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Abstract 

 

Monitoring is one of the major concerns in offshore oil and gas production platform since the 

access to the offshore facilities is difficult. Also, it is quite challenging to extract oil and gas 

safely in such a harsh environment, and any abnormalities may lead to a catastrophic event. The 

process data, including all possible faulty scenarios, is required to build an appropriate 

monitoring system. Since the plant wide process data is not available in the literature, a dynamic 

model and simulation of an offshore oil and gas production platform is developed by using 

Aspen HYSYS. Modeling and simulations are handy tools for designing and predicting the 

accurate behavior of a production plant. The model was built based on the gas processing plant 

at the North Sea platform reported in Voldsund et al. (2013). Several common faults from 

different fault categories were simulated in the dynamic system, and their impacts on the overall 

hydrocarbon production were analyzed. The simulated data are then used to build a monitoring 

system for each of the faulty states. A new monitoring method has been proposed by combining 

Principal Component Analysis (PCA) and Dynamic PCA (DPCA) with Artificial Neural 

Network (ANN). The application of ANN to process systems is quite difficult as it involves a 

very large number of input neurons to model the system. Training of such large scale network is 

time-consuming and provides poor accuracy with a high error rate. In PCA-ANN and DPCA-

ANN monitoring system, PCA and DPCA are used to reduce the dimension of the training data 

set and extract the main features of measured variables. Subsequently ANN uses this lower-

dimensional score vectors to build a training model and classify the abnormalities. It is found 

that the proposed approach reduces the time to train ANN and successfully diagnose, detects and 

classifies the faults with a high accuracy rate.  



iv 

 

ACKNOWLEGEMENT 

 

First, I want to convey my earnest gratitude and respect to my supervisors, Dr. Syed Imtiaz, Dr. 

Salim Ahmed, and Dr. Sohrab Zendehboudi, for their encouragement, guidance and constructive 

feedback throughout the development of this thesis. Without their continuous help, research 

ideas, and patience, this work would not have been accomplished. I would also like to gratefully 

acknowledge my former supervisor, Dr. Enamul Hossain, who introduced me to the area.  

  

I am grateful to my beloved parents and my only elder sister for their mental support and 

incessant pray. Especially I am thankful to my wife for being the source of my inspiration. 

Without her help, care, and love, I wouldn't be able to overcome the challenges of life and 

complete my Master's program. 

  

I would like to thank all of my colleagues especially I must recognize the contribution of 

Eugenio Turco Neto and Rajeevan Arun, who always helped me smilingly in any programming 

related issue. I also thank Tina Dwyer and Colleen Mahoney for making a friendly and 

welcoming atmosphere at the university. 

  

Finally, I would like to thank the School of Graduate Studies (SGS) and Equinor (former Statoil) 

Canada Ltd. for providing financial support to accomplish this research. I am also thankful to the 

Memorial University of Newfoundland for all kinds of support for this research. 



v 

 

Table of Contents  

Abstract ........................................................................................................................................ iii  

Acknowledgement ....................................................................................................................... iv 

List of Tables ............................................................................................................................... xi  

List of Figures ............................................................................................................................ xiii  

List of Abbreviations ................................................................................................................. xv  

List of symbols ........................................................................................................................... xix  

Chapter 1: Introduction  

 1.1  Background ...................................................................................................................... 1  

 1.2  Objective  …..................................................................................................................... 4  

 1.3  Thesis Structure ............................................................................................................... 5 

 1.4  Software Used  ................................................................................................................ 6 

References .................................................................................................................................. 7  

Chapter 2: Literature Review  

2.1 Modeling and simulation .................................................................................................... 9 

2.2 Fault Detection and Diagnosis .......................................................................................... 12 

2.2.1 Data base methods....................................................................................................... 13 

2.2.2 Hybrid Methods........................................................................................................... 18 

2.2.2.1 Data-driven hybrid methods ................................................................................ 21 

2.3 Conclusions ...……………………..................................................................................... 24 



vi 

 

References .................................................................................................................................26  

Chapter 3: Steady State Modeling and Simulation of an Offshore Gas Processing Platform. 

3.1 Introduction ........................................................................................................................ 42 

3.2 Process Overview …………………………..……............................................................. 43 

3.3 Simulated Model Description …………............................................................................ 46 

3.3.1 Well Trajectory..................................................................................….......................47 

3.3.2 Separator Unit………………………………………………………...………………51 

3.3.3 Export Pump Unit ………………………………………………...……………….... 53 

3.3.4 Recompression Unit ………………………………………………………...………. 55 

3.3.5 Reinjection Unit ………………………………………………………………......… 58 

3.3.6 Fuel Treatment Unit …………………………………………………………......….. 62 

3.4 Results …………………………………………………………………...………………. 63 

 3.4.1 Model Validation ……………………………………………………...……..…….. 64 

3.5 Conclusions ……………………………………………………………………...………. 65 

Reference …………………………………………………………………...………...………... 66 

Chapter 4: Dynamic Simulation of Offshore Gas Processing Plant for Normal and 

Abnormal Operations. 

 

4.1 Introduction ........................................................................................................................ 70 

4.2 Methodology for Building Process Model…….................................................................. 74 

4.3 System Description …………………………………………………………..………….. 75 



vii 

 

4.3.1 Process Overview …………………………………………....................................... 76 

4.4 Steady-State Model Formulation …................................................................................... 79 

4.5 Dynamic State model Formulation ……………………………………….…...………… 80 

4.5.1 Sizing and Dimensioning of the Equipment ………………………………............... 80 

4.5.2 Separators ……………………………………………………………….……………80 

4.5.3 Valves ……………………………………………………………………….…….... 81 

4.5.4 Heaters/Coolers ………………………………………………….……….…………. 82 

4.5.5 Pumps and Compressors ……………………………………………………….…… 83 

4.5.6 Mixtures ………………………………………………………...…………......……. 83 

4.5.7 Modifications and Additional Assumptions ………………………………..………. 83 

4.5.8 Control Strategies and Equipment ………………………………………………….. 85 

4.5.9 PID Controllers ……………………………………………………………..………. 86 

4.5.10 Transfer Function Block ……………………………………………………..……. 87 

4.6 Measurement Noise ………………………………………………………………..……. 88 

4.7 Generation of Faulty Conditions ……………………………………………………...… 89 

4.8 Results and Discussion …………..………………………………………………..…….. 90 

4.8.1 Model Validation …………………………………………………………….…….. 91 

4.8.2 Dynamic Model ……………………………………………………………….…… 92 

4.8.3 Dynamic Simulation of System Faults ……………………………….……………. 96 

4.9 Conclusions ...................................................................................................................... 103 



viii 

 

Reference ................................................................................................................................105 

Chapter 5: Fault Detection and Diagnosis of Offshore Production Facility Using Principle 

Component Analysis and Artificial Neural Network  

 

5.1 Introduction .......................................................................................................................110 

5.2 System Description …………………………………………………………...………....114 

5.2.1 Process Overview …………………………………………......................................114 

5.2.2 Process Fault Description  ……………………………………….............................115 

5.3 Methods …………………………………………………………....................……….....116 

5.3.1 Preliminaries …………………………………………..............................................117 

5.3.2 Proposed PCA/DPCA-ANN ………………………..…………………..…………..119 

5.4  Case Study …………………………………………………………...………………....121 

5.4.1 Data Selection …………………………………………............................................121 

5.4.2 Case 1: ANN without data compression ……………………………………………123 

5.4.3 Case 2: Combining PCA with ANN ………………………………………………..125 

5.4.4 Case 3: Combining DPCA with ANN …………………………….………………..126 

5.5   Results and Discussion …..……………………………………….………...……….... 127 

5.5.1 Processing Time…………………………………………......................................... 128 

5.5.2 Fault Detection and Diagnosis Performance ……………………………………….129 

5.6  Conclusions ..…………………………………………………………….......……….... 131 

References ...……………………………………………………………………..…………. 133 



ix 

 

Chapter 6: Conclusion  

6.1 Summary............................................................................................................................140 

6.2 Future Works ....................................................................................................................141  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

    



x 

 

List of Tables  

Table 3. 1: Properties of the hypothetical components ……………………………….…………48 

Table 3. 2: Reservoir fluid compositions of liquid, gas and water phases ………………………48  

Table 3. 3: Gas, Oil and Water flowrate of all corresponding wells ……...……………......……49 

Table 3. 4: The sizing values for all the valves used in well trajectory……………….…………50 

Table 3. 5: The streams and their corresponding properties in well section.…………………….50 

Table 3. 6: Properties of the separated oil, gas and water in first stage, three phase separator 

…………………………………………………………………………………………………...52 

Table 3. 7: Properties of the incoming and outgoing streams in second stage, three phase 

separator…………………………………………………………………………………………52 

Table 3. 8: Properties of the incoming and outgoing streams in third stage 2-phase 

separator.……………………………………………………………………………….………...53 

Table 3. 9: The sizing values for valves used in separation section ……………………….…… 53 

Table 3. 10: Properties of the stream in third stage, 2-phase separator.……………..………..….54 

Table 3. 11: The sizing values for valves used in export pump section …………………..….….55 

Table 3. 12: Properties of the stream in gas recompression unit.……………………...…………57 

Table 3. 13: Sizing values of the valves in recompression section.…………………………..….58 

Table 3. 14: Stream properties in first stage gas reinjection unit.……………..…………...…….60 

Table 3. 15: Stream properties in second stage gas reinjection unit.……………………..…..….61 

Table 3. 16: Stream properties in third stage gas reinjection unit.………………………………62 

Table 3. 17: Validation result of fluid flow rate against measured data from Voldsund et al., 

2013…….……………………………………………………………………………….……….64 



xi 

 

Table 3. 18: Validation result of Pressure value against measured data from Voldsund et al., 

2013.…….……………………………………………………………………………………….64 

Table 4.1: Summary of modeling and simulation of offshore oil and gas production 

facility………………………………………………………………………………..…….…….70 

Table 4.2: Valve characteristics in Dynamic state.……………………………...……….………82 

Table 4.3: Controller values for all valves.…………………………………...…….….……….. 86 

Table 4.4: Type, location and brief description of corresponding faults …...…………..…...…. 90 

Table 4.5: Validation result of fluid flow rate against measured data from Voldsund et al., 

2013…….……………………………………………………………………………………..... 91 

Table 4.6: Validation result of Pressure value against measured data from Voldsund et al., 

2013……………………………………………………...……………………….……………. 91 

Table 5.1: Target output and the corresponding status ….………………….………....……… 122 

Table 5.2: Comparison between 2, 10, and 20 hidden layers based on SME, accuracy and 

processing time………………………………………………………………………….…….. 124 

Table 5.3: System configuration of the PC .…………………………………………………....128 

Table 5.4: Confusion matrix for ANN without data compression …...………………….……. 129 

Table 5.5: Data based on confusion matrix while using the PCA based ANN model.…...…... 130 

Table 5.6: Performance evaluation of DPCA based ANN model based on confusion 

matrix.………………………………………………………………………………………….131 

 

 



xii 

 

List of Figures  

Figure 1.1: North Sea oil and gas platform obtained from Fiona Macleod CEng FIChemE and 

Stephen Richardson (The chemical engineer) .…………..……….………………………..……02 

Figure 1.2: Schematic of a generalized offshore oil and gas platform. Adapted from (Bull & 

Love, 2019) .………….………………………………………………………………………….02 

Figure 3.3: Process flow diagram of the Norwegian Sea oil and gas platform with  

modifications..................................................................................................................................44   

Figure 3.4: Process flowsheet of the well trajectory.………….……………………….………...49 

Figure 3.5: Process flowsheet of the separator unit.……………………………………………..51 

Figure 3.6: Process flowsheet of the export pump unit.………………………………………….54 

Figure 3.7: Process flow sheet of the gas recompression unit.…………………………….…….56 

Figure 3.8: Process flowsheet of the gas reinjection unit.………………………….…...………. 59 

Figure 3.9: Process flowsheet of the fuel treatment unit ………………………...…….………...63 

Figure 4.1: Basic flowchart for modelling and simulation of the offshore production 

facility.…………………………………………………………………………………………...74 

Figure 4.2: Process flow diagram of the Norwegian Sea oil and gas platform with 

modifications…………………………………………………………………………………….76 

Figure 4.3: Separator section modification to adapt for modelling.………...……………….…. 84 

Figure 4.4: Recompression unit modification to meet process requirements.……………..….... 85 

Figure 4.5: Normal feed flow with measurement noise.……………………………..….……….89 

Figure 4.6: Dynamic response of the feed flow rate, pressure and temperature…………….….. 93 



xiii 

 

Figure 4.7: Dynamic response of the produced oil flow rate, pressure and 

temperature.….………………………………………………………………………………..... 94 

Figure 4.8: Dynamic response of the reinjection flow rate, pressure and 

temperature.…………………………………………………………………………………….. 94  

Figure 4.9: Dynamic response of the turbine gas flow rate, pressure and 

temperature………………………………………………………………………………..…..... 95 

Figure 4.10: Dynamic response of the flare gas flow rate, pressure and 

temperature.…….………………………………………………………………………………. 96 

Figure 4.11: Comparative study on normal and fail hold faulty condition for separator, produced 

oil and recompression ………………………………………………………………………..... 97 

Figure 4.12: Comparative study on normal and fail open faulty condition for separator, produced 

oil and recompression.…………………………………………………………...…………….. 98 

Figure 4.13: Comparative study on normal and fail open faulty condition for reinjection, turbine 

and flare………...……………………………………………………………………………....99 

Figure 4.14: Comparative study on normal and high temperature fault for feed, produced oil and 

recompression.……………………………………….…………………………………........... 100 

Figure 4.15: Comparative study on normal and high temperature fault for reinjection, turbine and 

flare.………………………………………………………………………………….………... 101 

Figure 4.16: Comparative study on normal and high flowrate disturbance fault for feed, produced 

oil and recompression...……………………………………………………………………….. 102  

Figure 4.17: Comparative study on normal and high flowrate disturbance fault for reinjection, 

turbine and flare.…………………………………………………………………..…..……..... 103 



xiv 

 

Figure 5.1: Process flow diagram of the Norwegian Sea oil and gas platform with modifications 

from Khaled et al. (2019) ………………………………………………………………….…...115 

Figure 5.2: (a) Flow diagram (b) Illustration of PCA/DPCA-ANN based fault detection and 

diagnosis method…………………………...…………………………….………………….…120 

Figure 5.3: Validation performance plot for 20 hidden layers……………………………….... 124 

Figure 5.4: Scree plot for the variance contribution of 25 principle components ……….…..…126 

Figure 5.5: Change in cumulative percent variance with the number of PC’s …………...…... 127 

Figure 5.6: Processing time for ANN, PCA-ANN and DPCA-ANN based FDD 

method……………………………………………………………..............................................128 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xv 

 

List of Abbreviations 

  
ANFIS  Adaptive Neuro Fuzzy Inference System. 

AR  Analytical Redundancy. 

AI Artificial Intelligent. 

ANN  Artificial Neural Network. 

BBN  Bayesian Belief Network. 

BN  Bayesian Network. 

BG  Bond Graph. 

CVA  Canonical Variate Analysis. 

CBR  Case Based Reasoning.    

CD Casual Dependency. 

CGBN  Conditional Gaussian Bayesian Network.   

CUSUM Cumulative Sum. 

DR  Decorrelated Residual. 

DLA  Deep Learning Algorithm. 

DWT  Discrete Wavelet Transform. 

DBN  Dynamic Bayesian Network. 

DPCA Dynamic Principle Component Analysis. 

DTW  Dynamic Time Warping. 

ES  Expert System. 

EWMA  Exponentially Weighted Moving Average. 

EKF  Extended Kalman Filter. 



xvi 

 

ELS  Extended Least Square. 

EUIO  Extended Unknown Input Observer. 

FDD  Fault Detection and Diagnosis. 

FDCs  Fault Discriminant Components. 

FDKPCA  Fault Discriminant-enhanced Kernel PCA. 

FT  Fault Tree. 

FDA  Fisher discriminant Analysis. 

FCCU  Fluid Catalytic Cracking Unit. 

GOR  Gas Oil Ratio. 

GLO  Generalized Luenberger Observer.   

GA  Genetic Algorithm. 

GS  Grid Search. 

HBN  Hybrid Bayesian Network. 

ICA  Independent Component Analysis. 

KFDM  Kalman Filter Diagnosis Model. 

KF  Kalman Filter. 

KLNPDA  Kernel Local-Nonlocal Preserving Discriminant Analysis. 

KPLS  Kernel Partial Least Square. 

KPCA  Kernel PCA. 

kNNs  K-Nearest Neighbors. 

KIFS  Knowledge-based Ingredient Formulation System. 

KLID Kullback-Leibner Information Distance. 

LS  Least Square. 



xvii 

 

LCL  Lower Control Limit. 

MDA  Mahalanobis Distance Analysis. 

MWPCA  Moving Window PCA. 

MBPCA  Multiblock PCA. 

MLP Multi-Layer Perception. 

MPP  Multiparametric Programming. 

MSPCA  Multi-Scale PCA. 

MSPM  Multivariate Statistical Process Monitoring. 

MPCA  Multiway PCA. 

PLS  Partial Least Square. 

PSO  Particle Swarm Optimization. 

PCEG  Possible Cause and Effect Graph. 

PCA  Principle Component Analysis. 

PCs  Principle Components. 

QTA  Qualitative Trend Analysis. 

SOM Self-Organizing Map. 

SP  Signal Processing. 

SDG  Signed Directed Graph. 

SLP  Single Layer Perception. 

SVD  Singular Value Decomposition. 

SPE  Square Prediction Error. 

SAMMELF  Stage-Wise Additive Modeling Multi-class Exponential Loss Function. 

SVM  Support Vector Machine. 



xviii 

 

TE  Tennessee Eastman. 

UIO  Unknown Input Observer. 

UKF  Unscented Kalman Filter. 

UT   Unscented Transformation. 

UCL  Upper Control Limit. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xix 

 

 

List of symbols  
 

μ  Mean. 

σ  
Standard deviation. 

Cv 
Valve coefficient. 

G  
Specific gravity. 

ΔP  
Differential pressure in (lb./in2). 

Q   
Volumetric flow in U.S gal/min. 

Y(s)  
System output. 

G(s)  
Transfer function. 

X(s)  
System input. 

ω   
Frequency of oscillation. 

K 
Amplitude. 

s  
Laplace transform variable. 

K   
Gain. 

  



1 

 

Chapter 1 

Introduction 

 

1.1 Background 

The demand for energy is increasing with the increase in the world’s population. To fulfill the 

energy demand, offshore oil, and gas exploration and production have grown in the last few 

decades (Yong & Qiang, 2018). It is estimated that almost 30% of global energy comes from 

offshore oil and gas. Therefore, oil and gas industries have been joining efforts to enhance this 

energy supply range (Yang et al., 2013). It is very important to maintain all the safety procedures 

during the extraction of oil and gas in the offshore platform for both economic and lifesaving 

purposes. Uncontrolled events can lead to severe life-threating accidents, for example, explosion 

in BP Texas City refinery during the startup time of the raffinate splitter column (Manca & 

Brambilla, 2012), well control failure of an oil rig in Macondo British Petroleum (BP) LLC 

(Board, 2012) and an explosion with river pollution at the Jilin chemical plant due to wrong 

order of operations (Zhang et al., 2010). Accidents also cause substantial economic loss. It is 

reported that the petroleum and chemical industries of USA are losing 20 billion US dollars in 

every year due to the failure of proper fault diagnosis in time (Nimmo, 1995) where the UK is 

paying 27 billion dollars per year for the same reason (Venkatasubramanian, 2005). Operators 

need to be engaged in such a remote and restricted area for an extended period. The work 

environment is not only limited in space but also remains full of harsh noise. Process uncertainty 

with various new difficulties is a common thing associated with offshore oil and gas industries. 

The combinations of such stressful and challenging environment with intrinsic jeopardy of nature 
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are the primary and foremost reason behind the maximum number of accidents. The incidents 

cause not only the loss of life but also increase the downtime of production, which precedes a 

remarkable financial loss to the industry. For these reasons it is important to monitor the offshore 

production facilities remotely to ensure safe and event free operation.  

Oil and gas production in offshore started since the eighteenth century and developed 

gradually from then. First offshore oil production began in 1896, the south of Santa Barbara, 

California, United States (BP Deep Horizon Oil Spill Commission, 2010). Successful milestone 

has been achieved in 1947, when a company called Kerr-McGee completed the first oil rig and 

productive well at Louisiana coast, Gulf of Mexico. It is also considered as the beginning of the 

offshore Oil and gas industry (Chakrabarti et al., 2005). Schematic of an offshore oil and gas 

platform is shown in Fig. 1.1 and 1.2.  

 

Fig. 1.1:  North Sea oil and gas platform obtained from 

Fiona Macleod CEng FIChemE and Stephen Richardson 

(The chemical engineer). 

 

Fig. 1.2: Schematic of a generalized offshore oil and 

gas platform. Adapted from (Bull & Love, 2019). 
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Natural gas exploration in the North Sea started in the year 1960 (Schempf, 2004). In 1970, 

the first oil and gas field successfully discovered, which is now known as Ekofisk and Forties 

(Pratt et al., 1997). After the exploration of these oil and gas fields, it became very challenging to 

keep the platform safe because of severe adverse weather such as a tremendous cold, a massive 

storm, and sea waves. For that reason, oil and gas companies started developing new ways and 

ideas to keep the system safe. From then, the industry operating personnel started planning to 

detect any system abnormality at the beginning of fault occurrence, so that they can take 

preventive actions before happening of any severe accidents. But working in such remote and 

harsh areas with facility limitations, sometimes it is not possible to detect the failure within the 

shortest possible time. For that reason, in such a situation, a continuous monitoring tool is 

needed, which can continuously supervise and can control any system abnormalities and failure 

of safety-related issues. So, the process industries started following some strategies to obtain 

such a safety process system. Initially, industries started to follow the proactive strategy, such as 

to build the plant with optimal design and layout, proper equipment installation and operation, 

and field configuration. Although this strategy increased the system safety and identified most of 

the hazards, it was not economically and technically feasible to eliminate them. So, the reactive 

approach came forward to meet and overcome those challenges and improving the process 

control by utilizing monitoring and supervision techniques (jörgner & rilby, 2016). These 

techniques can detect faults due to any system failure, even when the platform is still functional 

in a controllable situation. Therefore, it can improve not only the system performance but also 

reduce productivity loss.  

Modeling and simulation are vital for risk management and hazardous event analysis such as 

loss or disposal of the process fluid. It represents the combination of reality and mathematics that 
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transforms any practical problems into some equivalent mathematical equations (Cameron & 

Hangos, 2001). By using this mathematical model, it is possible to predict and subsequently 

reduce the risk and cost for reconstruction of the process equipment. The main objective of 

process modeling is to investigate the actual behavior of the process in any given situation in 

order to decrease the experimental cost, and any severe catastrophic event (Hyvärinen, 2012).  

Advances in sensors and distributed control system (DCS) have made it easy to log a large 

number of variables. This has created an opportunity to monitor process systems and prevent any 

catastrophic event. Hence, fault detection and diagnosis (FDD) has become an integral part of 

any process system to determine the system’s operating state at every single moment. Among the 

various types of FDD approaches, multivariate statistical methods are very useful for the analysis 

of complex process behavior and cope with highly correlated process variables in a large number 

of data (Tidriri et al., 2016). The machine learning approach is one of the most popular and 

efficient FDD methods to obtain knowledge from a large amount of process data by utilizing 

intensive computation power (Md Nor et al., 2019). Therefore, by implementing advanced data-

driven techniques, it is possible to build a highly accurate FDD model to predict and prevent an 

accident by monitoring such a large number of variables.   

In this work, A dynamic model for an offshore production facility in the North Sea is 

simulated using Aspen HYSYS simulator to predict the dynamic behaviors during normal and 

various faulty operating conditions. A hybrid approach integrating principle component analysis 

(PCA) / Dynamic PCA (DPCA) and artificial neural network (ANN) is proposed. PCA/DPCA 

reduces the dimension and ANN uses the lower dimensional data for pattern recognition. The 

proposed PCA-ANN and DPCA-ANN approaches are implemented and compared with 

conventional ANN.  
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1.2 Objective 

The goal of this research is to (1) develop a plantwide offshore dynamic model and (2) 

develop an improved fault detection and diagnosis tools to detect and classify the faults quickly 

and promptly so that the operating personnel can take preventive steps to avoid accidents. The 

main objectives of this thesis are:  

1. Build a plantwide dynamic model for offshore oil and gas platforms.  

2. Record the behavior in normal and transient conditions. 

3. Create several faulty conditions associated with the real production plant.  

4. Detect the faults and classify the specific fault type. 

5. Improve the limited diagnostic capacity of ANN by integrating the benefits of PCA and 

DPCA to detect the faults accurately within short processing time. 

 

1.3 Thesis Structure  

The outline of this dissertation is as follows: 

In Chapter 1, the definition of fault detection and diagnosis, as well as the consequences of 

faults followed by the motivation of the research topic, is introduced, and the objectives of the 

research are identified.  

Chapter 2 provides an extensive literature review on HYSYS simulation and different Fault 

detection and diagnostic methods. Emphasis has been given on the techniques relevant to this 

thesis. 
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In Chapter 3, A steady-state model of an offshore process plant has been built. The model is 

designed based on a real North see oil and gas platform. The model output is validated with the 

actual production output of the plant reported by Voldsund et al. (2013).  

In Chapter 4, The steady state model presented in chapter 3, is transformed into dynamic 

state. The basic faults associated in the plants are considered, and the data for each scenario are 

recorded for monitoring purposes.  

In Chapter 5, first ANN-based FDD method is used to detect and classify the process faults. 

The processing time, accuracy level, and error rete were calculated from the result. After that, a 

hybrid framework combining PCA and DPCA with ANN is formulated. Finally, all the 

outcomes from each methods were compared, and a decision has been made.    

The outcomes of this thesis are summarized, and some future directions to improve this 

research are presented in Chapter 6. 

 

1.4 Software Used  

Aspen HYSYS version V9 is used for modeling and simulation of an offshore oil and gas 

plant. This is commercial software and very useful to simulate the steady-state model as well as 

dynamic model. Since the applications of the proposed algorithms have been demonstrated in the 

simulated data, a well-known and available software, student version of MATLAB has been 

used in this thesis. It can be downloaded from https://my.mun.ca/student. All the necessary codes 

are written in MATLAB and approached Neural Network Tools (NN tools) for modeling and 

classification of both ANN and DPCA-ANN based methods.  

 

 

https://my.mun.ca/student
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Chapter 2 

Literature Review 

 

2.1 Modeling and simulation  

Modeling and simulation are essential for design, prediction and optimization of process 

plants. Though extensive modelling and simulation studies have been done for land based oil and 

gas industries only very few studies have been conducted on the plant-wide modeling and 

simulation of offshore process facilities for economic performances in the past few decades.  

Plant-wide modeling and simulation using Aspen HYSYS are routinely used for a wide-

ranging process oil & gas industries, refineries, and engineering companies to optimize process 

design and operation (Rasmussen, 2015). A dynamic model of the downstream processing 

system using HYSYS plant simulator on Cranfield University's control and three-phase rig units 

was proposed by Hyprotech, (1999). Natarajan & Srinivasan (2010) developed a dynamic model 

in HYSYS for simulating offshore gas production platform considering three common faults 

such as the leak in the master valve, test separator controller failure, and biased temperature 

sensor on the flowline of the wellhead. Normal, faulty, and maintenance scenarios have been 

taken into consideration for simulation. A valve is used to represent the pipe resistance as the 

version of HYSYS was used didn't have scope for dynamic unit operation for the pipe segment. 

The simulation result is an approximation because it cannot represent the real pressure drop of 

the pipeline and fluid production characteristics.  
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Oliveira & Hombeeck (1997) examined a Brazilian oil platform, focusing on separation, 

compression, and pumping units in their study. It is reported that the heating unit and 

compression system are responsible for higher energy consumption. Exergetic efficiency is 

inferior in the separation unit due to the heat difference compared with the combustion unit, and 

it can be improved by using centrifugal separation. Voldsund et al. (2013) conducted analysis on 

the Norwegian offshore oil platform considering several topside facilities such as separation unit, 

recompression unit, reinjection unit, etc. It is found that the most significant exergy destruction 

occurs in the production manifold and gas reinjection process due to considerable pressure 

change (increase and decrease). Nguyen et al. (2013) conducted an analysis of the Norwegian oil 

and gas process platform and reported that the most exergy destruction occurs in (i) production 

manifold due to well fluid depressurization (ii) gas compression system due to the poor 

performance of the compressors and, (iii) recycles followed by recompression and separation 

process. Nguyen et al. (2014a) designed a simulation model in HYSYS for the offshore platform 

by considering three different representative stages of production schemes. In this research, 

energy consumption has been assessed by conducting exergy analysis, an unavoidable 

performance loss of about 55 to 60% occurred at the gas turbines. Nguyen et al. (2014b) 

analyzed and compared the energy and exergy efficiency using HYSYS simulator for several 

matured offshore oil and gas processing platform based on two different production days. Energy 

is mainly destroyed in the high-pressure zone, where the pressure of the produced gas is 

increased. On the other hand, exergy is destroyed in subsystems where the pressure is 

significantly decreased and increased. This research suggested anti-surge recycling around the 

compressor unit to increase the hydrocarbons flow entering the plant to prevent exergy 

destruction. Voldsund et al. (2014) also got similar findings after analyzing two other oil and gas 
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platforms where the system configurations are entirely different than the previous study. HYSYS 

is used for modeling in both pieces of research. 

Abdel-Aal et al. (2003) analyzed oil production facilities based on the performance of oil 

separation. This study was involved with few perspectives, such as preserving the heavy 

compounds, intermediate compounds, and light mixtures in the oil. However, the light 

compounds contained in liquid oil flash cause economic loss due to its easy vaporization during 

transportation. In order to maximize the oil recovery, the most crucial factor of offshore oil 

production facilities involves the separation of light and intermediate compounds into oil and gas 

products. Besides this, Boyer & O'Connell (2005) developed an estimation of flash gas loss 

using Aspen HYSYS as well as the sampling data of crude oil. Bahadori et al. (2008) 

investigated the impact of a separator pressure on production optimization and to improve 

operating conditions using HYSYS. Oil production was investigated by setting up different 

pressure in each stage of separation and determined optimum pressure for maximum production 

based on GOR (gas-oil ratio). Extensive analysis is carried out on cost/day and has shown an 

overall profit after implementing the desired pressure. However, the oil damage due to the 

gaseous stream in the mid-stage process is not considered in this research. A graphical technique 

is developed by Mourad et al. (2009), to estimate the intermediate stage pressure to minimize the 

compressor cost. Voldsund et al. (2012) analyzed an offshore platform to reduce power 

consumption by optimizing the system performance. It is reported that reducing anti-surge 

recycling not only improves the efficiency of the compressor but also reduces the losses in the 

manifolds. Hence, significant power can be saved. Rasheed (2013) focused on increasing the 

yearly benefit by optimizing the process condition. HYSYS simulation was used in this research 

and considered temperature and pressure as the key factor for the optimization process. A flash 
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column was investigated without changing any system configuration of the original process, 

such as separation stages, number of separators, and pressure specification of the separators. Kim 

et al. (2014) presented a stochastic strategy using HYSYS for simulation and optimization of 

appropriate offshore process platform for maximizing profit. It is estimated from the difference 

between oil and gas product sales and several factors such as operation cost of the steam, cooling 

water, and electricity consumption. By implementing an integrated differential equation of state, 

these simulators can easily calculate the vapor-liquid phase equilibrium and thermodynamic 

behavior of any states. Nguyen et al. (2016) conducted modeling, analyzing, and improvement 

investigation of an offshore platform focusing on four individual platforms with different 

processing, operating conditions, and strategy. It is reported that overall power and fuel gas 

consumption can be saved around 20% by installing gas turbines and waste heat recovery unit 

within the processing system. Cho et al. (2018) analyzed the improvement of environmental 

standards, reducing utility consumption and maximizing the profit of the offshore oil and gas 

platform considering four separate process compositions. It is reported that for pick oil 

production, the recycle stream enables more oil production that leads to higher economic profit. 

For peak gas production, lower heat duty is required for preheating heat exchangers, and for 

peak water production, the financial benefit is significantly lower.  

 

2.2 Fault Detection and Diagnosis 

Fault Detection and Diagnosis (FDD) methods are developed to detect abnormal changes in 

the process variables within the system. It is essential to detect as early as possible to prevent 

process failure. Fault detection identifies the presence of faults within the system where fault 

diagnosis provides specific information about the faults to isolate the affected part from the 
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healthy system. Many techniques have been developed and can be broadly categorized into four 

approaches, such as model-based approach, knowledge-based approach, data-based approach, 

and hybrid approach (Venkatasubramanian et al. 2003a, 2003b). 

 

2.2.1 Data base methods 

Because of expanding process complexity, data-based methods are getting popular nowadays. 

This method is also known as a process history-based method because it trains the monitoring 

scheme using the historical process data. The data-driven method basically follows two 

strategies, such as fault detection and classification. Fault detection correlates the cases with 

expected faults, and classification determines the class or types of fault. The classification can be 

supervised or unsupervised learning types. In supervised classification, the history of data is used 

to construct a base model that is used to compare with new measured data to classify the faults. 

ANN and BN are the most popular supervised learning approach. On the other hand, the 

unsupervised learning method does not need any prior knowledge of data. The PCA, PLS, 

Control chart, etc. are the example of some unsupervised learning (Tidriri et al., 2016). 

Statistical process control includes both univariate and multivariate methods. The univariate 

techniques are classified as Shewhart control chart or X̅ chart, Exponentially Weighted Moving 

Average (EWMA) control chart, and Cumulative Sum (CUSUM) control chart. Shewhart chart 

(Shewhart, 1930) is a well-established and widely used univariate control chart. This chart 

consists of plotting the observations sequentially with Upper Control Limit (UCL) and Lower 

Control Limit (LCL). If any of the observations exceed these control limits, a statistically 

significant deviation from normal operation is deemed to have occurred. Usually, the limits are 

calculated using mean (μ) and standard deviation (σ) which can be represented in equation form 
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as μ + 3σ and μ - 3σ. CUSUM is another statistical procedure for monitoring stable univariate 

processes (Woodward & Goldsmith, 1964). In CUSUM techniques, the variables are compared 

with a predetermined reference value, and the cumulative sum of the deviations from this value 

is recorded. If the cumulation reaches or exceeds the predetermined decision interval, it indicates 

that a change has occurred in the mean level of variables. The EWMA chart was introduced by 

Roberts (1959) and it is used to detect persistent shifts in a process. It can detect the small and 

moderate shifts quickly. The main benefit of the univariate monitoring approach is that it is very 

easy to implement rather than a multivariate approach. But they are more expensive, and the 

functionality is mostly dependent on the selection of the tuning parameter (Montgomery & 

Runger, 2010). Also, a separate control chart is needed for monitoring a single variable, which 

makes the system more complicated. Hence it is not practical to monitor all the process variables 

in the system (Kourti & MacGregor, 1995). Multivariate Statistical Process Monitoring (MSPM) 

technique eliminates the drawbacks of univariate methods. It introduced several statistics, such 

as Hotelling’s T2, I2 statistics, squared prediction error, etc. These techniques make the process 

data to use in a lower-dimensional space and establish the correlation between the process 

variables. The PCA is a multivariate statistical approach that can reduce data dimensionality 

(Montgomery, 2007). Also, it is not only able to capture the variances of the data but also 

establish the correlation between the process variables. Its range of applications has increased 

with the development of computers. It has been used in a wide variety of areas for the last 50 

years (Jolliffe, 1986). It has a wide range of application in process monitoring (Kourti & 

MacGregor, 1996; Zhou, et al., 2014), anomaly detection (Zadakbar et al., 2013), dynamic risk 

assessment (Adedigba et al., 2017), etc. PCA reduces the dimensionality by performing the 

linear transformation of the original data set of one characteristic to another smaller set of data 
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with different characteristics. Mainly this approach rotates the data such that each consecutive 

axis represents a decreasing among variance, which is known as principal components (PCs) 

(Dunia et al., 1996). Pcs are uncorrelated and orthogonal to each other so that the first few PCs 

hold most of the variation present in all the original attributes. The first PC has the greatest 

possible variance in the data set. The second PC project the data in such a way that it is 

uncorrelated with the first PC and can be considered the next highest containing variance of the 

data. PCs are calculated using eigenvalue decomposition or singular value decomposition 

(SVD). Meanwhile, the data set contains the characteristics of different units and scales. So, it is 

necessary to standardize the data matrix, which will turn each of the dimensions to have a unity 

(1.0) variance. The scaling makes all the axis to have the same length corresponding to their 

various dimensions. These scaled values are used to calculate the covariance matrix, and then 

SVD decomposes this covariance matrix into a set of vectors. Q statistic, also known as Squared 

Prediction Error (SPE) statistic and the Hotelling’s T2 statistic are the two important tools that 

are commonly used in the PCA approach. SPE analyzes the residual data matrix to signify the 

inconsistencies of the projection data in a residual subspace. The T2 statistic is basically used to 

estimate the distance between sample space and the center of the feature space. In other words, it 

analyzes the score matrix to check the variations of the projected data in the new space of the 

PCs. There are several methods to determine how many PCs need to be considered and ignored. 

It is normally done by taking only the PCs that are contributing to the highest variability to the 

data. Thus, focusing on a few PCs within many variables, the dimensionality of the data is 

significantly reduced. Also, the scree plot and loading plot are the very attractive and informative 

features of PCA. The scree plot gives valuable information about the groupings of the samples 

and outliers, where the loading plot provides the scope to identify the attributes equivalent to the 
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outliers. By utilizing these two plots at the same time, the simultaneous display of both objects 

and attributes can be achieved. However, one of the limitations of the PCA approach is that it is 

a linear technique, whereas most of the real processes are nonlinear. To solve this problem, many 

extended methods have been developed. PCA and projection to latent structures are extended to 

build a multiblock projection method to improve fault interpretation (MacGregor et al., 1994). It 

allows contribution or monitoring charts for each process subsections and exposes within which 

any fault or abnormal event has occurred. DPCA method using ‘time lag shift’ has been 

proposed to detect the presence of the disturbances and to isolate their sources from the system 

(Ku et al., 1995). Multiblock PCA (MBPCA) methods have been proposed and compared with 

hierarchical PCA models to improve the interpretability of multivariate techniques (Westerhuis 

et al., 1998). Qin (2001) proposed a MBPCA approach for decentralized monitoring and 

diagnosis in terms of regular PCA scores and residuals. The method helps to block the 

appropriate process variables and limit the root cause of the faults in a decentralized system. A 

new enhanced fault isolation MBPCA technique has been developed for better analyzation of 

each sub-block in the batch processing unit (Hong et al., 2014). Multiway principal component 

analysis (MPCA) has been applied to reduce the dimensionality by using PCs. The proposed 

technique was capable of tracking batch runs and the occurrences by establishing simple 

monitoring charts (Nomikos & MacGregor, 1994). A multi-scale PCA (MSPCA) approach has 

been proposed for batch process monitoring by combining the application of wavelet filtering 

(Misra et al., 2002; Nielsen & Jensen, 2009). Li et al. (2000) designed a recursive PCA 

algorithm to reduce the false alarm by recursively updating the number of PCs and the 

confidence limits for process monitoring. Moving Window PCA (MWPCA) method has been 

introduced to improve the performance of process monitoring by continuously updating the PCA 
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model and the control limits with the change of time (Jeng, 2010). Another technique known as 

Kernel PCA (KPCA) has been developed to improve the dimensionality reduction performance 

of the nonlinear process (Choi et al., 2005; Lee et al., 2004). By using kernel tricks, KPCA can 

select the number of PCs very efficiently in high dimensional spaces that are correlated to the 

input space through a few nonlinear mapping.  

In recent years, ANN has been used extensively in various applications, commonly in pattern 

recognition, fault prediction, and classification (Zhang, 2000). ANN is inspired by biological 

neural networks and acquired learning intellectual properties like human brains (Jain et al., 

1996). A NN is a set of connected cells in which each cell receives a response from input or 

other neurons depending on the types of the model. It produces a transformation between the 

neurons transmitting information to the other neurons or the output cells (Jha, 2007). This 

method is also very efficient for optimization (Haykin, 2001), disturbance detection (Yu et al., 

2009; Wentao et al., 2012), and the excellent identifier of trends in data and patterns (Ogwueleka 

et al., 2012). This approach has been successfully used in many areas such as in power system 

(Vankayala & Rao, 1993), manufacturing (Wang et al., 1993), control system (Demiroren et al., 

2001), signal processing (Bogdan et al., 2003), visual arts (Barni et al., 2005), quality 

management (Kaminski et al., 2008), medical diagnosis (Mazurowski et al., 2008), bankruptcy 

prediction and credit scoring (Tsai & Wu, 2008) and group search optimization (Shan & Xiaoli, 

2008), robotic data classification (Gopalapillai et al., 2013), public transportation (Garrido et al., 

2014), image classification (Barat & Ducottet, 2016), sentiment analysis (Vinodhini & 

Chandrasekaran, 2016), business analysis (Le et al., 2016) etc. Linear classifiers (Bywater & 

Middleton, 2016), Single-layer perceptron (SLP) (Hertz, 2018) and multilayer perceptron (MLP) 

(Anarghya et al., 2018) are the most common and widely used supervised ANN. The k-nearest 
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neighbors (kNNs) (Keller et al., 1985) and support vector machines (SVMs) (Zhang et  al., 2018; 

Cao et al., 2017) are also two popular supervised ANN method used in applications. On the other 

hand, autoencoders (Baldi, 2012), k-means (Koonsanit et al., 2012), and expectation-

maximization (Verma et al., 2015) are some commonly used unsupervised ANN method.  

 

2.2.2 Hybrid Methods 

It has been reported that the application of any particular method is not capable of fulfilling 

all the prerequisite conditions for accurate fault diagnosis. A single method that performs well 

under one circumstance may not be good in another phase of the process because each method 

has its strengths and limitations (Ding et al., 2009; 2011). A hybrid model is a unique approach 

where several individual methods combinedly share their strengths. The techniques in the hybrid 

model are a complement to each other and can overcome the limitations of individual methods 

when they used separately. Venkatasubramanian et al. (2003c) compared several individual 

methods (Observer, Digraph method, Abstraction Hierarchy, ES, Qualitative Trend Analysis 

(QTA), Principle Component Analysis (PCA) and Neural Network (NN)) and have shown that 

none of the single methods is adequate to perform all the requirements for a perfect diagnostic 

system. Seng Ng & Srinivasan (2010) Focused the advantages and limitations of different FDD 

method (QTA, ES, PCA, Partial Least Square (PLS), KF, Dynamic Time Warping (DTW), Deep 

Learning Algorithm (DLA) and NN) and suggested only hybrid model can achieve higher 

diagnostic resolution compared to the other individual application. Tidriri et al. (2016) described 

many hybrid approaches and have shown that it can significantly improve the performance and 

the resolution of the overall system diagnostic capability. The method called ‘two-tier’ approach 

proposed (Venkatasubramanian & Rich, 1988b) which is one of the earliest Hybrid methods in 
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fault diagnostic history. The model integrates compiled knowledge on top tier and deep level 

knowledge in the bottom tier. It can quickly identify and generate the root cause of any potential 

abnormalities. Frank (1990) suggested using the knowledge-based method with an existing 

analytical and algorithmic approach to mitigate the fundamental problem for anomaly detection. 

This hybrid model provides the opportunity to utilize several knowledges in a single framework 

and has the highest achievable robustness by decoupling the effects of faults. Dinkar (1996) also 

presented a blackboard based hybrid model (Dkit) as an alternative to the individual method 

where different methods of the hybrid system investigate the same issue independently. A 

scheduler is used to coordinate with these diagnostic methods to make an authentic decision. 

Both hybrid frameworks were validated using a diagnosis study on Amoco model IV fluid 

catalytic cracking unit. Researchers of Purdue university (Mylaraswamy & Venkatasubramanian, 

1997) have proposed the hybrid method for large scale blackboard based process fault diagnosis 

known as Dkit. The proposed model was verified successfully in different scenarios through a 

Fluid Catalytic Cracking Unit (FCCU). Vedam et al. (1999) developed an intelligent operator 

decision support system called Op-Aide based on the distributed blackboard based knowledge. 

This model was developed to assist the operator in quantitative diagnosis and assessment of any 

unexpected situation. Gertler et al. (1999) proposed an isolation-enhanced PCA approach using a 

bank of PCA models for fault identification. By using the close equivalence between PCA and 

parity relations, this model can generate structured residuals (which is a robust property of 

Analytical Redundancy (AR) that has well-developed fault isolation capability) into the PCA 

framework. The strong isolating structure has been made by following structured residuals that 

leads to the disturbance decoupling. A Subspace Identification (SMI) approach is developed 

(Wang & Qin, 2002), where the model combines the concept of PCA, Dynamic PCA (DPCA), 
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and observer scheme. Parity space model and PCA can combinedly able to correlate input 

excitation. Also, the SMI-PCA algorithm with an instrumental variable can predict the possible 

abnormalities much better than DPCA. Ghosh et al. (2011) developed a model combining EKF 

as a model-based where PCA, ANN, Self-Organizing Maps (SOM) as a data-driven approach. 

Each method takes to process data as input and gives the normal or faulty class as an output. The 

output from each method are combined for consolidating outcome, and evidence-based fusion 

strategies are followed for decision making. Benkouider et al., (2012) developed a model based 

on EKF and ANN to detect faults in batch and semi-batch reactors. EKF is used to calculate the 

overall desired heat transfer coefficient of the reactors, and ANN is used for the diagnosis part 

considering the estimated parameters. A three-layer generic intelligent approach based on 

Diagnostic Bayesian Network (DBN) has been proposed (Zhao et al., 2013) to coordinate more 

valuable data and expert knowledge to improve the reliability of the model outcome. The model 

was tested in the chiller expert system and found that it has more powerful tools for fault 

diagnosis even if the data set or information remains incomplete or conflicting.  

A model combining Bond Graph (BG) and BN was proposed (Zaidi et al., 2010), where BG 

is used for residual generation and BN for integrating data based on the reliability of the 

component. It has been shown the proposed Hybrid Bayesian Network (HBN) can significantly 

improve the classical binary method of decision making. Zhang & Hoo, (2011) developed a 

unique hierarchical hybrid approach using BG (system decomposition), PCA (reduce 

dimension), Discrete Wavelet Transform (DWT) (provide multi-scale decomposition of PCA 

scores), Mahalanobis Distance Analysis (MDA) (calculate confidence level from chi-squared 

distribution) and BG-BN (identify the root cause of the faults). A hybrid fault diagnosis method 

using PCA and SymCure reasoning was developed (Wang et al., 2012). SymCure represents an 
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expert system which can diagnose the faults. The proposed technique was tested using a lab-

scale distillation column. A hybrid method comprised of PCA and Bayesian Belief Network 

(BBN) for FDD was described (Mallick & Imtiaz, 2013), where PCA identifies the possible 

faults (using residual plot and Q statistics) and BBN analyzes the root cause. A hybrid model, 

including a data-driven method and a model-based method under the Bayesian network, was 

presented (Atoui et al., 2016). The proposed T2 statistics (using a data-driven approach combined 

with the residuals generated from model-based approach under Conditional Gaussian Bayesian 

Network (CGBN)) provides better decision rather than two of these individual methods. The NN 

classification, based on Kalman Filter (KF) was proposed by Siswantoro et al. (2016), where KF 

is used to estimate the parameter in order to make the predicted output more convenient to NN. 

The proposed method can minimize the prediction error by improving its classifier accuracy. 

Amin et al. (2018) developed a Hybrid hard evidence approach combining PCA with T2 statistics 

and Bayesian network called PCA-T2-BN. Multiple likelihood evidence is used to improve the 

diagnosis capacity and verified on twelve fault scenarios in CSTH and TE chemical processes. 

Jung & Sundstrom (2019) developed a unique hybrid approach for residual selection, combining 

data-driven and model-based methods in an uncertain system. The model section was used to 

generate the residuals, while the data-driven method was used to detect and isolate different 

faults. The proposed method successfully introduced the t-SNE algorithm to analyze and verify 

the accuracy of decoupled faults.   

 

2.2.2.1 Data-driven hybrid methods 

Recently the use of data-driven hybridization FDD methods becomes prevalent. Because 

multiple data-driven methods performing the collective problem-solving in one single FDD 
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framework is more efficient than using one approach. Chiang & Braatz (2003) developed the 

modified distance (DI) and modified causal dependency (CD) to incorporate the causal map with 

the data-driven method. The DI depends on Kullback–Leibner Information Distance (KLID), the 

mean of measured variables, and the range of the measured variables. The DI was used to 

quantify the similarity of the measured variable, where CD is used to measure the causal 

dependency between two of them. Zhang & Zhang (2009) developed a combined ICA-PLS 

method and kernel trick called (Independent Component Analysis – Kernel PLS) ICA-KPLS to 

build a nonlinear dynamic approach. Independent Component Analysis (ICA) was utilized to 

handle the statistically independent non-Gaussian hidden factors and KPLS to perform only the 

set of observations that follow Gaussian distribution. Maurya et al. (2010) presented a 

framework using an SGD as a filter to reduce possible faults and QTA to diagnose the faults. Ge 

et al. (2010) proposed a monitoring method based on the combination of multiple linear 

subspaces and Bayesian inference for nonlinear processes system. Each linear subspace 

generates the monitoring results and passes all individual results into fault probabilities by using 

the Bayesian inference. Salahshoor et al., (2010) proposed a model combining multiple 

classifiers such as SVM with an Adaptive Neuro-Fuzzy Inference System (ANFIS) to improve 

FDD tasks. In this approach, one binary support vector classifier is used to separate the members 

of a specific class, and ANFIS networks perform the diagnosis of the process faults. Rato & Reis 

(2013) developed a combination of multivariate statistics based on DPCA and on the generation 

of Decorrelated Residuals (DR) known as DPCA-DR approach to creating a better position for 

implementing SPC more consistently and stably. An improved boosting method called the Stage-

wise Additive Modeling using a Multi-class Exponential Loss Function (SAMMELF) was 

proposed to improve the classification performance of learning algorithms (Karimi & Jazayeri-
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Rad, 2014). Zhang & Ge (2015) designed a model combining results of various methods based 

on Dempster–Shafer evidence theory for the development of decision fusion systems for fault 

detection and identification. The boosting method imposes the basic classifier to work on the 

hard examples in a subsequent round and combine the obtained single classifiers in an ensemble 

system. Jiang et al. (2015) integrated canonical variate analysis (CVA) and Fisher discriminant 

analysis (FDA) scheme called CVA–FDA system for fault diagnosis. CVA was used: (i) to 

reduce the dimensionality of the pretreated datasets compared with the original datasets and (ii) 

to decrease the degree of overlap. The FDA method was used to classify the associated faults. A 

three-step framework integrating DI and CD has been proposed (Chiang et al., 2015). It 

integrates the data-driven and causal connectivity-based techniques with the propagation path-

based feature to diagnose known, unknown, and multiple faults. Jiang et al. (2015) designed a 

canonical variate analysis (CVA) approach based on the feature representation of causal 

dependency (CD) for monitoring the faults. This method employs CD for pretreating the data 

and subsequently applied CVA for quantifying dissimilarity. Jiang & Huang (2016) proposed a 

distributed monitoring system integrating multivariate statistical analysis and BN for large-scale 

plant-wide processes. A stochastic optimization algorithm based performance-driven process 

decomposition method based on PCA has been built where Bayesian diagnosis was used for the 

decision-making system. A multi-class SVM based process supervision and fault diagnosis 

scheme called GS-PCA has been proposed (Gao & Hou, 2016). In this approach, PCA first used 

to reduce the feature dimension, optimization of SVM parameters is accomplished with the Grid 

Search (GS) method to increase prediction accuracy with reducing computational load, Genetic 

Algorithm (GA) and Particle Swarm Optimization (PSO) used for classification accuracy. 

Gharahbagheri et al., (2017) developed a new method through the integration of diagnostic 
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information from various diagnostic tools such as KPCA and sensor validation module and 

combines them with process knowledge using BN. The sensor check model was used to separate 

the sensor faults from the process faults where BN was used to diagnose internal state faults and 

disturbance faults. Deng et al., (2017) proposed an enhanced KPCA model called Fault 

Discriminant enhanced KPCA (FDKPCA). KPCA was used to generate nonlinear kernel 

principal components (KPCs) where Kernel Local-nonlocal Preserving Discriminant 

Analysis (KLNPDA) was used to produce Fault Discriminant Components (FDCs). Monitoring 

statistics for both KPCA and KLNPDA sub-models were created, and finally, a Bayesian 

interface was applied to convert it into overall fault probabilities.  

 

2.3. Conclusions 

From the above discussion, we can conclude that modeling and simulation are a must for 

designing and predicting process behavior. Most of the researchers have used Aspen HYSYS for 

modeling and simulation of offshore oil and gas production facilities. Those models have been 

built based on steady-state conditions and were primarily developed for design and optimization 

purposes. To establish a real-time monitoring system, dynamic models are required, which are 

scarce in the literature for modeling/simulation of offshore production and processing plants. 

This causes real challenges in developing and testing monitoring systems for offshore facilities.  

There are many FDD approach present to detect and diagnose the process faults. The data-

driven FDD method is prevalent because of its simplicity. Among the data-driven FDD 

approach, multivariate statistical methods and machine learning approaches are widely used in 

process industries due to their accuracy of the process information, practical interpretation of 

complex process behavior and capability of controlling highly correlated process variables in big 

https://www.sciencedirect.com/topics/mathematics/discriminant-analysis
https://www.sciencedirect.com/topics/mathematics/discriminant-analysis
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datasets. In the case of a large data set, mostly PCA is used for dimension reduction, where ANN 

used pattern recognition applications in process industries. Also, DPCA represents the dynamic 

nature of process variables and more efficient compared to static PCA. Although most of the 

approaches discussed in the literature mainly focused on solving problems of data characteristics, 

it is still hard for any single FDD method to perform efficiently for the possible faults. As a 

result, a hybridization-based framework is required for developing a complete and robust FDD 

tool. This hybrid approach can accurately detect and diagnose faults by implementing particular 

methods on specific best suit faulty scenarios.  

Considering the above facts, a hybrid method comprising PCA/DPCA and ANN-based 

approach is proposed. This method utilizes reduced dimensional variables obtained from 

PCA/DPCA and feeds to the ANN for fault detection and classification. The result shows the 

proposed method reduces FAR and MAR, less time consuming, and more convenient to use 

compared to the single ANN. 
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Chapter 3 

Steady State Modeling and Simulation of an Offshore Gas 

Processing Platform 

 

3.1 Introduction  

Modeling and simulation are essential parts of process system engineering. The aim of using 

modeling and simulation is to predict the real scenarios of a system. The mathematical approach 

is very efficient for modeling and developing various engineering applications, where it uses 

several equations and variables to represent the system (Hyvärinen, 1970). A mechanistic model 

is built based on mass conservation, transportation matrix, energy, and momentum balance 

(Stephanopoulos, 2009). At first, the mechanisms associated with the process need to be 

transformed into mathematical equations, and then the predicted outcomes can be utilized to take 

necessary steps (Hangos & Cameron, 2001). Proper equations and assumptions are required to 

understand and predict the process behavior accurately (Hyvärinen, 1970). Modeling and 

simulation can save time and reduces the risk of financial loss. Designing a process plant without 

using a proper model can lead to the reconstruction of the process equipment’s. Besides, a good 

model helps to earn more profit through improved process optimization, design, and control 

strategies (Hangos & Cameron, 2001).  

To represent the scenario of an offshore oil and gas processing plant, the basic topside design 

and equipment of a Norwegian platform in the North Sea, is examined. Our ultimate goal is to 

develop a dynamic model for the Norwegian platform in the North Sea region and develop a 
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monitoring scheme for the system. The steady-state model needs to be built before implementing 

and simulating the plantwide dynamic behavior, which will provide the initial conditions for the 

dynamic model. It is also essential to gather equipment information and flowsheet specifications 

before starting a dynamic simulation such that a set of differential equations can be solved with 

respect to time. A steady-state model has been built and validated by using Aspen HYSYS. The 

simulation results are validated through extensive performance evaluation and comparison with 

real production data available in the literature (Voldsund et al., 2013). Later this steady-state 

model is transformed into a dynamic model by modifying necessary design characteristics.  

 

3.2 Process Overview 

The overall process is divided into well section, production manifold, separator unit, export 

pump unit, recompression, drainage system, fuel gas treatment, and reinjection unit. Five 

separate production wells with different fluid properties such as flow rate, pressure, temperature, 

etc. are connected in the production manifold. The operating pressure of the well stream varies 

from 80 to 170 bar. The overall pressure is reduced to 70 bar before entering the separation 

process. The process flow diagram of the plant is shown in Fig. 3.3.  
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Fig. 3.3: Process flow diagram of the Norwegian Sea oil and gas platform with modifications.   

The separation unit shown in Fig. 3.3, consists of two three-phase separators (V-100, V-101), 

one two-phase separator (V-114) and one electrostatic coalescer (V-102). Gas, oil, and water are 

separated by using gravitational separation. Before entering into a new separator, the pressure is 

reduced to optimize the final production. Separated oily water from the first and second stage, 

three-phase separators enters the water treatment processing unit. A certain proportion of 

separated fluid (oil and water) is pumped and recycled back to the entry of the second stage, 

three-phase separator. Oil pressure of the coalescer output is reduced to 2.8 bar and entered into 

the export pump unit.  
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The export pump unit consists of one cooler and two pumping sections where the produced 

oil is cooled and pressurized up to 32 bar. To make a consistent oil flow through the 

compressors, a certain amount of oil is recycled back to the entry of the third stage, two-phase 

separator.  

The recompression process unit consists of three sub-units, where each of them has one 

cooler, one scrubber, and one compressor. Scrubbers are used to remove the remaining water 

from gas, save the compressor from pressure hunting, and increase its efficiency. Gas from the 

third stage, two-phase separator, with 2.8 bar, enters to the first stage recompression scrubber 

and is fed into the compressor to increase the pressure. A portion of the gas is recirculated and 

cooled to the same subsystem, known as the anti-surge recycling system, to keep a minimum 

constant flow through the compressor and prevent surging. 92%, 69% and 72% of the total gas 

are recycled to the first, second, and third recompression subsystems, accordingly. The 

condensed water from the scrubber is sent to the drain system. After leaving the first stage 

compressor, it enters the second stage recompression where the gas stream from the second 

stage, three-phase separator mixes with it. Then the condensed water is sent back to the third 

stage, two-phase separator. Similarly, it enters the third stage and finally leaves the 

recompression unit with 70 bar. The remaining condensation is sent back to the entry of the 

second stage, three-phase separator. The gas from the first stage, three-phase separator mixes 

with it and enters into the reinjection unit.  

The reinjection unit consists of three parallel reinjection trains. Each train consists of two 

scrubbers, two coolers, and two compressors. The main objective of this unit is to increase the 

gas pressure to match the injection pressure of the well, so the gas can be injected into the 
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reservoir. The condensation from each unit is then sent back to the entry of the second stage, 

three-phase separator.  

A small portion (3%) of gas from the first stage three-phase separator enters the fuel gas 

treatment unit. This unit consists of two scrubbers, one cooler, and one heater. After cooling and 

reducing the gas pressure, it is fed into the first scrubber. Condensation output is sent back to the 

entry of the second stage three-phase separator. The gas is then heated to remove moisture and is 

separated into two flows. One flow is fed to the second scrubber, and the other flow is taken for 

the flare system. After leaving the second scrubber, the remaining gas is supplied to the power 

turbines, and the condensation is sent to the drain system. The drain system pumps the 

condensation and recycles it back to the entry of the second stage, three-phase separator. 

A steady state simulation study is carried out in this section based on the system described 

earlier. The feed stream temperature (80oC to 87oC) and GOR (2800) is significantly higher in 

this plant. Besides this, it has a pressure range of 88 to165 bar. The measurement data is chosen 

in a way that it can represent the average value of a consistent and stable typical production day. 

The average oil and injected gas flow rates are 132.5 Sm3/h and 369 × 103 Sm3/h, where the 

maximum deviation is 10 Sm3/h and 103 Sm3/h, respectively. 

 

3.3 Simulated Model Description 

In this study, the Peng-Robinson (Peng & Robinson, 1976) equation of state is used for the 

prediction of thermodynamic properties. Few assumptions had to be made with respect to the 

actual physical system to facilitate the modeling in HYSYS. Below we state these assumptions: 

1. HYSYS does not have a coalescer in the equipment library. In this study, one two-phase 

separator has been used instead of the electrostatic coalescer. 
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2. In the real case, condensation from the coalescer is sent back to the second stage of the 

three-phase separator. In this simulation it was directed to the third stage of the two-phase 

separator without using any pump due to the following reasons: 

a. The pump detects vapor fraction in the condensation.  

b. It’s not practical to add the recycle (2.8 bar) in the second stage separator 

without pumping because it significantly reduces the required inlet pressure of 

the separator.    

3. In real conditions, the recycle flow is connected to the system directly, but in this 

simulation, the mixer is used to take multiple inputs and provide a single output feed to 

the system.    

Based on the above assumptions, a steady-state model for the system is developed for the entire 

gas processing plant. Since the steady-state model is mostly a reproduction of the model 

described in (Voldsund et al., 2013), it is not described in this paper. However, a converged and 

validated steady-state model is a necessary step to build a dynamic model.  

3.3.1 Well Trajectory 

The material streams for oil, gas, and water are defined to represent five producing well (well 

7, 16, 23, 24, 26). Material streams are used to simulate the flow that are entering and leaving the 

simulation boundaries. The properties of the heavier components or hypothetical components 

(components with seven carbon atoms or more are lumped together called hypothetical 

components) are shown in Table 3.1, and the composition (percent value) for all components is 

shown in Table 3.2. 
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Table 3.1: Properties of the hypothetical components taken from Voldsund et al. (2013). 

Name of 

Components  

Molecular weight 

(g/mole) 

Boiling 

Temperature ( ˚C) 

Liquid Density 

(kg/m3) 

Hypothetical C-1 81 73 721.2 

Hypothetical C-2 108 99 740.1 

Hypothetical C-3 125 152 774.6 

Hypothetical C-4 171 230 817.1 

Hypothetical C-5 247 316 859.3 

Hypothetical C-6 388 437 906.2 

Hypothetical C-7 640 618 988.5 

 

Table 3.2: Reservoir fluid compositions of liquid, gas and water phases taken from Voldsund et 

al. (2013). 

Name of Components  Liquid Percent Gas percent  Water percent 

Methane 0.78 0.83 0 

Ethane  6.41 e-2 6.81 e-02 0 

Propene 3.55 e-2 3.74 e-2 0 

i-Butane 5.52 e-3 5.71 e-3 0 

n-Butane 1.30 e-2 1.34 e-2 0 

i-Pentane 4.39 e-3 4.28 e-3 0 

n-Pantane 5.80 e-3 5.51 e-3 0 

H2O 0 0 1 

CO2 8.61 e-03 9.18 e-03 0 

N2 8.61 e-3 9.18 e-03 0 

Hypothetical C-1 1.34 e-2 9.07 e-3 0 

Hypothetical C-2 1.17 e-2 3.47 e-03 0 

Hypothetical C-3 1.49 e-2 7.14 e-04 0 

Hypothetical C-4 1.24 e-2 0 0 

Hypothetical C-5 9.01 e-3 0 0 

Hypothetical C-6 5.22 e-3 0 0 

Hypothetical C-7 3.44 e-03 0 0 
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The measured flowrate data of gas, liquid and water of all corresponding wells are shown in 

Table 3.3. 

Table 3.3: Gas, oil and water flowrate of all corresponding wells. 

 

Well 
Gas Flow Rate 

(Sm3/h) 

Liquid Flow rate 

(Sm3/h) 

Water Flow Rate 

(Sm3/h) 

7 5.76E+04 20.6 13.8 

16 8.75E+04 27.2 1.5 

23 8.05E+04 21.1 13.9 

24 8.19E+04 40.1 1.9 

26 7.13E+04 23.5 5.4 

 

Each three streams, representing a well, are combined in a mixer. ‘Set outlet to lowest inlet’ 

property is selected in design parameters for the mixers and five mixtures (Mix-7,16, 23, 24, 26) 

are defined for the producing wells. The output of mixer 7, 16, 23, 24, and 26 enters the valve-

106, 107, 108, 109, and 110, respectively, which is shown in Fig. 3.4. 

Fig. 3.4: Process flowsheet of the well trajectory. 
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Operating characteristics for all the valves are considered as linear, and usually they remain open 

for 50%. Cg, ANSI/ISA, and rigorous Cp/Cv method is selected for sizing the valves. The values 

for all valve sizing are shown in Table 3.4. 

Table 3.4: The sizing values for all the valves used in well trajectory. 

Valves Delta P (kPa) FI Cv Cg Fp Xt 

VLV-106 5800 0.9000 131.2 4389.5 1.0000 0.70000 

VLV-107 4100 0.9000 214.6 7183.1 1.0000 0.70000 

VLV-108 9250 0.9000 142.4 4766.6 1.0000 0.70000 

VLV-109 1500 0.9000 193.7 6484.0 1.0000 0.70000 

VLV-110 1650 0.9000 193.6 6478.8 1.0000 0.70000 

 

The output streams from the valves are defined by 0_1, 0_2, 0_3, 0_4, 0_5. The pressure, 

temperature, and flow rate of each input/output stream are observed which is shown in Table 3.5. 

Table 3.5: The streams and their corresponding properties in well section. 

Stream Pressure (kPa) Temperature (˚C) Flowrate (Sm3/h) 

well_7_out 13100 88.98 75870 

O_1 7300 80.22 75870 

well_16_out 11400 89.67 89520 

O_2 7300 81.04 89520 

well_23_out 16600 90.17 103200 

O_3 7350 77.79 103200 

well_24_out 8800 81.58 84460 

O_4 7300 76.89 84460 

well_26_out 8900 80.21 78480 

O_5 7250 75.26 78480 
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All the output streams from the valves are combined in a mixer (Mix-Feed) and finally leaves 

(wel_out_1) from mixer with 78.27˚C temperature, 7250 kPa pressure, and 431600 Sm3/h flow 

rate.  

3.3.2 Separator Unit 

The HYSYS design diagram for separator unit is shown in Fig. 3.5. The stream (well_out_1) 

from production manifold is fed to the first stage of the  three phase separator.  

 

Fig. 3.5: Process flowsheet of the separation unit. 

 

‘Basic-1’ is selected for a fluid vessel package for all the separators. The Pressure drop (Delta P) 

inside the vessel is 200 kPa. The feed stream is separated into vapor, ‘GV_1’, light liquid, 

‘LL_1’, and heavy liquid, ‘HL_1’ fractions, where ‘GV_1’ goes to the reinjection section, 

‘HL_1’ (oily water) goes for further processing (not shown), and ‘LL_1’ is mixed with 

combined recycles coming from reinjection unit, first and third stage, recompression unit and 

fuel treatment unit and fed to second stage three phase separator (V-101). The properties of these 

streams are shown in Table 3.6. 
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Table 3.6: Properties of the separated oil, gas and water in first stage three phase separator. 

 

The outputs of the separator,  vapor fraction (GV_2) goes to the recompression second stage 

scrubber, ‘HL_2’ (oily water) goes for further processing before released into the sea. The  light 

liquid ‘LL_2’ is mixed with  the recycles coming from the second stage recompression scrubber, 

pump unit, and electrostatic coalescer (two-phase separator) in mixer, MIX-104 and fed to the 

third stage two-phase separator and divided into vapor, GV_3 and light liquid, LO_114. The, 

GV_3 goes to the first stage scrubber of the recompression unit, and LO_114 is entered to the 

electrostatic coalescer (two-phase separator). Finally, the output (LL_3) from the coalescer goes 

to the pump unit. The operating conditions of the streams are given in Table 3.7 and 3.8. 

Table 3.7: Properties of the incoming and outgoing streams in second stage, three phase 

separator. 

Stream Pressure (kPa) Temperature (˚C) Flowrate (Sm3/h) 

Sep_2_in 850 70.86 102.9 

Recycle_Sep_in 852 12.51 32.87 

Sep_2_in_F 850 54.56 135.3 

GV_2 850 54.56 8366 

LL_2 850 54.56 112.8 

HL_2 850 54.56 1.936 

 

Stream Pressure (kPa) Temperature (˚C) Flowrate (Sm3/h) 

Seperator_in 7000 77.66 431600 

GV_1 6800 76.99 368200 

LL_1 7000 77.66 102.9 

HL_1 7000 77.66 34.31 
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Table 3.8: Properties of the incoming and outgoing streams in third stage, 2-phase separator. 

Stream Pressure (kPa) Temperature (˚C) Flowrate (Sm3/h) 

Sep_2_out 280 51.09 112.8 

Sep_3_in 280 50.21 153.4 

GV_3 280 50.21 4.415 

LO_114 280 50.21 149.6 

 

Sizing values for all the valves used in separation unit are shown in Table 3.9. 

Table 3.9: The sizing values for valves used in separation section. 

Valves Delta P (kPa) FI Cv Cg Fp Xt 

VLV-100 250 0.9000 3660 1.2249e+005 1.000 0.70000 

VLV-101 6150 0.9000 27.34 914.98 1.000 0.70000 

VLV-102 570 0.9000 97.64 3267.8 1.000 0.70000 

 

3.3.3 Export Pump Unit  

The light liquid output, ‘LL_3’ from the separator unit is entered to the pump, P-100 of the 

export pumping unit. The adiabatic efficiency of the pump is 75%, pressure drop (Delta P) is 

1050 kPa, and the pressure ratio is 4.750. The duty of the pump is calculated for 60.5739 kW. 

The pump output, ‘cooler_1_in’ then goes to the splitter, ‘TEE-106’. It splits into ‘Tee_out_1’ 

and ‘Tee_out_2’, where the flow ratio is 0.1317 and 0.8683 respectively. The HYSYS design 

diagram for the Pump unit is shown in Fig. 3.6. 
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Fig. 3.6: Process flowsheet of the export pump unit. 

 

The stream, ‘Tee_out_2’ goes to the cooler, E-100 where the Delta P, Delta T and the Duty of 

the cooler is 49.00 kPa, -2.606˚C, and 5.485e5 kJ/h, respectively. The output stream from the 

cooler, ‘cooler_1_out’ is entered to the second pump, P-101. The properties of the pump such as 

adiabatic efficiency, Delta p, pressure ratio, and the calculated duty is found 75%, 1939 kPa, 

2.514 and 96.7338 kW respectively. The output stream, ‘tee02_in’ from the pump is fed to the 

second splitter (TEE-107) and divided into ‘tee02_out’ with 15% flow and ‘Produced_oil’ with 

85% flow ratio respectively. The ‘tee02_out’ stream is combined with ‘Tee_out_1’ and recycled 

to the separation unit where ‘Produced_oil’ is exported to the transportation pipeline. The 

pressure, temperature, and flow rate for each stream in the pump unit is shown in Table 3.10. 

Table 3.10: Properties of the stream in third stage, 2-phase separator. 

Stream 

 
 

Pressure 

(kPa) 

Temperature 

(˚C) 

Flowrate 

(Sm3/h) 

Cooler_1_in 1330 50.61 149.6 

Tee_out_1 1330 50.61 19.71 

To_Seperator 280 50.62 39.42 

Tee02_in 3220 48.71 129.9 
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Tee01out_3 280 51.08 19.71 

Tee02_out_02 280 50.16 19.71 

Tee_out_2 1330 50.61 129.9 

Cooler_1_out 1281 48 129.9 

Tee02_out 3220 48.71 19.71 

 

The sizing values of the valves used in this unit is given in Table 3.11. 

 

Table 3.11: The sizing values for valves used in export pump section. 

Valves Delta P (kPa) FI Cv Cg Fp Xt 

VLV-112 2940 0.9000 7.497 250.90 1.000 0.70000 

VLV-113 1050 0.9000 12.58 420.88 1.000 0.70000 

 

3.3.4 Recompression Unit  

The separated vapor phase, ‘GV-3’ from the third stage separation unit, is combined with the 

recycle, ‘Test_Recy_out’ and entered to the first stage recompression scrubber, V-103. Inlet 

delta P of the scrubber is calculated for 39 kPa. The vapor output, ‘GV_4’ from the scrubber is 

entered to the compressor, K-100. The operational mode of the compressor is centrifugal, 

adiabatic efficiency is 47, polytropic efficiency is 49.427, Delta P is 331 kPa, pressure ratio is 

2.373, and calculated duty is 99.5221 kW. The HYSYS design diagram for the Recompression 

unit is shown in Fig. 3.7. 
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Fig. 3.7: Process flowsheet of the gas recompression unit. 

 

The compressor output, ‘Recomp_1_out’ is divided into ‘comp_1_out’ and ‘Recomp_1_rcy’ in 

the splitter, Tee-102. The output stream, ‘comp_1_out’ goes to the second stage recompression 

input and ‘Recomp_1_rcy’ is recycled to the system via a cooler, E-111. The flow ratio of these 

streams is 0.7471 and 0.2529 respectively. Delta T of the cooler is -60.54˚C and the Duty is 

1.123e5 kJ/h. An adjust block, ADJ-4 is used to keep the temperature consistent (specified target 

value is 40˚C), where ‘Test_101’ is set as an adjusted variable, and ‘Test_Recy_In’ is set as a 

target variable. The condensation, ‘LO_1’ from the scrubber (V-103) is recycled to the second 

stage, three phase separator by using a drainage pump, P-102. The compressor output, 

‘Comp_1_out’ is entered to a cooler, E-101 after mixing with vapor, ‘GV_2’ and the recycle, 

‘Rec_2_out’ streams. Delta T of the cooler is -54.42 C and the Duty is 2.452e6 kJ/h.  

The cooler output goes to the second stage recompression scrubber, V-104 where the inlet 

delta P of the scrubber is found 55 kPa. The vapor output, ‘comp_2_in’ from the scrubber is 

entered to the compressor, K-101. The operation mode of the compressor is centrifugal and the 
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properties such as adiabatic efficiency, polytropic efficiency, Delta P, pressure ratio, and 

calculated duty is 69, 71.853, 1383 kPa, 3.675, and 777.656 kW respectively. The compressor 

output, ‘cooler_3_in’ is divided into two streams in the splitter, Tee-103, where ‘cooler_in’ 

stream (68% flow) goes to the third stage recompression and ‘VI_in’ stream (32% flow) recycled 

to the system. The condensation, ‘LO_2’ from the scrubber is combined with other recycle 

streams from different units and goes to the third stage, two-phase separator.  

Similarly, the third stage recompression follows the same procedures as the second stage. The 

output stream, ‘cooler_in’ is entered to the third stage recompression unit and mixed with the 

recycle system. Then it goes to the scrubber, V-106 through a cooler, E-102. Inlet delta P of the 

scrubber is 60 kPa, Delta T of the cooler is -92.64˚C and the Duty is 3.651e6 kJ/h. The scrubber 

output, ‘Comp_3_in’ goes to the compressor, K-102 where the adiabatic efficiency, polytropic 

efficiency, Delta P, pressure ratio, and the duty of the compressor is calculated 56, 60.606, 5160 

kPa, 3.804, and 811.988 kW respectively. The condensation, ‘LO_3’ from the scrubber is 

recycled to the second stage, three-phase separator after combining with other recycles from 

different units. The compressor output, ‘Comp_3_out’ is divided into two streams where stream, 

‘Mix_in’ (71% flow) goes to the third stage recompression and ‘VI_03_in’ (0.2895% flow) 

recycled to the system. The values of all streams in the recompression unit are shown in Table 

3.12. 

Table 3.12: Properties of the stream in gas recompression unit. 

Stream Pressure (kPa) Temperature (˚C) Flowrate (Sm3/h) 

Sep_5_in 572 22 13900 

Sep_6_in 1900 24 12640 

Recomp_in 280 47.87 5.909 

Rcomp_1_rcy 572 112.1 1.495 
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comp_1_out 572 112.1 4.415 

Recy_comp_out 1900 127.8 3417 

comp_2_in 517 20.52 13500 

comp_3_in 1840 23.35 11800 

Gv_4 241 46.02 5.91 

Cooler_in 1900 112.9 9222 

VI_in 1900 112.9 4276 

Rec_2_out 578 106 4277 

cooler_3_in 1900 112.9 13500 

comp_3_out 7000 146.3 11800 

Recomp_1_out 572 112.1 5.91 

Mix_in 7000 146.3 8383 

VI_03_in 7000 146.3 3416 

Test_Recy_out 280 40.07 1.495 

 

And the sizing values for all the valves are shown in Table 3.13. 

Table 3.13: Sizing values of the valves in recompression section. 

Valves Delta P (kPa) FI Cv Cg Fp Xt 

VLV-104 292 0.9000 14.62 489.33 1.0000 0.70000 

VLV-105 1322 0.9000 39.91 1335.6 1.0000 0.70000 

VLV-111 5100 0.9000 8.080 270.42 1.0000 0.70000 

 

3.3.5 Reinjection Unit 

The vapor output, ‘Inject’ from the first stage, three-phase separator is combined with 

recompression unit output, ‘Mix_in’ and entered to a splitter, ‘TEE-101’. The output is divided 

into three parallel flow streams which is shown in Figure 3.8. 
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Figure 3.8: Process flowsheet of the gas reinjection unit. 

 

Flow ratio of the stream ‘1’, ‘2’ and ‘3’ is found 26%, 28% and 46% respectively. All the three 

parallel reinjection units is followed the same process. Stream, ‘1’ enters to the cooler E-103, 

where the Delta T and the duty is calculated -50.87˚C and 1.257e7 kJ/h. The output stream, ‘5’ 

of the cooler is combined with the condensation recycle from the second stage scrubber and 

entered to the first stage scrubber, V-108. The scrubber output, ‘6’ is entered to the first stage 

compressor, K-103 and the condensation, ‘7’ is combined with all the other condensations from 

the reinjection unit. The operation mode of the compressor is centrifugal and the properties such 

as adiabatic efficiency, polytropic efficiency, Delta P, pressure ratio, and calculated duty is 64, 

66.526, 7050 kPa, 2.054, and 2698.74 kW respectively. An adjust block, ADJ-1 is used in 

between vapor output, ‘6’ and cooler inlet, ‘1’.  Liquid volume flow (std condition) is chosen as 

an adjusted variable of object stream ‘1’ and actual volume flow is selected as a target variable 

of object stream ‘6’. The specified target value is set at 1150 m3/h. The compressor output, ‘10’ 
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goes to the cooler, E-106 where the Delta T and calculated duty of the cooler is found -68.87˚C, 

and 1.586e7 kJ/h. The output stream, ‘12’ from the cooler is entered to the second stage 

scrubber, V-109. Scrubber vapor output, ‘13’ is entered to the second stage compressor, K-104 

and the condensation stream, ‘14’ is recycled to the system. Mode of operation of the 

compressor is centrifugal and the adiabatic efficiency, polytropic efficiency, Delta P, pressure 

ratio, and the duty of the compressor is calculated 54, 56.183, 9860 kPa, 1.718, and 2195.11 kW 

respectively. Then output stream, ‘16’ from the compressor is combined with other outputs from 

different reinjection stages. The values of all the parameters are shown in Table 3.14. 

Table 3.14: Stream properties in first stage gas reinjection unit. 

 

Similarly, the second and third reinjection unit follows the same process. The stream, ‘2’ enters 

to the cooler E-107 where the Delta T and the duty of the cooler is calculated -50.87˚C, and 

1.382e7 kJ/h. An adjust block ‘ADJ-2’ is used between vapor output, ‘21’ and cooler inlet, ‘2’. 

The liquid volume flow (std condition) is chosen as an adjusted variable of object stream, ‘2’ and 

actual volume flow is selected as a target variable of object stream, ‘21’. The specified target 

value is set at 1300 m3/h. The properties of the compressor, K-105 such as adiabatic efficiency, 

Stream Pressure (kPa) Temperature (˚C) Flowrate (Sm3/h) 

1 6800 78.87 92700 

5 6800 28 92700 

8 6800 28 92720 

6 6690 27.59 90320 

10 13740 96.87 90320 

12 13740 28 90320 

13 13740 28 90300 

16 23600 78.25 90300 
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polytropic efficiency, Delta P, pressure ratio, and calculated duty is 64, 66.538, 7110 kPa, 2.063, 

and 2686.44 kW respectively. The compressor output, ‘24’ is entered to the cooler, E-108 where 

the Delta T and the duty of the cooler is found -69.30˚C and 1.756e7 kJ/h. The output of the 

scrubber (V111), ‘27’ goes to the compressor, K-106, where the adiabatic efficiency, polytropic 

efficiency, Delta P, pressure ratio, and the duty of the compressor is calculated 57, 59.026, 9800 

kPa, 1.710, and 2265.26 kW respectively. The values of the parameters in second unit are shown  

in Table 3.15. 

Table 3.15: Stream properties in second stage gas reinjection unit. 

 

The stream, ‘3’ is entered to the cooler, E-109 where the Delta T and the duty is found -50.87˚C, 

and 2.333e7 kJ/h. The properties of the compressor, K-107 such as adiabatic efficiency, 

polytropic efficiency, Delta P, pressure ratio, and calculated duty is 69, 71.202, 6775 kPa, 2.056, 

and 4649.98 kW respectively. The compressor output stream, ‘38’ enters to the cooler, E-110 

where the Delta T and assessed duty is found -64.80˚C and 2.747e7 kJ/h. The output of the 

scrubber (V113), ‘41’ goes to the compressor, K-108, where the adiabatic efficiency, polytropic 

Stream Pressure (kPa) Temperature (˚C) Flowrate (Sm3/h) 

2 6800 78.87 101900 

19 6800 28 101900 

20 6800 28 101900 

21 6690 27.59 99280 

24 13800 97.3 99280 

26 13800 28 99280 

27 13800 28 99260 

30 23600 76.03 99260 
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efficiency, Delta P, pressure ratio, and the duty of the compressor is calculated 64, 65.898, 1066 

kPa, 1.824, and 3854.11 kW respectively. Finally, the combined output stream ‘Gas_ 

Reinjection’ injected to the reservoir. The values of the parameters for the third unit are shown in 

Table 3.16. 

Table 3.16: Stream properties in third stage gas reinjection unit. 

 

3.3.6 Fuel Treatment Unit 

The vapor output, ‘GV_1’ splits (in TEE-100) into two streams, ‘Treatment’ and ‘Inject’, 

where the flow ratio is found 2.716e-2 and 0.9728, respectively. Then stream ‘Treatment’ is 

entered to the cooler, E-104, where Delta T and the duty is found -28.99˚C and 7.609e5 kJ/h. 

The diagram for the fuel treatment unit is shown in Fig. 3.9. 

Stream Pressure (kPa) Temperature (˚C) Flowrate (Sm3/h) 

3 6800 78.87 172000 

33 6800 28 172000 

34 6800 28 172100 

35 6415 26.54 167500 

38 13190 92.8 167500 

40 13190 28 167500 

41 12940 27.28 167400 

test2 23600 78.24 167400 
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Fig. 3.9: Process flowsheet of the fuel treatment unit. 

 

The output stream, ‘cooled_out’ goes to the first scrubber, V-105 where the vapor output, 

‘Cool_02_in’ is entered to the heater, E-105. The condensate stream, ‘Re_FT_01’ recycled to the 

second stage, three-phase separator. The parameters of the heater such as Delta P, Delta T, and 

the  duty is calculated 40.00 kPa, 26.93 ˚C and 533958 kJ/h respectively. Output stream, 

‘To_vlv’ from heater, splits (in TEE-105) into ‘To Flares’ and ‘To scrub’ streams where the flow 

ratio is 3.243e-2 and 0.9676 respectively. The ‘To Flare’ stream leaves as flare gas from the 

system where the ‘To scrub’ stream enters to the second scrubber, V-107. The vapor output, ‘To 

Turbines’ from the scrubber goes to the turbine unit to generate the necessary power of the 

platform. The condensation stream, ‘Re_FT_02’ is recycled to the second stage, three-phase 

separator after combining with other recycles of the system.  

 

3.4 Results  

Results from the model validation and the simulation scenarios are presented in this section. 

Steady-state simulation is compared with production data from the existing system.  
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3.4.1 Model validation  

The model is validated with operational data from an existing well provided by (Voldsund et 

al., 2013). The comparison was made for different parameters such as pressure, temperature, and 

flow rate. The results from the validation of oil volume flow rate and pressure are shown in 

Tables 3.17 and 3.18.  

Table 3.17: Validation result of fluid flow rate against measured data from Voldsund et al., 2013. 

 

Table 3.18: Validation result of Pressure value against measured data from Voldsund et al., 

2013. 

Produced Fluid Unit Measure data Predicted Value Percentage Error 

Export Oil bar 32.1 ± 0.3 32.2 1.25% 

Reinjection Gas bar 236 ± 2 236 0.85% 

Produced Water bar 8.77 ± 0.09 70.0 706% 

To Flares bar 9.30 ± 0.09 9.30 0.97% 

To Power Turbines bar 18.25 ± 0.18 18.25 0.99% 

 

Produced Fluid Unit Measured data Predicted Value Percentage Error 

Export Oil Sm3/h 132.5 ± 0.4 110.2 16.5% 

Reinjection Gas 103 Sm3/h 369 ± 17 357 1.4% 

Produced Water Sm3/h 67 ± 5 37 40% 

To Flares Sm3/h 335 ± 14 320 0.31% 

To Power 

Turbines 

Sm3/h 9630 ± 170 9546 0.9% 
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The predicted values match well with the measured values for most cases except for produced 

water. In the real system, one or more mechanical valve has been used for water pressure drop 

which is not described in the reference (Voldsund et al., 2013) as such the conditioned assumed 

in the present work is significantly different and may have led to the discrepancy.  

3.5 Conclusions  

This work was focused on the steady-state simulation of an offshore oil and gas processing 

plant. The North Sea offshore platform has been modeled using the HYSYS plant simulator. The 

models have been formulated considering the producing wells and surface units such as 

separation, export pumping, recompression, reinjection units, etc. The data generated from each 

unit of the model are recorded, and the results presented in this work are compared and validated 

with a performance assessment of a real-case oil and gas platform located in the Norwegian part 

of the North Sea. The result and discussion conclude that this steady-state model successfully 

met all the requirements similar to the real processing platform. The model outcome 

approximately matched with the actual production data except for the produced water form first 

and the second stage three-phase separator. This is because of maintaining the pressure 

requirement of the separator output (oil and gas, reported in table 3.6), the water pressure is also 

significantly increased, which is not identical with the water pressure in real case scenario. 
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Abstract  

Offshore oil and gas production is contributing to almost 30% of the total global oil and gas 

production. Since access to the offshore facilities is difficult, there is interest in monitoring the 

production facilities remotely. Multivariate statistical methods can be effectively used to monitor 

the offshore gas production plant. In this research work, monitoring of an offshore production 

plant is described. To demonstrate the monitoring cycle, a benchmark model for the offshore 

facilities is required. Mathematical modeling and simulations are useful tools for designing and 

predicting the accurate behavior of a production plant. As the first phase, we simulate an 

offshore oil and gas production plant using the process modeling tool, Aspen HYSYS. The 

model is based on the process specifications of a gas processing plant at the North Sea platform 

reported by Voldsund et al. (2013). Several common faults from different fault categories, such 

as actuator faults and disturbances, are introduced and simulated in the dynamic system. A total 

of seven dynamic scenarios are investigated, and their impacts on the overall hydrocarbon 

production are analyzed. According to the results, the dynamic simulation can accurately 

generate the system response, including responses during faulty conditions. The simulations 

files, normal, and abnormal data are made available electronically. The developed model can be 

used as a benchmark system to test monitoring algorithms for offshore production facilities. In 

the second phase, we will describe the monitoring scheme for the plant. 

Keywords: Aspen HYSYS, Offshore production facilities, Process modeling, Dynamic 

simulation, Disturbance, Actuator fault 

 

 



70 

 

4.1 Introduction  

Offshore production and processing facilities are located in remote locations and are exposed 

to extreme conditions. Recently, due to digitalization initiatives by the offshore industries, 

interest in real-time optimization and remote monitoring of offshore production and processing 

facilities has increased. One of the main prerequisites for building optimization and monitoring 

tools is to have a high fidelity model for the system. Several researchers have worked on 

developing a model for offshore production facilities, primarily using commercial simulators 

(e.g., Aspen HYSYS, Aspen Plus, and Pro II). A list of relevant literature is presented in Table 

4.1.  

Table 4.1: Summary of modelling and simulation of offshore oil and gas production facility. 

Researchers Application case Objective Contributions and findings  

(Cho et al., 

2018) 

Conceptual steady-state 

modeling of an offshore 

topside process. 

Analyze to improve 

the environmental 

standards, reduce 

utility consumption, 

and maximize profit. 

a. The use of recycling streams increases 

peak oil, gas, and water production rate. 

b. Higher and lower economic profits are 

gained during peak oil production and 

water production, respectively.  

c. Additional multi-stage separation 

increases the capital costs, which are the 

highest during peak gas production and 

lowest during peak water production.  

(Nguyen et 

al., 2016) 

Steady-state analysis of 

three actual Norwegian 

platforms in the North 

Sea and one platform in 

the Norwegian Sea. 

Reduce the electrical 

or thermal energy 

used in the plant by 

modifying the system. 

a. They proposed the following strategies 

for energy savings: re-designing of 

units, re-dimensioning the compressors, 

promoting energy and process 

integration, implementing multiphase 

expanders, and using waste heat 

recovery cycles. 

b. Up to 20% energy savings and reduction 

in CO2 emissions are possible where the 

highest energy can be saved in anti-

surge recycling.  

(Nguyen et 

al., 2014a) 

A steady-state model 

for a Norwegian Sea 

Exergy analysis to 

measure energy 

a. Most exergy destruction happens for the 

rejection of high-temperature exhaust 



71 

 

offshore platform was 

developed and 

calibrated, based on 

measured data and 

engineering 

assumptions. 

consumption and 

exergy destruction 

/losses. 

gases, gas turbines, heat exchanges, 

compression, and anti-surge recycling 

operations. 

b. Several steam Rankine and low-

temperature power cycle configurations 

were proposed and evaluated based on 

their investment costs and 

thermodynamic performance. 

(Nguyen et 

al., 2014b) 

A steady-state model 

for an offshore plant 

located at the 

Norwegian Continental 

Shelf region, called the 

Draugen Platform, was 

evaluated. 

Energy and exergy 

efficiency analysis. 

a. The highest exergy destruction happens 

in gas treatment (51%), recompression 

(12%), and production manifold (10%). 

b. Energy is mostly consumed in 

recompression and compression 

sections, condensate treatment, and 

glycol regeneration systems.  

(Voldsund et 

al., 2014) 

A steady-state model 

for four North Sea 

offshore platforms was 

analyzed and compared. 

Exergy analysis to 

calculate exergy 

destruction. 

a. The largest exergy destruction occurs in 

gas treatment and production manifold, 

which is 27% and 10%, respectively. 

b. Significant exergy destroys due to 

flaring in two of the platforms. 

c. Exergy destruction at fuel gas and 

seawater injection is less than 3%.  

(Kim et al., 

2014) 

A conceptual stochastic 

steady-state simulation 

and optimization of an 

offshore platform 

Find the maximum 

profit value calculated 

from the difference 

between product sales 

and operating costs 

for a multistage 

separation process. 

a. Condensation recycling train has the 

ability to adjust the vapor pressure of 

crude oil. 

b. An increase in the separation stage also 

improves the system performance. 

c. Condensation recycling increases profits 

more than increasing the number of 

separation stages. 

(Voldsund, 

et al., 2013) 

Steady state modeling 

and simulation of a real 

production day on 

North Sea platform 

using measured process 

data. 

Exergy analysis to 

measure maximum 

and minimum exergy 

destruction. 

a. Exergy destruction occurs in processes 

where pressure increases and decreases, 

such as compression trains, pressure 

reduction valves, and recycling. 

b. Most exergy destruction takes place in 

reinjection trains (10,400 kW), 

production manifold (4600 kW), and 

recompression train (4150 kW). 

(Nguyen et 

al., 2013) 

Conceptual steady-state 

modeling of processes 

on the North Sea oil and 

gas platforms. 

Exergy analysis to 

calculate and find the 

most contributing 

exergy destruction 

and the corresponding 

units. 

a. Most exergy is destroyed by about 65% 

in power generation and waste heat 

recovery and 35% in oil, gas, and water 

processing system.  

b. Most exergy losses are due to the 

rejection of high-temperature exhaust 

gases from utility and flaring system.  
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c. Exergy destruction combustion 

chambers can be reduced by decreasing 

the overall air-to-fuel ratio. 

d. Exergy losses in heat recovery can be 

partly recovered by using a bottoming 

cycle such as an organic Rankine cycle. 

e. Exergy losses in the flaring system can 

be reduced by limiting continuous 

flaring and recovering the gases in the 

processing plant. 

(Voldsund et 

al., 2012) 

Steady-state simulation 

of an oil platform 

located in the North Sea 

based on a real 

production day with 

available measured 

process data. 

Exergy analysis to 

calculate the power 

consumption and its 

applicability to 

improve system 

efficiency.   

a. The highest exergy destruction is related 

to compression of the gas. 

b. With increasing the adiabatic 

compressor efficiencies by two 

percentages, the power consumption is 

reduced to 3% while exergetic efficiency 

is increased to 0.33.  

c. By eliminating the anti-surge recycling 

of the gas, the specific power 

consumption reduced to 15% while the 

exergetic efficiency is increased to 0.38. 

(Natarajan 

& 

Srinivasan, 

2010) 

Dynamic simulation of 

a conceptual offshore 

oil and gas production 

platform. 

Develop a dynamic 

model and multi-

model based approach 

for process fault 

monitoring. 

a. Three real case scenarios, such as 

normal, faulty, and maintenance 

activities, are simulated using a dynamic 

model. 

b. The proposed model can be applied in a 

distributed manner using the limited 

available computational resources. 

c. The proposed model can detect the 

faults earlier, while monolithic 

monitoring algorithms are not suited due 

to the variety of operating states. 

(Mourad, et 

al., 2009) 

A real case steady-state 

thermodynamic model 

for building a new unit 

of separation and 

compression process in 

Southern Algeria 

(USC). 

Estimate the 

intermediate stage 

pressure to minimize 

cost. 

a. Graphical representation, known as 

minimum compression energy, is 

efficient to determine the intermediate 

separation pressure values. 

b. Intermediate feedstocks in a multi-stage 

separation affect the shape of the 

compression energy curve as a function 

of pressure. 

c. Although the integration of separation 

batteries reduces the investment costs, it 

produces more gas and degrades the oil 

quality. 

(Bahadori, et 

al., 2008) 

Conceptual steady-state 

simulation of a four-

Optimize the adjusting 

appropriate separator 

a. The quality of the produced oil is 

increased by around 0.4˚ and 0.5˚ API 
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stage oil separation unit 

using the fluid 

properties of the 

Pazanan-Asmari 

reservoir in Iran. 

pressure in a crude oil 

production unit. 

for the summer and winter, respectively.  

b. The oil production rate is increased by 6 

and 5 m3/day during the summer and 

winter by optimizing separator pressure 

using the proposed split C7+ cuts 

method. 

c. Gas–oil ratio in the summer is higher 

than that in the winter, whereas the oil 

production rate in the winter is higher 

than that in summer. 

d. The quality of the produced crude oil in 

the winter is much better compared to 

the summer. The average API in the 

summer is 36.7˚, whereas the API in the 

winter is 38˚. 

(Boyer & 

O’Connell, 

2005) 

Real case steady-state 

analysis based on the 

survey by Devon 

Energy Production 

Company, L.P. (Devon) 

on its G. A. Ray No. 93 

oil and gas production 

plant. 

Minimize the 

operating pressure of 

low-pressure 

separator in order to 

reduce flashing losses 

as well as increase the 

annual profit. 

a. The sales price of the produced gas is 

increased to $6,896 per year after 

reducing the operating pressure of the 

low-pressure separators. 

b. The sale of potential methane gas has 

been increased to approximately 336,000 

SCF/year. 

c. The recovered flash gas can also lower 

the emissions of volatile organic 

compounds and hazardous air pollutants. 

 

Although a few models have been developed for offshore gas processing facilities, the models 

were primarily developed for design and optimization purposes. Hence, all reported models are 

steady-state models. To establish a real-time monitoring system, dynamic models are required, 

which are scarce in the literature for modeling/simulation of offshore production and processing 

plants. This causes real challenges/difficulties in developing and testing monitoring systems for 

offshore facilities. The goal of this research work is to develop a dynamic model for an offshore 

gas processing plant. The model presents appropriate noise and disturbances similar to actual 

plants. In addition, the model has a good fault description, and it is capable of simulating normal 

data as well as faulty data for a number of significant faults in the system. 
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4.2 Methodology for Building Process Model 

 The steps for making a process model are depicted in Fig. 4.1.  

 

Fig. 4.1: Basic flowchart for modelling and simulation of the offshore production facility. 
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This section presents a general description of offshore oil and gas platforms and the steps for 

building the dynamic model, with particular focus on a facility located in the North Sea region. 

The present work is based on the model reported in (Voldsund et al., 2013). Aspen HYSYS is 

used to construct a steady-state model to analyze an oil and gas producing platform. In this 

paper, we extend the steady-state model to a dynamic model for studying the dynamic response 

of the system. First, a steady-state model is built using Aspen HYSYS. The simulation result is 

validated through extensive performance evaluation and comparison with real production data 

available in the literature (Voldsund et al., 2013). Some additional excitations are added with the 

feed system in the model using customized Aspen HYSYS functional block externally to 

simulate the normal variation in production data with time. The sensor noise description 

appropriate for the system is also designed and added with the responses to create more realistic 

reactions for the system. Finally, several common faults from different fault categories, for 

example, sensor fault, actuator fault, and disturbance fault are created and simulated in the 

dynamic system. 

 

4.3 System Description 

In this study, an actual oil-producing platform that has been in operation for more than 20 

years in the Norwegian Sea is considered (Voldsund et al., 2013). It produces oil, gas, and water 

where the oil is transported to the nearby platform through the export pipelines, produced gas is 

recompressed and reinjected for pressure coverage, and water is neutralized and released in the 

sea. The plant can be categorized as a high gas-to-oil ratio with high feed pressure and 

temperature. The power requirement of this plant is approximately 25 MW, and the heating 

requirement is less than 1 MW. All the measurements are recorded for a typical production day. 
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4.3.1 Process Overview 

The overall process is divided into several functional units, such as well section, production 

manifold, separator unit, export pump unit, recompressor, drainage system, fuel gas treatment, 

and reinjection unit. Five separate production wells with different fluid flow properties such as 

flow rate, pressure, and temperature are connected in the production manifold. The operating 

pressure of the well stream varies from 80 to 170 bar. The overall pressure is reduced to 70 bar 

before entering the separation process. The process flow diagram of the plant is shown in Fig. 

4.2.  

 

Fig. 4.2: Process flow diagram of the Norwegian Sea oil and gas platform with modifications.   
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The separation unit, shown in Figure 3, consists of two three-phase separators (V-100 and V-

101), one two-phase separator (V-114), and one electrostatic coalescer (V-102). Gas, oil, and 

water are separated by using the gravitational separation. Before introducing a new separator, the 

pressure is reduced to optimize the final production. Separated oily water from the first and 

second stage of the three-phase separators enters the water treatment processing unit. A certain 

proportion of separated fluid (oil and water) is pumped and recycled back to the entry of the 

second stage, three-phase separator. Oil pressure of the coalescer output is reduced to 2.8 bar and 

the oil then goes to the export pump unit.  

The export pump unit includes one cooler and two pumping sections where the produced oil 

is cooled and pressurized up to 32 bar. To make a consistent oil flow through the compressors, a 

certain amount of oil recycles back to the entry of the third stage, two-phase separator.  

The recompression process unit is made of three sub-units, where each of them has one 

cooler, one scrubber, and one compressor. Scrubbers are used to remove the remaining water 

from gas, save the compressor from pressure hunting, and increase its efficiency. Gas from the 

third stage of the two-phase separator, with a pressure of 2.8 bar, enters the first stage 

recompression scrubber and is fed into the compressor to increase the pressure. A portion of the 

gas is recirculated and cooled to the same subsystem, known as the anti-surge recycling system, 

to keep a minimum constant flow through the compressor and prevent surging.  92%, 69%, and 

72% of the total gas are recycled to the first, second, and third recompression subsystems, 

accordingly. The condensed water from the scrubber is sent to the drain system. After leaving 

the first stage compressor, it enters the second stage recompression where the gas stream from 

the second stage of the three-phase separator mixes with it. Then the condensed water is sent 

back to the third stage of the two-phase separator.  Similarly, it enters the third stage and finally 
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leaves the recompression unit at 70 bar. The remaining condensation is sent back to the entry of 

the second stage, three-phase separator. The gas from the first stage of the three-phase separator 

mixes with it and goes to the reinjection unit.  

The reinjection unit consists of three parallel reinjection trains. Each train has two scrubbers, 

two coolers, and two compressors. The main objective of this unit is to increase the gas pressure 

to match the injection pressure of the well so that the gas can be injected into the reservoir. The 

condensed stream from each unit is sent back to the entry of the second stage of the three-phase 

separator.  

A small portion (3%) of gas from the first stage of the three-phase separator enters the fuel 

gas treatment unit. This unit includes two scrubbers, one cooler, and one heater. After cooling 

the gas and reducing its pressure, it is fed to the first scrubber. Condensation output is sent back 

to the entry of the second stage of the three-phase separator. The gas is then heated to remove 

moisture and is separated into two flow streams. One flow is fed to the second scrubber, and the 

other flow stream is taken for the flare system. After leaving the second scrubber, the remaining 

gas is directed to the power turbines, and the condensation is sent to the drain system. The drain 

system pumps the condensation and recycles it back to the entry of the second stage of the three-

phase separator. 

A case study is carried out in this section, focusing on real-time industry data. The feed 

stream temperature (80 to 87oC) and Gas to Oil Ratio (GOR) (2800) is significantly high in this 

plant. In addition, it has a pressure range of 88 to165 bar. The measurement data is chosen in a 

way that can represent the average value of a consistent and stable typical production day. The 

average oil and injected gas flow rates are 132.5 Sm3/h and 369 × 103 Sm3/h, where the 

maximum deviations are 10 Sm3/h and 103 Sm3/h, respectively. 
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4.4 Steady-State Model Formulation 

The steady-state model needs to be built before implementing and simulating the plant wide 

dynamic behavior; the steady state model provides the initial conditions for the dynamic model. 

It is also essential to gather equipment information and flowsheet specifications before starting a 

dynamic simulation such that a set of differential equations can be solved with respect to time. 

Few assumptions should be made with respect to the actual physical system to facilitate the 

modeling using Aspen HYSYS, as given below: 

4. Aspen HYSYS does not have a coalescer in the equipment library. In this study, one two-

phase separator is used instead of the electrostatic coalescer. 

5. In the real case, condensate from the coalescer is sent back to the second stage of the 

three-phase separator. In this work, it enters the third stage of the two-phase separator 

without using any pump considering two reasons: The pump detects vapor fraction in the 

condensation; and it is not practical to add the recycle (2.8 bar) in the second stage 

separator without pumping as it significantly reduces the required inlet pressure of the 

separator.    

6. In real conditions, the recycle flow is directly connected to the system, but in this 

simulation, the mixer is used to take multiple inputs and provides a single output feed to 

the system.    

Based on the above assumptions, a steady-state model for the system is developed for the entire 

gas processing plant. In this study, the Peng-Robinson (Peng & Robinson, 1976) equation of 

state is used to determine characteristics for gas and oil flows. Since the steady-state model is 

mostly a reproduction of the model given in Voldsund et al. (2013), the details of the steady-state 
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model are provided in the supplementary materials. It should be noted that a converged and 

validated steady-state model is a necessary step to build a dynamic model.  

 

4.5 Dynamic State Model Formulation 

The dynamic simulation requires the solution of a system of ordinary differential equations 

(ODE) to capture the transient behavior of the system. It can also be used to assess and enhance 

the control and monitoring of the production system. If a sudden change in the system is possible 

during the process operation, and the system has a significant time delay or a slow dynamics, a 

dynamic simulation is required to study the system behaviors. 

4.5.1 Sizing of Equipment 

The transition from steady-state to dynamic simulation involves a pressure drop throughout 

the plant. It is necessary because the flow is determined based on the pressure drop in Aspen 

HYSYS dynamics. Therefore, it is vital to have a valve in between every pair of holdup 

volumes. The dynamics of any unit are mostly dependent on its size. Hence, various units used 

in the simulation need to be sized before the transition to a dynamic state. All unit operations in 

the simulation should be sized using actual equipment or pre-defined sizing techniques.  

4.5.2 Separators  

The specifications of the liquid holdup are crucial as the level controller is used based on this 

information. The holdup value can also be calculated based on the steady-state residence time 

(volume of fluid/flow rate), where approximately 10 minutes is a suitable value for the liquid 

streams and 2 minutes for the vapor streams. The real sizing values used in the plant for all 

separators are unknown. Therefore, it is assumed that the vessel volume for three-phase 

horizontal flat cylinder separator is 85 m3, where the diameter and length are 4.163 m and 6.245 



81 

 

m, respectively. This dimension is typically used for the separators in oil and gas 

industries. Liquid holdup, which represents the level of liquid within the column, is assumed at 

50% for three-phase separators and 40% for two-phase separators.  

4.5.3 Valves  

Aspen HYSYS dynamics automate valve sizing based on the linear valve type (other types 

are also available), a 50% valve opening, and user specified pressure drop, and current flow rate. 

It also calculates the flow coefficient, Cv, that will allow the valve to pass 100% of the upstream 

flow rate through the valve at the designed opening position. The flow coefficient is widely used 

to determine the size of the valves. It is defined as the flow capacity of a valve (in U.S gal/min) 

of water at 60°F through a valve with a pressure loss of one pound per square inch at a specific 

opening position. Cv is valid for both turbulent and laminar flow, as defined below (Smith & 

Zappe, 2004): 

Cv  = Q  √
𝐺

𝛥𝑃
        (4.1) 

In Equation (1), G refers to the Specific gravity; ΔP is the differential pressure in psi; and Q 

represents the volumetric flow in U.S gal/min. The ‘Manufacture specific method’ is chosen for 

valve sizing, and the ‘universal gas sizing’ is selected for valve vapor flow models. Linear option 

for valve operating characteristics and Cv for sizing conditions are selected. Initiating the ‘size 

valve’ option determines the value of Cv when the valve is 50% open with a specific pressure 

drop. In the dynamic section, ‘pressure-flow relation’ for dynamic specification and check valve 

for preventing the backflow are enabled. In the same section, the first-order mode is chosen for 

actuator parameters. Actuator time constant value is set to 5 seconds; linear actuator rate is 1.0e-2 
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and K value for the damp factor is 0.9500. The properties of all valves used in this dynamic 

simulation are summarized in Table 4.2. 

Table 4.2: Valve characteristics in dynamic state. 

 

4.5.4 Heaters/Coolers 

‘Product temperature specification’ is selected for all heaters and coolers in dynamic model 

details where the values for product temperature and volume are specified based on temperature 

requirements of the specific unit. K value is obtained by enabling the specification of K.  

 

 

Valve Delta P 

(kPa) 

C1 (Ratio 

for valve) 

Km (Valve recovery 

coefficient) 

Cv (Liquid sizing 

coefficient) 

Cg (Gas Sizing 

Coefficient) 

VLV-100 2000 33.5 0.9000 3686 1.23e+005 

VLV-101 6150 33.5 0.9000 27.34 914.99 

VLV-102 570 33.5 0.9000 97.17 3252.1 

VLV-112 2940 33.5 0.9000 7.498 250.94 

VLV-113 1050 33.5 0.9000 12.58 420.95 

VLV-104 290 33.5 0.9000 13.47 450.93 

VLV-105 1322 33.5 0.9000 36.49 1221.3 

VLV-111 5100 33.5 0.9000 7.697 257.58 

VLV-114 2015 33.5 0.9000 33.33 1115.5 

VLV-115 2910 33.5 0.9000 1.066 35.669 
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4.5.5 Pumps and Compressors 

For the pumps, only the efficiency [%] and pressure rise [kPa] options are needed. The other 

dynamic specifications depend on the above data. Similarly, for dynamic compressors, the 

adiabatic efficiency and duty are required in the dynamic specification section.   

4.5.6 Mixers 

In the steady-state mode, ‘Set outlet to lowest inlet’ is selected for parameters in the 

automatic pressure assignment section in the mixer. Aspen HYSYS set the exit stream pressure 

of the mixer based on the lowest inlet stream. This is not practical because several streams may 

enter with different pressures at one time. In a dynamic simulation state, the ‘Equalize all’ option 

is selected instead of ‘set outlet to lowest inlet’ as it gives the same pressure to all attached 

streams, which is realistic. 

4.5.7 Modifications and Additional Assumptions  

Separator unit. Vapor output from the third stage of two-phase separator (electric coalescer) 

goes to the first stage recompression unit. It can be ignored because it does not have any vapor 

flow. Adding this stream to other separators in the separation unit causes improper pressure 

merging. For the same reason, no mixer is used in the incoming streams of the second stage 

separator (MIX-114). Also, one additional mechanical valve, VLV-110, is used in the first stage 

of the three-phase separator vapor output to control the flow rate of the reinjection unit, which is 

demonstrated in Fig. 4.3. 
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Fig. 4.3: Separator section modification to adapt for modelling. 

 

Recompression unit. In the Aspen HYSYS dynamics, the incoming pressure of different streams 

in a mixture should be equal. For this reason, the recycles from all three-recompression units 

enter directly into the scrubber instead of mixing in the mixer due to their reduced pressure. 

Thus, the mixers (MIX-110 and MIX-111), which were used in a steady-state before, are not 

included in a dynamic state. For the same reason, the cooler E-101 in the second stage 

recompression unit is divided into two coolers: a mainstream cooler (C_3) and a recycle cooler 

(C_6). The other cooler, E-102, in the third stage recompression unit is also divided into two 

coolers: a mainstream cooler (C_4) and a recycle cooler (C_5). Also, two extra coolers (C_9 and 

C_10) are used with the condensate output (recycling to the separation unit) of the second and 

third stage recompressions to reduce the temperature. Otherwise, this high-temperature 

condensate recycle will destabilize the temperature requirement of the separation unit. A 

dynamic model of the recompression unit is depicted in Fig. 4.4. 
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Fig. 4.4: Recompression unit modification to meet process requirements. 

 

Two extra mechanical valves are used in this section. One (VLV-109) is employed in the third 

stage recompression scrubber output to control the flow rate going towards the reinjection unit. 

The second valve (VLV-103) is used to reduce the output vapor pressure of the second stage, 

three-phase separator (which is mixing with the first stage recompression output in a mixer MIX-

102) to maintain equal pressure flow of the mixer.   

 

4.5.8 Control Strategies and Equipment 

In this study, many control loops are set to regulate the system. Generally, in the three-phase 

separator, hydrocarbons are separated into three portions: vapor, light liquid, and heavy liquid. 

This simulation reveals that light liquid (oil) is also produced along with the heavy liquid (water) 

and leaves the system, which is not desirable in this study. Due to this loss, the amount of light 

liquid production is significantly affected. Therefore, two flow controllers are used in the first 

and second stage of the three-phase separator so that the flow rate of the heavy liquid can be 
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lowered. It also decreases water production, which is acceptable as the main focus is on oil and 

gas production in our case in this study.  

 

4.5.9 PID Controllers  

While most of the proportional–integral–derivative (PID) controllers are utilized in the 

separation unit, one is used in the fuel treatment unit, and another in the recompression unit. The 

properties of the PID controllers are given in Table 4.3.  

Table 4.3: Controller values for all valves. 

Control 

Name 

Process variable source 

(PV) 

Output target (OP) Typ

e 

Action 

 

Gain, 

Kc 

 

Integra

l time 

Ti (sec) Object variable Object Variable 

LIC-105 V-100 Liquid percent 

level 

VLV-101 Actuator 

desired position 

PI Direct 11.0 1.00 

LIC-106 V-101 Liquid percent 

level 

VLV-102 Actuator 

desired position 

PI Direct  12.0  1.00  

LIC-101 V-114 Liquid percent 

level 

VLV-107 Actuator 

desired position 

PI Direct 1.80 67.9 

IC-100 V-100 Liquid vol. flow 

(std.cond.GV-

1) 

VLV-110 Actuator 

desired position 

PI Revers

e 

11.0 1.00 

IC-103 V-100 Liquid vol. flow 

(std.cond.HL-1) 

VLV-116 Actuator 

desired position 

PI Revers

e 

1.0 0.1 

IC-102 V-101 Liquid vol. flow 

(std. cond. 

VLV-117 Actuator 

desired position 

PI Revers

e 

1.0 0.1 
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Liquid phase ) 

FIC-101 V-106 Liquid vol. flow 

(std. cond. 

Liquid phase ) 

VLV-109 Actuator 

desired position 

PI Revers

e 

11.0 1.00 

IC-104 V-100 Liquid vol. flow 

(std. cond. 

Liquid phase ) 

VLV-106 Actuator 

desired position 

PI Revers

e 

13 1.00 

 

4.5.10 Transfer Function Block 

A transfer function block is a logical operator that takes a specific input and applies a transfer 

function on it to give an output. Transfer function blocks are used to add disturbances in the 

streams. In this study, hydrocarbon feed comes from five different wells. This feed stream is 

susceptible to several disturbances due to fluctuations in pressure, temperature, and flow rate of 

the wells with time. A transfer function block is used to add disturbances to the feed and 

continually vary the flowrate by adding noise. The following general equation relates the input to 

the output using a transfer function:  

Y(s) = G(s) X(s)        (4.2) 

where Y(s), G(s), and X(s) represent the system output, transfer function, and system input, 

respectively. There are several types of transfer functions. A second-order sine wave transfer 

function is used (to make the flow wavy) as follows: 

G(s) = 
𝐾

s2+ ω2                      (4.3) 
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In Equation (3), ω = (1/T) is the frequency of oscillation; T is the period of oscillation; K 

stands for the amplitude of the sinusoid; and s refers to the Laplace transform variable. The 

inverse Laplace of the sine wave transfer function is expressed below: 

g (t) = K sin (ωt)         (4.4) 

The K (gain) is the amplitude ranging from the minimum and maximum values of process 

variable (PV) and output target (OP).  2% PV offset (% of PV span) operational parameter is 

selected for configuration in the parameter section. To add external noise to the feed, 2% 

standard deviation for PV is chosen. VLV-100 position is chosen as the OP target, and liquid 

volume flow (feed) is selected as the source variable shown in Figure 5. The amplitude of the 

sine wave parameter (K value in Equation (3)) is set to 26% with a period (T) of 25 minutes.  

After sizing the equipment and setting up the control strategies, the system is ready for 

simulation in the dynamic mode. Dynamic simulation is essentially a solution of a system of 

ordinary differential equations. It requires setting up a few parameters related to the solver. The 

following properties are selected for the solver: automatic control, units in minutes, acceleration 

0.40, display interval 1.0, real-time factor 0.2, and integration step size 0.5 second. Static head 

contributions and an implicit check valve model are enabled for the operation.  

  

4.6 Measurement Noise 

Measurement noise is an integral part of many process systems that arises in measured data 

from different sensors. This noise is also known as a random error, observational noise, or 

statistical uncertainty. It is combined with measured data but is different from systematic 

measurement errors (Baton, 1997). The systematic error is seen in measurement data due to some 
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external factors such as a calibration error, and physical and/or electromechanical defect in the 

meter (Bevington et al., 1993). With all the outputs of the simulated system, the measurement 

noise of appropriate variance is added. Measurement noise is sampled from a random normal 

distribution. The variance of the measurement noise is set to a fraction of the magnitude of the 

actual value, and a fraction of the normal variation of the variable. In some cases, both factors 

are taken into account. Fig. 4.5 presents the measured feed flowrate data after addition of 

measurement noise. 

 

Fig. 4.5: Normal feed flow with measurement noise.  

4.7 Generation of Faulty Conditions  

In process systems, faults can be classified into three major categories: (i) sensor fault, (ii) 

disturbance, and (iii) actuator fault. The dynamic model can be used to simulate all these 

three types of faults. In this study, two scenarios of disturbance faults and four scenarios of 

actuator faults are simulated. The introduced faults with brief description are provided in 

Table 4.4. 

F
lo

w
ra

te
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S
m

3
/h

) 

Time (Sec.) 
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Table 4.4: Type, location and brief description of corresponding faults. 

Fault 

category 

Type of fault Fault location Description 

 

 

Disturbance 

faults 

High flow rate 

 

Feed The feed flow coming from five 

consecutive well is increased by about 

25% from its rated condition (2.45 × 

105 Sm3/h). 

High 

temperature 

 

Feed The feed temperature is increased by 

5% from the rated temperature (83 ˚C). 

It is found that increasing temperature 

by more than 5% in a faulty state, the 

simulation becomes unstable due to the 

pressure-flow merging problem of the 

plant. 

 

 

 

 

Actuator 

faults 

Fail hold 

 

VLV-101 Fail hold happens typically when the 

valve does not react on power or signal 

loss and remains in the same position. 

This failure can also result from the 

physical failure of the valve. This type 

of fault is not desirable for the process 

where it needs continuous production 

without stopping. 

VLV-102 

Fail open VLV-101 Fail open condition occurs due to the 

loss of input power or signal in the 

actuator. In this situation, the valve 

remains fully open, and hydrocarbons 

flow continuously at its maximum 

without any control. Fail open is a 

safety mechanism for preventing 

overpressure of a blocked line, e.g., in 

the cooling system, or during a 

catastrophic failure. 

VLV-102 

 

4.8 Results and Discussion  

Results from the model validation and the simulation scenarios and corresponding discussions 

are presented in this section. The steady-state simulation results are compared with the 



91 

 

production data from the existing system to validate the model. Also, the dynamic simulation at 

normal and different faulty conditions are analyzed. 

4.8.1 Model Validation  

Steady state model. The model outputs are validated with operational data from an existing well 

provided by Voldsund et al. (2013). The comparison is made for different parameters such as 

pressure, temperature, and flow rate. The validation results of the oil volume flow rate and 

pressure are listed in Tables 4.5 and 4.6.  

Table 4.5: Validation result of fluid flow rate against measured data from Voldsund et al. 

(2013). 

 

Table 4.6: Validation result of pressure value against real data from Voldsund et al. (2013). 

Produced fluid Unit Measure data Simulated value Percentage error 

Export oil bar 32.1 ± 0.3 32.2 1.25% 

Reinjection gas bar 236 ± 2 236 0.85% 

Produced water bar 8.77 ± 0.09 70.0 706% 

To flares bar 9.30 ± 0.09 9.30 0.97% 

To power turbines bar 18.25 ± 0.18 18.25 0.99% 

Produced fluid Unit Measured data Simulated value Percentage error 

Export oil Sm3/h 132.5 ± 0.4 110.2 16.5% 

Reinjection gas 103 Sm3/h 369 ± 17 357 1.4% 

Produced water Sm3/h 67 ± 5 37 40% 

To flares Sm3/h 335 ± 14 320 0.31% 

To power turbines Sm3/h 9630 ± 170 9546 0.9% 
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The simulated values match well with the measured values for most cases except for 

produced water. In the real system, a water treatment process exists where the traces of oil 

are removed. This process is not described in the literature; hence, the conditions assumed in 

the present work might be different from the real conditions, leading to the discrepancy. 

 

4.8.2 Dynamic Model 

The dynamic state of the entire plant is simulated, and the results are presented in this section. 

For each case, the simulation model is executed for a total of 10800 seconds (3 hours) until it 

reaches a stable state. A total of 38 crucial parameters are chosen for data simulation, and three 

variables - flow rate, pressure, and temperature - are considered for each parameter. Therefore, 

total 114 variables (38 × 3) were simulated and measured from the dynamic system. Due to 

space/page constraint, only a few essential variables’ simulation results such as feed, produced 

oil, reinjection gas, turbine, and flare are discussed in this section.  

 

Feed. Based on pressure-flow characteristics, the average hydrocarbon flow rate in the feed 

stream is found to be 2.45 × 105 Sm3/h, which varies approximately ±5%, and it takes around 30 

minutes for one complete cycle. This feed flow also contains a noise level, which is 2% of the 

average flow rate. The other two variables in the feed stream, pressure and temperature, remains 

unchanged, as illustrated in Fig. 4.6.  
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Fig. 4.6: Dynamic response of the feed flowrate, pressure, and temperature. 

 

Produced oil. The maximum flowrate of the produced oil in the dynamic simulation is obtained 

to be 77.87 Sm3/h, while in steady-state, this flow rate is 110.2 Sm3/h. The temperature and 

pressure are also reduced to 49 ± 0.16˚C and 32 bar, respectively. The flow rate of the produced 

oil is reduced to approximately 32 Sm3/h in the dynamic state because the dimensions of the 

equipment and their properties used in the real plant (three-phase and two-phase separators, 

scrubber, coalescer, and holdup liquid percent) are not known; also, the flow rate, pressure, and 

temperature specification of the recycle streams, entering the separation unit, are not known.  

The characteristics of the produced oil are presented in Fig. 4.7. 
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Fig. 4.7: Dynamic response of the produced oil flow rate, pressure, and temperature. 

Reinjection. The maximum flowrate of reinjection gas in the dynamic simulation is estimated to 

be 193910 Sm3/h while in steady-state, this flow rate is 375 × 103 Sm3/h. The flowrate is 

decreased to approximately 1.6 × 103 Sm3/h in the dynamic state compared to the steady-state 

simulation (the same reason as described above for this reduction). The temperature and pressure 

are increased to 127 ± 0.5˚C and 236 bar, respectively, as presented in Fig. 4.8. 
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Fig. 4.8: Dynamic response of the reinjection flow rate, pressure, and temperature. 

Turbine gas. The average flowrate of the turbine gas in the dynamic state is determined to be 

10111 Sm3/h while in the steady-state, this flow rate is 9546 Sm3/h; implying the rate is 

increased to 565 Sm3/h in the dynamic state. The temperature and pressure remain almost 

constant (46.24˚C and 18.25 bar) according to Fig. 4.9. 

 

Fig. 4.9: Dynamic response of the turbine gas flow rate, pressure, and temperature. 

Flare. The maximum flowrate of flare gas obtained from the dynamic simulation is 333 Sm3/h. 

In the steady-state process, this flow rate is 320 Sm3/h. Thus, it is increased by 13 Sm3/h, 

compared to the flowrate of the steady-state simulation. The pressure and temperature remain 

almost constant, which are 47.85˚C and 9.3 bar, respectively (see Fig. 4.10).  
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Fig. 4.10: Dynamic response of the flare gas flow rate, pressure, and temperature. 

 

4.8.3 Dynamic Simulation of System Faults  

Actuator fault for Valve, VLV-101. This valve is located after the first stage of the three-phase 

separator. The light liquid leaving this separator goes to the second stage of the three-phase 

separator through this valve. Although, the actuator fault is simulated for two valves, VLV-101, 

and VLV-102, the result of only one valve (VLV-101) is presented here due to space constraint. 

Fail hold: The simulation is run up to the first 50 minutes in the normal mode. Fail hold fault is 

then activated that remains active for the next 130 minutes. Only the important variables, which 

may cause substantial changes upon the failures, are discussed in this section. The flow rate for 

feed stream to separator 2 (V-101.PV) remains constant at 37.51 Sm3/h without any variation 

while the flow rate in the normal condition varies from 37.35 Sm3/h to 31.11 Sm3/h. The 

temperature is slightly decreased from its standard value 81.35˚C to 81.26˚C. On the other hand, 

the pressure slightly drops to 53.50 bar from its normal value of 53.33 bar.  
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Produced oil (V-102.OP) flow rate is slightly lowered and varies between 76.7 Sm3/h to 74.3 

Sm3/h, where the normal flowrate is within the range of 77.9 Sm3/h and 68.3 Sm3/h. The 

temperature is also reduced and varies around 48˚C, wherein normal condition temperature range 

is 48.9˚C- 49.15˚C. The pressure remains unchanged. 

The flowrate into the recompression unit (VLV-109.OP) is increased from its normal value of 

9656.69 Sm3/h to 9665.05 Sm3/h. The temperature and pressure remain almost the same. Fig. 

4.11 depicts all process variations.  

 

 

Fig. 4.11: Comparative investigation on normal and fail hold faulty conditions for separator, 

produced oil, and recompression. 

 

Fail open: Feed to Separator (V-101.PV), Produced oil (V-102.OP), and recompression output 

(VLV-109.OP) flowrates are increased to 58 Sm3/h, 80 Sm3/h, and 10493 Sm3/h from their 
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average magnitudes of 33.7 Sm3/h, 72.5 Sm3/h, and 9655 Sm3/h, respectively. The separator and 

produced oil flowrates show a sudden high pick of 153.8 Sm3/h and 226.2 Sm3/h for 10 minutes 

during 3200 to 3800 seconds time period.  

The temperature is decreased in all the cases from 81.2˚C, 49˚C, and 122˚C to 80˚C, 47.2˚C, and 

113˚C, respectively, with a sharp depth of 78.42˚C and 47.4˚C in V-101.PV and V-102.OP.  The 

pressure in V-101.PV, and VLV-109.OP is increased to 66.4 bar and 332 bar, respectively while 

the pressure of V-102.OP remains unchanged. The variations of flow rate, temperature, and 

pressure are illustrated in Fig. 4.12. 

 

 

Fig. 4.12: Comparative investigation on normal and fail open faulty condition for 

separator, produced oil, and recompression. 

 



99 

 

The flowrate in the reinjection unit remains almost constants while it is reduced in turbine and 

flare to 10101.7 Sm3/h and 332.6 Sm3/h from their average values 10107.6 Sm3/h and 332.8 

Sm3/h, respectively.  

There are no significant changes in temperature and pressure for all three cases due to fail open 

faults in valve VLV-101, as depicted in Fig. 4.13. 

 

 

Fig. 4.13: Comparison between normal and fail open faulty conditions for reinjection, 

turbine, and flare. 

 

High temperature fault. Upon an increase in the feed (TRF-1.PV) temperature from 82˚C to 

87˚C, the produced oil and recompression flowrates are reduced to 49.7 Sm3/h and 9637.5 Sm3/h 

from their average values of 68.3 Sm3/h and 9654.5 Sm3/h, respectively.  On the other hand, the 

temperature of produced oil (V-102.OP) is slightly increased from 49.1˚C to 49.7˚C while it 

remains almost the same in recompression unit (VLV-109.OP). The pressures of all these three 
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sections are not affected by the temperature fault except in the recompression unit where a 

negligible reduction in the pressure is noticed (see Fig. 4.14).  

 

 

Fig. 4.14: Comparative study on normal and high temperature fault for feed, produced oil, and 

recompression. 

 

The Flowrates in reinjection, turbine, and flare units are lowered to 191684 Sm3/h, 9945 Sm3/h, 

and 328 Sm3/h from their average magnitudes of 191872 Sm3/h, 10108 Sm3/h, and 333 Sm3/h, 

respectively.  On the other hand, the temperature of the turbine and flare are slightly increased to 

46.47˚C and 48.1˚C from normal 46.2˚C and 47.8˚C where this increase is very minor in 

recompression unit (e.g., 127.6˚C to 127.7˚C).  The pressures of all these three cases remain 

unchanged, as demonstrated in Fig. 4.15. 
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Fig. 4.15: Comparative study on normal and high temperature fault for reinjection, turbine, and 

flare. 

 

High flowrate fault. Due to the high flow rate of the feed from 246137.8 Sm3/h to 333823 

Sm3/h, the produced oil and recompression flowrates are increased to 126.7 Sm3/h and 9855.6 

Sm3/h from their average values of 72.5 Sm3/h and 9655.2 Sm3/h, respectively. The temperatures 

of the produced oil and recompression unit are slightly dropped to 48.2˚C and 119.4˚C from 

49˚C and 121.4˚C, respectively, while the temperature of the feed stream is constant. The 

pressures of the feed and recompression unit increase to 112.5 bar and 318 bar from 90 bar and 

312 bar, respectively, where the pressure of the produced oil remains unchanged, as shown in 

Fig. 4.16. 
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Fig. 4.16: Comparative study on normal and high flowrate disturbance fault for feed, produced 

oil, and recompression. 

 

The flowrates of the reinjection, turbine, and flare are increased to 248612 Sm3/h, 12185 Sm3/h, 

and 395 Sm3/h from their average magnitudes of 192994 Sm3/h, 10111 Sm3/h, and 333 Sm3/h, 

respectively. The temperatures in all three cases are dropped to 105.7˚C, 43.8˚C, and 44.5˚C 

from 127.1˚C, 46.3˚C, and 47.86˚C, respectively. The pressure in all these three cases remain 

unchanged, as depicted in Fig. 4.17. 
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Fig. 4.17: Comparative study on normal and high flowrate disturbance fault for reinjection, 

turbine, and flare. 

 

4.9 Conclusions 

A dynamic model for an offshore production facility in the North Sea is introduced and 

simulated using the Aspen HYSYS plant simulator. This work represents the possibilities of 

simulating dynamic responses of oil and gas processing plants during normal and various faulty 

operating conditions. The model is built through considering five producing wells and several 

topside units: separation, export pumping, recompression, reinjection, and fuel treatment units. 

Dynamic responses from each operating unit are recorded and validated with data collected from 

an oil and gas production plant in the Norwegian part of the North Sea. Based on the research 

results, the dynamic simulation can successfully describe the dynamic behaviors of the system. 

There is a good agreement between the model outcomes and the real production data except for 

the produced water from separation units. Several issues related to dynamic simulations are 
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explored and resolved including modification of process flow diagram for convergence, 

implementing and tuning of PID controllers, adding transfer function block in Aspen HYSYS for 

dynamic simulation, and addition of measurement noise to simulate real life conditions. A total 

of six faulty scenarios are introduced and simulated. The developed model can be used to 

simulate similar offshore processing plants with some modifications. It can also be utilized as a 

benchmark system to test monitoring algorithms. 
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Abstract 

Artificial neural network (ANN) has been proved to be a useful tool for fault detection and 

identification. However, application of ANN to process systems is often challenging due to the 

high number of monitored variables, which leads to considering many neurons to model the 

system. The problem is even acute when modelling dynamic processes, as the number of 

variables increases many folds due to inclusion of the lagged variables in the data set. Training 

of such a large scale network is time-consuming and provides poor performance with a high 

error rate. In this paper, principal component analysis (PCA) and dynamic PCA (DPCA) are 

combined with ANN to reduce the dimension of the training data set. PCA or DPCA extracts the 

main features of the measured variables. Instead of raw data, lower dimensional score vectors are 

used to train ANN, where ANN performs the classification for anomaly detection. The PCA-

ANN and DPCA-ANN approaches are implemented and compared with ANN  for processing 

time, fault detection accuracy, and total error rate. Results show that the use of the scores instead 

of the raw data reduces the time to train ANN to a fraction and results in a greater accuracy in 

detection and classification. The proposed approach is successfully validated, considering several 

real-life like faults associated with an existing offshore process platform.  

 

Keywords: Artificial neural networks; Principle component analysis, Dynamic principle 

component analysis, Process monitoring, Fault detection.  
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5.1 Introduction  

The monitoring of offshore oil and gas processing plants is important to prevent catastrophic 

events such as the Ocean Rangers (Dong et al., 2015) and the Deep Water Horizon Blowout 

(ALNabhani, 2018). Process systems usually have a large number of variables containing 

process information that needs to be monitored for detecting and diagnosing possible faults. 

Data-driven approaches, especially the multivariate methods, are suitable to monitor process 

systems due to the ability to handle a high number of variables and to give an early indication of 

a fault. Data based methods do not require any process model or expert knowledge and are easier 

to implement (Qin, 2012; Tidriri et al., 2016). Two types of data-driven Fault Detection and 

Diagnosis (FDD) methods, multivariate statistical analysis, and machine learning approaches are 

widely accepted and applied in various industrial processes. Commonly used multivariate 

statistical analysis methods include principal component analysis (PCA), partial least squares 

(PLS), independent component analysis (ICA), and Fisher discriminant analysis (FDA), whereas 

the machine learning approaches include artificial neural networks (ANNs), neuro-fuzzy 

methods, support vector machine (SVM), Gaussian mixture model (GMM), K-nearest neighbor 

(KNN), and Bayesian network (BN). 

It has been reported that the application of any particular FDD method is not capable of 

fulfilling all the prerequisites for accurate fault detection and diagnosis (Ding et al., 2009; 2011). 

A hybrid model is a unique strategy where several techniques complement each other and 

perform as a collective problem-solving method in one single FDD framework. Many 

researchers have investigated the application of different FDD methods and found that none of 

the individual techniques is adequate to meet all the requirements for a highly accurate and 

efficient  diagnostic system  (Venkatasubramanian et al., 2003c; Seng Ng & Srinivasan, 2010; 
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Tidriri et al., 2016). Chiang et al. (2015) proposed a three-step framework combining Modified 

Distance (DI) and Modified Casual Dependency (CD) to integrate the data-driven and causal 

connectivity-based techniques with the propagation path-based feature. Jiang et al. (2015a) 

modeled a canonical variate analysis (CVA) approach based on the feature representation of 

causal dependency (CD). Jiang et al. (2015b) developed a model integrated canonical variate 

analysis (CVA) and Fisher discriminant analysis (FDA) scheme called CVA–FDA. Jiang & 

Huang (2016) proposed a distributed monitoring system integrating multivariate statistical 

analysis and Bayesian network for large-scale plant-wide processes. Gharahbagheri et al. (2017) 

introduced a model through integration of diagnostic information from various diagnostic tools 

such as Kernel Principle Component Analysis (KPCA) and sensor validation module with 

process knowledge using BN. Deng et al. (2017) designed an enhanced KPCA model called fault 

discriminant enhanced KPCA (FDKPCA). 

These days, the use of machine learning (ML) approaches has become the most alluring and 

effective way to obtain information from large sets of data. ML tools do not require an explicit 

model. The extreme computational power enabled ML to become a popular FDD method 

(Severson et al., 2016). ANN-based fault diagnosis in batch chemical plants has been developed 

where ANN structure is accompanied by a knowledge-based expert system (KBES) in a block-

oriented configuration (Ruiz et al., 2000). ANN-based process monitoring, control, and fault 

detection have been studied and successfully applied to detect sensor faults in the Tennessee 

Eastman (TE) plant. It has been proven that the neural network systems have the ability to 

capture and model the process dynamics, even if the process contains non-linearities (Ahmad and 

Hamid, 2001). A method combining SVM architecture and a knowledge-based approach has 

been proposed to detect the faults in Tennessee Eastman process (Kulkarni et al., 2005). 
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Salahshoor et al. (2010) implemented a model combining multiple classifiers such as support 

vector machine (SVM) with an adaptive neuro-fuzzy inference system (ANFIS) to improve FDD 

tasks. A self-adaptive growing neural network (SAGNN) has been introduced to build an 

automatic structure and parameter tuning process. This algorithm enables the network to add 

nodes and change the structure corresponding to the supervised learning. Also, SAGNN 

combined ANN with a Discrete Wavelet Transform (DWT) to obtain significant features in the 

measured signals (Barakat et al., 2011). An extensive review of ANN architecture and its 

application in chemical industries such as sensor data analysis, fault detection, process 

identification, and control has been presented in the literature (Pirdashti et al., 2013).  Gao & 

Hou (2016) proposed a multi-class support vector machine (SVM) based process supervision and 

fault diagnosis scheme called GS-PCA. In this approach, (i) PCA is used to reduce the feature 

dimensions, (ii) optimization of the SVM parameters is accomplished with the grid search (GS) 

method to increase prediction accuracy with reduced computational load, and (iii) genetic 

algorithm (GA) and particle swarm optimization (PSO) are employed for classification accuracy. 

Yu (2016) proposed (i) a joint local intrinsic and global/local variance preserving projection 

algorithm (JLGLPP) to obtain information from process data and, (ii) local/nonlocal manifold 

regularization-based Gaussian mixture model (LNGMM) to evaluate process data distributions 

with nonlinear and multimodal characteristics. Zhou et al. (2016) developed a novel approach 

called variable contribution k-nearest neighbor (VCkNN) to eliminate the limitations of 

contribution analysis (CA) based kNN in fault isolation applications. A GMM framework 

combining kernel Fisher discriminant analysis (KFDA) and discrete wavelet transform (DWT) 

has been proposed to improve the classification performance of the conventional approaches (Md 

Nor et al., 2017). A distributed Gaussian mixture modeling (GMM) and monitoring mechanism 
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for large-scale plant-wide processes with multiple operating conditions were developed by Zhu 

et al. (2018).  

The focus of this work is to improve classification capability of ANN for high dimensional 

data sets. One of the difficulty with applying ANN to high dimensional process systems is that 

the network size becomes very large; thus, it requires more time to train the network and also 

there is no generalization, leading to poor prediction ability. The problem becomes even harder 

for the dynamic systems. In order to model dynamic systems, lagged variables are added to the 

data matrix which substantially increases the dimension of process data matrix. As a result, the 

network size of the ANN increases dramatically, and the performance of the ANN deteriorates. 

In order to minimize the structure of ANN and improve its performance in fault detection and 

diagnosis, we use PCA to reduce the dimension of the data. PCA is one of the widely used 

dimensionality reduction techniques that transforms original correlated variables to a set of 

uncorrelated variables (Jackson, 1991). A new hybrid methodology is proposed through 

integrating, PCA and DPCA with ANN, referred to as PCA-ANN and DPCA-ANN, respectively. 

The proposed methodology is tested using data from a plant-wide simulation model of a real 

offshore oil and gas processing plant in order to monitor the realistic faults associated in 

production facilities. Cumulative percent variance (CPV) method is used for selecting principal 

components (PC). Then ANN employs this reduced number of PCs to train the model and to 

detect and diagnose faults.  

This paper is organized as follows: Section 5.2 describes the system. Section 5.3 describes 

PCA, DPCA, and ANN based fault detection method. Section 5.4 explains the methodology of 

three different case studies. Section 5.5 discusses the results as well as advantages and 



114 

 

limitations of the proposed techniques. Finally, the results are summarized, and conclusions are 

made on the suitability of the proposed methodology in section 5.6. 

 

5.2 System description  

5.2.1 Process Overview 

The data used in this study is generated by performing a dynamic simulation of an offshore 

production plant. A Norwegian Sea oil and gas platform is chosen for the simulation reported in 

Voldsund et al. (2013). The overall process is divided into well section, production manifold, 

separator unit, export pump unit, recompression, fuel gas treatment, and reinjection unit. 

Hydrocarbons from five wells are  fed into the separation unit through a production manifold. 

The separation unit consists of two three-phase separators, one two-phase separator, and one 

electrostatic coalescer. The oil, gas, and water are separated in the separation unit. From the 

separator unit, oil is fed into the export pump unit; gas is entered into the recompression and 

reinjection unit, and water is sent to the water treatment unit. The produced oil is transported 

through export pipelines, and the water is released into the sea after neutralization. The 

recompression unit includes three scrubbers, compressors, and coolers. The gas from the 

separation unit is compressed to a higher pressure in this section, and the condensate from each 

scrubber is recycled back into the system. The gas from the recompression unit and the 

separation unit is combined and fed to the reinjection unit. This unit has six scrubbers, 

compressors, and coolers where the pressure of the gas is increased to a level that can be injected 

into the reservoir to enhance the production efficiency. The condensate from the scrubbers is 

recycled to the system. A portion of the gas from the separation unit is fed to the fuel treatment 

unit. This unit has two scrubbers, one heater, and one cooler. The gas from the first scrubber 
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enters the flare system where the produced gas from another scrubber is entered to the turbine 

unit. The power required for the normal operation of the platform is generated using the turbine. 

Also, the condensation from each scrubber is recycled to the system. The detail information 

about the system is given in Khaled et al. (2019). The process flow diagram of the plant is 

demonstrated in Fig. 5.1. 

 

Fig. 5.1: Process flow diagram of the Norwegian Sea oil and gas platform with modifications 

from Khaled et al. (2019).   

5.2.2 Process Fault Description 

A total of six faulty scenarios, four actuator faults, and two disturbance faults are simulated. 

Fail open and fail hold faults are considered as actuator faults, while high temperature and high 

flowrate are taken into account as disturbance faults.  
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i. High Flowrate Fault: A step type disturbance is introduced into the feed stream. The flow 

rate of the feed stream is increased by 25% from its rated condition (2.45 × 105 Sm3/h) 

and the simulation data for three hours is recorded. 

ii. High Temperature Fault: The temperature of the feed stream is increased by 5% (from 

83˚C to 87.5˚C). It should be noted that the simulation becomes unstable for a bigger 

disturbance after running a few minutes due to the pressure-flow merging problem of the 

system.  

iii. Actuator Fault: Generally, the actuator fail occurs when the power supply or the activation 

signal in the actuator fails. Usually, there are three basic actuator faults (i) fail open, (ii) 

fail close, and (iii) fail hold. Fail open and fail hold fault are considered for simulation in 

this study.  A fail open type actuator fault is considered for the two valves used in the 

separation unit (once at a time), as shown in Figure 1. The valve is operating at 50% in 

normal condition. When the fault hits the system, it goes from 50% to fully open (e.g., 

100%) and remains open.   Following the fail open fault, a fail hold type actuator fault is 

also considered for the same two valves separately in the separation unit. The valve is 

operating at 50% in normal condition. When the fault hits the system, it is fixed at 50% 

position without changing its flow direction.  

 

5.3 Methods 

In this section, a fault detection and diagnosis method is designed by combining principle 

component analysis (PCA) and artificial neural network (ANN). PCA is utilized to reduce the 

dimensions of the data matrix. PCA projects the data to a lower dimensional space called 

principal components (PCs). Instead of using raw data, the scores of the PCs are used to train the 
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ANN. This allows a compact structure for the ANN. The different components of the monitoring 

scheme are described in the following subsections. 

5.3.1 Preliminaries  

Principle component analysis: PCA is the most extensively used linear dimension reduction 

technique in process industries (McGregor, 1997). This technique conserves the maximum 

variations while discarding very little information (Mallick & Imtiaz, 2013). It delivers new set 

of uncorrelated variables from a pool of correlated variables using linear transformation. For a 

given data set X ∈ ǀRn × m, containing n measurements and m samples, the linear projection can 

be established by applying singular value decomposition (SVD), as given below: 

S  = U ∑ VT         (5.1) 

In Equation (1), U ∈ ǀRn × n and V ∈ ǀRm × m are the orthogonal matrices and ∑ ∈ ǀRn × m represents 

a pseudo diagonal matrix. The loading vectors (P ∈ ǀRn × a) are characterized by the column of U 

that corresponds to the largest “a” singular values. Principle components, also known as scores, 

can be defined as follows:    

T = P T X         (5.2) 

Dynamic principle component analysis: Static PCA does not capture the time correlation of a 

process system as it assumes no time dependency in the existing data points. This features makes 

the PCA suitable only for steady state or time averaged behavior of a system. In order to detect 

the faults in a reasonable time frame, higher frequency data is required, and the model should 

include system dynamics. Dynamic PCA is similar to the static PCA in its approach; however, 

the data matrix also includes time-shifted vectors. DPCA considers the serial correlations by 



118 

 

correlating each observation vector to the previous observations. The process dynamics and time 

dependent relationships among variables can be represented together as follows: 

XD(𝑡) = 

[
 
 
 

𝑋(𝑡)𝑇 𝑋(𝑡 − 1)𝑇 ⋯ 𝑋(𝑡 − 𝑙)𝑇

𝑋(𝑡 − 1)𝑇 𝑋(𝑡 − 1)𝑇 ⋯ 𝑋(𝑡 − 𝑙 − 1)𝑇

⋮ ⋮ ⋱ ⋮
𝑋(𝑡 + 𝑙 − 𝑘)𝑇 𝑋(𝑡 + 𝑙 − 𝑘 − 1)𝑇 ⋯ 𝑋(𝑡 − 𝑘)𝑇 ]

 
 
 
 (5.3) 

 

in which, 𝑙 refers to the number of lagged variables added in the augmented dynamic matrix and 

X(t)T introduces the m-dimensional observation vector at any time instant t. Applying traditional 

PCA on the above augmented matrix in order to have dynamic characteristics results in the 

following expression: 

Y = UT XD          (5.4) 

In Equation (4), U represents the transformation matrix consisting of eigenvectors where Y is the 

projection of extended data matrix XD with a new set of U.  Clearly, DPCA can run into 

dimensionality problem especially for large l. 

 

Artificial neural network: There are two types of ANN: feedforward NN and recurrent NN (Jain 

et al., 1996). In this work, the feedforward NN is used for execution as it does not have stability 

problem like recurrent NN.  Most of the researchers have used neural network applications for 

fault detection and classification through implementing the multilayer feed forward (Kezunovic 

& Rikalo, 1996). The classification performed by a neural network is basically a feed forward 

multilayer perception model with different types of transfer functions used in the layers.   

i. Input layer: ANN takes n number of inputs (X1, X2…Xi), which are represented by the 

following equation:  



119 

 

𝑍𝑖
𝑛 (k) = Xi (k)        (5.5) 

ii. Hidden layer: The hidden layer contains a number of neurons (representing the inputs) 

and associated with weights Wij. The sum of all inputs and their weights can be written as 

follows:  

𝐻𝐿𝑗
ℎ (𝑘) =  ∑ 𝑧𝑖

𝑛𝑚𝑛
𝑖=1  (k). Wij     (5.6) 

The weights Wij are primarily specified as a random value between +1 and -1 in order to 

tune according to the input value.  

iii. Transfer function: The outputs from the hidden layer are allocated to the transfer function 

for further processing. Sigmoid transfer function is widely used as the activation function 

in NN classifier. The function will return 1 if the feed value is larger or identical and will 

return 0 if it is smaller than the threshold value.  The transfer function is given below: 

 𝜎𝑗
ℎ (k) =

1

1+ exp (−𝐻𝐿𝑗
ℎ (k))

     (5.7) 

iv. Output layer: The output function can be represented as:   

𝑂𝑃𝑞
𝑟 (k) =  ∑ 𝜎𝑗

ℎ(𝑘)𝑛ℎ
𝑗  . wjq       (5.8) 

Finally, the output layer can be represented as follows: 

Y = 
1

1+ exp (−𝑂𝑃𝑞
𝑟 (k) )

      (5.9) 

 

5.3.2 Proposed PCA/DPCA-ANN 

In the ANN method, the number of neurons depends on the size of data. The neurons increase 

proportionally in number with an increase in the number of input variables. It is previously 

discussed that the PCA/DPCA tool is used to reduce the dimension of the large data set. 
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Therefore, it is possible to reduce the processing time of ANN by reducing the number of input 

variables to the ANN. Fig. 5.2 illustrates the procedures of the PCA/DPCA-ANN approach.  

 

Fig. 5.2: (a) Flow diagram (b) Illustration of PCA/DPCA-ANN based fault detection and 

diagnosis method. 

In fig. 5.2 (a), a data set ‘X’ including normal and different faulty conditions is collected from 

the historical process data. In the case of dynamic data, ‘X’ will comprise of time-shifted vectors 

to represent a dynamic time-varying data matrix. Then, PCA is applied to the data matrix ‘X’ and 
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the scores are obtained. The number of scores is selected based on equal or greater than 90% of 

CPV explained by the scores. Hence, the data matrix is significantly reduced without losing any 

vital information. The 40% score data from each normal and abnormal condition are taken to 

make training and target data set for the ANN by following one-hot method. Later, the target 

data is split into the testing and validation groups in order to develop an ANN architecture and 

estimate the parameters. A model is created after selecting the appropriate algorithm and network 

layer. This model analyzes the entire data set ‘X’ to identify the faults. If it does not predict the 

conditions accurately, the model needs to be reconstructed. It can be performed by changing the 

percentage of total data assigned to training, testing, and validation phases, and the number of the 

network layers. This process will be continued until the model identifies the faults accurately. 

Fig. 5.2 (b) is a graphical representation of the methodology described in fig. 5.2 (a). 

5.4 Case study 

5.4.1 Data Selection 

The simulation data, including normal condition and six different faulty conditions, is 

generated based on the model developed by Khaled et al. (2019) and described in the previous 

section. The processing unit has a large number of variables measured throughout the plant. A 

total of 105 key variables are selected for monitoring purpose. Variables are organized in 

columns, and measurements are in rows. Data are collected for 3 hours with a sampling intervals 

of 10 seconds; this results in a data matrix of dimension 1,081 × 105. From the data set, 400 data 

samples (which is approximately 40% of the original data) are taken as training samples. 

Therefore, the combined data set considering all scenarios (1 normal and six abnormal) becomes 

(2800 × 105). The data set is divided into two subsets where 70% training data (1960 data 
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samples) are presented to the network during training and the network is adjusted according to its 

error. 15% validation data (420 data samples) are used to measure the network generalization, 

and to halt training when generalization stops improving. This set is used to validate the multi-

layer perception by comparing the actual data with the estimated outputs. 15% testing data (420 

data samples), which have no effect on training, provide an independent measure of network 

performance during and after training. 

The target data is a set of data which is used to classify the input data set in different segments 

based on their nature of pattern. ‘One-hot’ method is followed for specifying the target value. 

The target data set denoted by Y = [Y1 Y2 Y3 Y4 Y5 Y7] consists of binary indicators, “0” and 

“1”. The indicator matrix will have the same dimension as the input data set. In this case, the 

target matrix will have a dimension 2800 × 7, where each block of 400 data samples will indicate 

one specific condition, indicated by one output status of Y. A typical representation of the output 

indicator matrix is shown in Table 5.1, where 𝐼 ∈ 𝑅400×1 is a vector with elements “1”, and 𝑂 ∈

𝑅400×1  is a vector with elements “0”. 

Table 5.1: Target output and the corresponding status. 

Y1 Y2 Y3 Y4 Y5 Y6 Y7  (Output Status) 

I 0 0 0 0 0 0 Normal or Fault Free Condition (Y1) 

0 I 0 0 0 0 0 High Temperature Fault (Y2) 

0 0 I 0 0 0 0 High Flowrate Fault (Y3) 

0 0 0 I 0 0 0 V-101 Fail Hold Actuator Fault (Y4) 

0 0 0 0 I 0 0 V-101 Fail Open Actuator Fault (Y5) 

0 0 0 0 0 I 0 V-102 Fail Hold Actuator Fault (Y6) 

0 0 0 0 0 0 I V-102 Fail Open Actuator Fault (Y7) 
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5.4.2 Case 1: ANN without Data Compression 

This section provides the detailed properties of NN model and the steps to design a network 

model for fault detection and classification.  

The following main steps need to be taken for building a neural network structure: (1) A 

training data set representing all the cases (normal and all fault conditions) that neural network 

takes as the inputs; (2) Choosing a training algorithm; (3) Train the NN to create a model; (4) 

Test the NN model with an untrained data set including the normal and faulty data. In this work, 

the proposed fault detection and diagnosis approach is based on multi-layer feedforward network 

with sigmoid hidden neurons and linear output neurons (fit net). It can fit multi-dimensional 

mapping problems arbitrarily well, given consistent data and enough neurons in its hidden layer. 

Levenberg-Marquardt backpropagation algorithm is used to train the model by minimizing root 

mean square (RMS) error.  

i. Training data set: We use the data set 'X' which is a 2800 × 105 matrix (as described at 

the beginning of this section) to train the model. Normally the number of hidden layers 

(and the number of neurons) are determined by the trial and error to attain the best fit. In 

this study, 20 hidden layers are chosen to train the network. Table 5.2 shows the 

comparison between 2, 10, 20, and 30 hidden layers based on MSE, accuracy rate and 

processing time.  
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Table 5.2: Comparison between 2, 10, and 20 hidden layers based on SME, accuracy and 

processing time. 

 

It is clear from the above table that the use of 2 hidden layers gives maximum error and lower 

accuracy rate. The accuracy of 20 hidden layers is more prominent than 10 hidden layers, where 

SME for both layers is almost the same. For 30 hidden layers, the processing time is significantly 

high compared to the hidden layers 10 and 20. Though the accuracy rate is increased a little, it is 

not practical to consider such higher processing time. After comparing all those factors, 20 

hidden layers have been chosen in this study. Fig. 5.3 shows the validation performance for 20 

hidden layers.  

 

Fig. 5.3: Validation performance plot for 20 hidden layers. 

Hidden Layer Mean Square Error (MSE) Accuracy Processing Time 

2 0.0812 57.00% 1 minutes 26 seconds 

10 4.06E-06 81.00% 5 minutes 52 seconds 

20 1.10E-05 82.00% 7 minutes 39 seconds 

30 9.67E-05 84.00% 26 minutes 50 seconds 
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ii. Classification of fault using ANN model:  To conduct fault classification, a model is 

generated after training the network. Each cluster formed in the clustering progression is 

allocated a level based on different types of patterns. The goal of the network model is to 

classify new patterns  based on the evidence learned during the training period. The 

classification is mainly conducted on the basis of the Euclidean distance between new 

pattern and the cluster center. If the distance of a new pattern becomes smaller compared 

to the radius of any closest cluster, it will be considered a new member of this existing 

cluster. On the other hand, if this distance becomes greater, compared to the radius of the 

nearer cluster, the new pattern will be assigned a label based on the class membership on 

the three adjacent clusters.   

5.4.3 Case 2: Combining PCA with ANN 

This section describes the proposed ANN model linked with PCA for fault detection and 

classification. Since the number of variables is large, the nodes of input layer for the ANN 

structure are also very high. PCA is employed to reduce the dimension of the data set with a goal 

to obtain a more parsimonious structure for the ANN. The complete procedure is described in 

Section 3.2 and Figure 2. Here, we briefly describe the PCA used in each data set of (1081 × 

105) to reduce the dimensions. CPV is checked for all principle components or scores and 

continued until it reaches a certain percentage. It is observed that 20 principal components (PCs) 

explain 91% CPV. Therefore, the first 20 PCs are retained, and the dimension of original data set 

is reduced from (1081 × 105) to (1081 × 20) data matrix. The graphical representation of PCs 

with respect to variances (e.g., scree plot) is depicted in Fig. 5.4. 
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Fig. 5.4: Scree plot for the variance contribution of 25 principle components. 

Following the data reduction, the same neural network algorithm described in Section 3.2 is 

trained using newly constructed scores (T2800 × 20) obtained through projection of the original data 

set (X2800 × 105). The validation and testing data are also similar to Case 1 where 70% of the data 

for training, 15% of the data for validation and 15% of the data for testing are used. The target 

data set with corresponding output status and the number of hidden layers are also the same as 

Case 1 except the number of input nodes to the neural network is reduced to 20 compared to 105 

for Case 1. Subsequently, the trained model is used for detection and classification of faults. 

5.4.4 Case 3: Combining DPCA with ANN 

The procedure for training the model is similar to that described in Section 3.2 with the goal 

to obtain a parsimonious structure of the ANN. The only difference between this case and PCA-

ANN is the construction of data matrix X. In order to capture the dynamic relationship among 

the variables, an augmented data set is created including the lagged variables. In this study, we 

take into account 4 time shifted variables, X(t), X(t-1), X(t-2), and X(t-3).  The original data set 

has the dimension of (1078 × 105) and with additional 3 time shifted variables; the data matrix 
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has the size of (1078 × 420), which exhibits a significant increase in the data size and justifies 

some measures for dimension reduction. Similar to Case 2, PCA is applied on the augmented 

data matrix (1078 × 420). It is found that 90% CPV are captured by 25 scores. Therefore, only 

the first 25 PCs are retained for training, implying that the dimension of the original data set is 

significantly reduced. The graphical representation of PCs with variances is shown in Fig. 5.5.  

 

Fig. 5.5: Change in cumulative percent variance with the number of PC’s  

 

5.5 Results and Discussion  

The main goal for the study is to solve the dimensionality problem in applying ANN to large 

scale systems. The simulation is performed in MATLAB and the system configuration of the 

computer is given in Table 2. The processing time varies, depending on the system 

configuration. We compare the neural network structure, processing time, and the FDD 

performance of the three methods: ANN, PCA-ANN, and DPCA-ANN. Among these three 

methods, DPCA-ANN deals with a large number of variables due to addition of the lagged 

variables in the data matrix.  
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5.5.1 Processing Time  

The rating and specifications of the PC used for simulation are listed in Table 5.3.  

 

 

Table 5.3: System configuration of the PC. 

 

 

 

Training the ANN without any data compression takes 7 minutes and 39 seconds, PCA-ANN 

takes 1 minutes 35 seconds, and DPCA-ANN takes 1 minutes 36 seconds for classifying the 

faults , as presented in Fig. 5.6.  

 

 

Fig. 5.6: Processing time for ANN, PCA-ANN, and DPCA-ANN based FDD methods. 

 

 

7.39

1.35

1.36

0 1 2 3 4 5 6 7 8

ANN

PCA-ANN

DPCA-ANN

TIME (MINUTES)

Rating Specification 

Processor Intel(R) Core(TM) i3-2370M CPU @ 2.40GHz 2.40 GHz.  

Installed memory (RAM) 4.00 GB (3.38 GB usable) 

System type 32-bit Operating System 
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5.5.2 Fault Detection and Diagnosis Performance 

The three diagnosis methods are tested for six different types of faults. Confusion matrices for 

ANN, PCA-ANN, and DPCA-ANN systems are presented in Tables 5.4 to 5.6.    

The confusion matrix for ANN based fault detection and its characteristics is shown in Table 5.4. 

Table 5.4: Confusion matrix for ANN without data compression. 

     Predicted  
 
Actual 

Normal 

Condition 

Fault 1 

(HF) 

Fault 2 

(HT) 

Fault 3 

(FH-

V101) 

Fault 4 

(FO-

V101) 

Fault 5 

(FH-

V102) 

Fault 6 

(FO-

V102) 

Normal  443 0 0 0 0 638 0 

Fault 1 (HP) 0 719 0 0 0 362 0 

Fault 2 (HT) 0 0 1081 0 0 0 0 

Fault 3 (FH-

V101) 0 0 0 1081 0 0 0 

Fault 4 (FO-

V101) 0 0 0 0 765 316 0 

Fault 5 (FH-

V102) 0 0 0 0 0 1081 0 

Fault 6 (FO-

V102) 0 0 0 0 0 0 1081 

 

It is found that ANN detects high temperature fault (HT), fail hold fault (FH-V101), fail hold 

fault (FH-V102), and fail open fault (FO-V102) accurately. However, it falsely identifies normal 

condition as high flowrate fault (HF) and fail open fault (FO-V101). The performances of these 

three cases are 40%, 66%, and 70%, respectively. The Overall accuracy which can be defined as 

TP

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (TP, TN, FP, and FN represent true positive, true negative, false positive and false 

negative, respectively.) is obtained to be 82%.    
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Table 5.5 summarizes the vital information on the confusion matrix for ANN and PCA based 

fault detection. 

Table 5.5: Data based on confusion matrix while using the PCA based ANN model. 

     Predicted  

 

Actual 

Normal 

Condition 

Fault 1 

(HF) 

Fault 2 

(HT) 

Fault 3 

(FH-

V101) 

Fault 4 

(FO-

V101) 

Fault 5 

(FH-

V102) 

Fault 6 

(FO-

V102) 

Normal  932 0 0 0 0 149 0 

Fault 1 (HP) 0 1081 0 0 0 0 0 

Fault 2 (HT) 0 0 1081 0 0 0 0 

Fault 3 (FH-

V101) 0 0 0 1081 0 0 0 

Fault 4 (FO-

V101) 0 0 0 3 1078 0 0 

Fault 5 (FH-

V102) 35 0 0 0 0 1046 0 

Fault 6 (FO-

V102) 0 0 0 0 0 5 1076 

 

The confusion matrix (see Table 4) shows that PCA based ANN detects high flowrate fault (HF), 

high temperature fault (HT), and fail hold fault (FH-V101) accurately. On the other hand, it 

detects other four conditions with small false alarm rate. The detection rate of these 4 cases are 

above 95% except the first case (86%) as the false alarm is comparatively higher (149) than the 

other 3 conditions (3, 35, and 5).  The overall accuracy is found 97% for this application.   

The confusion matrix for the ANN and DPCA based fault detection is presented in Table 5.6. 

 

 

 



131 

 

Table 5.6: Performance evaluation of DPCA based ANN model based on confusion matrix. 

 

It is concluded from the confusion matrix that the DPCA based ANN technique is able to 

identify all the normal and faulty conditions almost accurately with a negligible false alarm rate. 

The detection rates for all conditions are above 94%, implying a very satisfactory performance. 

Also, the overall precision is 98%.    

 

5.6 Conclusions 

In this paper, an effective strategy obtained through integrating PCA/DPCA and NN is 

proposed for improving the performance of conventional NN for large-scale systems. Noisy 

measurement data in regular operation and different faulty conditions are collected for testing 

purposes from the simulation/modeling of an offshore oil and gas processing plant. Single ANN, 

static PCA-ANN, and DPCA-ANN models are implemented to detect and classify the faults, 

accordingly. It is clear from the results that applying ANN without data compression takes not 

     Predicted  
 
Actual 

Normal 

Condition 

Fault 1 

(HF) 

Fault 2 

(HT) 

Fault 3 

(FH-

V101) 

Fault 4 

(FO-

V101) 

Fault 5 

(FH-

V102) 

Fault 6 

(FO-

V102) 

Normal  1012 1 0 0 0 68 0 

Fault 1 (HP) 0 1075 6 0 0 0 0 

Fault 2 (HT) 0 0 1072 9 0 0 0 

Fault 3 (FH-

V101) 0 0 0 1069 12 0 0 

Fault 4 (FO-

V101) 0 0 0 0 1066 15 0 

Fault 5 (FH-

V102) 4 0 0 0 0 1059 18 

Fault 6 (FO-

V102) 0 0 0 0 0 0 1081 
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only long processing time, also leads to poor accuracy. PCA-ANN technique takes less 

processing time with a better accuracy level except it detects the normal condition 86 percent. 

The DPCA-ANN approach takes marginally more processing time, compared to PCA-ANN 

depending on the number of lagged variables. DPCA-ANN delivers slightly higher accuracy, 

compared to the PCA-ANN. The lowest accuracy for any individual case for the DPCA-ANN 

system is above 94 percent, which is comparatively much better than the other two approaches.  
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Chapter 6 

Conclusion 

 

Offshore oil and gas platforms are complicated and remarkably unified systems that 

continuously face substantial changes in the field properties and functioning strategies over time. 

In this study, a dynamic model for an offshore production plant in the North Sea is simulated. 

The model contains several producing wells and topside units. Dynamic responses from each 

section are verified and validated with the collected, measured data. Besides, several issues 

associated with dynamic simulation, such as implementing controllers, transfer function block, 

and measurement noise are introduced to simulate real-life conditions. It is shown that the 

HYSYS simulation can successfully predict the dynamic behaviors during normal and various 

faulty operating conditions of the plant.  

Implementation of ANN is time-consuming and provides poor performance in large scale 

data. A hybrid approach integrating PCA/DPCA and ANN is proposed to mitigate the 

limitations. PCA/DPCA extracts the main features of the measured variables, whereas the ANN 

uses these lower-dimensional score vectors to train the network instead of the whole data set. 

The proposed PCA-ANN and DPCA-ANN approaches are implemented and compared with 

conventional ANN. Results show that the proposed model has higher accuracy and less time-

consuming in detecting and classifying the faults.  
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6.1 Summary  

In chapter 1, the introduction and basic ideas of system modeling, simulation, and monitoring 

techniques are explained. Research background and the historical development of different 

simulation software are briefly discussed. Different commercial simulation software, their 

implementation, and configurations are also introduced.   

In chapter 2, Recent literature is reviewed to gain comprehensive knowledge about various 

monitoring and simulation methods. The review of existing methods is essential before making 

further efforts to develop a new approach. Moreover, detail state-of-the-art techniques for both 

monitoring and simulation are reviewed.   

In chapter 3, a steady-state framework of an existing North Sea oil and gas platform is carried 

out. The model is designed based on the measurement data of a real production day. The models 

have been formulated considering several producing wells and different surface facilities. The 

result of each processing unit of the steady-state model is compared and validated. Finally, the 

result concludes that this steady-state model successfully met all the requirements similar to the 

real processing platform.  

In chapter 4, the steady-state model is transformed into a dynamic state, and the requirements 

for the transition, such as sizing, dimensioning, etc. are performed. Few necessary modifications 

in the separation unit, recompression unit, recycle streams, and the mixers are done in order to 

maintain the pressure-flow relation. Many PID controllers, such as level controller (LC), flow 

controller (FC), etc. are implemented to keep a consistent flow. Measurement noise is added to 

the feed, and two types of fault: (i) Actuator fault and (ii) Disturbance fault are investigated. A 
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total of six faulty scenarios (two fail open, two fail holds, high temperature, and high flowrate) 

are examined.  

In chapter 5, performance evaluation of different FDD methods: ANN, PCA-ANN, and 

DPCA-ANN are carried out. A generic procedure to evaluate efficiency is proposed in this 

chapter. Each method is implemented separately to detect and identify the six faults generated in 

section 4. the processing time, accuracy, and error rate in each case are recorded. The ANN 

method takes 7 minutes, and 39 seconds with 82% accuracy, PCA-ANN takes 1 minute 35 

seconds with 97% accuracy, and DPCA-ANN method takes 1 minute and 36 seconds with 98% 

accuracy. The proposed PCA/DPCA-ANN technique in this thesis shows the best efficiency 

performance considering the time and accuracy, which can serve as a suitable FDD technique in 

a large scale system. 

6.2 Future Works  

The recommended future research directions include:  

1. The real dimension and liquid holdup of the equipment (separators, electrostatic 

coalescer, scrubbers, heaters and coolers) can be studied in future for more accurate 

dynamic results.  

2. Practical investigation about the water treatment process and recycles (such as how they 

are adding in different units without disrupting the pressure requirement and maintaining 

proper pressure-flow relation within the system) can be carried out.  

3. In this work, in build ANN MATLAB tool is used for pattern recognition. Programable 

ANN can be used to optimize the output by modifying the weight factors and the number 

of neurons in hidden layers. 
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4. Different dimension reduction techniques such as PLS, FDA etc. can be conducted in the 

future to validate its performance.        

5. More faults associated in offshore plant (such as sensor faults) can be incorporated. 

 

 


