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Learning to detect video events from zero or very
few video examples

Christos Tzelepis, Damianos Galanopoulos, Vasileios Mezaris, and Ioannis Patras

Abstract—In this work we deal with the problem of high-level
event detection in video. Specifically, we study the challenging
problems of i) learning to detect video events from solely a
textual description of the event, without using any positive video
examples, and ii) additionally exploiting very few positive training
samples together with a small number of “related” videos. For
learning only from an event’s textual description, we first identify
a general learning framework and then study the impact of
different design choices for various stages of this framework. For
additionally learning from example videos, when true positive
training samples are scarce, we employ an extension of the
Support Vector Machine that allows us to exploit “related” event
videos by automatically introducing different weights for subsets
of the videos in the overall training set. Experimental evaluations
performed on the large-scale TRECVID MED 2014 video dataset
provide insight on the effectiveness of the proposed methods.

Index Terms—Video event detection, textual event description,
zero positive examples, few positive examples, related videos

I. INTRODUCTION

H IGH-level (or complex) video event detection is the
problem of finding, within a set of videos, which of

them depict a given event. Typically, an event is defined as an
interaction among humans or between humans and physical
objects [1]. Some examples of complex events are those
defined in the Multimedia Event Detection (MED) task of
the TRECVID benchmarking activity [2], [3]. For instance, in
MED 2014 [2], the defined complex events include Attempting
a bike trick, Cleaning an appliance, or Beekeeping, to name
a few.

The detection of such events in video has recently drawn
significant attention in a wide range of applications, including
video annotation and retrieval [1], video organization and
summarization [4], or surveillance applications [5]. In [6],
Brown studies how high-level events play a substantial role
in the mechanism of structuring memories and recalling past
experiences. This leads to the expectation that event-based
organization of video content can significantly contribute to
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bridging the existing semantic gap between human and ma-
chine understanding of multimedia content.

There are several challenges associated with building an
effective detector of video events. One of them is finding
a video representation that reduces the gap between the
traditional low-level audio-visual features that can be extracted
from the video and the semantic-level actors and elementary
actions that are by the definition the constituent parts of an
event. In this direction, several works have shown the impor-
tance of using simpler visual concepts as a stepping stone
for detecting complex events (e.g. [7], [8]). Another major
challenge is to learn an association between the chosen video
representation and the event or events of interest; for this,
supervised machine learning methods are typically employed,
together with suitably annotated training video corpora. While
developing efficient and effective machine learning algorithms
is a challenge in its own right, finding a sufficient number
of videos that depict the event so as to use them as positive
training samples for training any machine learning method is
also not an easy feat. In fact, video event detection is even
more challenging when the available positive training samples
are limited, or even non-existent; that is, when one needs to
train an event detector using only textual information that a
human can provide about the event of interest.

In this work we study the problems of i) learning an event
detector solely from a textual description of the event, without
using any positive video examples, and ii) learning from very
few positive training samples together with a small number of
“related” videos. The paper is organized as follows. In Section
II, related work in video event detection using zero or a few
positive examples is reviewed. In Section III, we present and
examine different design choices for a framework that learns
video event detectors based solely on textual information for
training, while in Section IV the combination of the above
methods with learning from a few positive examples, as well
as from related training examples, is examined. Results of the
application of the proposed techniques to the TRECVID MED
2014 dataset are provided in Section V. Finally, conclusions
are drawn and discussed in Section VI.

II. RELATED WORK

There are two broad categories concerning the learning
conditions under which a video event detector is trained. That
is, training may be done either by using a number of positive
and negative training video examples, or using no video
examples at all. Within the first category, one can distinguish
between i) methods assuming that positive video examples are
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in abundance, and ii) methods explicitly embracing the fact
that the positive samples that are available for training are
typically limited, in practice. Regardless of the assumptions
on the number of positive training samples, it is assumed
that negative samples can be found without much effort, and
thus the number of negative video samples is not a restrictive
parameter in the process of learning. The above training
conditions are typically simulated by the 100Ex and 10Ex
MED subtasks of TRECVID [3], where 100 and 10 positive
video samples are available for training video event detectors,
respectively.

Training based solely on a textual description of each event
class is reported in a few works, mostly in the context of the
TRECVID MED 0Ex and Semantic Query (SQ) subtasks [3],
where no positive video examples are provided. Instead, event
detectors are trained using textual resources, which typically
include the event’s title, a short free-form text explanation of
what may be depicted in a video that belongs to this event
class, as well as brief references to visual and audio cues that
are typically expected to be present in such a video (Fig. 1).

A. Learning from zero positive examples

Learning from zero positive examples has recently drawn
significant attention in various learning problems, due to its
challenging nature and the extensive applicability it has. For
instance, due to the rapidly increasing number of images
on the Web, extensive research efforts have been devoted in
multi-label, zero-example (or few-example) classification in
images [9]. Similarly, a method for zero-example classification
of fMRI data was proposed in [10]. In [11], a method for
predicting unseen image classes from a textual description,
using knowledge transfer from textual to visual features, was
proposed.

In the video domain, learning from zero positive exam-
ples is investigated primarily in the context of video event
detection. In [12] this problem is addressed by transforming
both the event’s textual description and the visual content
of un-classified videos in a high dimensional concept-based
representation, using a large pool of concept detectors; then
relevant videos are retrieved by computing the similarities
between these representations. Similarly, in [13], each event
class title is used as an input query to a text retrieval system,
and the most relevant documents are retrieved. The vector-
ized words of these documents are then projected into the
most semantically similar concepts from different modalities,
such as ASR (Automatic Speech Recognition), OCR (Optical
Character Recognition), and high-level features coming from
applying audio-visual and DCNN (Deep Convolutional Neural
Networks) concept detectors. Using these concepts, relevant
videos are retrieved, and late fusion is used for combining the
different ranked lists of videos so as to generate the final event
detection results. In [14], multiple low-level representations
using both the visual and the audio content of the videos are
extracted, along with higher-level semantic features coming
from ASR transcripts, OCR, and off-the-shelf video concept
detectors. This way, both audio-visual and textual features
are expressed in a common high-dimensional concept space,

where the computation of similarity is possible. In [15], logical
operators are used to discover different types of composite
concepts, which leads to better event detection performance.

Moreover, in [16], a relevance feedback approach is used in
order to improve event detection results in the zero-example
problem using features computed from several modalities. The
main idea is to use the textual information that describes the
event class in order to create queries for each modality. Then,
the system results in ranked video lists, one per each modality.
The top videos from these lists are used as a “pseudo label”
video set on which a joint model is trained, and a new ranked
list is produced and used for creating a new “pseudo label”
set; this process is iterated a few times.

In [17], E-Lamp was proposed, which is a zero-example
event detection system made of four subsystems. The first
one is an off-line indexing component, while the rest of them
compose the on-line event search module. In the off-line
module, each video is represented with 4043 visual concepts
along with ASR and OCR high-level features. Then, in the
on-line search module, the user-specified event description is
translated into a set of relevant concepts, called system query.
This system query is used to retrieve the videos that are most
relevant to the event. Finally, a pseudo-relevance feedback
approach is exploited in order to improve the results.

Our approach goes beyond the classic semantic similarity
comparison between a given event title (or other user-specified
event cues) and each concept title from a concept pool. We try
to enrich each concept by automatically searching in Google or
Wikipedia in order to find more information for it; this enables
finding semantic similarities between events and concepts
more effectively. Exploiting Google Search or Wikipedia is,
to the best of our knowledge, novel.

B. Learning from a few positive examples

A limited number of studies have considered the problem
of learning video event detectors from very few (e.g. 10)
positive training examples [18], [19], [20], [21]. In [18], visual
static (e.g. SIFT [22], Transformed Color Histogram [23]), and
motion (e.g. MoSIFT [24], Improved Dense Trajectories [18])
descriptors are used, along with the Fisher Vector encoding
scheme [25], [26], [27]. ASR and OCR techniques are also
used for exploiting audio and textual information in video
streams, as well as audio features and visual features based
in DCNNs trained in ImageNet [28]. DCNN-based features
typically comprise one or more of the network’s hidden
layers [29], providing high discriminative power [5]. Based
on these features, video event detectors are trained using
multiple SVM classifiers and fusion techniques (early and
late) for combining different modalities. In SESAME [19], the
authors also use DCNN classification scores as video features,
which are subsequently fed to a kernel SVM for obtaining
event detectors. ASR and low-level audio features are also
extracted, and a logistic regression-based fusion technique is
used for combining scores from different modalities in order
to obtain the final event detectors. In [13], [30], [20], a similar
training framework for learning from a few positive samples is
used; low-level visual and/or audio features are combined with
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Fig. 1: Textual description of the event class Attempting a bike
trick.

concept detectors’ output scores for obtaining event detectors.
Concept detectors are trained either using low-level features
and VLAD vectors [31], or DCNN output layers.

Furthermore, it is not unusual to have in the training set
videos that do not exactly fulfill the requirements to be
characterized as true positive examples, but nevertheless are
closely related to an event class and can be seen as “related”
examples of it. This is simulated in the TRECVID MED task
[3] by the “near-miss” video examples provided for each target
event class. Differently from our method, none of the above
works takes full advantage of these related videos for learning
from few positive samples; instead, the “related” samples are
either excluded from the training procedure, or they are treated
as true positive or true negative instances [32].

In our study, we will consider “related” training samples
as videos that can contribute to event detector training but do
not merit being treated as either true positive or true negative
instances. To take advantage of them, we employ a Relevance
Degree SVM (RDSVM), which can treat these samples as
either weighted negatives or weighted positives in conjunction
with an automatic weighting selection scheme.

III. DETECTING VIDEO EVENTS USING AN EVENT’S
TEXTUAL DESCRIPTION

A. General architecture

In this section we propose a framework for video event
detection without using any visual knowledge about the events.
We assume that the only knowledge available, with respect to
each event class, is a textual description of it, which consists
of a title, a free-form text, and a list of possible visual and
audio cues, as in [33], [16]. Fig. 1 shows an example of
such a textual description for the event class Attempting a
bike trick. For linking this textual information with the visual
content of the videos that we want to examine, similarly to
[14], [18], we a) use a pool of Nc concepts along with their
titles and in some cases a limited number of subtitles (e.g.
concept bicycle-built-for-two has the subtitles tandem bicycle
and tandem), and b) a pre-trained detector (based on DCNN
output scores) for each concept. Fig. 2 illustrates the structure
of the proposed framework. Shaded blocks indicate processing
stages for which different design choices are examined in this
work. Each of these stages is discussed below in detail, while
Table I sums up the different considered design choices.

Figure 2a shows a first process that receives a textual
description of an event class and a list of concepts, and
generates an event detector. Given the textual description of the
event class, our framework first identifies N words or phrases
that most closely relate to the event class; we call this word-
set the Event Language Model (ELM). In parallel, for each
of the Nc concepts of our concept pool, it similarly identifies
M words or phrases; we call this set the Concept Language
Model (CLM) of the corresponding concept.

Subsequently, for each word in ELM and each word in each
one of CLMs we calculate the Explicit Semantic Analysis
(ESA) distance [34] between them. For each CLM, the re-
sulting N ×M distance matrix expresses the relation between
the given event class and the corresponding concepts. In order
to compute a single score expressing this relation, we apply to
this matrix different operators, such as various matrix norms
or distance measures. Consequently, a score is computed for
each pair of ELM and CLM. The Nc considered concepts
are ordered according to these scores (in descending order)
and the K top concepts along with their scores constitute
our event detector. In order to perform event detection in
a video collection, we compare this event detector with the
output scores of concept detectors applied on each video, using
different similarity measures (Fig. 2b). Thus, the final output
is a ranked list of the most relevant videos. Alternatively,
multiple event detectors can be generated using more than
one different algorithm variations in each of the shaded blocks
of Fig. 2a and 2b, and these can be used as pseudo-positive
samples for training an SVM, which can then be applied to
the videos so as to generate a ranked list of those depicting
the target event (Fig. 2c).

B. Language Models

We examine the construction of three different types of
ELMs, depending on the textual information that they use
(Fig. 1). The first type of ELM, which will be denoted as
“Title” hereafter, is based on the automatic extraction of word
terms solely from the title of an event class. The second type
of ELM, denoted as “Visual”, is constructed by using only
the visual cues provided along with the textual description
of each event class. Both title and visual cues consist only of
words and single phrases, such as attempting a bike trick, bike,
riding bike on one wheel, etc. These words can automatically
be extracted from the textual description without any human-
expert intervention. Finally, the third type of ELM is obtained
by the automatic extraction of words based on the visual and
audio cues, as well as on the short free form text of an event
class, and it is denoted as “AudioVisual”.

Accordingly, a CLM is constructed for each one of the
Nc concepts. We examine the construction of six different
types of CLMs, depending on the textual information used for
each concept, as well as the weighting technique (e.g. Tf-Idf)
adopted for transforming this textual information in a Bag of
Words (BoW) [35] representation. As a first approach, the title
of a concept, along with any available subtitle, are used as a
query to the Google search engine, and the text of the top-
20 search results per query are retrieved. By applying text
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(a) Creation of event detector without positive video samples.

(b) Event detection in a video collection, using the event detector of
the above sub-figure.

(c) Pseudo-positive sample creation and training.

Fig. 2: The proposed framework for detecting video events
using zero positive examples.

cleaning techniques (removing html tags, stop words, etc.)
and Bag of Words statistics, we select the most frequently
occurring words. These, together with the concept’s title and
subtitles, constitute the M words of the CLM. As a second
approach, the concept title and any subtitle are similarly used
as a query in Wikipedia, and the 20 most relevant articles per
query are retrieved. By following the same procedure as above,
we end up with the top-M words of the concept’s CLM. As
a third approach, we use only the title and the subtitles in the
CLM. In the three above approaches, the Bag-of-Words (BoW)
can be constructed with or without using Tf-Idf weighting
[36], this resulting in six different types of CLMs.

The above types of ELMs and CLMs are introduced as dif-
ferent design choices, as shown in Fig. 2a. Table I summarizes
the specific types of each one of them.

C. Building an event detector

The constructed language models represent the given event
class and each of the available concepts as ranked lists of
words. Thus, we can calculate the similarities between them
by computing the semantic similarity between each word in
the ELM and each word belonging to the CLMs. To this
end, we use the ESA semantic relatedness measure [37],
which calculates the similarity distance between two terms
by computing the cosine similarity between their weighted

vectors of Wikipedia articles. In this way, an N ×M matrix
with scores for each pair of event-concept is computed. Let
S denote the aforementioned similarity matrix; that is, its
(i, j)-th entry, si,j , denotes the similarity distance between
the word wi in ELM and the word wj in the respective
CLM. Then, we can arrive at a single score expressing the
relation between the above ELM and CLM by evaluating one
of the matrix operators shown in Table I (row C3). It is worth
noting that λmax(S

>S) denotes the maximum eigenvalue of
the covariance matrix S>S.

Following this process, for each event class we end up with
a list of concept scores. The event detector is then defined
as the set of the top-K scores and the corresponding concept
labels. An example of such an event detector is given in Fig. 3
for the event class Attempting a bike trick, where we observe
that the three most dominant concepts are the following: crash
helmet, bicycle-built-for-two, and mountain bike.

D. Applying the event detector to a video dataset
The constructed event detector is used as shown in Fig. 2b.

The DCNN-based detectors for the Nc concepts in our concept
pool are applied to the videos of the dataset, thus having
these videos represented as vectors of concept detector output
scores (hereafter called model vectors). The output scores
that correspond to the K concepts comprising the event
detector are selected, and are compared with the corresponding
values of the event detector. For this comparison, different
choices of a distance function are possible, as shown in
Table I (row C4); that is, we examine the use of following
distance functions: Euclidean, Histogram Intersection, Chi-
square, Kullback-Leibler, and cosine distance. For a chosen
distance function, repeating the above process for all videos
in a dataset we get a ranked list, in descending order, of the
videos that most closely relate to the sought event.

E. Using multiple event detectors as pseudo-positive training
samples

Figure 2c shows an alternative approach to using event
detectors that are built as presented in section III-C. An event
detector, i.e. a ranked list of concept scores (Fig. 2a, Fig. 3) can
be considered as a pseudo-positive sample for the respective
event class. Since multiple event detectors can be obtained
for a given event class by varying the design choices C1 to
C3 of Fig. 2a (as shown in Table I)), a set of pseudo-positive
samples can be obtained for each event class. Negative samples
for the given event class can also be obtained, in two ways.
First, samples that are pseudo-positive for other event classes
can be considered as pseudo-negative for a particular event
class. Secondly, real videos can be selected from the Web, in
analogy to how images are often selected as negative samples
for training concept detectors from Web data, e.g. [38], [39].
Using these pseudo-positives and (pseudo-)negatives, a new
machine learning-based event detector can be obtained by
training an SVM model (for instance using the RBF kernel).
This can then be evaluated on any video dataset, following
the application of trained concept detectors to the videos, (as
in section III-D), to give us a new ranked list of event-related
videos.
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Processing Stage Examined design choices for this processing stage(see Fig. 2b)

C1: ELM
i) Title

ii) Visual only
iii) AudioVisual

C2a:
CLM

information
sources

i) Title
ii) Google

iii) Wikipedia

C2b: CLM
weighting

i) Tf-Idf
ii) No Tf-Idf

C3: Matrix
Operation

i) `2 Norm ‖S‖2 =
√
λmax

(
S>S

)
ii) `∞ Norm ‖S‖∞ = max1≤i≤N

∑M
j=1 |si,j |

iii) Frobenius Norm ‖S‖F =

(∑N
i=1

∑M
j=1 |si,j |2

) 1
2

iv) Maximum entry max
(
S
)

v) Hausdorff Distance DH(EML,CML) = median
p

(
maxp ‖wi − wj‖

)

C4: Distance

i) Cosine
ii) Histogram Intersection

iii) Kullback
iv) X2

v) Euclidean

TABLE I: Design choices.

Fig. 3: Example of event detector for the event class Attempting a bike trick.

IV. LEARNING A VIDEO EVENT DETECTOR FROM A FEW
POSITIVE AND RELATED VIDEO EXAMPLES

A. Exploiting related videos for learning from a few examples

As discussed in section II, in the problem of video event
detection, it is not unusual to be provided, or be able to
find, some related video samples, i.e. videos that are closely
related with a given complex event, but do not meet the
exact requirements for being a true positive event instance.
Exploiting related samples can be particularly interesting when
only a few true positive samples are available, since in the
opposite case, when an abundance of positive samples are
available, one can effectively learn from them.

In this section, Relevance Degree Support Vector Machine
(RDSVM), proposed in [21] for handling “related” training
samples, is employed such that related samples are taken into
consideration as weighted negative or weighted positive exam-
ples, where weighting is carried out completely automatically.
RDSVM extends the standard SVM algorithm such that each
training sample is assigned with a confidence value in (0, 1]

indicating the degree of relevance of each training sample with
the class it is related.

Let X = {(xi, yi) : xi ∈ Rd, yi ∈ {0,±1}, i = 1, . . . , l} be
an annotated dataset of l observations, where xi ∈ Rd is the
feature vector representation of the i-th observation in the d-
dimensional space with label yi ∈ {0,±1} denoting that the i-
th observation is a positive (yi = +1), a negative (yi = −1), or
a related (yi = 0) instance of the class. To allow the use of the
RDSVM, the above is reformulated as X = {(xi, yi, ui) : xi ∈
Rd, yi ∈ {±1}, ui ∈ {0, 1}, i = 1, . . . , l}, where ui is the so-
called relevance label denoting that the i-th observation is a
true (ui = 0) or a related (ui = 1) instance of the class yi.

For the exploitation of the related observations, as proposed
in [21], [40], each training sample xi is associated with a
adjustable confidence value vi, and a monotonically increasing
function g(vi) (called slack normalization function) is used to
weight each slack variable ξi denoting the loss introduced by
a misclassified sample. In this way, support vectors (SVs) that
are associated with a higher confidence value have greater
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Fig. 4: RDSVM training framework.

contribution to the computation of the decision function. In
[21], this function is modified so that only related class
observations are associated with a confidence value ci ∈ (0, 1]
(called hereafter relevance degree) indicating the degree of
relevance of the i-th observation with the class it is related.
That is, g is defined as follows:

g(ui) =

{
1 if ui = 0,
ci if ui = 1.

(1)

Thus, the contribution of the related samples in the computa-
tion of the decision function can be regulated using appropriate
relevance degrees ci.

In this study, we follow the approach proposed in [21] for
handling the related samples as a subclass of the positive or
negative class, for which a global relevance degree, c = ci ∀i,
is assigned to all related samples. Parameter c is optimized
using a cross-validation procedure. The proposed technique
for the automatic selection of related samples as weighted
positives, or weighted negatives, includes the following steps.
First, an RDSVM is trained using the related videos as
weighted positive examples (i.e., yi = +1 and ui = 1). Then,
another RDSVM is trained using the related videos weighted
negative examples (i.e., yi = −1 and ui = 1). The above
classifiers are denoted in Fig. 4 as RDSVMp and RDSVMn,
respectively.

In both cases the basic parameters of the RDSVMs (e.g.
C, γ for an RDSVM with RBF kernel) are optimized by
conducting cross-validation (grid search) with c set to 1, i.e.
treating the related samples as pure positive and pure nega-
tive samples, respectively. Subsequently, the relevance degree
parameter c is optimized using cross-validation (line search)
in the range (0, 1]. After both RDSVMp and RDSVMn are
trained in this way, one of the two is chosen (i.e., a parameter
set {C, γ, c}, where c ∈ [−1, 1] is chosen) by looking at the
average performance measure (e.g. average precision (AP))
values attained during cross-validation by the RDSVMp and
RDSVMn (the one with the highest AP is selected). The
chosen RDSVM is a learned event detector, that can be applied
to a set of videos (where again the video representation xi

can be the same as in section III: a model vector produced by
application of DCNN-based concept detectors).

B. Treating pseudo-positive training samples as related ones

In section III-E we discussed how we could use the output of
processing an event’s textual description as a set of pseudo-
positive event samples, for training a standard SVM. When
we also have a few true positive videos available for training,

one possibility would be to merge the two positive/pseudo-
positive sets and use their union for SVM training. Since,
however, the pseudo-positive samples were artificially created
and thus may be corrupt by errors/noise, a better option would
be to treat them as “related” samples, rather than true positives.
This can by straightforwardly achieved by use of the RDSVM
methodology presented in the previous section. Evaluation of
this approach will be presented in section V-D.

V. EXPERIMENTAL RESULTS

A. Datasets and experimental setup

The proposed techniques are tested on the large-scale video
dataset of the TRECVID Multimedia Event Detection (MED)
2014 task (hereafter referred to as MED14). The ground-
truth annotated portion of it consists of three different video
subsets: the “pre-specified” (PS) video subset (2000 videos, 80
hours, 20 event classes), the “ad-hoc” (AH) video subset (1000
videos, 40 hours, 10 event classes), and the “background”
(BG) video subset (5000 videos, 200 hours). Each video in
the above dataset belongs to either one of 30 target event
classes (Table II), or (in the case of the BG subset) to the “rest
of the world” class . The above video dataset (PS+AH+BG)
is partitioned such that a training and an evaluation set are
created, as follows:
• Training Set

– 50 positive samples per event class
– 25 related (near-miss) samples per event class
– 2496 background samples (negative for all event

classes)
• Evaluation Set

– ∼ 50 positive samples per event class
– ∼ 25 related (near-miss) samples per event class
– 2496 background samples (negative for all event

classes)
For video representation, approximately 2 keyframes per sec-
ond were extracted. Each keyframe was represented using
the last hidden layer of a pre-trained Deep CNN. More
specifically, a 16-layer pre-trained deep ConvNet network
provided in [29] was used. This network had been trained on
the ImageNet data [28] and provides scores for 1000 concepts.
Thus, each keyframe has a 1000-element vector representation.
Then, a video-level model vector for each video is computed
by taking the average of the corresponding keyframe-level
representations.

B. Video event detection using the event’s textual description

The framework proposed in Section III allows for different
design choices in its various stages (Table I, and shaded
processing stages in Fig. 2). There are 5 stages that can
be parameterized: the ELM and CLM information sources
selection (C1, C2a), the CLM textual vector weighting strategy
(C2b), the matrix operator used (C3), and the distance function
selected (C4). Based on the possible choices listed in Table I,
450 different combinations are possible and were tested.

Table III presents the 10 best-performing combinations in
terms of mean average precision (MAP) across all 30 events.
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Target Events
E021 - Attempting a bike trick E036 - Felling a tree
E022 - Cleaning an appliance E037 - Parking a vehicle
E023 - Dog show E038 - Playing fetch
E024 - Giving directions to a location E039 - Tailgating
E025 - Marriage proposal E040 - Tuning a musical instrument
E026 - Renovating a home E041 - Baby Shower
E027 - Rock climbing E042 - Building a Fire
E028 - Town hall meeting E043 - Busking
E029 - Winning a race without a vehicle E044 - Decorating for a Celebration
E030 - Working on a metal crafts project E045 - Extinguishing a Fire
E031 - Beekeeping E046 - Making a Purchase
E032 - Wedding shower E047 - Modeling
E033 - Non-motorized vehicle repair E048 - Doing a Magic Trick
E034 - Fixing musical instrument E049 - Putting on Additional Apparel
E035 - Horse riding competition E050 - Teaching Dance Choreography

TABLE II: Target events in the employed TRECVID MED
dataset.

Note that, when the “Title” is used for both ELM and CLM
construction (processing stages C1 and C2a), meaning that
both ELM and CLMs are represented by a single word or
phrase (N = M = 1), then all matrix operations result
in the same score, making no difference in the final result.
This is the reason why a dash sometimes appears in the C3
column of Table III. Moreover, when “Title” is selected for
the construction of the CLMs (C2a processing stage), there is
no need for Bag-of-Words encoding, thus no use of weighting
technique (Tf-Idf), since no enrichment by searching in Google
or in Wikipedia was carried out. This is why there is no
choice in the weighting stage (C2b) when “Title” is selected.
As can be seen, the enrichment of the CLM through Google
search, without Tf-Idf weighting and the usage of as much as
possible information for constructing the EML resulted in the
best result overall.

In order to explore the effectiveness of the different design
choice combinations, we experimented with changing one de-
sign choice at a time, keeping the choices for all other process-
ing stages unaffected (as in the best-performing combination
of Table III). Table IV shows the performance of different
ELMs in stage C1, clearly suggesting that the exploitation of
as much as possible information for the particular parameter
leads to better detection results. In Table V, it is shown that
enrichment of the CLM in stage C2a by searching in Google
is the most effective way to do so. As Table VI shows, using
Tf-Idf weighting does not seem to provide any improvement
to the detection performance. Table VII suggests that the use
of the Hausdorff distance, as a similarity matrix operator,
outperforms the rest of the respective choices. Finally, Table
VIII shows the performance of different similarity measures
(stage C4) in the event detection step (Fig. 2b), where the
cosine and the Histogram Intersection measures outperform
the rest of them.

In Table IX, we present the performance of the training
step of our framework, as illustrated in Fig. 2c (denoted as
T10), compared to the best combination of the event detection
step, shown in Fig. 2b (denoted as T0). As discussed above,
for T10 we consider the event detectors generated as shown
in Fig. 2a as pseudo-positive instances of the respective event
class. Also, as discussed previously, negative samples can be
obtained using two different approaches. First, the pseudo-

positive samples from the rest of the event classes are used as
pseudo-negative samples, and, secondly, real negative videos
for all event classes, belonging to the “background” (BG)
training subset, are used. Finally, a linear late fusion approach,
using the arithmetic mean operator, is used in order to improve
the individual detection results, denoted as T0⊕T10. Hereafter,
we will denote with ⊕ the late fusion scheme where the
arithmetic mean operator is used for combining the event
detection output scores. We can observe that the combination
of the event detection stage, T0, (Fig. 2b) with SVM training
with pseudo-negative samples, T10, (Fig. 2c) achieves the best
performance, resulting in MAP equal to 12.38%.

Experimental
Scenario T0

T10

Pseudo-Negatives
T10

Real Negatives T0 ⊕T10

MAP 0.1111 0.10125 0.0594 0.1238

TABLE IX: The performance of the developed techniques in
AP, and across 30 events in MAP.

We compare the proposed method with the E-Lamp
framework, a state-of-the-art system that participated in the
TRECVID 2014 MED task [18] and is described in detail
in [17]. As mentioned in section II-A, the E-Lamp system
consists of four major subsystems, namely Video Semantic
Indexing (VSIN), Semantic Query Generator (SQG), Multi-
modal Search (MS) and Pseudo-Relevance Feedback (PRF).
The VSIN subsystem represents the input videos as a set of
low- and high-level features from several modalities. The high-
level features, i.e. the result of semantic concept detection,
are used as input to the SQG subsystem, in which the textual
description of an event class is translated into a set of relevant
concepts termed system query. The system query is then used
in the MS subsystem as input to several well-known text
retrieval models in order to find the most relevant videos.
These results can be then refined by the PRF subsystem.

As SQG leads to the creation of an event detector using
semantic concepts, a correspondence exists (and comparison
is possible) with our approach to build an event detector as
described in sections III-B and III-C (Fig. 2a). Similarly, the
MS subsystem corresponds to (and can be compared with) our
event detection module presented in section III-D (Fig. 2b).
We compared with four SQG approaches that are presented
in the E-Lamp system. These are: i) Exact word matching,
ii) WordNet mapping using Wu & Palmer measure (Wu)
iii) WordNet mapping using the structural depth distance in
WordNet hierarchy (Path), and iv) Word Embedding Mapping
(WEP). Concerning the MS stage, we compared with the
following retrieval methods: the Vector Space Model [33], the
Okapi BM25, and two unigram language models with Jelinek-
Mercer smoothing (LM-JM) and Dirichlet smoothing (LM-
DL) respectively [41].

Table X shows the performance, in terms of mean average
precision (MAP), of the above combinations in comparison
to the best-performing event detector and distances proposed
in the present work (Table VIII). From this Table it is clear
that the proposed method for building an event detector
outperforms the rest of the compared methods, irrespective
of the similarity measure that they are combined with. Out of
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C1 C2a C2b C3 C4
(ELM) (CLM) (Weighting) (Matrix Operation) (Distance) MAP

AudioVisual Google No Tf-Idf Hausdorff Cosine 0.1111
AudioVisual Google No Tf-Idf Hausdorff Histog Inter 0.1109
AudioVisual Google No Tf-Idf Hausdorff Kullback 0.1054

Title Title - - Histog Inter 0.1045
Visual Google No Tf-Idf Hausdorff Cosine 0.1005
Visual Google No Tf-Idf Hausdorff Histog Inter 0.0991
Title Title - - Cosine 0.0988

AudioVisual Google Tf-Idf Hausdorff Histog Inter 0.0978
Visual Google No Tf-Idf Hausdorff Kullback 0.0956

AudioVisual Google Tf-Idf Hausdorff Cosine 0.0933

TABLE III: Top-10 parameter combinations in terms of MAP.

C1 C2a C2b C3 C4
(ELM) (CLM) (Weighting) (Matrix Operation) (Distance) MAP

AudioVisual
Google No Tf-Idf Hausdorff Cosine

0.1111
Visual 0.1005
Title 0.0760

TABLE IV: Comparison of different Event Language Models (ELMs).

C1 C2a C2b C3 C4
(ELM) (CLM) (Weighting) (Matrix Operation) (Distance) MAP

AudioVisual
Google

No Tf-Idf Hausdorff Cosine
0.1111

Wikipedia 0.0850
Title 0.0760

TABLE V: Comparison of different Concept Language Models (CLMs).

C1 C2a C2b C3 C4
(ELM) (CLM) (Weighting) (Matrix Operation) (Distance) MAP

AudioVisual Google No Tf-Idf Hausdorff Cosine 0.1111
Tf-Idf 0.1005

TABLE VI: Comparison of different Weighting schemes.

C1 C2a C2b C3 C4
(ELM) (CLM) (Weighting) (Matrix Operation) (Distance) MAP

AudioVisual Google No Tf-Idf

Hausdorff

Cosine

0.1111
l2 0.0833

Frobenius 0.0827
l∞ 0.0828

Max 0.0804

TABLE VII: Comparison of various norms of the N ×M distance matrix.

ELM CLM Weighting Matrix Operation Distance MAP

AudioVisual Google No Tf-Idf Hausdorff

Cosine 0.1111
Histog Inter 0.1109

Kullback 0.1054
X2 0.0832

Euclidean 0.0690

TABLE VIII: Comparison of different similarities measures.

the event detection creation methods of [17], the exact word
seems to perform considerably better than the others (but much
worse than the proposed method). This is because the concept
labels from our concept pool that are most related to an event
are often well-represented in the event’s textual description,
e.g. for the event Beekeeping, the word bee is observed 31
times, and this word is directly associated with the concepts
bee and bee eater. The WordNet and WEP mappings on the
other hand, are not always successful in finding the seman-
tic similarity between two words. Regarding the compared
similarity measures, the VSM and LM-DL generally perform
better than BM25 and LM-JM, but the proposed cosine and

Histogram Intersection distances are consistently among the
top-performing measures. It should be noted that the number
of visual concepts used in [17] is significantly greater than
the 1000 concepts used throughout our experiments, and other
modalities (e.g. audio) are also exploited in [17]; this explains
the often higher MAP values that are reported in the latter
work.

C. Learning from a few positive and related video examples

In this section, we validate the performance of the proposed
framework for handling related samples for the problem of
learning video event detectors from a few positive samples.
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Event detector
creation

Similarity measures [17] Similarity measures
(proposed)

VSM BM25 LM-JM LM-DL Cosine Histogram
Intersection

WordNet - Wu 0.0205 0.0201 0.0250 0.0319 0.0222 0.0318
WordNet - Path 0.0333 0.0221 0.0310 0.0379 0.0359 0.0434

Exact word 0.0833 0.0287 0.0541 0.0568 0.0828 0.0801
WEM 0.0429 0.0232 0.0269 0.0331 0.0427 0.0418

Proposed 0.0912 0.0980 0.0392 0.0993 0.1111 0.1109

TABLE X: Comparison between proposed and compared methods.

To this end, we compare the following approaches in order
to investigate whether and in what way it is beneficial to use
related samples in training: a) using no related samples, b)
related samples are used as pure negative ones, as in [32], c)
related samples are used as pure positive ones, again as in
[32], and d) related samples are used as weighted negative or
positive ones under the RD-SVM framework of Section IV-A,
which involves an automatic procedure for selecting both the
labels of the related samples and their weights.

As discussed in section V-A, the MED14 dataset provides
50 positive samples per each of the 30 event classes. However,
we want to simulate the case where only a few positive
samples are available for training, thus we choose to use
only 10 training samples per event class. To this end, for
each experiment we randomly draw a subset of 10 positive
samples for each event class, and we repeat this 10 times.
That is, for each compared approach in this section, the
obtained performance of the corresponding classifier (RD-
SVM or standard SVM) is averaged over 10 iterations. For
the approaches that use related samples, 10 such samples were
chosen from the pool of 25 related samples that are available
for each event class; these, as suggested in [21], were selected
as the 10 that are the nearest to the median of all 25 related
samples in the employed feature space.

Table XI shows the results of these comparisons, in terms
of mean average precision (MAP), across the 30 event classes
of the MED14 dataset. We observe that when related samples
are used as pure negative or pure positive ones as in [32],
the overall detection performance is lower than the baseline
approach which does not use these samples at all (P10). In
contrast to this, the proposed approach that treats related
samples as positive/negative ones with automatic weighting
achieved better performance than the baseline, reaching a
MAP of 18.95%.

In Fig. 5 the results of the above comparisons are given
separately for each of the 30 event classes of the dataset. As
can be seen, despite the fact that treating related samples as
either pure negatives or pure positives jointly for all the event
classes leads to worse average detection performance (MAP),
compared to the case where they are not used at all in the
training process, there are event classes where it is beneficial
to use them in such a way. Specifically, for 15 out of 30
events it is better to use related samples as pure positives rather
that to exclude them from the training process, and similarly
for one event it is beneficial to use them as pure negatives.
Automatically selecting to use related samples as weighted
negatives or weighted positives using RD-SVM [21], on the
other hand, is better than excluding them from the annotation

process for 19 out of the 30 event classes. Moreover, the
automatic weight selection leads to better results than both
approaches that use related samples without any weight for 18
out of the 30 events. The above confirm our hypothesis that
treating related samples as weighted negatives/positives using
RD-SVM [21] can lead to better event detection performance.

Experimental
Scenario

P10

(baseline)

Related as
negatives

(as in [32])

Related as
positives

(as in [32])

R10

(proposed)

MAP 0.1808 0.1368 0.1796 0.1895

TABLE XI: Comparisons of approaches using related samples
for learning an event detector.

D. Combining textual event detectors with learning from a few
positive and related samples

Our first attempt to combine textual event detectors and
learning from a few examples is based on exploiting the
pseudo-positive samples, which were computed according to
section III-E, as related samples in RD-SVM. We chose a sub-
set of 10 pseudo-positive samples for each event class, using
a same selection strategy as in the case of related samples in
section V-C; that is, the 10 nearest to the median pseudo-
positive sample for each event class were selected. Using
RDSVM for handling pseudo-positive samples as weighted
negative or positive ones (with automatic weighting selection)
resulted in a MAP equal to 18.26%, across 30 events (denoted
as R10p in Table XII). It is worth noting that, similarly to the
previous results, this experimental result stands for the average
of 10 iterations (using 10 different, randomly selected sets of
10 positive examples each). We observe that, using pseudo-
positive samples this way outperforms learning from solely
10 positive samples by a small margin.

In a second attempt to further combine text-based and
learning-based event detectors, we examine the late fusion
of detectors. As shown in the last column of Table IX ,
T0 ⊕ T10 denotes the best approach for learning video event
detectors using the textual description of each event class
alone, resulting in a MAP equal to 12.38%. The results of
combining the above approach, as well as R10p (which already
jointly uses textual information and real training samples) with
the P10 and R10 learned detectors (Table XI), are shown in
Table XII. As we can see, the best-performing combination is
that of R10 and R10p, which achieves MAP equal to 20.11%.
This is higher that the best performance that is achieved in
our experiments using visual examples alone (R10), and much
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(a)

(b)

Fig. 5: Experimental evaluation of various methods for treating related samples for event classes (a) E021-E035 and (b)
E036-E050.

higher than that achieved using only textual information about
the sought event, highlighting the importance of combining
visual examples and a textual description of the event for
learning. Other combinations, most notably that of T0 ⊕ T10
with P10, R10 or R10p, do not seem to offer any improvement
over R10p alone. This can be attributed to the fact that the
T0 ⊕ T10 detector is much weaker than P10, R10, and R10p,
thus introducing mostly noise to the results of the latter at the
late fusion stage.

Combinations of event detectors MAP
R10p 0.1826
T0 ⊕ T10 ⊕ P10 0.1743
T0 ⊕ T10 ⊕R10 0.1662
T0 ⊕ T10 ⊕R10p 0.1647
P10 ⊕R10 0.1893
P10 ⊕R10p 0.1971
P10 ⊕R10 ⊕R10p 0.1965
R10 ⊕R10p 0.2011

TABLE XII: Various combinations of textual event detectors
with learning from few positive, related, and pseudo-positive
training samples.

In Fig. 6, we present the event detection results per
event class, using Average Precision (AP), for i) the best-
performing proposed approach that learns from the events’
textual descriptions (last column of Table IX); ii) the best-
performing proposed approach for learning from a few positive
and related examples (last column of Table XI); and, iii) the
best combination of Table XII (last row) for exploiting both
video examples and a textual description of the event. We
observe that the latter combination outperforms the former
two approaches for 22 of the 30 event classes. Notable
exceptions, where using just the textual description of the

event performs the best, are events E031 (Beekeeping), E037
(Parking a vehicle), and E045 (Extinguishing a Fire). This can
be attributed to the fact that we have in our concept pool a
wealth of concepts related to these events (e.g. for E037: beach
wagon, car mirror, electric locomotive, minibus, parking meter,
recreational vehicle, sports car, streetcar, etc.; for E045: fire
engine, fire screen, fireboat, gas pump, stove, water tower, etc.)
and at the same time the textual description which is performed
for these events allows us to identify those related concepts
(e.g. for E031, the top-4 concepts that T0⊕T10 identifies are:
honeycomb, apiary, bee, bee eater). In contrast to this, for
several of other events only one or two concept (or even no
concepts at all) closely relate to them, e.g. for event E047
(Modeling) the closest-related concept that is included in our
concept pool is kimono and, similarly, concept grocery store
for event E046 Making a Purchase.

VI. CONCLUSION

In this paper we proposed a framework for learning video
event detectors from solely a textual description of an event
class, or from a very few positive and related training samples.
We identified a general learning framework and studied the
impact of various design choices for different stages of this
framework. For exploiting related video samples we employed
an SVM extension (RDSVM) such that related samples are
automatically treated as weighted negative or positive samples.
The experimental evaluation of the proposed approaches, as
well as the combination of them on the challenging, large-scale
TRECVID MED 2014 video dataset verified the applicability
of the proposed methods in the cases where positive samples
are not available, or scarce, and provided useful insight on
how to train video event detectors under such conditions.
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Fig. 6: Event detection performance (AP) for 30 event classes of MED14 dataset using three different fusion approaches.

VII. ACKNOWLEDGMENT

This work was supported by the European Commis-
sion under contracts FP7-600826 ForgetIT and FP7-287911
LinkedTV.

REFERENCES

[1] Y.-G. Jiang, S. Bhattacharya, S.-F. Chang, and M. Shah, “High-level
event recognition in unconstrained videos,” International Journal of
Multimedia Information Retrieval, pp. 1–29, 2012.

[2] P. Over, G. Awad, M. Michel, J. Fiscus, G. Sanders, W. Kraaij, A. F.
Smeaton, and G. Quenot, “An overview of the goals, tasks, data,
evaluation mechanisms and metrics,” in Proc. of TRECVID 2013. NIST,
USA, 2013.

[3] ——, “An overview of the goals, tasks, data, evaluation mechanisms
and metrics,” in Proc. of TRECVID 2014. NIST, USA, 2014.

[4] D. Zhang and S.-F. Chang, “Event detection in baseball video using
superimposed caption recognition,” in Proc. of the 10th ACM Int. Conf.
on Multimedia. ACM, 2002, pp. 315–318.

[5] S. Oh, A. Hoogs, A. Perera, N. Cuntoor, C.-C. Chen, J. T. Lee,
S. Mukherjee, J. Aggarwal, H. Lee, L. Davis et al., “A large-scale
benchmark dataset for event recognition in surveillance video,” in
Computer Vision and Pattern Recognition (CVPR), IEEE Conf. on.
IEEE, 2011, pp. 3153–3160.

[6] N. R. Brown, “On the prevalence of event clusters in autobiographical
memory,” Social Cognition, vol. 23, pp. 35–69, 2005.

[7] N. Gkalelis, V. Mezaris, M. Dimopoulos, I. Kompatsiaris, and
T. Stathaki, “Video event detection using a subclass recoding error-
correcting output codes framework,” in Multimedia and Expo (ICME),
IEEE Int. Conf. on. IEEE, 2013, pp. 1–6.

[8] N. Gkalelis and V. Mezaris, “Video event detection using generalized
subclass discriminant analysis and linear support vector machines,” in
Proc. of Int. Conf. on multimedia retrieval. ACM, 2014, p. 25.

[9] T. Mensink, E. Gavves, and C. G. Snoek, “COSTA: Co-occurrence
statistics for zero-shot classification,” in Computer Vision and Pattern
Recognition (CVPR), IEEE Conf. on. IEEE, 2014, pp. 2441–2448.

[10] M. Palatucci, D. Pomerleau, G. E. Hinton, and T. M. Mitchell, “Zero-
shot learning with semantic output codes,” in Advances in Neural Infor-
mation Processing Systems 22, Y. Bengio, D. Schuurmans, J. Lafferty,
C. Williams, and A. Culotta, Eds. Curran Associates, Inc., 2009, pp.
1410–1418.

[11] M. Elhoseiny, B. Saleh, and A. Elgammal, “Write a classifier: Zero-shot
learning using purely textual descriptions,” in Computer Vision (ICCV),
IEEE Int. Conf. on. IEEE, 2013, pp. 2584–2591.

[12] A. Habibian, T. Mensink, and C. G. Snoek, “Videostory: A new
multimedia embedding for few-example recognition and translation of
events,” in Proc. of the ACM Int. Conf. on Multimedia. ACM, 2014,
pp. 17–26.

[13] Y. Guangnan, L. Dong, C. Shih-Fu, S. Ruslan, M. Vlad, D. Larry,
G. Abhinav, H. Ismail, G. Sadiye, and M. Ashutosh, “BBN VISER
TRECVID 2014 multimedia event detection and multimedia event
recounting systems,” in Proc. TRECVID Workshop, 2014.

[14] S. Wu, S. Bondugula, F. Luisier, X. Zhuang, and P. Natarajan, “Zero-
shot event detection using multi-modal fusion of weakly supervised
concepts,” in Computer Vision and Pattern Recognition (CVPR), IEEE
Conf. on. IEEE, 2014, pp. 2665–2672.

[15] A. Habibian, T. Mensink, and C. G. Snoek, “Composite concept dis-
covery for zero-shot video event detection,” in Proc. of Int. Conf. on
Multimedia Retrieval. ACM, 2014, p. 17.

[16] L. Jiang, T. Mitamura, S.-I. Yu, and A. G. Hauptmann, “Zero-example
event search using multimodal pseudo relevance feedback,” in Proc. of
Int. Conf. on Multimedia Retrieval. ACM, 2014, p. 297.

[17] L. Jiang, S.-I. Yu, D. Meng, T. Mitamura, and A. G. Hauptmann,
“Bridging the ultimate semantic gap: A semantic search engine for
internet videos,” in Int. Conf. on Multimedia Retrieval, 2015.

[18] S.-I. Yu, L. Jiang, Z. Mao, X. Chang, X. Du, C. Gan, Z. Lan, Z. Xu,
X. Li, Y. Cai et al., “Informedia at TRECVID 2014 MED and MER,”
in NIST TRECVID Video Retrieval Evaluation Workshop, 2014.

[19] R. Bolles, B. Burns, J. Herson et al., “The 2014 SESAME multimedia
event detection and recounting system,” in Proc. TRECVID Workshop,
2014.

[20] N. Gkalelis, F. Markatopoulou, A. Moumtzidou, D. Galanopoulos,
K. Avgerinakis, N. Pittaras, S. Vrochidis, V. Mezaris, I. Kompatsiaris,
and I. Patras, “ITI-CERTH participation to TRECVID 2014,” in Proc.
TRECVID Workshop, 2014.

[21] C. Tzelepis, N. Gkalelis, V. Mezaris, and I. Kompatsiaris, “Improving
event detection using related videos and relevance degree support vector
machines,” in Proceedings of the 21st ACM Int. Conf. on Multimedia.
ACM, 2013, pp. 673–676.

[22] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International journal of computer vision, vol. 60, no. 2, pp. 91–110,
2004.

[23] K. E. Van De Sande, T. Gevers, and C. G. Snoek, “Evaluating color
descriptors for object and scene recognition,” Pattern Analysis and
Machine Intelligence, IEEE Transactions on, vol. 32, no. 9, pp. 1582–
1596, 2010.

[24] M.-y. Chen and A. Hauptmann, “MoSIFT: Recognizing human actions
in surveillance videos,” Technical Report.

[25] J. Sánchez, F. Perronnin, T. Mensink, and J. Verbeek, “Image classifica-
tion with the fisher vector: Theory and practice,” International Journal
of Computer Vision, vol. 105, no. 3, pp. 222–245, 2013.

[26] F. Perronnin, J. Sánchez, and T. Mensink, “Improving the fisher kernel
for large-scale image classification,” in Computer Vision–ECCV 2010.
Springer, 2010, pp. 143–156.

[27] K. Chatfield, V. Lempitsky, A. Vedaldi, and A. Zisserman, “The devil
is in the details: an evaluation of recent feature encoding methods,” in
British Machine Vision Conference, 2011.

[28] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Computer Vision and
Pattern Recognition (CVPR), IEEE Conf. on. IEEE, 2009, pp. 248–255.

[29] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[30] H. Cheng, J. Liu, I. Chakraborty, G. Chen, Q. Liu, M. Elhoseiny,
G. Gan, A. Divakaran, H. Sawhney, J. Allan, J. Foley, M. Shah,
A. Dehghan, M. Witbrock, and J. Curtis, “SRI-Sarnoff AURORA system
at TRECVID 2014 multimedia event detection and recounting,” in Proc.
TRECVID Workshop, 2014.

[31] H. Jégou, F. Perronnin, M. Douze, J. Sánchez, P. Pérez, and C. Schmid,
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