17,505 research outputs found

    A Three-Level Parallelisation Scheme and Application to the Nelder-Mead Algorithm

    Get PDF
    We consider a three-level parallelisation scheme. The second and third levels define a classical two-level parallelisation scheme and some load balancing algorithm is used to distribute tasks among processes. It is well-known that for many applications the efficiency of parallel algorithms of the second and third level starts to drop down after some critical parallelisation degree is reached. This weakness of the two-level template is addressed by introduction of one additional parallelisation level. As an alternative to the basic solver some new or modified algorithms are considered on this level. The idea of the proposed methodology is to increase the parallelisation degree by using less efficient algorithms in comparison with the basic solver. As an example we investigate two modified Nelder-Mead methods. For the selected application, a few partial differential equations are solved numerically on the second level, and on the third level the parallel Wang's algorithm is used to solve systems of linear equations with tridiagonal matrices. A greedy workload balancing heuristic is proposed, which is oriented to the case of a large number of available processors. The complexity estimates of the computational tasks are model-based, i.e. they use empirical computational data

    The ESCAPE project : Energy-efficient Scalable Algorithms for Weather Prediction at Exascale

    Get PDF
    In the simulation of complex multi-scale flows arising in weather and climate modelling, one of the biggest challenges is to satisfy strict service requirements in terms of time to solution and to satisfy budgetary constraints in terms of energy to solution, without compromising the accuracy and stability of the application. These simulations require algorithms that minimise the energy footprint along with the time required to produce a solution, maintain the physically required level of accuracy, are numerically stable, and are resilient in case of hardware failure. The European Centre for Medium-Range Weather Forecasts (ECMWF) led the ESCAPE (Energy-efficient Scalable Algorithms for Weather Prediction at Exascale) project, funded by Horizon 2020 (H2020) under the FET-HPC (Future and Emerging Technologies in High Performance Computing) initiative. The goal of ESCAPE was to develop a sustainable strategy to evolve weather and climate prediction models to next-generation computing technologies. The project partners incorporate the expertise of leading European regional forecasting consortia, university research, experienced high-performance computing centres, and hardware vendors. This paper presents an overview of the ESCAPE strategy: (i) identify domain-specific key algorithmic motifs in weather prediction and climate models (which we term Weather & Climate Dwarfs), (ii) categorise them in terms of computational and communication patterns while (iii) adapting them to different hardware architectures with alternative programming models, (iv) analyse the challenges in optimising, and (v) find alternative algorithms for the same scheme. The participating weather prediction models are the following: IFS (Integrated Forecasting System); ALARO, a combination of AROME (Application de la Recherche a l'Operationnel a Meso-Echelle) and ALADIN (Aire Limitee Adaptation Dynamique Developpement International); and COSMO-EULAG, a combination of COSMO (Consortium for Small-scale Modeling) and EULAG (Eulerian and semi-Lagrangian fluid solver). For many of the weather and climate dwarfs ESCAPE provides prototype implementations on different hardware architectures (mainly Intel Skylake CPUs, NVIDIA GPUs, Intel Xeon Phi, Optalysys optical processor) with different programming models. The spectral transform dwarf represents a detailed example of the co-design cycle of an ESCAPE dwarf. The dwarf concept has proven to be extremely useful for the rapid prototyping of alternative algorithms and their interaction with hardware; e.g. the use of a domain-specific language (DSL). Manual adaptations have led to substantial accelerations of key algorithms in numerical weather prediction (NWP) but are not a general recipe for the performance portability of complex NWP models. Existing DSLs are found to require further evolution but are promising tools for achieving the latter. Measurements of energy and time to solution suggest that a future focus needs to be on exploiting the simultaneous use of all available resources in hybrid CPU-GPU arrangements

    Metamodel-based importance sampling for structural reliability analysis

    Full text link
    Structural reliability methods aim at computing the probability of failure of systems with respect to some prescribed performance functions. In modern engineering such functions usually resort to running an expensive-to-evaluate computational model (e.g. a finite element model). In this respect simulation methods, which may require 103610^{3-6} runs cannot be used directly. Surrogate models such as quadratic response surfaces, polynomial chaos expansions or kriging (which are built from a limited number of runs of the original model) are then introduced as a substitute of the original model to cope with the computational cost. In practice it is almost impossible to quantify the error made by this substitution though. In this paper we propose to use a kriging surrogate of the performance function as a means to build a quasi-optimal importance sampling density. The probability of failure is eventually obtained as the product of an augmented probability computed by substituting the meta-model for the original performance function and a correction term which ensures that there is no bias in the estimation even if the meta-model is not fully accurate. The approach is applied to analytical and finite element reliability problems and proves efficient up to 100 random variables.Comment: 20 pages, 7 figures, 2 tables. Preprint submitted to Probabilistic Engineering Mechanic

    Space station automation of common module power management and distribution

    Get PDF
    The purpose is to automate a breadboard level Power Management and Distribution (PMAD) system which possesses many functional characteristics of a specified Space Station power system. The automation system was built upon 20 kHz ac source with redundancy of the power buses. There are two power distribution control units which furnish power to six load centers which in turn enable load circuits based upon a system generated schedule. The progress in building this specified autonomous system is described. Automation of Space Station Module PMAD was accomplished by segmenting the complete task in the following four independent tasks: (1) develop a detailed approach for PMAD automation; (2) define the software and hardware elements of automation; (3) develop the automation system for the PMAD breadboard; and (4) select an appropriate host processing environment

    GADGET: A code for collisionless and gasdynamical cosmological simulations

    Full text link
    We describe the newly written code GADGET which is suitable both for cosmological simulations of structure formation and for the simulation of interacting galaxies. GADGET evolves self-gravitating collisionless fluids with the traditional N-body approach, and a collisional gas by smoothed particle hydrodynamics. Along with the serial version of the code, we discuss a parallel version that has been designed to run on massively parallel supercomputers with distributed memory. While both versions use a tree algorithm to compute gravitational forces, the serial version of GADGET can optionally employ the special-purpose hardware GRAPE instead of the tree. Periodic boundary conditions are supported by means of an Ewald summation technique. The code uses individual and adaptive timesteps for all particles, and it combines this with a scheme for dynamic tree updates. Due to its Lagrangian nature, GADGET thus allows a very large dynamic range to be bridged, both in space and time. So far, GADGET has been successfully used to run simulations with up to 7.5e7 particles, including cosmological studies of large-scale structure formation, high-resolution simulations of the formation of clusters of galaxies, as well as workstation-sized problems of interacting galaxies. In this study, we detail the numerical algorithms employed, and show various tests of the code. We publically release both the serial and the massively parallel version of the code.Comment: 32 pages, 14 figures, replaced to match published version in New Astronomy. For download of the code, see http://www.mpa-garching.mpg.de/gadget (new version 1.1 available
    corecore