In this instance we see that the error has decreased for these inputs.
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(a) Weights updated (input, hidden).
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(b) Network output after training.

Figure 2.11: In (a), the updated weights between the input and the hidden layer are shown.
In (b), the network output after updating all the weights.

2.5.6 What network to use?

This is a difficult question to answer because of the many factors involved. The most
important factor, is that the mixer should provide better compression than the current
approach. On the other hand, if the mixer provides better compression, but the com-
putational resources are too high, then this will severely limit the application to larger
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sequences. Given the amount of biosequence data currently produced and the expected
increases, this is an important concern. The sequences can easily reach gigabytes and as
such the mixer should be efficient. We don’t have a specific time or memory target, but
we will keep this concern in mind, since high execution times or memory consumption will
limit the applicability of the mixer. Finally, we want this mixer to be easily integrated
into other compressors. This means that it is desirable to reduce both the hardware and
software dependencies required by the mixer.

To make an informed decision, we searched for sources that compared multiple networks.
We found a comparison specifically for DNA in [10]. This describes a compressor based
on neural networks, and it compares two types of RNNs and a MLP. Overall the RNNs
provides the best compression, however this depends on the dataset. Another important
point is that the described method uses a top of the line GPU and it takes hours to get
the results for sequences of 10MB. We also found benchmarks of neural networks to time
series prediction problems. These fit the stochastic nature of the issue we are analyzing
[138].

In terms of computational resources, intuitively, we deduce that the multilayer percep-
tron (MLP) will have the best performance as the elements are simpler. This is corrobo-
rated by [139], where we see that even with large networks, the MLP is the fastest network
by approximately 50%, the convolutional is the second fastest and finally the recurrent
networks. The memory consumption is dictated by the number of parameters the network
has. More complex and larger networks should require more memory, however this is not
shown in the paper.

In terms of accuracy, the performance appears very dependent on the dataset. In [140],
a multilayer perceptron (MLP), a convolutional neural network (CNN), a recurrent neural
network (RNN) and a long short term memory (LSTM) are used to predict the values of
the stock market. The results favor the CNN followed by the MLP, with the LSTM and
the RNN trailing behind. In many datasets, the MLP is superior to the CNN.

In [139], a MLP, a CNN and a LSTM are compared using several datasets. Overall the
CNN preforms better followed by the LSTM and then the MLP. As in the previous paper,
no network is the best in all the datasets. In [141], the authors compare an LSTM to a
MLP and conclude that the MLP has equal or better performance than the LSTM.

In [142], a comparison with several neural networks and datasets is made. Among
them, several types of CNNs and a MLP. Two types of CNNs, the residual neural network
(ResNet) [135] and the fully convolutional neural network (FCN) [143], present the best
overall accuracy, with the MLP placing fourth out of the nine evaluated networks.

In [144], an hybrid network, combining a CNN and a LSTM is used to predict power
consumption, stock values and gas concentrations. In some datasets the CNN has better
predictions than the LSTM. The proposed hybrid approach always presents better predic-
tions in the three datasets.

Almost all methods described use very large networks and because of this, a GPU is
used to train and evaluate them. The runtime for small sequences (tens of megabytes)
takes hours to complete and achieve results worse than GeCo2 [10, 108]. We would like
the mixer to be used for large (gigabytes) sequences, given these results, we tested one of
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the most accurate CNN, the FCN and the MLP. This allows us to better understand the
trade-offs that can be made given our datasets.

28



Chapter 3

Methods

This chapter provides the procedures and some of the motivations behind our choices.
We start by testing some of the most promising neural network architectures for the prob-
lem of expert mixing for biosequence compression. We then describe the mixer for GeCo3,
including the neural network architecture, the training algorithm, the input transformation
and the derived features. Finally, we describe the adaptations applied for the AC2 mixer
when compared to the GeCo3.

3.1 Testing different network architectures

To help us determine what network we should implement, we tested two types of neural
networks with DNA sequence data. We choose the fully convolutional neural network
(FCN) because it has some of the best accuracy result for multivariate time-series. We
also assess the multilayer perceptron (MLP) due to the good accuracy and less demanding
computation resources.

We employ a stacked generalization approach with online training to help correct for
concept drift. To use stack generalization, the neural networks take as inputs the outputs
of the models and are trained to output the correct symbol. The training is done with every
new symbol. We used GeCo2 as a base for the mixer experiments because compressing
DNA is easier than amino acids, so it should help detect compression improvements, which
we hope can be translated to the AC compressor.

For these experiments we are not concerned with absolute execution time, but rather
with the relative time and the accuracy. Given these relaxed constrains, we choose to use
the TensorFlow machine learning framework. This allows us to experiment with several
architectures with reduced effort. We modified GeCo2 to output the model predictions
(input data) along with the actual symbol (training data) to a CSV file. The data contained
in this file is used to train and evaluate the performance of the different networks.

Our test network architectures are based on the work presented in [142]. All the trained
networks share the same gradient descent procedure, the Adam [145]. This algorithm has
an adaptive learning rate thus freeing us to experiment without the need to tune the
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learning rate. The networks also share the categorical crossentropy loss function, which
is used when an input can only belong to one class out of many. The final layer is a
softmax layer with four nodes, one for each of the possible DNA symbols. The softmax
function is used to represent a probability distribution over many (in our case four) different
outcomes. Unless stated otherwise, the activation function for the convolutional layers is
the ReLU and for the others it is the logistic. The MLP inputs are stretched according to
the procedure defined in [13] and we subtract the stretched mean probability, which, for
the case of DNA, we assume to be 0.25. This has the effect of forcing the average close
to zero which, as explained in [146], can help the network learn faster. The FCN inputs,
consist of the model outputs for the last ten symbols.
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Figure 3.1: Comparison of different neural network architectures. The plot shows the
distance to the GeCo2 for the first 20 thousand symbols of the EnIn DNA sequence.
Positive distances indicate the network is outputting less bits than GeCo2.

In Fig. 3.1, we show the results of eight FCNs and three MLPs evaluated with the
first 20,000 symbols for the DNA sequence of Entamoeba invadens (EnIn) proposed in
[147]. The differences between these networks are the width of the layers (how many
nodes or filters) and the depth of the network (how many layers). The graph plots the
distance to the number of bits that GeCo2 would output, estimated by taking the log2 of
the symbol probability. Positive values indicate the network is compressing better than
GeCo2. All network plots exhibit an accuracy valley close to the beginning of the sequence.
In the beginning all models are ignorant and will output the same values for all symbols
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(0.25). Once the models start having opinions the networks will begin to adjust the random
weights. We think this is the cause for this initial decrease in accuracy, because GeCo2
doesn’t need to learn how to combine the probabilities.

The networks with worse accuracy are the FCN4, FCN5 and FCN6. The FCN5 and
FCN6 are the deeper FCN networks with three convolutional layers, in addition, FCN6 has
a batch normalization layer after each convolution. The FCN6 is the network evaluated in
[142]. The FNC4 uses a single layer but instead of the ReLU activation uses the logistic.
The FCN7 uses the past twenty model predictions (instead of the past ten) and the FCN8,
which has the best accuracy, uses the last five.

The networks with best accuracy are the MLP1 and MLP3. The MLP1 is the smaller
network with only one layer and 32 hidden nodes. The MLP3 is the wider and deeper
MLP, with two layer each with 128 nodes.
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Figure 3.2: Results of profiling a FCN coded with the TensorFlow framework. The profiler
used is py-spy, a sampling profiler. The flame graph shows that most of the time is spent
on the __init__ procedures of training. For batch training this is not a big problem, but
for online training it dominates the execution time.

All networks appear to take approximately one hour to process the data. This likely
indicates that when using TensorFlow in this manner, online training instead of batch,
there is a large overhead per symbol. We confirm this by profiling the python script, as
shown in Fig. 3.2, almost all the time is spent on __init__ procedures.

These preliminary results point us towards an MLP implementation, but before pro-
ceeding we would like to gauge how the networks perform in many complete sequences.
Given the sequence sizes and the long time the TensorFlow scripts take, we used Genann,
an open-source neural network implementation in C available at https://github.com/
codeplea/genann. We integrate this network directly into the GeCo2. It is an MLP with
logistic activation function for all nodes, using stochastic gradient descent.

In Fig. 3.3, we show the distance to GeCo2 of MLP1, the network with best accuracy,
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Figure 3.3: The distance of Genann and the two best neural network architectures from
Fig. 3.1 to the GeCo2 for the first 20 thousand symbols of the EnIn DNA sequence. Positive
distances indicate the network is outputting less bits than GeCo2. The Genann plot has a
similar shape to the others, but stays consistently below zero.

compared to the implementation with Gennan, and because Gennan doesn’t come with the
Adam optimizer, the softmax activation or the categorical crossentropy, we include MLP4
which uses a similar configuration, but coded using TensorFlow. While the shape of the
plots are similar, the absolute results are quite different, with the Gennan never rising into
positive distances.

Genann integrated with the GeCo2 compresses the entire EnIn sequence, of 26,403,087
symbols, in seconds. Unfortunately the result in Fig. 3.4, show that not only the network
stops improving, but actually gets much worse when evaluated over the entire sequence.
Even if we determined why the absolute results are different between Genann and Ten-
sorFlow, the shape of both plots are similar so it would seem the same problems will
occur.

Stacked generalization can be used in another way. With a single model it can learn to
correct the model predictions [26]. So the next idea we tried, was to use as an additional
input the GeCo2 mixing output. This finally gets us to a better result than GeCo2 as seen
in Fig. 3.5. This shows the tremendous impact that the right inputs can have on a neural
network performance. Curiously, the promise of deep learning doesn’t seem to hold in the
case of online training, at least with the tested architectures and inputs, but the idea of
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finding good features and/or transforming the inputs is still crucial. On the other hand,
in the case of the MLP, the neural network architecture doesn’t seem to have much effect,
we tested with two layers of 8 and 16 hidden nodes each and one layer of 64 and 80 hidden
nodes, meaning the number of features is approximately the same. The network with two
layers of 8 hidden nodes (h8_8) performs worse than the others, but the other networks
have similar accuracy, even in the case of the largest network, the h16_16, with a total
number of 28,672 weights.
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Figure 3.4: The distance of Genann and the two best neural network architectures from
Fig. 3.1 to the GeCo2 for the entire EnIn DNA sequence. Positive distances indicate the
network is outputting less bits than GeCo2. The Genann has worse compression than
GeCo2.
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Figure 3.5: The distance of Genann to GeCo2 using the GeCo2 mixing as an input, as well
as the other models. The Genann h64 and h80 uses a single hidden layer with 64 and 80
hidden nodes, respectively. The Genann h8_8 and h16_16 uses two layers of eight and
sixteen hidden nodes each, respectively.

3.2 GeCo3 mixer
We now present the mixer for GeCo3, which is mostly similar to that of AC2, but due to

the large number of symbols (≈ 20 instead of 4), we found that different inputs had better
performance. And because AC2 typically compresses smaller sequences, the percentage of
time to train the network is larger, so we applied a heuristic to improve the mixing, as well
as a pre-training phase.

The GeCo3, like GeCo2, uses a combination of multiple context models and substitution
tolerant context models of several order-depths. The neural network provides an efficient
combination of these models. Therefore, we describe the new method with the main focus
on the neural network, including the inputs, updates, outputs, and training process.

3.2.1 Neural network structure

The model mixing is constructed using a feed-forward artificial neural network trained
with stochastic gradient descent [148]. This choice is motivated by implementation sim-
plicity and competitive performance compared to more complex neural networks [140].
The activation function for this network is the sigmoid, and the loss function is the mean
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squared error. The network structure is fully connected with one hidden layer, as seen in
Fig. 3.7. One bias neuron is used for the input and hidden layer, while the weights respect
the Xavier initialization according to [149]. Although we empirically tested different ac-
tivation functions (ReLu, TanH) and a higher number of hidden layers, the most efficient
structure was obtained with the previous description.

We introduced two parameters for the GeCo3 compression tool in order to control the
number of nodes of the hidden layer and the learning rate. These parameters are written
in the compressed file header to ensure a lossless decompression.

Neural	Network
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FreqsL8
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NNBits

Figure 3.6: High level overview of inputs to the neural network (mixer) used in GeCo3.
Model1 through Modeli represent the GeCo2 model outputs (probabilities for A, C, T,
G). Perf represents the performance metrics (hit, best, bits) for each model. Freqs are
the frequencies for the last 8, 16, and 64 symbols. NNBits is a moving average of the
approximate number of bits that the neural network is producing. The network outputs
represent the non-normalized probabilities for each DNA symbol.

3.2.2 Neural network inputs

As inputs to the network, the stretched probabilities of each symbol are used. These
are given by

pi,j = stretch

 1 + fi,j∑
m∈Θ

1 + fi,m

− stretch (meanp) , (3.1)

where fi,j is the frequency of symbol j for model i with Θ as the set of all symbol and
meanp is the mean probability of each symbol.
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Figure 3.7: A fully connected neural network with one hidden layer. For illustration
purposes, this neural network only has the inputs corresponding to one model and the
three features that evaluate the model performance. The frequencies of the last 8, 16, and
64 symbols, as well as the NNBits and the bias neurons, are omitted.

We stretch the probabilities according to the work of Mahoney [13]. The effects of
stretching can be seen in Fig. 3.8. The inputs are normalized for forcing the average to be
close to zero by subtracting the stretched mean probability, which, for the case of DNA, we
assume to be 0.25. The normalization and its motivation are explained in [146]. Stretching
the probabilities has the effect of scaling them in a non-linear way, which increases the
weights of probabilities near zero and one.

The context models, substitution tolerant context models, and the mixed probabilities
of GeCo2 are used as input models. This inclusion means that the mixing done in GeCo2
is not discarded, but are used as an additional input to the neural network.

We extract features from the context (the last n symbols) and also calculate model
and network performance indicators to improve the network predictions. These are used
as inputs to the neural network. Three performance indicators are derived for each mode
according to the names hit, best, and bits. These features correspond to three input nodes
per model, as seen in Fig. 3.7.

To measure how precise model i is voting, we use

hiti,n =


hiti,n−1, if ∀x, y ∈ Θ : pi,x = pi,y

hiti,n−1 + 0.1, if ∀x ∈ Θ : pi,sym > pi,x

hiti,n−1 − 0.1, otherwise.
(3.2)
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Figure 3.8: Stretching function applied to the models’ probabilities.

The symbol with the highest probability is considered the vote of the model. Each time
the model votes correctly, hit is increased. If the model abstains (probabilities of each
symbol are equal), then hit remains the same; otherwise, it decreases.

For each model, we also measure if it has assigned the highest probability to the correct
symbol, compared to all other models. This is given by

besti,n =


besti,n−1, if ∀x, y ∈ Θ : pi,x = pi,y

besti,n−1 + 0.1, if pi,sym ≥ pk,sym

besti,n−1 − 0.1, otherwise.
(3.3)

The update rules for best are similar to hit and both have a domain of [−1, 1].
As an approximation to the average number of bits the model would output, we use an

exponential moving average

bitsi,n = α1 · (− log2(pi,sym) + log2(meanp)) + (1− α1) · bitsi,n−1, (3.4)

with α1 = 0.15. This input is also normalized such that the average value is close to zero.
In Eqs. (3.2), (3.3) and (3.4), pi,sym is the probability assigned by model i to the actual

symbol in the sequence. To reach these features and their constants, we tested each with a
couple of files from one dataset and adjusted until finding a value that produced satisfactory
results.

The features extracted from the context are the probabilities of each symbol for the
last 8, 16, and 64 symbols. These represent a total of twelve input nodes. In Fig. 3.6,
these nodes are represented by FreqsL8, FreqsL16 and FreqsL64. For example, to obtain the
probabilities for the last eight symbols with the sequence ACAGTAAA, the number of A’s
is divided by the number of total symbols, so the frequency of symbol A is 5/8 and for the
other symbols is 1/8. These probabilities are then scaled to fit between -1 and 1.
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In Fig. 3.6, NNBits represents the exponential moving average of the approximate
number of bits and is given by

nnbitsn = α2 · (− log2(psym) + log2(meanp)) + (1− α2) · nnbitsn−1, (3.5)

with psym as the probability the network assigned to the correct symbol and α2 = 0.5.

3.2.3 Updating model performance features

As an example of how to update the features, consider two symbols and three models,
and assume all features start equal to zero. Model 1 assigns the probabilities [0.5, 0.5],
meaning that the model abstains and, as such, no change is made to hit or best. Also, bits1

would be equal to zero. The probabilities for model 2 and 3 are [0.7, 0.3] and [0.8, 0.2],
respectively. Assuming the models voted correctly, then hit is now 0 + 0.1 = 0.1 for
both. Because model 3 assigned the highest probability to the correct symbol then best3
is now 0 + 0.1 = 0.1, and best2 becomes −0.1. Moreover, bits2 would become bits2 =
0.15 · (− log2(0.7) + log2(0.5)) and bits3 = 0.15 · (− log2(0.8) + log2(0.5)).

3.2.4 Neural network outputs and training

As outputs of the network, one node per symbol is used. After the result is transferred
to the encoder, the network is trained with the current symbol using the learning rate
specified within the program input.

When compared to GeCo2, the results of the new mixing contain two main differences.
First, the sum of output nodes is different from one. This outcome is corrected by dividing
the node’s output by the sum of all nodes. The second difference is that the new ap-
proach outputs probabilities in the range ]0, 1[, while in GeCo2, the mixing always yielded
probabilities inside the range of the models.

3.2.5 Neural network implementation

So far we have shown some preliminary results using the Gennan network integrated
into GeCo2, but given our understanding of the problem and the way the network will be
used, we can do some optimizations. That is, our problem is less general than the problem
Genann solves and this opens new paths for greater performance.

The biggest performance increase can be obtained by noticing that we always do a
evaluation of the network before we train it. The Genann code however doesn’t have this
knowledge an thus always evaluate the network before training, which in our case leads
to two evaluations per training. The next thing to notice is that we don’t see any benefit
in having more than one hidden layer, this means we can remove one loop. As a last
improvement, we notice that the network is using doubles instead of floats and because
the operations performed can be vectorized, converting the network to use floats should
increase the performance in CPUs supporting vector operations.
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Given the identified optimization opportunities we have implemented a neural network
from scratch in C language. The implementation is based on the algorithm presented in
[150], and is available at https://github.com/cobilab/geco3.

3.3 AC2 mixer
The AC2 mixer is similar to the GeCo3 mixer, the only difference is the derived features

and the input transformations. Instead of stretching the model probabilities as in Fig. 3.8,
we center the values around zero and multiply them by five, except for the AC mixer
output which is multiplied by ten. For the derived features we used the same Freqs (8,
16 and 64) as in GeCo3, but we multiply them by five. Finally, we use an exponential
moving average for all symbols, such that when a symbol occurs the average for symbol i
is updated according to

avgi := 0.8 + 0.2 ∗ avgi, (3.6)

if symbol i does not occur then the update rule is

avgi := 0.2 ∗ avgi. (3.7)

Additionally, because of the valley seen in Figs. 3.1 and 3.3 and typically smaller amino
acid sequences we introduced an heuristic that selects between the AC mixer and the neural
network output. The mixer used is the best performing one. This is determined by an
exponential moving average of the number of estimated bits produced.

Finally, we pre-train the neural network by activating the same symbol in all models
with a value of one and training with that same symbol. Essentially, this is forcing the
bias that if all models agree on the same symbol, with absolute certainty, than the output
should be that symbol.

Most of theses changes are used to improve the compression of the smaller sequences
that AC2 has to process.
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Chapter 4

Results and analysis

This chapter presents the main results for the GeCo3 and AC2 compressors. We start
by presenting the GeCo3 results, including the datasets and other compressors used for
the benchmark and the motivation for that selection. We explore the benefits and costs
of our approach and the influence of the new parameters for the compressor. Finally, we
show the results for AC2 which are analogous to those of GeCo3.

4.1 GeCo3 results
In this section, we benchmark GeCo3 against state-of-the-art tools in both reference-

free and referential compression approaches. In the following subsection, we describe the
datasets and materials used for the benchmark, followed by the comparison with GeCo2
using different characteristics, number of models, and data redundancy. Finally, we provide
the full benchmark for the nine datasets.

4.1.1 Datasets and materials

The benchmark includes nine datasets. Five datasets are selected for reference-free
compression, including

• DS1: two compilations of FASTQ data, namely a human virome (Virome) [151] and
ancient DNA from a Denisova individual (Denisova) [152];

• DS2: four whole genomes: human (HoSaC), chimpanzee (PaTrC), gorilla (GoGoC),
and the Norway spruce (PiAbC);

• DS3: two compilations of archaeal (Archaea) and viral genomes (Virus);

• DS4: highly repetitive DNA with the human Y-chromosome (HoSaY) and a human
mitogenome collection (Mito) (proposed in [153]);

• DS5: a comprehensive-balanced dataset (proposed in [147]), containing the following
sequences:
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– HoSa: chromosome 4 of the reference human genome

– GaGa: chromosome 2 of G. gallus ;

– DaRe: chromosome 3 of D. rerio;

– OrSa: chromosome 1 of O. sativa Japonica;

– DrMe: chromosome 2 of D. miranda;

– EnIn: genome of E. invadens ;

– ScPo: genome of S. pomb;

– PlFa: genome of P. falciparum;

– EsCo: genome of E. coli ;

– HaHi: genome of H. hispanica;

– AeCa: genome of A. camini ;

– HePy: genome of H. pylori ;

– YeMi: genome of Yellowstone lake mimivirus;

– AgPh: genome of Aggregatibacter phage S1249;

– BuEb: genome of Bundibugyo ebolavirus.

On the other hand, to benchmark the reference-based approach, we use the complete
genomes of four primates (human, gorilla, chimpanzee, and orangutan) with a pairwise
chromosomal compression. Non-human chromosomes are concatenated to match the hu-
man chromosomal fusion [154]. For each chromosomal pair, the following compression was
performed

• DSR1: chimpanzee (PT) using human (HS) as a reference;

• DSR2: orangutan (PA) using human (HS) as a reference;

• DSR3: gorilla (GG) using human (HS) as a reference;

• DSR4: human (HS) using gorilla (GG) as a reference.

• EDSR5: Korean human sequence (HSK1) and for the same human, a re-sequence
(HSK2).

4.1.2 Compression sizes

In order to assess the performance of the neural network mixing, we compare GeCo2
with GeCo3. To ensure a fair comparison, the compression modes, including the models
and parameters, are kept identical for both programs.

In Table 4.1, GeCo2 and GeCo3 are compared using the compression modes published
in [23]. The overall compression improves by 1.93%, and the mean improvement is 1.06%.
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Table 4.1: Number of bytes needed to represent each DNA sequence for GeCo2 and GeCo3
compressors. The column mode applies to both compression methods, while the learning
rate and the number of hidden nodes only apply to the latter.

ID GeCo2 bytes GeCo3 bytes GeCo2 secs GeCo3 secs Mode L.Rate H.Nodes

HoSa 38,845,642 37,891,143 223 598 12 0.03 64
GaGa 33,877,671 33,411,628 160 424 11 0.03 64
DaRe 11,488,819 11,189,716 64 189 10 0.03 64
OrSa 8,646,543 8,434,878 44 133 10 0.03 64
DrMe 7,481,093 7,379,992 33 99 10 0.03 64
EnIn 5,170,889 5,066,670 26 75 9 0.05 64
ScPo 2,518,963 2,511,054 11 24 8 0.03 40
PlFa 1,925,726 1,906,919 10 22 7 0.03 40
EsCo 1,098,552 1,094,298 2 8 6 0.03 40
HaHi 902,831 896,037 2 6 5 0.04 40
AeCa 380,115 377,343 1 2 5 0.04 16
HePy 375,481 373,583 1 3 4 0.04 40
YeMi 16,798 16,793 0 0 3 0.09 24
AgPh 10,708 10,715 0 0 2 0.06 16
BuEb 4,686 4,686 0 0 1 0.06 8

Total 112,744,517 110,565,455 577 1,583

The larger sequences (larger than ScPo) have mean improvements of 2.04%, while the
remaining have modest improvements of 0.4%. Only the two smallest sequences show
negative improvement, given the absence of enough time to train the network. Additionally,
the eight bytes that are used to transmit the two network parameters to the decompressor
are a significant percentage of the total size, unlike in larger sequences. Overall, GeCo3
improves the compression of the whole dataset by more than 1.9%.

4.1.3 Computational resources

In Table 4.2, we show a comparison of our custom neural network and the Genann
network. In terms of bytes the results are mostly the same with the differences stemming
from the weight initialization and the approximations done on the logistic function as well
as the use of floats instead of doubles for the floating point numbers. The Genann was
modified to not run the forward stage twice per training. Even with this optimization, the
results show that GeCo3 is approximately two times faster when using our network.

Regarding computational resources, the mixing modification is 2.7× slower, as shown
in Table 4.1. The computation was performed on an Intel(R) Core(TM) i7-6700 CPU @
3.40GHz running Linux 5.4.0 with the scaling governor set to performance and 32GB of
RAM. The new mixing approach is always slower, because GeCo2’s mixing is still used,
not as a result of the encoder, but rather as an input to the network. Even if this was
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Table 4.2: Number of bytes and seconds needed to represent each DNA sequence for GeCo3
compressor using our custom tailored network and the Genann network. All parameters
are the same as in Table 4.1.

ID Genann bytes Custom bytes Genann secs Custom secs

HoSa 37,893,427 37,891,143 1,222 598
GaGa 33,415,307 33,411,628 804 424
DaRe 11,192,291 11,189,716 388 189
OrSa 8,436,102 8,434,878 267 133
DrMe 7,380,539 7,379,992 198 99
EnIn 5,068,775 5,066,670 140 75
ScPo 2,511,104 2,511,054 40 24
PlFa 1,907,538 1,906,919 37 22
EsCo 1,094,379 1,094,298 12 8
HaHi 896,056 896,037 10 6
AeCa 377,407 377,343 3 2
HePy 373,613 373,583 5 3
YeMi 16,795 16,793 0 0
AgPh 10,726 10,715 0 0
BuEb 4,693 4,686 0 0

Total 110,578,752 110,565,455 3,126 1,583

not the case, it is unlikely that GeCo3 would be faster because the mixer has to do more
calculations.

The difference in RAM usage of both approaches is less than 1 MB, which corresponds
to the size of the neural network and the derived features for each model.

The number of hidden nodes is chosen to fit in the vector registers, in order to take full
advantage of the vectorized instructions. Accordingly, we set the number of hidden nodes
as a multiple of eight, where floating points of four bytes represent the nodes and 32 bytes
represent the vector registers.

4.1.4 Effects of the hidden layer size on mixing

Increasing or decreasing the number of hidden nodes affects the number of weights,
and it also affects compression, as can be seen in Fig. 4.1. Increasing the number of nodes
increases the compression up to a point. This point varies from sequence to sequence;
however, the abruptest gains in compression generally occur until 24 hidden nodes. As
expected, increasing the number of hidden nodes leads to an increase in execution time
and a progressive decline of compression gain. These results are also consistent in referential
compression as seen in Fig. 4.2.
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Figure 4.1: Number of bytes (s) and time (t) according to the number of hidden nodes for
reference-free compression of ScPo, EnIn, and DrMe sequence genomes.
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Figure 4.2: Number of bytes (s) and time (t) according to the number of hidden nodes for
reference compression of four primate chromosomes. PA_20 - Chromosome 20 from Pongo
abelii. PT_21(Y) - Chromosome 21(Y) from Pan troglodytes. GG_22 - Chromosome 22
from Gorilla gorilla. All use the corresponding human chromosomes as a reference.

4.1.5 The importance of derived features on mixing

We removed the derived features from the inputs to the network to assess its impact
on the mixing performance. The results are present in Table 4.3.

45



When using just the models’ probabilities as inputs, the compression is more efficient
than GeCo2 by a small margin (0.18%), while, in the majority of the sequences, there is
no improvement. By adding the result of the GeCo2 mixing as an input, the improvement
increases to 1.36%. The gain escalates, having an improvement of 1.73%, when using the
context models and substitution tolerant context models as inputs and the derived features.

Table 4.3: Number of bytes needed to represent each DNA sequence using the GeCo3
compressor with specific conditions. For the column named Models, only the context
models and tolerant context models of GeCo2 were used as network inputs. For "Models
+ GeCo2", the result of GeCo2 mixing was also used as input. With "Models + Derived"
the inputs for the network were the same as "Models" with the derived features added.
The compression modes are the same as in Table 4.1.

ID Models Models + GeCo2 Models + Derived

HoSa 38,556,039 38,153,358 37,943,933
GaGa 33,758,606 33,548,929 33,444,816
DaRe 11,615,937 11,280,688 11,251,390
OrSa 8,694,790 8,517,947 8,471,715
DrMe 7,475,341 7,414,919 7,392,290
EnIn 5,183,237 5,095,391 5,087,359
ScPo 2,524,818 2,514,188 2,513,085
PlFa 1,928,282 1,912,745 1,912,176
EsCo 1,104,646 1,095,589 1,096,255
HaHi 903,019 898,280 898,145
AeCa 378,226 377,857 377,696
HePy 379,285 374,364 374,975
YeMi 16,901 16,827 16,882
AgPh 10,744 10,727 10,731
BuEb 4,694 4,696 4,698

Total 112,534,565 111,216,505 110,796,146

4.1.6 Scaling the number of models

GeCo2 and GeCo3 contain several modes (compression levels), which are parameterized
combinations of models with diverse neural network characteristics. To see how the com-
pression of the new approach scales with more models, we introduced mode 16 with a total
of 21 models. This new mode was used to compress the sequences of HoSa to HePy (by size
order). For the remaining sequences, the same models were used as in Table 4.1. We used
this approach because increasing the number of models was incapable of improving the
compression of GeCo3 and GeCo2, given the smaller dimensions of these sequences. The
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number of hidden nodes was also adjusted until no tangible improvements in compression
were observed.

The results in Table 4.5 show that the distance between the approaches increases from
1.93% to 2.43%. The time difference reduces from 2.7× to 2.0×. This reduction is due to
the increased percentage of time spent by the higher-order context models. These results
show that neural network mixing can scale with the number of models. The forgetting
factors for this new mode were not tuned, due to the use of a large number of models.
Therefore, with this tuning, additional gains can be observed. Nevertheless, this shows
another advantage of this new mixing, which is that there are only two parameters that
need tuning regardless of the number of models. As the sequence size and the number of
models increases, there is almost no tuning required, with the optimal values being around
0.03 for the learning rate and 64 hidden nodes.

4.1.7 Compressing highly repetitive and large sequences

In this subsection, we show how the reference-free compression scales with the new
mixing using highly repetitive and extensive sequences, namely in the gigabyte scale. Four
datasets are selected, and the results are shown in Table 4.5.

According to the results from Table 4.5, GeCo3 compresses the highly repetitive se-
quences (DS3 and DS4) with an mean of 6.6% compared to GeCo2 using more 1.9× time.
For the larger sequences of DS1 and DS2, GeCo3 has an mean compression improvement
of 3.2% in the primates, 8.2% in the spruce (PiAbC), 11.8% for the Virome and 5.2% for
Denisova, with a 2.6× mean slower execution time. These results show that the compres-
sion of longer repetitive sequences present higher compression gains.

4.1.8 Reference-free sequence compression benchmark

In this subsection, we compare GeCo3 with other specialized reference-free compressors,
namely XM (v3.0) [155], GeCo2 (previously compared), Jarvis [86], and NAF [11]. As
presented in Table 4.5, GeCo3 achieves the best total size in three out of five datasets.
In DS3 and DS4, GeCo3 was unable to achieve the best compression, delivered by Jarvis.
These types of datasets justify this performance. Specifically, DS3 and DS4 contain a
high number of identical sequences. These are collection of mitogenomes, archeal and
virus where the variability is very low, which gives an advantage to models of extremely
repetitive nature. Such models, also known as weighted stochastic repeat models, are
present in Jarvis, unlike in GeCo3. The reason why we excluded the inclusion of these
models in GeCo is that they fail in scalability because the RAM increases according to the
sequence length. For the larger datasets, DS1 and DS2, Jarvis was unable to compress the
sequences even with 32GB of RAM. On the other hand, GeCo3 has constant RAM, which
is not affected by the sequence length but rather only by the mode used.

Comparing GeCo3 against the second best compressor for each dataset, the compression
gain is 6% (vs GeCo2), 5.8% (vs GeCo2), −0.8% (vs Jarvis), −3.2% (vs Jarvis) and 1.9%
(vs Jarvis), for DS1, DS2, DS3, DS4 and DS5, respectively. For the individual sequences
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in the datasets, GeCo3 compresses more than the other compressors, except for the AgPh,
BuEb, Mito, Virus and Archaea. Tiny sequences compose the AgPh and BuEb dataset,
and the neural network does not have enough time to learn, while Mito, Virus and Archaea
have already been mentioned above.

Regarding computational time, GeCo3 is faster than XM per dataset, spending on
average only 0.6× the time. Against GeCo2, it is slower 2.1× on average, and compared
to Jarvis, it is 1.1× slower. NAF is the fastest compressor in the benchmark. Compared
to NAF, GeCo3 is between 12× slower for DS5 and 3× for DS1.

Regarding computational memory, the maximum amount of RAM used for GeCo2 and
GeCo3 was 12.6GB, Jarvis peaked at 32GB, XM at 8GB, and NAF used at most 0.7GB.
Jarvis could not complete the compression for DS1 and DS2 due to a lack of memory. This
issue is a limitation that was mentioned earlier. We also note that the XM is unable to
decompress some of the sequences. In these cases, the decompressed file has the correct size,
but the sequence does not fully match the original file. NAF, GeCo2, and GeCo3 were the
only compressors that have been able to compress all the sequences losslessly, independently
from the size. The overall results of these compressors show that GeCo3 provides a total
compression improvement of 25% and 6% over NAF and GeCo2, respectively.

Compared with general-purpose compressors that achieve the best compression ratios,
such as CMIX and DeepZip, GeCo3 is approximately 100 times faster. GeCo3 also has bet-
ter total compression ratio compared to CMIX (7.7%). We could not obtain enough results
with DeepZip to make a meaningful comparison. The results can be seen in Table 4.4.

4.1.9 Reference-based sequence compression benchmark

In this subsection, we benchmark GeCo3 with state-of-the-art referential compressors.
The comparison is done between the genomes of different species and not for re-sequenced
genomes. Re-sequencing is applied to the same species and, in a general case, limits the
domain of applications; for example, phylogenomic, phylogenetic, or evolutionary analysis.

To run the experiments, we used four complete genomes of closely related species: Homo
sapiens (HS), Pan troglodytes (PT), Gorilla gorilla (GG) and Pongo abelii (PA). The
compression for PT, GG, and PA was done using HS as the reference. HS was compressed
using GG as a reference. Each chromosome was paired with the corresponding one of the
other species. Due to the unavailability of chromosome Y for GG and PA, comparisons
that involved these chromosomes were not made. The compressors used in this benchmark
are GeCo3, GeCo2, iDoComp [94], GDC2 [93], and HRCM [97]. The FASTA files were
filtered such that the resulting file only contained the symbols {A,C,G, T}, and a tiny
header line. HRCM needs the line size to be limited; therefore, line breaks were added for
the files under its compression. However, this approach prevents a direct comparison of
total compressed size and time, which we solved using the compression ratio percentage
(output_size ÷ input_size × 100) and the speed in kilobytes per seconds (input_size ÷
1000÷seconds_spent). For GeCo2 and GeCo3, two approaches of referential compression
are considered. One approach is based on conditional compression, where a hybrid of both
reference and target models are used. The other approach, called relative approach, uses
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Table 4.4: Number of bytes and time needed to represent a DNA sequence for CMIX,
DeepZip and ZPAQ. CMIX and DeepZip were run with the default configuration and
ZPAQ was run with level 5. Some tests were not run (NR) due to time constraints and
DeepZip forced the computer to reboot (SF) with some sequences.

CMIX DeepZip ZPAQ
DS ID size time size time size time

PiAbC NR NR NR NR 2.75 GB 2h01m
HoSaC NR NR NR NR 629.76 MB 29m
PaTrC NR NR NR NR 614.37 MB 29m
GoGoC NR NR NR NR 597.90 MB 28m

2

Total NR NR NR NR NR NR

Archaea NR NR NR NR 138.05 MB 8m09s
Virus NR NR NR NR 106.40 MB 8m12s3
Total NR NR NR NR 244.45 MB 16m21s

Mito NR NR NR NR 44.85 MB 2m59s
HoSaY 4.80 MB 5h17m SF SF 5.28 MB 1m07s4
Total NR NR NR NR 50.13 MB 4m07s

HoSa NR NR NR NR 41.49 MB 2m56s
GaGa NR NR NR NR 34.69 MB 2m54s
DaRe 12.19 MB 12h20m NR NR 13.18 MB 2m34s
OrSa 9.04 MB 8h55m SF SF 9.64 MB 1m48s
DrMe 7.46 MB 6h41m SF SF 7.61 MB 1m20s
EnIn 5.58 MB 5h21m SF SF 6.13 MB 1m05s
ScPo 2.54 MB 2h08m SF SF 2.58 MB 25s
PlFa 1.93 MB 1h48m SF SF 1.99 MB 21s
EsCo 1.09 MB 56m37s SF SF 1.11 MB 11s
HaHi 882.71 KB 46m57s 883.07 KB 1h19m 902.85 KB 9s
AeCa 370.61 KB 19m01s 371.88 KB 32m41s 380.13 KB 3s
HePy 376.61 KB 20m03s 377.53 KB 34m49s 384.42 KB 3s
YeMi 16.68 KB 58s 19.53 KB 1m33s 17.83 KB 0s
AgPh 10.70 KB 36s 12.24 KB 59s 11.77 KB 0s
BuEb 4.68 KB 17s 6.23 KB 31s 5.77 KB 0s

5

Total NR NR NR NR 120.13 MB 13m53s

exclusively models loaded from the reference sequence. Both types of compression assume
causality, which means that with the respective reference sequence, the decompressor is
able to decompress without loss. The reason why we benchmark these two approaches is
that there are many sequence analysis applications for both approaches.

The results are presented in Table 4.7, showing the total compression ratio and speed
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Table 4.5: Size and time needed to represent a DNA sequence for NAF, XM, Jarvis,
GeCo2, and GeCo3. For DS5, Jarvis uses the same configuration as in [86], for DS4
and DS3 it uses level 7. XM uses the default configuration. NAF uses the high-
est compression level (22). GeCo2 and GeCo3 use mode 16 for DS5, except for
BuEb, AgPh and YeMi which use the configurations of Table 4.1. For DS4 and DS3
the models are "-tm 3:1:1:1:0.8/0:0:0 -tm 6:1:1:1:0.85/0:0:0 -tm 9:1:1:1:0.85/0:0:0 -
tm 12:10:0:1:0.85/0:0:0 -tm 15:200:1:10:0.85/2:1:0.85 -tm 17:200:1:10:0.85/2:1:0.85 -
tm 20:500:1:40:0.85/5:20:0.85", DS2 uses "-tm 3:1:1:1:0.70/0:0:0 -tm 8:1:1:1:0.85/0:0:0
-tm 13:10:0:1:0.85/0:0:0 -tm 19:500:1:40:0.85/5:20:0.85", and Virome uses "-tm
7:1:1:1:0.8/0:0:0 -tm 13:10:0:1:0.95/0:0:0 -tm 19:500:1:40:0.95/5:20:0.95". Denisova uses
the same models as Virome but with inversions turned off. GeCo3 uses a learning rate
of 0.03 and 64 hidden nodes for all sequences. The character ’*’ indicates the sequence
was not compressed due to an error and ’/’ due to out of memory. Results where the
decompression produces different results than the input file are appended by the character
’?’.

NAF XM Jarvis GeCo2 GeCo3
DS ID size time size time size time size time size time

Denisova 25.36 GB 25h22m * * / / 20.61 GB 23h18m 19.55 GB 71h19m
Virome 4.72 GB 6h01m * * / / 3.17 GB 8h45m 2.79 GB 24h32m1
Total 30.08 GB 31h23m * * / / 23.78 GB 32h04m 22.34 GB 95h51m

PiAbC 2.29 GB 2h45m * * / / 1.86 GB 4h02m 1.71 GB 9h21m
HoSaC 634.07 MB 38m * * / / 579.66 MB 53m12s 560.88 MB 2h14m
PaTrC 619.48 MB 37m * * / / 569.40 MB 51m40s 551.54 MB 2h08m
GoGoC 603.39 MB 36m * * / / 556.54 MB 49m57s 539.30 MB 2h04m

2

Total 4.15 GB 4h36m * * / / 3.57 GB 6h37m 3.36 GB 15h49m

Archaea 128.09 MB 7m 103.01 MB? 1h41m 96.66 MB 57m 103.70 MB 30m 97.87 MB 55m
Virus 85.51 MB 6m 63.93 MB? 1h35m 61.19 MB 1h35m 65.63 MB 29m 61.19 MB 55m3
Total 213.60 MB 14m 166.93 MB? 3h16m 157.84 MB 2h32m 169.34 MB 1h00m 159.07 MB 1h51m

Mito 35.93 MB 2m32s 28.12 MB? 47m11s 27.11 MB 16m1s 30.40 MB 11m26s 28.17 MB 21m31s
HoSaY 5.17 MB 11s 3.88 MB? 3m25s 3.93 MB 1m45s 4.08 MB 1m15s 3.85 MB 2m21s4
Total 41.10 MB 2m43s 32.01 MB? 50m36s 31.04 MB 17m46s 34.48 MB 12m41s 32.03 MB 23m52s

HoSa 41.73 MB 2m06s 38.66 MB? 29m26s 38.66 MB 4m33s 38.79 MB 11m17s 37.56 MB 22m39s
GaGa 35.57 MB 1m38s 33.83 MB? 22m20s 33.70 MB 2m38s 33.75 MB 8m43s 33.26 MB 17m38s
DaRe 12.83 MB 32s 11.17 MB? 8m59s 11.17 MB 1m32s 11.44 MB 3m40s 10.97 MB 7m32s
OrSa 9.53 MB 21s 8.48 MB? 6m39s 8.45 MB 1m14s 8.60 MB 2m37s 8.34 MB 5m17s
DrMe 7.85 MB 15s 7.53 MB? 5m01s 7.49 MB 22s 7.47 MB 1m57s 7.36 MB 3m50s
EnIn 5.87 MB 12s 5.12 MB? 3m19s 5.09 MB 36s 5.14 MB 1m37s 5.02 MB 3m12s
ScPo 2.59 MB 4s 2.53 MB 55s 2.52 MB 11s 2.52 MB 44s 2.51 MB 1m21s
PlFa 2.02 MB 4s 1.92 MB 59s 1.92 MB 10s 1.93 MB 37s 1.90 MB 1m09s
EsCo 1.15 MB 2s 1.11 MB 13s 1.10 MB 4s 1.10 MB 24s 1.09 MB 39s
HaHi 948.69 KB 2s 914.87 KB 16s 899.47 KB 2s 899.17 KB 21s 889.51 KB 34s
AeCa 396.82 KB 1s 387.00 KB 3s 380.51 KB 1s 381.29 KB 13s 376.97 KB 18s
HePy 404.55 KB 1s 384.30 KB 4s 374.37 KB 1s 375.66 KB 13s 371.62 KB 19s
YeMi 17.35 KB 1s 16.84 KB 0s 16.87 KB 0s 16.80 KB 0s 16.79 KB 0s
AgPh 11.02 KB 1s 10.71 KB 0s 10.75 KB 0s 10.71 KB 0s 10.72 KB 0s
BuEb 4.81 KB 1s 4.64 KB 0s 4.70 KB 0s 4.69 KB 0s 4.69 KB 0s

5

Total 120.94 MB 5m22s 112.07 MB 1h18m14s 111.79 MB 11m24s 112.42 MB 32m23s 109.68 MB 1h04m28s

for the four comparisons. The total compression ratio is the

total_output_size÷ total_input_size× 100, (4.1)
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and the total speed is

total_input_size÷ 1000÷ total_seconds_spent. (4.2)

The results show GeCo3 achieving the best compression ratio, both in relative and
conditional compression. The latter shows improved compression capabilities, with mean
improvements of 11%, 35%, 38% and 50% over GeCo2, iDoComp, GDC2 and HRCM,
respectively. This comes at a cost of being the slowest. The mean increase in time over
GeCo2, iDoComp, GDC2 and HRCM is 1.7×, 9.8×, 2.6× and 7.3×, respectively. Com-
pared with GeCo2, the total improvement for PT, PA, GG, and HS is 12.4%, 11.7%, 10.8%
and 10.1%. The total improvements are similar to the mean improvement per chromosome.
The computational RAM of GeCo3 is similar to GeCo2. For the majority of chromosome
pairs, GeCo3 offers better compression.

Table 4.6: Total referential compression ratio and speed in kB/s for a re-sequenced Korean
human genome. GeCo3 uses 64 hidden nodes and has 0.03 learning rate. The configu-
ration for GeCo2-r and GeCo3-r (relative approach) is "-rm 20:500:1:35:0.95/3:100:0.95
-rm 13:200:1:1:0.95/0:0:0 -rm 10:10:0:0:0.95/0:0:0". For GeCo2-h and GeCo3-h (con-
ditional approach) the following models where added "-tm 4:1:0:1:0.9/0:0:0 -tm
17:100:1:10:0.95/2:20:0.95". iDoComp, GDC2 and HRCM use the default configuration.

HRCM GDC2 iDoComp GeCo2-r GeCo3-r GeCo2-h GeCo3-h
ratio speed ratio speed ratio speed ratio speed ratio speed ratio speed ratio speed

0.27 9,552 0.29 2,620 0.27 3,228 1.55 547 1.30 306 1.55 384 1.24 229

In Table 4.6, we show the results for compression of a re-sequenced genome. In this
dataset HRCM achieves the best results, with GeCo3 trailing both in speed (42×) and
ratio (−363%). While these results show that GeCo2 and GeCo3 are not suitable for
compressing this type of dataset, the substantial improvement over GeCo2 (20%), hint at
the possibility that the new mixer might be useful when integrated into a different type of
compressor.

4.1.10 Estimating the cost for long term storage

To estimate the cost of long term storage, we developed a model with the following
simplifying assumptions:

• two or more copies are stored;

• compression is done once and the result is copied to the different backup media;

• one CPU core is at 100% utilization during compression;

• the cooling and transfer costs are ignored;
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Table 4.7: Total referential compression ratio and speed in kB/s. GeCo3 uses 64 hid-
den nodes and has 0.03 learning rate. The configuration for GeCo2-r and GeCo3-r
(relative approach) is "-rm 20:500:1:35:0.95/3:100:0.95 -rm 13:200:1:1:0.95/0:0:0 -rm
10:10:0:0:0.95/0:0:0". For GeCo2-h and GeCo3-h (conditional approach) the following
models where added "-tm 4:1:0:1:0.9/0:0:0 -tm 17:100:1:10:0.95/2:20:0.95". iDoComp,
GDC2 and HRCM use the default configuration.

HRCM GDC2 iDoComp GeCo2-r GeCo3-r GeCo2-h GeCo3-h
DSR ID ratio speed ratio speed ratio speed ratio speed ratio speed ratio speed ratio speed

1 HSxPT 6.29 2,006 5.01 841 4.78 2,430 4.16 527 3.65 296 4.02 374 3.52 224
2 HSxPA 15.27 1,260 12.24 382 11.31 1,891 7.51 513 6,57 294 7.26 367 6.41 222
3 HSxGG 8.80 1,691 7.06 588 6.70 2,201 5.58 516 4.96 293 5.43 369 4.84 222
4 GGxHS 9.48 1,773 8.11 712 7.80 2,332 6.43 558 5.81 301 5.77 389 5.19 230

Total 9.96 1,635 8.11 580 7.66 2,195 5.92 529 5.26 296 5.62 375 4.99 225

• the computing platform is idle when not compressing;

• no human operator is waiting for the operations to terminate.

Given the assumptions we now show the cost model:

Totalcost = Processingcost + Storagecost

Processingcost = Processingtime × Power × Energyprice
Storagecost = Ncopies × Size× Sizeprice,

where Processingtime is the total time to compress and decompress the sequence.
From [156], we use the single thread load subtracted by the idle value to calculate the

power (watts) a system uses during processing. The mean result for all systems is 34 watts.
The mean cost of electricity in the world is e0.12 per kWh, according to [157]. The mean
storage costs per GB for HDDs is e0.04 [158] and for SSDs is e0.13 [159].

Assuming e0.13 per GB and three copies, the costs for DS1 are e11.86, e9.54 and
e9.5 for NAF, GeCo2, and GeCo3, respectively. Using e0.04 per GB and three copies,
GeCo2 is more cost effective at e3.12, followed by GeCo3 (e3.46) and NAF (e3.74). In
Fig. 4.3, we show the costs of storing each sequence in DS1 and DS2 with GeCo3 relative
to NAF and GeCo2. As hinted by Fig. 4.1, we also show that the cost of compressing the
Denisova sequence is improved when using 32 instead of 64 hidden nodes. The reduction
of hidden nodes leads to a negligible drop in compression ratio (5.2% to 4.9% vs GeCo2),
but a substantial time decrease (3.1× to 2.4× vs GeCo2).

These results use the mean costs, though given the variability of electricity prices, CPU
power efficiency and storage costs, the analysis would need to be done for each specific
case.
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Figure 4.3: Relative ratio and cost of GeCo3 compared with NAF and GeCo2 for sequences
in DS1 and DS2. Higher relative ratios represent greater compression improvements by
GeCo3. The cost is calculated assuming e0.13 per GB and the storage of three copies. The
red dashed line shows the cost threshold. Cost points above the line indicate that GeCo3
is more expensive. Denisova32h represents the results of running the Denisova sequence
with 32 instead of 64 hidden nodes.

4.1.11 Why is the neural network better for mixing?

One of the possible reasons this approach has higher compression than GeCo2 is due
to the mixing output not being constrained by the inputs. By comparing the histograms
in Fig. 4.5 for the sequence EnIn and OrSa (two of the sequences with higher gains), we
can verify that GeCo3 appears to correct the models’ probabilities greater than 0.8 to
probabilities closer to 0.99. Therefore, in some way, it is betting more if at least four in
five chances are accomplished. Referential histograms are presented in Fig. 4.4; these are
similar to the ones for reference-free compression.

Another reason the network performs better, especially in reference-based compression
is that the network can learn to predict the sequence even when all the models are ignorant
or have wrong opinions. This however means that this approach can’t be used for pure
referential compression, because the mixer will always use the information of the current
sequence to supplement the inputs.

Another improvement is due to the higher percentage of symbols inferred correctly as
seen in Table 4.8. For dataset five (DS5), GeCo3 has an mean improvement of 1.5% in
the number of symbols inferred correctly, where only the smallest sequence has a lower hit
rate than GeCo2.

For referential compression, we show a complexity profile in Fig. 4.6. This profile
reveals that GeCo3 consistently outputs a lower number of bits per symbol. The gains
appear to be larger in places of higher sequence complexity, namely in the higher Bps
regions. These regions are typically where rapid switching between smaller models should
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Figure 4.4: Histograms for GeCo2 and GeCo3 using referential compression, with the
vertical axis in a log 10 scale. Four chromosome pairs are presented. The PA_20 is the
chromosome 20 of the orangutan (PA) using human (HS) as a reference. The PT_21 and
PT_Y are the chromosome 21 and Y of the chimpanzee (PT) using HS as reference. The
GG_22 is the chromosome 22 gorilla (GG) using HS as reference.

occur, suggesting that the neural network mixer can adapt faster than the approach used
in GeCo2.

Finally, the training is maintained during the entire sequence. Because, we found that
doing early stopping leads to worse outcomes. This characteristic might be due to the
advantages of over-fitting for non-stationary time series reported in [114] and also due to
the constant need to adjust for concept drift.
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Figure 4.5: Comparison of histograms using the EnIn (Entamoeba invadens) and OrSa
(Oryza sativa) genome sequences and the GeCo2 and GeCo3 as data compressors.

Table 4.8: Percentage of symbols predicted correctly by GeCo2 and GeCo3 for all sequences
in dataset four (DS4). The improvement percentage of GeCo3 over GeCo2 is the diff.

ID GeCo2 GeCo3 diff

HoSa 47.1 48.5 2.9
GaGa 38.9 40.0 2.8
DaRe 54.9 55.9 1.8
OrSa 48.2 49.7 3.0
DrMe 38.5 39.7 3.0
EnIn 50.3 51.2 1.8
ScPo 35.8 36.2 1.1
PlFa 44.4 45.3 2.0
EsCo 35.9 36.5 1.6
HaHi 40.0 40.4 1.0
AeCa 36.7 37.3 1.6
HePy 42.2 42.7 1.2
YeMi 41.7 42.1 1.0
AgPh 35.1 35.2 0.3
BuEb 33.2 32.4 -2.5
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(a) PT_21 - Chromosome 21 from Pan troglodytes compressed with the corresponding Homo sapiens
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(b) GG_22 - Chromosome 22 from Gorilla gorilla compressed with the corresponding Homo sapiens
chromosome.

Figure 4.6: Smoothed number of bits per symbol (Bps) of GeCo2 subtracted by GeCo3
Bps. The Bps were obtained by referential compression of PT_21 and GG_22, with the
same parameters as in Table 4.7. Places where the line rises above zero indicate that
GeCo3 has better compression than GeCo2.
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4.2 AC2 results

In this section we evaluate the performance and accuracy of AC2, the tool derived from
AC with the new mixer based on neural networks. Many of the main results of GeCo3,
such as the effect of hidden nodes, scaling the number of models, computational resources,
importance of derived features, among others, translate directly to AC2, therefore, we
avoid to repeat them.

4.2.1 Datasets and materials

For benchmarking AC2 as a reference-free compressor, we use two datasets, namely

• DS1: three protein databases used in [153]:

– uniprot : The UniProt collection of sequences [160];

– pdbaa: The Protein Data Bank [161];

– GRCh38: The human reference genome [162];

• DS2: a comprehensive dataset (proposed in [24]), containing the following sequences:

– BT: Bos taurus;

– HS: Homo sapiens;

– SC: Saccharomyces cerevisiae;

– HT: Haloterrigena turkmenica;

– EC: Escherichia coli;

– LC: Lactobacillus casei;

– SA: Staphylococcus aureus;

– HI: Haemophilus influenzae;

– MJ: Methanococcus jannaschii;

– DA: Desulfurococcus amylolyticus;

– AP: Acanthamoeba polyphaga;

– HA: Hadesarchaea archaeon;

– FM: Fomitiporia mediterranea;

– FV: Fowlpox virus;

– XV: Xanthomonas virus Xp10;

– EP: Enterococcus phage;
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4.2.2 Amino acid compression benchmark

We were unable to find working tools for amino acid compression besides AC and NAF,
therefore, we added general purpose compressors to make a more complete comparison. The
general purpose compressors added are the Big Block BWT (Burrows-Wheeler transform)
[163], the CMIX [43] and the LZMA [164].

Compared to AC, the results in Table 4.9 show compression improvements that range
from 7.5% (5 Mb) for DS1, to 1.6% (175 kB) for DS2. These results are followed by 3−4×
slower execution. These results are in line with the GeCo3’s, where the highest gains are
in the bigger sequences. The AC2 has a higher performance gap than GeCo3, because the
number of input and output nodes is 5× larger. This means, that for the same number of
models, more time is spent on mixing compared to GeCo3.

The AC2 achieves the overall best compression ratio for DS1 and DS2, but the lack
of cache hash, which is present in GeCo3, means that the uniprot sequence needs more
than 100GB of RAM to compress. The uniprot was compressed in a different machine,
without support for the fused multiply–add (FMA) instruction, which is crucial for good
performance of the neural network. As a consequence, the results for this sequences show
that AC2 is 6× slower while using the same number of hidden nodes as the other sequences
of DS1.

4.2.3 Adaptable learning rate

GeCo3 and AC2 both take two new parameters. The hidden nodes is relative straight
forward, since it typically increases the compression at the cost of greater computational
resources until a certain threshold. The learning rate is also easy to set for large sequences,
with the optimal values being around 0.03 and 0.16 for GeCo3 and AC2, respectively.
Amino acid sequences are typically much shorter than DNA sequences, which means that
setting the optimal learning rate becomes a trial and error process as seen by the spread
of learning rates in Table 4.10. To combat this issue we decided to try the Adam opti-
mizer which automatically adjusts the learning rate depending on the gradient and squared
gradient.

The results in Table 4.10, show that by using Adam, we can use the same learning rate
for all sequences and get a overall better result for the evaluated sequences, however we can
still get better results by tuning the learning rate. For example using the learning rate equal
to 0.0003, the compressed sequence EP becomes three bytes smaller. The same for FV,
which using 0.0004, results in a compressed size 33 bytes smaller. The compression gains
are very modest, at 0.2% for DS2 and almost no difference for DS1 (excluding uniprot).

A problematic feature of the Adam algorithm, as we implemented it, is that AC2
becomes between 4− 15× slower. This is due to the need to keep two exponential moving
averages for each individual weight in the network.

AC2, with the Adam optimizer, achieves the best compression ratio for DS1, with a
1.8% (200 kB) improvement over AC, but at the cost of being 23× slower. For the network
sizes used, the memory requirements are very similar to those of AC, with the difference
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Table 4.9: The bits per symbol (bps) and time needed to represent an amino acid sequence
for BBB, LZMA, CMIX, NAF, AC and AC2. NAF uses the highest compression level
(22) for all sequences. BBB uses the parameters ’cfm100q’ for all sequences. LZMA uses
the highest level (-9 -e) for all sequences. For DS2, AC and AC2 use the same levels
as in [24]. For DS1, the models used by AC and AC2 are "-tm 1:1:0.76/1:1:0.88 -tm
2:10:0.83/1:1:0.86 -tm 3:20:0.83/2:1:0.87 -tm 4:50:0.88/2:10:0.89 -tm 5:200:0.94/3:20:0.89
-tm 6:300:0.91/5:20:0.88 -tm 7:500:0.91/6:60:0.87 -tm 8:500:0.92/7:15:0.89 -tm
9:1000:0.92/8:15:0.9 -tm 10:1500:0.92/9:80:0.9 -tm 11:1500:0.93/10:200:0.92 -tm
12:1500:0.94/11:200:0.93 -tm 13:1500:0.96/12:30:0.92 -tm 14:1750:0.95/13:150:0.93 -
tm 15:2000:0.94/14:250:0.92 -tm 17:2200:0.95/16:350:0.93 -tm 20:2500:0.96/19:500:0.95".
The asterisk (*) next to the time means that the compression was run on a different
machine, with more RAM but slower CPUs.

BBB LZMA CMIX NAF AC AC2
DS ID bps time bps time bps time bps time bps time bps time

1

uniprot 2.872 2m34s 1.939 3m20s 1.887 47h08m07s 2.013 3m26s 2.071 2h03m37s* 1.894 12h15m54s*
GRCh38 1.906 29s 1.196 22s 1.168 9h24m44s 1.203 35s 1.216 6m38s 1.167 27m36s
pdbaa 2.541 25s 1.851 28s 1.847 7h06m24s 1.824 34s 1.790 6m55s 1.735 21m17s
Total 2.689 3m28s 1.817 4m10s 1.774 63h39m16s 1.869 4m36s 1.910 2h17m12s* 1.766 13h04m48s*

BT 3.711 9s 3.208 10s 3.081 2h54m59s 3.114 12s 3.049 1m35s 2.979 3m53s

2

HS 4.076 2s 4.022 2s 3.859 44m36s 3.905 2s 3.786 21s 3.725 48s
SC 4.093 2s 4.030 1s 3.914 38m59s 3.956 2s 3.876 16s 3.841 38s
HT 4.006 2s 3.971 1s 3.867 19m42s 3.929 1s 3.825 10s 3.774 23s
EC 4.150 1s 4.209 1s 4.051 17m51s 4.108 1s 4.038 6s 4.010 17s
LC 4.129 1s 4.188 0s 4.051 10m59s 4.119 1s 4.055 4s 4.027 10s
SA 4.142 1s 4.213 0s 4.036 10m52s 4.109 1s 4.056 4s 4.017 8s
HI 4.155 1s 4.239 0s 4.087 6m59s 4.155 1s 4.102 1s 4.090 4s
MJ 4.059 0s 4.141 0s 3.974 6m15s 4.069 1s 3.997 1s 3.971 3s
DA 4.083 0s 4.182 0s 4.014 5m31s 4.101 1s 4.028 1s 4.016 3s
AP 4.084 0s 4.106 0s 3.951 4m46s 4.073 1s 3.985 1s 3.953 4s
HA 4.122 0s 4.214 0s 4.081 3m03s 4.145 0s 4.082 0s 4.081 1s
FM 3.968 0s 3.508 0s 3.538 2m19s 3.537 1s 3.426 1s 3.388 2s
FV 4.130 0s 4.176 0s 4.063 1m12s 4.118 1s 4.063 0s 4.055 0s
XV 4.188 0s 4.258 0s 4.140 14s 4.176 0s 4.137 0s 4.139 0s
EP 4.262 0s 4.434 0s 4.228 7s 4.348 1s 4.323 0s 4.338 0s
Total 3.900 19s 3.642 15s 3.507 48m30s 3.553 29s 3.476 2m48s 3.421 6m41s

being less than 20 megabytes. Compared with the other compressors the improvements are
12.5%, 6.3%, 2.7% and 3.9% for BBB, LZMA, CMIX and NAF respectively. The execution
is 261× slower than LZMA and is 5× faster than CMIX. For reference, the AC2 with SGD
is 31× slower than LZMA and is 45× faster than CMIX. The DS2 sequences benchmarked
show no compression improvements.

4.2.4 Softmax activation and cross-entropy loss function

Instead of changing the optimization algorithm, we can experiment with different ac-
tivation and loss functions. In the last layer, we can replace the logistic with the softmax
function. This activation is more in line with what we need, as it ensures the results sum
to one, which is what we want for the probabilities of the symbols. For the loss function,
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Table 4.10: Number of bytes necessary to represent a subset of sequences from Table 4.9,
with manually optimized learning rates (SGDv), a fixed learning (SGDf) and an adaptive
learning rate (Adam). The L.Rate corresponds to the learning rates of SGDv. The SGDf
uses a learning rate of 0.16 for all sequences and Adam uses 0.0002.

ID SGDv SGDf Adam L.Rate

GRCh38 6,070,584 6,070,584 6,067,861 0.16
pdbaa 6,775,168 6,775,168 6,777,180 0.16
Total 12,845,752 12,845,752 12,845,041

BT 4,783,390 4,783,390 4,763,349 0.16
HS 1,534,479 1,534,479 1,533,247 0.16
SC 1,392,700 1,392,700 1,391,935 0.16
HT 695,259 695,259 693,913 0.16
EC 656,030 656,147 655,278 0.30
LC 407,400 407,458 407,272 0.25
SA 400,064 400,122 399,904 0.30
HI 260,482 260,494 260,459 0.30
MJ 222,768 222,768 222,758 0.16
DA 201,055 201,056 200,944 0.17
AP 168,810 168,810 168,695 0.16
HA 111,535 111,537 111,484 0.20
FM 68,495 68,508 68,787 0.19
FV 40,927 40,935 40,959 0.30
XV 6,919 6,920 6,923 0.40
EP 2,269 2,269 2,269 0.40
Total 10,952,582 10,952,852 10,928,176

the cross-entropy is another popular alternative to the mean squared error (MSE). The
results for AC2 with these functions are presented in Table 4.11. We observe that the time
is similar, but the compression improves from 1.6% to 2.0% for DS2 and from 7.5% to 8.7%
for DS1. This is a better result than using Adam and at no additional cost. In fact with
these changes AC2 achieves the best compression ratio in all sequences, but the smaller
two (EP and XV).

The results also show reduced execution times and the program uses less memory. For
the uniprot sequence the RAM usage decreases from 111GB to 25GB. These improvements
stem from micro-optimizations to the neural network code, such as using a faster version
of the logistic activation function, but more importantly, we are able to run the uniprot
sequence in the same test machine due to the modifications described in the next subsection.
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Table 4.11: The bits per symbol (bps) and time needed to represent an amino acid sequence
for CMIX and AC2 using the cache hash and softmax with cross-entropy. For DS2, AC2
uses the same levels as in Table 4.9, and for DS1 it uses level 8. All parameters are the
same configurations previously used, but with the added cache hash parameter.

CMIX AC2
DS ID bps time bps time

1

uniprot 1.887 47h08m07s 1.868 2h26m28s
GRCh38 1.168 9h24m44s 1.154 26m22s
pdbaa 1.847 7h06m24s 1.718 20m09s
Total 1.774 63h39m16s 1.743 3h13m00s

BT 3.081 2h54m59s 2.961 4m21s

2

HS 3.859 44m36s 3.717 49s
SC 3.914 38m59s 3.836 47s
HT 3.867 19m42s 3.764 26s
EC 4.051 17m51s 4.000 18s
LC 4.051 10m59s 4.019 9s
SA 4.036 10m52s 4.009 9s
HI 4.087 6m59s 4.083 4s
MJ 3.974 6m15s 3.965 3s
DA 4.014 5m31s 4.010 4s
AP 3.951 4m46s 3.938 5s
HA 4.081 3m03s 4.072 2s
FM 3.538 2m19s 3.373 3s
FV 4.063 1m12s 4.052 1s
XV 4.140 14s 4.138 0s
EP 4.228 7s 4.321 0s
Total 3.507 5h48m31s 3.408 7m27s

4.2.5 Memory reduction

An important goal for us, is to allow AC2 to be as usable as possible. With that in
mind, we introduced two modifications to tool. First, we reduced the size of the counters
for the models that used a hash table. AC uses eight bits per symbol, we reduced this to
two bits per symbol. Furthermore, we introduced a similar caching mechanism to GeCo3.
This allows the precise control of how much memory the program uses, it also speeds up
the program and it enables compression of larger sequences.
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Chapter 5

Conclusion and future work

This chapter serves to summarize the main contributions and results of our work, as
well as provide some possible directions that we think are worthwhile to explore.

In essence, this dissertation considers the GeCo2 and AC as a base, collecting its specific
DNA and amino acid models, and augments the mixture of models by using a neural
network. The primary outcome is two new efficient tools, GeCo3 and AC2. The results
show a compression improvement at the cost of longer execution times and equivalent
RAM.

For the evaluated datasets, this approach delivers the best results for the most signif-
icant and the highest repetitive sequences. One of the reasons for this is that for small
sequences, the network spends a significant percentage of time adjusting. Moreover, we
show the importance of selecting and deriving the appropriate network inputs as well as
the influence of the number of hidden nodes. These can be used to increase compression
at the cost of higher execution times.

Compared to other state-of-the-art compressors, this approach is typically slower, but
achieves better compression ratios both in reference-free and referential compression. Nev-
ertheless, the compression times can be reduced by decreasing the number of hidden nodes
while still improving the ratio.

The GeCo3 reference-free results, show an improvement of 25%, and 6% over NAF and
GeCo2, respectively. In reference-based compression, GeCo3 is able to provide compression
gains of 11%, 35%, 38%, and 50% over GeCo2, iDoComp, GDC2, and HRCM, respectively.

The time trade-off and the symmetry of compression-decompression establish GeCo3 as
a non-appropriate tool for on-the-fly decompression. Tools such as NAF [11] are efficient for
this purpose, namely because the computational decompression speed is very high, which
for industrial usage is mandatory. The purposes of tools such as GeCo3 are in another
domain, namely long-term storage and data analysis. In particular, the results suggest
that long-term storage of extensive databases, for example, as proposed in [165], would be
a good fit for GeCo3.

The steady rise of analysis tools based on DNA sequence compression is showing its
potential, with increasing applications and surprising results. Some of the applications
are the estimation of the Kolmogorov complexity of genomes [166], rearrangements de-
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tection [167], sequence clustering [168], measurement of distances and phylogenetic trees
computation [169], and metagenomics [170].

The AC2 results show improvement between 2.0% and 8.7% over AC, depending if the
compression is done for smaller (the former) or larger sequences (the latter).

The main advantage of using efficient (lossless) compression-based data analysis is non-
overestimation. Many analysis algorithms include multiple thresholds that use a consensus
value for what is considered balanced and consistent, leaving space for overestimation.
The problem is that using a consensus or average parameter for a specific analysis may
overtake the limit of the estimation balance. Since data compression needs the appropriate
decompressor to ensure the full recovery of the data, the compressor acts under a boundary
that ensures that the limit is never crossed (Kolmogorov complexity). This property is
critical in data analysis because the data in use may be vital and sensitive, mainly when
multiple models are used. Without a channel information limit and an efficient mixing
model, the information that is embedded in the probabilities estimation of each model
transits to the model choice.

The mixing method used to achieve these results assumes only that probabilities for the
symbols are available. Because of this, it permits to be easily exported to other compressors
or compressed-based data analysis tools that use multiple models. GeCo3 and AC2 shows
what compression improvements and execution times can be expected when using neural
networks for the mixture of experts in DNA and amino acid sequence compression.

This dissertation highlights the importance of expert mixing. Mixing has applications
in all areas where there is the uncertainty of outcomes, and many expert opinions are
available. This ranges from data compression, to climate modeling and, in the future,
possibly the creation of legislation. While more traditional methods, such as weighted
majority voting, are more efficient and can achieve good accuracy, neural networks show
promising results. With the development of specialized hardware instructions and data-
types to be included in general-purpose CPUs [27, 28], neural networks should become an
even more attractive option for expert mixing.

Additional improvements on the compression of large FASTQ data, for example, from
the Virome and Denisova datasets can be achieved with complementary techniques based
on reordering or metagenomic composition identification. Specifically, the reads of these
datasets can be split according to their composition using fast assembly and alignment-
free methods, namely extensions of Read-SpaM [171], in order to take advantage of the
similarity read proximity to improve substantially the compression.

Because of the tremendous impact that the derived features and the input transfor-
mations have in the mixing performance, one of the future directions would be to use
some form of automated feature extraction. The deep models we used didn’t provide this
capability, but maybe other CNN architectures are more suited for this type of problem.
Another direction to explore would be the potential usage of hardware acceleration (e.g.,
GPUs) to speedup the compression, maybe by using an API that can target both CPUs
and GPUs in a transparent fashion. It would also be interesting to test other machine
learning tools to do the mixing, as these might have better performance or greater com-
pression gains. Finally, it would be interesting to integrate other types of specific DNA
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models in the same mixing framework, to see what types of gains could be achieved.
Whichever the technology and application, the core method that we provide here,

namely for combining the specific DNA models with neural networks, enables a substan-
tial improvement in the precision of DNA sequence compression-based data analysis tools
and provides a significant reduction of storage associated with DNA sequences. In the
case of amino acid compression, neural networks also show similar improvements. Both
AC2 and GeCo3 almost always surpass the current state of the art compression ratios for
biosequence data compression.
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