1,210 research outputs found

    CBR and MBR techniques: review for an application in the emergencies domain

    Get PDF
    The purpose of this document is to provide an in-depth analysis of current reasoning engine practice and the integration strategies of Case Based Reasoning and Model Based Reasoning that will be used in the design and development of the RIMSAT system. RIMSAT (Remote Intelligent Management Support and Training) is a European Commission funded project designed to: a.. Provide an innovative, 'intelligent', knowledge based solution aimed at improving the quality of critical decisions b.. Enhance the competencies and responsiveness of individuals and organisations involved in highly complex, safety critical incidents - irrespective of their location. In other words, RIMSAT aims to design and implement a decision support system that using Case Base Reasoning as well as Model Base Reasoning technology is applied in the management of emergency situations. This document is part of a deliverable for RIMSAT project, and although it has been done in close contact with the requirements of the project, it provides an overview wide enough for providing a state of the art in integration strategies between CBR and MBR technologies.Postprint (published version

    Data-driven Soft Sensors in the Process Industry

    Get PDF
    In the last two decades Soft Sensors established themselves as a valuable alternative to the traditional means for the acquisition of critical process variables, process monitoring and other tasks which are related to process control. This paper discusses characteristics of the process industry data which are critical for the development of data-driven Soft Sensors. These characteristics are common to a large number of process industry fields, like the chemical industry, bioprocess industry, steel industry, etc. The focus of this work is put on the data-driven Soft Sensors because of their growing popularity, already demonstrated usefulness and huge, though yet not completely realised, potential. A comprehensive selection of case studies covering the three most important Soft Sensor application fields, a general introduction to the most popular Soft Sensor modelling techniques as well as a discussion of some open issues in the Soft Sensor development and maintenance and their possible solutions are the main contributions of this work

    AI Solutions for MDS: Artificial Intelligence Techniques for Misuse Detection and Localisation in Telecommunication Environments

    Get PDF
    This report considers the application of Articial Intelligence (AI) techniques to the problem of misuse detection and misuse localisation within telecommunications environments. A broad survey of techniques is provided, that covers inter alia rule based systems, model-based systems, case based reasoning, pattern matching, clustering and feature extraction, articial neural networks, genetic algorithms, arti cial immune systems, agent based systems, data mining and a variety of hybrid approaches. The report then considers the central issue of event correlation, that is at the heart of many misuse detection and localisation systems. The notion of being able to infer misuse by the correlation of individual temporally distributed events within a multiple data stream environment is explored, and a range of techniques, covering model based approaches, `programmed' AI and machine learning paradigms. It is found that, in general, correlation is best achieved via rule based approaches, but that these suffer from a number of drawbacks, such as the difculty of developing and maintaining an appropriate knowledge base, and the lack of ability to generalise from known misuses to new unseen misuses. Two distinct approaches are evident. One attempts to encode knowledge of known misuses, typically within rules, and use this to screen events. This approach cannot generally detect misuses for which it has not been programmed, i.e. it is prone to issuing false negatives. The other attempts to `learn' the features of event patterns that constitute normal behaviour, and, by observing patterns that do not match expected behaviour, detect when a misuse has occurred. This approach is prone to issuing false positives, i.e. inferring misuse from innocent patterns of behaviour that the system was not trained to recognise. Contemporary approaches are seen to favour hybridisation, often combining detection or localisation mechanisms for both abnormal and normal behaviour, the former to capture known cases of misuse, the latter to capture unknown cases. In some systems, these mechanisms even work together to update each other to increase detection rates and lower false positive rates. It is concluded that hybridisation offers the most promising future direction, but that a rule or state based component is likely to remain, being the most natural approach to the correlation of complex events. The challenge, then, is to mitigate the weaknesses of canonical programmed systems such that learning, generalisation and adaptation are more readily facilitated

    Plantwide simulation and monitoring of offshore oil and gas production facility

    Get PDF
    Monitoring is one of the major concerns in offshore oil and gas production platform since the access to the offshore facilities is difficult. Also, it is quite challenging to extract oil and gas safely in such a harsh environment, and any abnormalities may lead to a catastrophic event. The process data, including all possible faulty scenarios, is required to build an appropriate monitoring system. Since the plant wide process data is not available in the literature, a dynamic model and simulation of an offshore oil and gas production platform is developed by using Aspen HYSYS. Modeling and simulations are handy tools for designing and predicting the accurate behavior of a production plant. The model was built based on the gas processing plant at the North Sea platform reported in Voldsund et al. (2013). Several common faults from different fault categories were simulated in the dynamic system, and their impacts on the overall hydrocarbon production were analyzed. The simulated data are then used to build a monitoring system for each of the faulty states. A new monitoring method has been proposed by combining Principal Component Analysis (PCA) and Dynamic PCA (DPCA) with Artificial Neural Network (ANN). The application of ANN to process systems is quite difficult as it involves a very large number of input neurons to model the system. Training of such large scale network is time-consuming and provides poor accuracy with a high error rate. In PCA-ANN and DPCA-ANN monitoring system, PCA and DPCA are used to reduce the dimension of the training data set and extract the main features of measured variables. Subsequently ANN uses this lower-dimensional score vectors to build a training model and classify the abnormalities. It is found that the proposed approach reduces the time to train ANN and successfully diagnose, detects and classifies the faults with a high accuracy rate

    The 1995 Goddard Conference on Space Applications of Artificial Intelligence and Emerging Information Technologies

    Get PDF
    This publication comprises the papers presented at the 1995 Goddard Conference on Space Applications of Artificial Intelligence and Emerging Information Technologies held at the NASA/Goddard Space Flight Center, Greenbelt, Maryland, on May 9-11, 1995. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed

    A Hierarchical Model-Based Reasoning Approach for Fault Diagnosis in Multi-Platform Space Systems

    Get PDF
    Health monitoring and fault diagnosis in traditional single spacecraft missions are mostly accomplished by human operators on ground through around-the-clock monitoring and trend analysis on huge amount of telemetry data. Future multiplatform space missions, commonly known as the formation flight missions, will utilize multiple inexpensive spacecraft in formation by distributing the functionalities of a single platform among the miniature inexpensive platforms. Current spacecraft diagnosis practices do not scale up well for multiple space platforms due to an increasing need to make the long-duration missions cost-effective by limiting the size of the operations team which will be large if traditional diagnosis is employed. An ideal solution to this problem is to incorporate an autonomous fault detection, isolation, and recovery (FDIR) mechanism. However, the effectiveness of spacecraft autonomy is yet to be demonstrated and due to the existence of perceived risks, it is often desired that the expert human operators be involved in the spacecraft operations and diagnosis processes i.e., the autonomous spacecraft actions be understandable by the human operators on ground so that intervention may be made, if necessary. To address the above problems and requirements, in this research a systematic and transparent fault diagnosis methodology for ground-based operations of multi-platform space systems is developed. First, novel hierarchical fault diagnosis concepts and framework are developed. Within this framework, a multi-platform space system is decomposed hierarchically into multiple levels. The decomposition is driven by the need for supporting the development of the components/subsystems of the overall system by a number of design teams and performing integration at the end. A multi-platform system is considered to be a set of interacting components where components at different levels correspond to formation, system, sub-system, etc. depending on the location of the node in the hierarchy. Two directed graph based fault diagnosis models are developed namely, fuzzy rule based hierarchical fault diagnosis model (HFDM), and Bayesian networks (BN)-based component dependency model (CDM). In HFDM, fault diagnosis of different components in the formation flight is investigated. Fuzzy rules are developed for fault diagnosis at different levels in the hierarchy by taking into account the uncertainties in the fault manifestations in a given component. In this model, the component interactions are quantified without taking the uncertainties in the component health state dependencies into account. Next, a component dependency model (CDM) based on Bayesian networks (BN) models is developed in order to take the uncertainties in component dependencies into account. A novel methodology for identifying CDM parameters is proposed. Fault evidences are introduced to the CDM when the fault modes of a component are observed via fuzzy rule activations. Advantages and limitations associated with the proposed HFDM and the CDM are also discussed. Finally, the verification and validation (V&V) of the hierarchical diagnosis models are investigated via a sensitivity analysis approach. It should be noted that the proposed methodology and the fault diagnosis strategies and algorithms that are developed in this research are generic in a sense that they can be applied to any hierarchically decomposable complex systems. However, the system and domain specific knowledge they require, especially for modeling component dependencies, are mostly available in the aerospace industry where extensive system design and integration-related analysis are common due to high system building cost and failure risks involved
    corecore