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The application of modern high-throughput genomics to the study of cancer genomes has exploded in the past few

years, yielding unanticipated insights into the myriad and complex combinations of genomic alterations that lead to the

development of cancers. Coincident with these genomic approaches have been computational analyses that are capable

of multiplex evaluations of genomic data toward specific therapeutic end points. One such approach is called “immuno-

genomics” and is now being developed to interpret protein-altering changes in cancer cells in the context of predicted

preferential binding of these altered peptides by the patient’s immune molecules, specifically human leukocyte antigen

(HLA) class I and II proteins. One goal of immunogenomics is to identify those cancer-specific alterations that are likely

to elicit an immune response that is highly specific to the patient’s cancer cells following stimulation by a personalized

vaccine. The elements of such an approach are outlined herein and constitute an emerging therapeutic option for cancer

patients.

Cancer immunologists developed experimentally

testable hypotheses around the idea that mutated pro-

teins in cancer cells provided favored targets for

immune response in the mid-1980s (De Plaen et al.

1988; Monach et al. 1995). Their hypotheses were in-

spired by earlier observations of immune-capable mice

that developed spontaneous cancers and, after removal

and rechallenge, exhibited resistance to their original

cancers (Foley 1953; Prehn and Main 1957; Old

1982). This implied that cancer-specific immunity was

a plausible resistance mechanism, but the mechanism

for immunity was unclear. Experimental approaches to

test for the presence of tumor-specific mutant antigens

or “neoantigens” were aided by discoveries in immunol-

ogy that elucidated the role and functions of the human

leukocyte antigen (HLA) proteins (Bjorkman et al.

1987; Babbitt et al. 2005), and by the advent of molec-

ular cloning techniques. This combination led to the

cloning and identification of the first tumor neoantigen

by Boon and colleagues, a peptide called MAGE-A1

that was derived from a melanoma patient sample (van

der Bruggen et al. 1991). As exciting as this proof of

hypothesis was at the time, the laborious and lengthy

procedures required to identify a single tumor-specific

neoantigen that was highly unique to the patient’s

disease meant there was no clear trajectory for this ap-

proach in a clinical setting.

IMMUNOGENOMICS AND NEOANTIGEN

PREDICTION

Several recent developments have made it more plau-

sible to revisit the notion of identifying tumor-unique

neoantigenic peptides, however. In particular, the devel-

opment and widespread use of next-generation sequenc-

ing (NGS) platforms has figured prominently in this trend

(Mardis 2017). Introduced in the mid-2000s, these instru-

ments and their accompanying techniques led to the first

cancer whole-genome sequencing study that compared a

tumor with normal genome for a single patient, establish-

ing that somatic mutations could be discovered in the

comparison (Ley et al. 2008). Selective hybridization-

based techniques known as “hybrid capture” emerged

in 2009 and permitted isolation and sequencing of only

the known protein-coding exons from a whole-genome

library (the exome). This “whole-exome sequencing”

approach significantly simplified data analysis for the

identification of DNA-level changes that were somatic

(i.e., specific to the tumor cells) and led to changes in

the amino acid sequences of the resulting proteins. The

foundational underpinning for mutation discovery lies in

the reference human genome sequence, which serves as a

template for NGS read alignment. Over time, the increas-

ing length of NGS reads, the advent of read-pair data

(both ends of each library fragment are sequenced), and
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the improved mapping algorithms have led to overall im-

provements in the quality of NGS read alignment on the

highly repetitive and complex human genome reference.

Beyond these advances, the most important step in this

process—namely, the proper identification of variants in

aligned NGS read data—has also improved over time.

There are various algorithmic approaches to somatic

variant identification from NGS data that typically are

highly tuned to the type of variant being detected. The

basic workflow involves detecting variants in the aligned

read data from the tumor sample, and separately in the

normal sample, and then comparing the variants at

each locus to eliminate those shared between tumor

and normal from further consideration because they are

constitutional or “germline” in origin (Ding et al. 2010).

In practice, each variant identification algorithm has

strengths and weaknesses (Griffith et al. 2015), and there-

fore most data analysis approaches to somatic variant

identification use more than one variant caller and con-

sider most strongly the shared or consensus variant lists

called by each algorithm as likely true positives. Further-

more, variant detection accuracy is a function of data

coverage, so most variant detection approaches utilize a

pre- or post-variant call filtering scheme to remove all

variants identified at loci with suboptimal coverage

depth. Generally speaking, detection of somatic single-

nucleotide variants (SNVs) or point mutations is the most

straightforward variant type to identify. Detecting the

insertion or deletion (indel) of one or more nucleotides

is more difficult, as gapped alignment or assembly of the

sequence read data that define the indel is required. Here,

some proportion of the indel-containing reads will not

map without special alignment algorithms, because of

the need to produce a gapped alignment with sufficient

length of sequence similarity to anchor the read accurate-

ly to the surrounding sequence. As a result, coverage

is almost always lower at indel variant sites because of

read mapping difficulties. Finally, structural variants are

the most difficult to detect with high accuracy. These

variants include chromosomal-scale events such as inver-

sions, translocations, and deletions and are detected

based on mismapped read-pair data following NGS read

alignment. Both indels and structural variants, when they

occur in protein-coding genes, can provide important and

potentially immunogenic changes to the amino acid se-

quences of expressed proteins in a cancer cell.

The next step is annotating the variants that have been

identified, by interpreting their altered nucleotide se-

quences in the context of their protein-coding impact.

This is straightforward in SNVs, but indels that result in

a shift in the open reading frame (frameshift) and gene-

fusing structural variants are more difficult to interpret

properly. Automated annotation software such as Variant

Effect Predictor (VEP) (McLaren et al. 2016) or ANNO-

VAR (Wang et al. 2010) typically is used for variant

interpretation. For many genes in the human genome,

multiple transcripts have been identified, which compli-

cates the annotation process because one must specify

which transcript is to be annotated. In the absence of

adequate RNA-seq data to infer the correct transcript,

one typically annotates from the transcript with the high-

est evidence for expression. Tissue-specific expression

data sets, such as GTEx (www.gtexportal.org/), also

can be consulted for transcript information, if desired.

Once the variants and their proper notation are deter-

mined along with their flanking sequences, the results

are parsed for use in the neoantigen detection schema

described below. Typically for major histocompatibility

complex (MHC) class I restricted neoantigen discovery,

we tile through the variant-containing region of each pro-

tein with peptides of eight to 11 amino acids to generate

the test sequences for neoantigen evaluation. For MHC

class II restricted neoantigen discovery, the tiled peptides

are 15 amino acids in length.

Stringent alignment of NGS reads from the normal tis-

sue comparator onto the HLA coding genes permits the

haplotype of each patient to be determined from NGS

exome data. There are several approaches to HLA typing

from NGS data, including HLAminer (Warren et al.

2012), OptiType (Szolek et al. 2014), and ATHLATES

(Liu et al. 2013). HLAminer and OptiType also can call

HLA haplotypes from RNA-seq data. In high-mutation-

load tumor types, it also is advised to evaluate and anno-

tate the HLA gene sequences from the tumor tissue NGS

data, because there may be inactivating (nonsense or

frameshift) mutations in one or more of these genes that

would preclude further consideration of these mutation-

inactivated HLA proteins in neoantigen prediction.

The final step in neoantigen discovery is the prediction

of binding affinities for each novel somatic mutation-

translated set of peptides to the patient’s HLA proteins.

The development of modeling algorithms that calculate

HLA binding affinities has been an active area of research

that has resulted in several approaches such as analysis by

neural network-based algorithms that are trained on mea-

sured binding affinities (e.g., NetMHC), scattering-ma-

trix method (SMM)-based approaches, and others (Peters

and Sette 2005; Lundegaard et al. 2008; Srivastava et al.

2013). The large number of algorithms indicates the at-

tendant difficulty of identifying neoantigens, although

precision has improved over time, especially for class I

HLA proteins, for which more experimental data exist,

even for the more rare haplotypes. Class II neoantigen

binding is more difficult to predict because of the nature

of the peptide binding site, which is open at both ends,

permitting the flanking amino acids around the nine-ami-

no-acid-core binding motif to influence binding affinity

in a context-dependent manner (Paul et al. 2015).

Because of the complexities of the aforementioned set

of steps required to generate predicted neoantigens, our

group published a computational pipeline called pVAC-

Seq (personalized Variant Antigens by Cancer Sequenc-

ing) that is designed to perform these steps in sequence

(Hundal et al. 2016). pVAC-Seq requires several input

data, including an annotated list of somatic variants,

comparison sequences from the native peptide correlates,

predicted HLA class I haplotypes for the patient, and

RNA-seq-derived data regarding mutant expression lev-

els for each of the input peptides. The overall workflow

for neoantigen prediction is represented in Figure 1.
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Neoantigen prediction can be used clinically to achieve

several therapeutic goals, depending on the nature of the

study. Two case reports are presented to illustrate the

clinical utility of neoantigen prediction to (1) predict neo-

antigen load as a consequence of an identified mismatch

repair gene defect and as an indicator of likely response to

checkpoint blockade therapy, (2) identify changes in

a temporal series of tumors from the same individual

patient, and (3) design a personalized vaccine for a patient

with recurrent cancer.

CASE REPORTS

We recently reported (Johanns et al. 2016) on an indi-

vidual case of a male patient (early 30s) with a history of

colon polyps who presented with a brain tumor that was

removed by craniotomy and diagnosed as a glioblastoma

multiforme (GBM), World Health Organization (WHO)

grade IV with primitive neuroectodermal tumor (PNET)

features. Following resection, the patient received radia-

tion and temozolomide (TMZ) treatment per standard

of care, but new symptoms subsequent to this treatment

during high-dose maintenance TMZ led to the laminec-

tomy and diagnosis by histopathology of a drop spinal

metastasis. Intermediate to the primary and secondary

diagnoses, a panel gene test (Foundation One) identified

an abnormally elevated mutation rate, and a reflex assay

of blood DNA for germline susceptibility identified

a known pathogenic mutation in polymerase epsilon

(POLE L424 V). Based on this result, the patient received

a PD-1 checkpoint blockade therapy (pembrolizumab)

for about 3 wk following the removal of the drop metas-

tasis. Upon experiencing further complications after 3 wk

of pembrolizumab therapy, the patient was subsequently

diagnosed with a second drop metastasis lower on the

spinal cord. This tumor also was resected by laminectomy

and diagnosed as a GBM with PNET features by histo-

pathology. Since all three occurrences of this patient’s

cancer were banked, we isolated DNA and RNA from

each sample. An exome capture-based sequencing com-

parison of all three tumors to a matched blood normal

from the patient coupled with RNA-seq from each of

the three tumors were used to characterize the patient’s

changes in tumor heterogeneity and neoantigen load over

time. We also performed immunohistochemistry (IHC)

on slides from each tumor resection sample to identify

whether the use of checkpoint blockade therapy had in-

fluenced the tumor infiltration of different immune mol-

ecules behind the blood–brain barrier.

As demonstrated in our retrospective sequencing and

analysis, genomic characterization of a tumor series can

Figure 1. Generalized workflow diagram for identification of tumor-specific mutant antigens (“neoantigens”) from next-generation
sequencing (NGS) data. MHC, major histocompatibility complex; TCR, T-cell receptor.
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verify an anticipated “hyper” mutation rate for patients

with a POLE pathogenic mutation and can illustrate

response to treatment in the form of dramatic changes

in tumor heterogeneity and subclonal tumor cell popula-

tions. This was especially evident in the comparison of

the first drop metastasis to the second, with an anti PD-1

therapy intermediate (Fig. 2). Similarly, we utilized our

genomic data to identify significant flux in the neoanti-

gens identified in all three tumors. Our comparative

analysis of RNA expression data obtained from each

tumor illustrated the significant changes in immune cell

infiltrates following anti-PD1 checkpoint blockade ther-

apy, and these were supported by IHC studies that further

illustrated the significant influx of immune cells follow-

ing anti-PD1 therapy (Fig. 3). Importantly, this study

provided the first combined genomic and molecular evi-

dence that checkpoint blockade could influence immune

activity behind the blood–brain barrier in a central ner-

vous system (CNS) tumor.

We also have used immunogenomic methods to iden-

tify neoantigens in individual patient cancers for the

purposes of designing a personalized vaccine-based ther-

apeutic (Carreno et al. 2015). This work built upon proof-

of-concept studies completed with Robert Schreiber’s

laboratory using carcinogen-induced sarcoma mouse

models with a high mutational load. These studies inves-

tigated whether the combination of exome sequencing

and RNA sequencing could identify neoantigens in this

tumor model (Matsushita et al. 2012) and further evalu-

ated whether a peptide vaccine based on the identified

neoantigens could be used to vaccinate the mouse and

lead to the eradication of the tumor (Gubin et al. 2014).

In the human vaccine trial, the pVAC-Seq pipeline (Hun-

dal et al. 2016) identified neoantigens from melanoma

samples in three patients with BRAF-mutated melanomas

that had received prior treatment with a BRAF small-

molecule-inhibitor therapy and with an anti-CTLA4

checkpoint blockade therapy (ipilimumab). After identi-

fying neoantigens, the vaccines were produced by isolat-

ing dendritic cells from each patient and culturing them

to maturity based on established in vitro methods, and

then coupling the mature dendritic cells with synthetic

peptides for each unique neoantigen plus two control

peptides (based on gp-100 shared antigens). These den-

Figure 2. Comparison of tumor heterogeneity and subclonal population variation in sequential samples from a single patient.
(Reprinted, with permission, from Johanns et al. 2016, # AACR.)

Figure 3. Immunohistochemistry-based evaluation of sequential glioblastoma multiforme (GBM) samples for immune infiltration
before and after anti PD-1 therapy. (Reprinted, with permission, from Johanns et al. 2016, # AACR.)
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dritic cell cultures were infused into the patients in a

series of three vaccine infusions at 2-wk intervals. The

overall workflow is shown in Figure 4.

Postvaccination, we then monitored each patient’s

response using flow cytometry–based dextramer assays

designed to specifically identify which of the neoantigens

were eliciting a specific CD8þ T-cell response. In each

case, we saw strong responses from three of the seven

neoantigens utilized per patient (each set of neoantigens

is completely unique to each patient), and we saw strong

responses from our control gp-100 peptides. To further

investigate the T-cell response, we evaluated the com-

plexity of the T-cell receptor (TCR) repertoire using the

Adaptive Biosciences immunoSEQ assay (http://www

.adaptivebiotech.com/immunoseq), which also uses next-

generation sequencing to provide the TCR data for anal-

ysis. Our results demonstrated that, for neoantigens with

a discernable response by dextramer-flow cytometry

assay, the corresponding T cells showed increased diver-

sity in the TCR repertoire post-vaccine compared with

pre-vaccine.

These initial studies have led to new clinical trials

of personalized vaccines in tumor types with a lower

average mutational load than UV-associated melanomas,

such as triple-negative breast cancer. Here, the challenge

is to identify a sufficient number of neoantigens using the

pVAC-Seq pipeline, for the purposes of designing the

vaccine. To address this, we have been expanding

the types of variants considered in our analysis beyond

SNVs (point mutations). For example, although they are

less frequent and more difficult to identify precisely, in-

sertion or deletion (indel) variants can shift the open

reading frame of a protein, thereby creating a novel tu-

mor-unique peptide that may be a neoantigen. Similarly,

the identification of structural variants that generate fu-

sion proteins can also potentially encode a neoantigenic

peptide at the junction sequence of the two proteins. We

recently used an approach to mine fusion transcripts from

cancer RNA-seq data for purposes of evaluating neoanti-

genicity of predicted fusions. The implementation of

this approach, called INTEGRATE-Neo, was tested in

the context of TCGA prostate cancer data (exome and

RNA-seq) for a common fusion peptide created by the

translocation that fuses TMPRSS2 to ERG in �50% of

prostate cancers. As shown in Figure 5, the HLA binding

energy calculated for this novel fusion peptide varies

across patients according to HLA haplotype. Like class

I neoantigens, we also wish to evaluate class II restricted

neoantigens and add these to our vaccines. We are active-

ly pursuing these and other changes to our neoantigen

discovery pipeline (https://github.com/griffithlab/
pVAC-Seq).

Finally, we would like to expand our personalized neo-

antigen vaccine approaches to tumor types with signifi-

cantly lower mutational burden, such as pediatric cancers.

In particular, the opportunity to pursue these studies lies

in patients emerging with recurrent disease, post-stan-

dard-of-care therapies such as radiation and alkylating

chemotherapies like TMZ. In a study published by Cost-

ello’s laboratory, �30% of pediatric glioma patients with

recurrent tumors post-radiation and TMZ demonstrated a

significant elevation in their tumor mutational burden

posttherapy (van Thuijl et al. 2015). These children might

represent reasonable subjects for a clinical trial to evalu-

ate a personalized neoantigen vaccine in the recurrent

setting. In this regard, since the TMZ-induced mutations

are subclonal (i.e., not in the founder clone), we would

need to include a combination of founder clone variants

from the primary tumor and newer, TMZ-induced sub-

clonal variants to increase the likelihood of clinical

benefit.

REMAINING QUESTIONS

IN IMMUNOGENOMICS

Although these new applications of genomics to clin-

ical cancer diagnostics and therapeutics are exciting and

Figure 4. Overall workflow for creating a dendritic cell (DC) vaccine based on mis-sense somatic point mutations (single-nucleotide
variants [SNVs]) that generate putative neoantigens.
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potentially transformational, we have many remaining

questions to answer. Examples include questions about

the optimal number and types of neoantigens that are

ideal for vaccine efficacy, the type of vaccine platform

(dendritic cell–based, peptide-based, DNA-based, and

so on) that is scalable, rapid to produce, and affordable

so that many patients can benefit (if indeed, benefit is

demonstrated). Better information about how patients re-

spond to a vaccine across the spectrum of tumor burden is

needed, so we can more effectively design our clinical

trials. For example, are patients with advanced tumor

burden less likely to have a clinical response or benefit

because the immune system, although activated by the

vaccine, cannot respond fast enough to eradicate their

cancers? Conversely, do patients require some minimal

level of tumor burden to achieve a benefit by giving the T

cells elicited by the vaccine a target to attack? And final-

ly, with a tumor burden eliminated by surgery, will the

immune surveillance remain? Or will surveillance poten-

tially be eluded by the emergence of new tumors that

have suppressed the expression of the neoantigens target-

ed by the vaccine? Since this phenomenon of neoepitope

editing already has been demonstrated in acquired resis-

tance to checkpoint blockade therapies (Anagnostou

et al. 2016), it is likely also in the therapeutic vaccine

setting.

CONCLUSION

The evolving applications of modern genomics and

computational analysis to the immunology-based study

of cancer have transformed our studies since these central

concepts of cancer immunology were hypothesized in

the 1980s. Certainly, the facility with which somatic

mutations can be identified in individual tumor samples

has encouraged progress, but vital contributions were

required toward the algorithmic evaluation of mutant

peptides in the context of each patient’s HLA haplotypes

and in devising novel immunotherapeutics. Immunoge-

nomics has been demonstrated to be clinically informa-

tive in several early studies, outlined here, and in research

that builds the case for clinical translation. As our level of

sophistication increases in identifying neoantigens across

the spectrum of mutation types and HLA classes, foun-

dational knowledge about cancer immunology will result

as will our understanding of how best to apply this infor-

mation to clinical care.

ACKNOWLEDGMENTS

We acknowledge our clinical collaborators on the case

studies reported, including Beatriz Carreno, Gerald

Linette, Gavin Dunn, and Tanner Johanns, and we thank

Figure 5. Evaluation of human leukocyte antigen (HLA) binding affinity for a common fusion peptide in prostate cancer (TMPRSS2-
ERG) as evaluated by INTEGRATE-Neo. (Reprinted from Zhang et al. 2016, by permission of Oxford University Press.)

HUNDAL ET AL.110



Robert Schreiber for his incredible guidance and encour-

agement to pursue these studies. We acknowledge the

patients who were studied herein and thank them for their

courage and willingness to contribute to clinical research.

REFERENCES

Anagnostou V, Smith KN, Forde PM, Niknafs N, Bhattacharya
R, White J, Zhang T, Adleff V, Phallen J, Wali N, et al. 2016.
Evolution of neoantigen landscape during immune check-
point blockade in non-small cell lung cancer. Cancer Discov
7: 264–276.

Babbitt BP, Allen PM, Matsueda G, Haber E, Unanue ER. 2005.
Binding of immunogenic peptides to Ia histocompatibility
molecules. 1985. J Immunol 175: 4163–4165.

Bjorkman PJ, Saper MA, Samraoui B, Bennett WS, Strominger
JL, Wiley DC. 1987. Structure of the human class I histocom-
patibility antigen, HLA-A2. Nature 329: 506–512.

Carreno BM, Magrini V, Becker-Hapak M, Kaabinejadian S,
Hundal J, Petti AA, Ly A, Lie WR, Hildebrand WH, Mardis
ER, et al. 2015. Cancer immunotherapy. A dendritic cell vac-
cine increases the breadth and diversity of melanoma neo-
antigen-specific T cells. Science 348: 803–808.

De Plaen E, Lurquin C, Van Pel A, Mariamé B, Szikora JP,
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