8,237 research outputs found

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    Adaptive Online Sequential ELM for Concept Drift Tackling

    Get PDF
    A machine learning method needs to adapt to over time changes in the environment. Such changes are known as concept drift. In this paper, we propose concept drift tackling method as an enhancement of Online Sequential Extreme Learning Machine (OS-ELM) and Constructive Enhancement OS-ELM (CEOS-ELM) by adding adaptive capability for classification and regression problem. The scheme is named as adaptive OS-ELM (AOS-ELM). It is a single classifier scheme that works well to handle real drift, virtual drift, and hybrid drift. The AOS-ELM also works well for sudden drift and recurrent context change type. The scheme is a simple unified method implemented in simple lines of code. We evaluated AOS-ELM on regression and classification problem by using concept drift public data set (SEA and STAGGER) and other public data sets such as MNIST, USPS, and IDS. Experiments show that our method gives higher kappa value compared to the multiclassifier ELM ensemble. Even though AOS-ELM in practice does not need hidden nodes increase, we address some issues related to the increasing of the hidden nodes such as error condition and rank values. We propose taking the rank of the pseudoinverse matrix as an indicator parameter to detect underfitting condition.Comment: Hindawi Publishing. Computational Intelligence and Neuroscience Volume 2016 (2016), Article ID 8091267, 17 pages Received 29 January 2016, Accepted 17 May 2016. Special Issue on "Advances in Neural Networks and Hybrid-Metaheuristics: Theory, Algorithms, and Novel Engineering Applications". Academic Editor: Stefan Hauf

    Learning to detect video events from zero or very few video examples

    Get PDF
    In this work we deal with the problem of high-level event detection in video. Specifically, we study the challenging problems of i) learning to detect video events from solely a textual description of the event, without using any positive video examples, and ii) additionally exploiting very few positive training samples together with a small number of ``related'' videos. For learning only from an event's textual description, we first identify a general learning framework and then study the impact of different design choices for various stages of this framework. For additionally learning from example videos, when true positive training samples are scarce, we employ an extension of the Support Vector Machine that allows us to exploit ``related'' event videos by automatically introducing different weights for subsets of the videos in the overall training set. Experimental evaluations performed on the large-scale TRECVID MED 2014 video dataset provide insight on the effectiveness of the proposed methods.Comment: Image and Vision Computing Journal, Elsevier, 2015, accepted for publicatio

    An Extreme Learning Machine-Relevance Feedback Framework for Enhancing the Accuracy of a Hybrid Image Retrieval System

    Get PDF
    The process of searching, indexing and retrieving images from a massive database is a challenging task and the solution to these problems is an efficient image retrieval system. In this paper, a unique hybrid Content-based image retrieval system is proposed where different attributes of an image like texture, color and shape are extracted by using Gray level co-occurrence matrix (GLCM), color moment and various region props procedure respectively. A hybrid feature matrix or vector (HFV) is formed by an integration of feature vectors belonging to three individual visual attributes. This HFV is given as an input to an Extreme learning machine (ELM) classifier which is based on a solitary hidden layer of neurons and also is a type of feed-forward neural system. ELM performs efficient class prediction of the query image based on the pre-trained data. Lastly, to capture the high level human semantic information, Relevance feedback (RF) is utilized to retrain or reformulate the training of ELM. The advantage of the proposed system is that a combination of an ELM-RF framework leads to an evolution of a modified learning and intelligent classification system. To measure the efficiency of the proposed system, various parameters like Precision, Recall and Accuracy are evaluated. Average precision of 93.05%, 81.03%, 75.8% and 90.14% is obtained respectively on Corel-1K, Corel-5K, Corel-10K and GHIM-10 benchmark datasets. The experimental analysis portrays that the implemented technique outmatches many state-of-the-art related approaches depicting varied hybrid CBIR system

    Optimal feature selection for learning-based algorithms for sentiment classification

    Get PDF
    Sentiment classification is an important branch of cognitive computation—thus the further studies of properties of sentiment analysis is important. Sentiment classification on text data has been an active topic for the last two decades and learning-based methods are very popular and widely used in various applications. For learning-based methods, a lot of enhanced technical strategies have been used to improve the performance of the methods. Feature selection is one of these strategies and it has been studied by many researchers. However, an existing unsolved difficult problem is the choice of a suitable number of features for obtaining the best sentiment classification performance of the learning-based methods. Therefore, we investigate the relationship between the number of features selected and the sentiment classification performance of the learning-based methods. A new method for the selection of a suitable number of features is proposed in which the Chi Square feature selection algorithm is employed and the features are selected using a preset score threshold. It is discovered that there is a relationship between the logarithm of the number of features selected and the sentiment classification performance of the learning-based method, and it is also found that this relationship is independent of the learning-based method involved. The new findings in this research indicate that it is always possible for researchers to select the appropriate number of features for learning-based methods to obtain the best sentiment classification performance. This can guide researchers to select the proper features for optimizing the performance of learning-based algorithms. (A preliminary version of this paper received a Best Paper Award at the International Conference on Extreme Learning Machines 2018.)Accepted versio

    Reduction of False Positives in Intrusion Detection Based on Extreme Learning Machine with Situation Awareness

    Get PDF
    Protecting computer networks from intrusions is more important than ever for our privacy, economy, and national security. Seemingly a month does not pass without news of a major data breach involving sensitive personal identity, financial, medical, trade secret, or national security data. Democratic processes can now be potentially compromised through breaches of electronic voting systems. As ever more devices, including medical machines, automobiles, and control systems for critical infrastructure are increasingly networked, human life is also more at risk from cyber-attacks. Research into Intrusion Detection Systems (IDSs) began several decades ago and IDSs are still a mainstay of computer and network protection and continue to evolve. However, detecting previously unseen, or zero-day, threats is still an elusive goal. Many commercial IDS deployments still use misuse detection based on known threat signatures. Systems utilizing anomaly detection have shown great promise to detect previously unseen threats in academic research. But their success has been limited in large part due to the excessive number of false positives that they produce. This research demonstrates that false positives can be better minimized, while maintaining detection accuracy, by combining Extreme Learning Machine (ELM) and Hidden Markov Models (HMM) as classifiers within the context of a situation awareness framework. This research was performed using the University of New South Wales - Network Based 2015 (UNSW-NB15) data set which is more representative of contemporary cyber-attack and normal network traffic than older data sets typically used in IDS research. It is shown that this approach provides better results than either HMM or ELM alone and with a lower False Positive Rate (FPR) than other comparable approaches that also used the UNSW-NB15 data set

    An Intelligent Multi-Resolutional and Rotational Invariant Texture Descriptor for Image Retrieval Systems

    Get PDF
    To find out the identical or comparable images from the large rotated databases with higher retrieval accuracy and lesser time is the challenging task in Content based Image Retrieval systems (CBIR). Considering this problem, an intelligent and efficient technique is proposed for texture based images. In this method, firstly a new joint feature vector is created which inherits the properties of Local binary pattern (LBP) which has steadiness regarding changes in illumination and rotation and discrete wavelet transform (DWT) which is multi-resolutional and multi-oriented along with higher directionality. Secondly, after the creation of hybrid feature vector, to increase the accuracy of the system, classifiers are employed on the combination of LBP and DWT. The performance of two machine learning classifiers is proposed here which are Support Vector Machine (SVM) and Extreme learning machine (ELM). Both proposed methods P1 (LBP+DWT+SVM) and P2 (LBP+DWT+ELM) are tested on rotated Brodatz dataset consisting of 1456 texture images and MIT VisTex dataset of 640 images. In both experiments the results of both the proposed methods are much better than simple combination of DWT +LBP and much other state of art methods in terms of precision and accuracy when different number of images is retrieved.  But the results obtained by ELM algorithm shows some more improvement than SVM. Such as when top 25 images are retrieved then in case of Brodatz database the precision is up to 94% and for MIT VisTex database its value is up to 96% with ELM classifier which is very much superior to other existing texture retrieval methods

    A reduced labeled samples (RLS) framework for classification of imbalanced concept-drifting streaming data.

    Get PDF
    Stream processing frameworks are designed to process the streaming data that arrives in time. An example of such data is stream of emails that a user receives every day. Most of the real world data streams are also imbalanced as is in the stream of emails, which contains few spam emails compared to a lot of legitimate emails. The classification of the imbalanced data stream is challenging due to the several reasons: First of all, data streams are huge and they can not be stored in the memory for one time processing. Second, if the data is imbalanced, the accuracy of the majority class mostly dominates the results. Third, data streams are changing over time, and that causes degradation in the model performance. Hence the model should get updated when such changes are detected. Finally, the true labels of the all samples are not available immediately after classification, and only a fraction of the data is possible to get labeled in real world applications. That is because the labeling is expensive and time consuming. In this thesis, a framework for modeling the streaming data when the classes of the data samples are imbalanced is proposed. This framework is called Reduced Labeled Samples (RLS). RLS is a chunk based learning framework that builds a model using partially labeled data stream, when the characteristics of the data change. In RLS, a fraction of the samples are labeled and are used in modeling, and the performance is not significantly different from that of the 100% labeling. RLS maintains an ensemble of classifiers to boost the performance. RLS uses the information from labeled data in a supervised fashion, and also is extended to use the information from unlabeled data in a semi supervised fashion. RLS addresses both binary and multi class partially labeled data stream and the results show the basis of RLS is effective even in the context of multi class classification problems. Overall, the RLS is shown to be an effective framework for processing imbalanced and partially labeled data streams
    • …
    corecore