Hindawi Publishing Corporation
Computational Intelligence and Neuroscience
Volume 2016, Article ID 8091267, 17 pages
http://dx.doi.org/10.1155/2016/8091267

Hindawi

Research Article
Adaptive Online Sequential ELM for Concept Drift Tackling

Arif Budiman, Mohamad Ivan Fanany, and Chan Basaruddin
Faculty of Computer Science, University of Indonesia, Depok, West Java 16424, Indonesia
Correspondence should be addressed to Arif Budiman; arif.budiman2l@ui.ac.id
Received 29 January 2016; Accepted 17 May 2016

Academic Editor: Stefan Haufe

Copyright © 2016 Arif Budiman et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A machine learning method needs to adapt to over time changes in the environment. Such changes are known as concept drift.
In this paper, we propose concept drift tackling method as an enhancement of Online Sequential Extreme Learning Machine
(OS-ELM) and Constructive Enhancement OS-ELM (CEOS-ELM) by adding adaptive capability for classification and regression
problem. The scheme is named as adaptive OS-ELM (AOS-ELM). It is a single classifier scheme that works well to handle real drift,
virtual drift, and hybrid drift. The AOS-ELM also works well for sudden drift and recurrent context change type. The scheme is a
simple unified method implemented in simple lines of code. We evaluated AOS-ELM on regression and classification problem by
using concept drift public data set (SEA and STAGGER) and other public data sets such as MNIST, USPS, and IDS. Experiments
show that our method gives higher kappa value compared to the multiclassifier ELM ensemble. Even though AOS-ELM in practice
does not need hidden nodes increase, we address some issues related to the increasing of the hidden nodes such as error condition
and rank values. We propose taking the rank of the pseudoinverse matrix as an indicator parameter to detect “underfitting”

condition.

1. Introduction

Data stream mining is a data mining technique, in which the
trained model is updated whenever new data arrive. However,
the trained model must work in dynamic environments,
where a vast amount of data not only is continuously
generated but also keeps changing. This challenging issue is
known as concept drift [1], in which the statistical properties
of the input attributes and target classes shifted over time.
Such shifts can make the trained model less accurate.

More methods for concept drift handling can be found in
the literature [1], where the aim is to boost the generalization
accuracy. These methods pursue an accurate, simple, fast,
and flexible way to retain classification performance when
the drift occurs. Ensemble classifier is a well-known way to
retain the classification performance. The combined decision
of many single classifiers (mainly using ensemble members
diversification) is more accurate than single classifier [2].
However, it has higher complexity when handling multiple
(consecutive) concept drifts.

One of the popular machine learning methods is Extreme
Learning Machine (ELM) introduced by Huang et al. [3-7].

The ELM is a Single-Layer Feedforward Neural Network
(SLFN) with fast learning speed and good generalization
capability.

In this paper, we focused on the learning adaptation
method as an enhancement to Online Sequential Extreme
Learning Machine (OS-ELM) [8] and Constructive Enhance-
ment OS-ELM (CEOS-ELM) [9]. We named it as adaptive
OS-ELM (AOS-ELM). The AOS-ELM has capability to han-
dle multiple concept drift problems, either changes in the
number of attributes (virtual drift/VD) or the number of
target classes (real drift/RD) or both at the same time (hybrid
drift/HD), also for recurrent context (all concepts occur
alternately) or sudden drift (new concept substitutes previous
concepts) [10]. Our scope of attribute changes discussed in
this paper is on the feature space concatenation widely used
in data fusion, kernel fusion, and ensemble learning [11]
and not on the feature selection (irrelevant features removal)
methods [12]. We compared the performance with nonadap-
tive sequential ELM: OS-ELM and CEOS-ELM. We also
compared the performance with ELM classifier ensembles as
the common adaptive approach for concept drift solution. In
the present study, although we focus on the adaptation aspect,



we address some possible change detection mechanisms that
are suitable for our method.

A preliminary version of RD and its early results appeared
in conference proceedings [14]. In this paper, we introduced
the new scenarios in VD, HD, and consecutive drifts, either
recurrent or sudden drift scenarios as well as theoretical
background explanation. Our main contributions in this
research area can be summarized as follows:

(1) We proposed simple adaptive method as enhance-
ment to OS-ELM and CEOS-ELM for addressing
concept drifts issue. Unlike ensemble systems [6, 13]
that need to manage the complex combination of a
vast number of classifiers, we pursue a single classifier
for simple implementation while retaining compara-
ble performance for handling multiple (consecutive)
drifts.

(2) We introduced a simple unified platform to handle
a hybrid drift (HD) when changes in the number of
attributes and the number of target classes occurred
at the same time.

(3) We elaborated how the AOS-ELM for transfer learn-
ing uses hybrid drift strategy. Transfer learning
focuses on extracting the knowledge from one or
more source task domains and applies the knowledge
to a different target task domain [15]. Concept drift
focuses on the time-varying domain with a small
number of current data available. In contrast, transfer
learning is not associated with time and requires
the entire training and testing data set [16]. The
example of transfer learning by using HD strategy is
the transition from different data set sources but still
related and with the same purpose. In this paper, we
discussed the transfer learning on numeric handwrit-
ten MNIST [17] to alphanumeric handwritten USPS
[18] recognition.

(4) Naturally, the AOS-ELM handling strategy was based
on recurrent context. We devised an AOS-ELM strat-
egy to handle sudden drift scenario by introducing
output marginalization method. This method is also
applicable for concept drift in a regression problem.

(5) We studied the effect of increasing the number of
hidden nodes, which is treated as one of learning
parameters, to improve the accuracy (other learning
parameters are input weight, bias, activation function,
and regularization factor). We proposed the evalu-
ation parameter to predict the accuracy before the
training was completed. We applied this assessment
parameter actually to prevent “underfitting” or non-
convergence condition (the model does not fit the
data well enough that makes accuracy performance
dropped) when any learning parameter changes such
as hidden nodes increased.

This paper is organized as follows. Section 2 explains
some issues and challenges in concept drift, the background
of ELM, and ELM in sequential learning. Section 3 presents
the background theory and algorithm derivation of the
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proposed method. In Section 4, we focus on the empirical
experiments to prove the methods and research questions
in regression and classification problem. We use artificial
and real data set. The artificial data sets are streaming
ensemble algorithm (SEA) [19] and STAGGER [20], which
are commonly used as benchmark in sequential learning.
The real data sets are handwritten recognition data: MNIST
for numeric [17] and USPS for alphanumeric classes [18].
We studied the effect of hidden nodes increase as one of
the important learning parameters in Section 4.5. Section 7
discusses research challenges and future directions. The
conclusion presents some highlights in Section 8.

2. Related Works

2.1. Notations. We specify the notations used throughout this
article for easier understanding as follows:

(i) Matrix is written in uppercase bold (e.g., X).
(ii) Vector is written in lowercase bold (e.g., x).

(iii) The transpose of a matrix X is written as X', The
pseudoinverse of a matrix H is written as H'.

(iv) f, g will be used as nonlinear differentiable function
(activation function), for example, sigmoid or tanh
function.

(v) The amount of training data is N. Each input data x
contains some d attributes. The target has m number
of classes. An input matrix X can be denoted as X,
and the target matrix T as Ty,

(vi) The hidden layer matrix is H. The input weight matrix
is A. The output weight matrix is . The matrix AH
is the additional block portion of the matrix H. The
matrix K is the autocorrelation matrix of H'H. The
inverse of matrix K is P.

(vii) H can be denoted as Hy,;. A can be denoted as
A, and B can be denoted as B, . L denotes the
additional nodes number of L.

(viii) When the number of training data N — oo, we
employed the online sequential learning method by
updating model every time each new training pairs
(x, t) are seen. X, is the subset of input data at time
k = 0 as the initialization stage. X}y, X(3), - . . » Xx) are
the subset of input data at the next sequential time.
Each subset may have different number of quantities.
The corresponding label data is presented as T =
[Ty T1)» T2y -+ > T ). We used the subscript font
with parenthesis to show the sequence number.

(ix) We denote the training data from different S concepts
(sources or contexts), using the symbol X for training
data and T for target data. We used the subscript font
without parenthesis to show the source number.

(x) We denote the drift event using the symbol 1), where
the subscript font shows the drift type. For example,
Concept 1 has virtual drift event to be replaced by
Concept 2 (sudden drift): C, 3}, C,. Concept 1 has
real drift event to be replaced by Concept 1 and
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Concept 2 recurrently (recurrent context) in the
shuffled composition: C, ¢y, shuffled(C,, C,).

2.2. Concept Drift Strategies. In this section, we briefly
explained the various concept drift solution strategies.

Gama etal. [1] explained that many concept drift methods
have been developed, but the terminologies are not well
established. According to Gama et al., the basic concept
drift based on Bayesian decision theory in the classification
problem for class output ¢ and incoming data X is

P(X|c)

P(c|X)=P(c) PX)

@

Concept drift occurred when P(c | X) has changed; for
example, 3X : P (X, ¢) # P;)(X,c), where P, and P, are,
respectively, the joint distribution at times t ) and ¢ ;). Gama
et al. categorized the concept drift types as follows:

(1) Real drift (RD) refers to changes in P(c | X). The
change in P(c | X) may be caused by a change in the
class boundary (the number of classes) or the class
conditional probabilities (likelihood) P(X | ¢). The
number of classes expanded and different class of data
may come alternately, known as recurrent context. A
drift, where new conditional probabilities replace the
previous conditional probabilities while the number
of classes remained the same, is known as sudden
drift. Other terms are concept shift or conditional
change [21].

(2) Virtual drift (VD) refers to the changes in the dis-
tribution of the incoming data (e.g., P(X) changes).
These changes may be due to incomplete or partial
feature representation of the current data distribu-
tion. The trained model is built with additional data
from the same environment without overlapping the
true class boundaries. Other terms are feature change
[21], temporary drift, or sampling shift.

Kuncheva [10, 22] explained the various configuration
patterns of data sources over time as random noise, random
trends (gradual changes), random substitutions (abrupt or
sudden changes), and systematic trends (recurring context).
The random noise will simply be filtered out. A gradual drift
occurs when many concepts may reoccur alternately in the
gradual stage for a certain period. A consecutive drift takes
place when many previously active concepts might keep on
changing alternately (recurring context) after some time. The
sudden drift (abrupt changes or concept substitutions) is the
type that at one time one concept is suddenly replaced by
another concept.

Zliobaite [13] proposed a taxonomy of concept drift
tackling methods as shown in Figure 1. It describes the
methods based on when the model is switched on (the
“when” axis) and how the learners adapt to training set
formation or design and parametrization of the base learner
(the “how” axis). The “when” axis spans drift handling from
trigger based to evolving based methods. The “how” axis
spans drift handling from training set formation to model
manipulation (or parametrization) methods.

Training set
formation

Model manipulation
(parametrization)

Instance Instaj
weig \

Trigger

selection
based

Change detection O

based algorithms

‘Adaptive
decision
trees
and
forests

“When”

Evolving Adaptive ensembles

“How”

FIGURE 1: The taxonomy quadrant of adaptive supervised learning
techniques. Popular concept drift handling methods are indicated
by ellipses [13]. Our proposed method AOS-ELM is indicated by a
dark blue diamond.

Zliobaité [13] explained that most attention on the con-
cept drift tackling methods is drawn to multiclassifier model
selection and fusion rules, but little attention is drawn on the
model construction of base classifier.

Gama et al. [1] proposed a complete online adaptive
learning scheme that organized four modules: memory,
change detection, learning, and loss estimation (see Figure 2).
These modular components can be integrated, permuted, and
combined with each other. The key modules are the learning
and the change detection modules. Most methods focused on
some subset or often mixtures of many types within certain
concept drifts.

The learning module refers to the methods for the adapta-
tion strategies of the predictive model. The learning module is
categorized based on (i) how the model is updated when new
data points are available (learning mode): retraining or incre-
mental (online) modes; (ii) the behavior of predictive models
on time-evolving data (model adaptation): a blind (evolving
or implicit) based module or an informed (trigger or explicit)
based module; (iii) the techniques for maintaining active
predictive models (model management): a single model or
ensemble model. The change detection module refers to drift
detection. The change detection identifies change points or
small time intervals when changes occur.

Each drift employed different solution strategies. The
solution for RD is entirely different from VD. If the systematic
changes are likely to reappear, we may want to keep past
successful classifiers and simply reuse them. If the changes
are gradual, we may use a moving window strategy on
the training data. If the changes are abrupt, we can pause
the existing static classifiers and then retrain the classifier
using the new training data. Thus, it is hard to combine
simultaneously many strategies at one time to solve many
types of concept drift in just a simple platform.

2.3. ELM in Sequential Learning. In this section, we briefly
explained the previous related works of ELM in sequential
learning and adaptive environments.
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FIGURE 2: A generic scheme for an online adaptive learning algorithm from Gama et al. [1].

ELM is getting popularity thanks to its learning speed,
generalization capability, and simplicity. Huang [5] explained
the term “Extreme” meant to move beyond conventional
artificial neural network learning that required iterative
tuning. The ELM moves toward brain-like learning in which
hidden neurons need not be tuned.

The output function of an SLEN with single hidden layer
matrix H can be presented as the function of

L
fo(®) =) BH(a,b,x), )
i=1

where H = g(AX + b). All of these parameters defining the
values of H elements are named as hidden node parameters
[6].

The solution of ELM training with the smallest error can
be obtained when the output weight 8 is approximated by

B=H'T, (3)

where H' is the pseudoinverse of H.
H' can be approximated by left pseudoinverse of H as

B=(d"H) HT. (4)

We can use ridge regression or regularized least squares to be
B=MHH+I/c)'H'T.
Based on [4], Liang et al. [8] proposed online learning for

ELM named OS-ELM. If we have B(o) from H g, filled by the
N, number of training data and N, incremental batch of data

filled H;), the output weights j3,, are approximated by
T

T -1
B - [H(O)] [H«»] [H«»] [T«n] 5)
D= .
v Hyl 1Hy Hyyl 1T
Both H,, and H, have a different number of training data

but have the same L number of hidden nodes.
IfK = H'H, then we can rewrite

(6)

The OS-ELM assumes no changes in the number of
hidden nodes. However, increasing the number of hidden
nodes is required to improve the performance. A CEOS-ELM
[9] has addressed this problem by adding hidden nodes in the

H, AH
© AH :
Hy) AH,, ] The submatrix

AH g, is set to a zero block matrix to simplify the computation
in accordance with the fact that the previous data is not
related to the new hidden nodes. The additional hidden nodes
block matrix AH ;) for N, data has relation to the additional
hidden nodes 6L ;).

Then, we can rewrite K ;) with AH;, as

T
ol
= :
Hgy) AHg) | LHgy AHg,

IfP = K ' canbe solved using block matrix inversion and
Schur complement, then

T
B, [H«n 0 ] [Tw)] .
Hy) AHpJ [Tq
Itis important to note that both OS-ELM and CEOS-ELM
did not address the concept drift issue; for example, when the
number of attributes d in X,y or the number of classes 71 in
T yxm in data set has been added. In this paper, we categorized
OS-ELM and CEOS-ELM as nonadaptive sequential ELM.
To the best of our knowledge, no previous single base
ELM approach specifically addresses many concept drifts
learning [6]. However, some papers [23, 24] already discussed
how the ELM is implemented in adaptive environment.
van Schaik and Tapson [23] proposed Online Pseu-
doinverse Update Method (OPIUM). OPIUM is based on
Greville’s method as the incremental solutions to compute
the pseudoinverse of matrix. The pseudoinverse computation
can be solved incrementally as linear regression problems

and can be adaptive which allows for nonstationary data.
The derivation of OPIUM is equivalent to the OS-ELM if

. def -1 .
the condition ¢y = (I - Hy_yHy ))Hyy = 0 is met at
each iteration. This condition implies that Hy, is a linear

sequential learning stage. So H = [

7)
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combination of the previous hidden layer H_,) and the
simpler derivation of (3) with right pseudoinverse becoming

B=TH =TH" (H"H) . )

van Schaik and Tapson defined y as the cross correlation
matrix between T and H and 6 as the inverse of the
autocorrelation H, so B = 0. According to Greville’s
method, the solution for yy = y;_)) + T(k)Ha). And the
solution for 6, = (H(k—l)Hzl;c—l) + H(k)Ha))_l, or in short
ertlng ﬂ(k) = f(e(k_l), H(k))

van Schaik and Tapson proposed a simplified version
named OPIUM light by computing only the on-diagonal
element of ;). van Schaik and Tapson applied the OPIUM
light for nonstationary data by using different weight «
in determining B, for the most recent pair (T, H,))
appropriate for nonstationary mapping, which are v, =
2 - Yy + aTH, and 04y = (2 - @)Hg ) H_,) +
oH g )™

In our opinion, OPIUM only tackled the real drift case
with discriminant function boundary shift in the streaming
data (e.g., the frequency shift of sine wave). They imple-
mented the weighting « as a nonstationary mapping param-
eter between input and output vectors.

Cao et al. [24] proposed two-phase classification algo-
rithm: first, weighted ensemble classifier based on ELM
(WEC-ELM) algorithm, which can dynamically adjust clas-
sifier and the weight of training uncertain data to solve
the problem of concept drift, and second, an uncertainty
classifier based on ELM (UC-ELM) algorithm designed for
the classification of unknown data streams, which considers
attribute (tuple) value and its uncertainty, thus improving
the efficiency and accuracy. When concept drift occurs,
WEC-ELM will dynamically adjust the classifiers and the
weight of training data, thus a new classifier will be added
to the ensemble until it reached a preset maximum and
then removed the worst-performing classifier. UC-ELM is
designed for the classification of uncertain data streams,
which has attributes (tuples) and its uncertainty values.
The UC-ELM evaluated uncertainty value for every newly
arrived attribute and decided based on the probability of
the new attributes belonging to each class, thus improving
the efficiency and accuracy. In our opinion, WEC-ELM is
categorized as evolving based method by selecting the best-
performing classifier, and UC-ELM addressed virtual drift
problem by using uncertainty attributes selection.

Most ELM work in adaptive environments addressed for
particular drift case which may be impractical for other cases.
We pursue a simple unified platform that has the capability to
handle many (consecutive) drift cases.

3. Proposed Method

3.1. Theoretical Background of AOS-ELM. Insequential learn-
ing, some partial training data arrives in time sequential
fashion: {(xg), tp))> (X(1)> t(1))s - - - ’A(X(k)’ t))}. Learning is the
process of constructing function f to map between observa-
tion and its nature called (class) [25]. When the number of

training data N — 0o, we need to address the expected value
of Booy = B-

Learning from the data D,, is the process to select a
function B, from a class of B by minimizing the empirical
squared error e, () = (1/n) Z?:1(Hiﬁ - Ti)2 with the error
probability L(B,) = P{lyyg; # T | D,} of the resulting
classifier. According to [25], the empirical squared error
minimization is consistent under general conditions.

Theorem 1. Assume that B is a totally bounded class of
functions. If B, € B, then the classification rule obtained
by minimizing the empirical squared error over B is strongly
consistent; that is,

PllimL(,) =L} —1. (10)

Based on Law of Large Numbers (LLN) theorem [26] and
Theorem 1, in sequential learning with the number of training
data N — 00, we can make sure that the consistency of
expected value of learning model is § = H'T.

The concept drift refers to an online supervised learning
model when the relation between the input data and the target
variable changes over time [1]. If the learning model from

Concept 1 B: € B, is bounded by hypothesis space R™ and
feature space R and the learning model from Concept 2
B; € B, is bounded by hypothesis space R™ and feature
space R%2, we defined the real drift as when the hypothesis
space R™ has changed to R™2. We scoped the definition
for m, > m, dimension changes. The virtual drift is when
the feature space R?' has changed to R%. We scoped the
definition for d, > d; dimension changes.

To achieve the consistency of minimized square error in
the new hypothesis space or new feature space, the learning
model needs a transition map from the former space to the
new space. The learning model Bj needs a transition space

before it converges to the new learning model B; € B, c
R™. Our transition space idea was inspired by geometric
approach for solving many problems in the fields of pattern
recognition and machine learning [27, 28].

For transition space, we propose two approaches: (i)
assign the random coordinates in the new concept space
and (ii) assign the equivalent projection coordinates in the
new design space. The first approach is suitable for VD
scenario, in which we assigned the new random coordinates
as the new input weight parameters. The second approach is
suitable for RD situation, by setting the equivalent projection
coordinates in the new space (e.g., (X;) in 1D coordinate has
corresponding 2D projection coordinates as (X, 0)).

Here, we relate the ELM theory to the context of AOS-
ELM concept drift scenarios (see Table 1) as follows.

Scenario 1 (virtual drift (VD)). Huang et al. [6] explained
interpolation theory from ELM point of view as stated by the
following description.

Theorem 2. Given any small positive value € > 0, any
activation function which is infinitely differentiable in any
interval, and N arbitrary distinct samples (x;,t;) € R x R™,



TaBLE 1: Concept drift scenarios, compared methods, and sequential
patterns.

(a) The experiment design scenarios

Data set Virtual ~ Real = Hybrid Compared
drift drift drift methods
OS-ELM,
SEA — Y — CEOS-ELM, Kolter
[20]
OS-ELM,
STAGGER — Y — CEOS-ELM, Kolter
[20]
OS-ELM, Offline
MNIST Y Y Y ELM, ELM
ensemble
OS-ELM, offline
MNIST + USPS — Y Y ELM, ELM
ensemble
(b) Concept drift sequential patterns
Data set Sequential Patterns Cause of shift
scenarios
Linear discriminant
SEA Sudden change function
Logical discriminant
STAGGER Sudden change rule
MNIST Sudden. change and Additional attributes
recurring context or classes
USPS Recurring context Additional attributes
or classes

there exists L < N such that, for any input weight and bias
pair {a;, b}, randomly generated from any interval of RY x
R, according to any continuous probability distribution, with
probability one, |HB — T|| < e. Furthermore, if L = N, then
with probability one, |[HB - T|| = 0.

According to Theorem 2 and Learning Principle I of
ELM Theory [5], the input weight and bias as hidden nodes
H parameters are independent of training samples and
their learning environment through randomization. Their
independence is not only in initial training but also in any
sequential training stages. Thus, we can adjust the input
weight and bias pair {a;, b}, on any sequential stages and
still make sure with probability one that |[HB - T| < e.

Scenario 2 (real drift (RD)). Huang et al. [6] explained
universal approximation capability of ELM as described by
the following theorem.

Theorem 3. Given any nonconstant piecewise continuous
function g : R; — R, ifspan{g(a,b,x) : (a,b)R; xR} is dense
in L2, for any continuous target function f and any function
sequence {g(a;, b;, x)}f: | randomly generated according to any
continuous sampling distribution, lim; _, |l f — fll = 0 holds

Computational Intelligence and Neuroscience

with probability one if the output weights B, are determined by
ordinary least square to minimize || f (x) — Z;;_; B;9(a;, b;, x)|.

Based on Theorem 3 and inspired by the related works
[9, 14], we devised the AOS-ELM real drift capability by
modifying the output matrix with zero block matrix concate-
nation to change the size dimension of the matrix without
changing the value. Zero block matrix has meant the previous
B -1y has no knowledge about the new concept. ELM can
approximate any complex decision boundary, as long as the
output weights 3; are determined by ordinary least square to
keep the minimum.

3.2. AOS-ELM Algorithms. In this section, we presented
the AOS-ELM pseudocodes (the Matlab source code,
data set, and demo file implementation are available at
https://github.com/abudiman250172/adaptive-OS-ELM) in
the kth sequential with X;, training input and T, target to
update Model,y,.

Basically, we have three pseudocodes, namely, OSELM-
Seq (Algorithm 1) as OS-ELM and CEOS-ELM pseudocodes;
AOSELMVDSeq (Algorithm 2) as AOS-ELM pseudocodes
tackling virtual drift; and AOSELMRDSeq (Algorithm 3) as
AOS-ELM pseudocodes for addressing real drift. We can
combine the pseudocodes together to form a hybrid drift
Algorithm 4. We can increase the hidden nodes using CEOS-
ELM in Algorithm 1 after AOSELMVDSeq or AOSELMRD-
Seq. For initialization, basically we can use any ordinary ELM
initialization in offline learning mode.

For sudden drift scenario, we proposed output marginal-
ization method by adding the new output nodes when the
new concept presented (see Figure 3) and marginalized
the output result by defining that Y, class of concept S
is =arg max, T(y,). We scoped that the new concept has
the same output nodes quantity with the previous concept.
Output marginalization is by shifting the ELM output to the
output nodes belonging to the new concept and ignoring
the previous concept output nodes. This strategy is similar
with classifier pruning in ELM ensemble. However, in output
marginalization, we can reactivate the previous concepts by
shifting back to the previous output nodes. If we want to
forget the last concept totally, we can quickly delete the
previous output nodes without impacting the generalization
performance, or we can increase the hidden nodes at the same
time with the drift event.

In regression, because we have only one output node, then
we can employ sudden drift scenario by amplifying the related
output node of the concept with a constant value that makes
the maximum output Y, approximated to 1.

The systematic rules make AOS-ELM more flexibe to
handle complex consecutive drifts scenario. The AOS-ELM
only stored the previous output weight ;. ,, and autocorre-
lation K, ;. The autocorrelation K did not keep the training
data. This makes AOS-ELM scalable for big streaming data
without impacting the computation performance.

To improve the accuracy, we define the target values €
{0, 1}, so that Y class is =arg maxyT( y). According to [29],
the target values € {0, 1} are equivalent with € {-1, 1}.
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Require: X, € [-1, 1]R™N, T, € [0, ][RV,
A b Ky By

Ensure: B, K¢,

(1) Compute Hy; = g(Ay, - Xy +by)

(2) if IncreaseHiddenNodes == true then

(3)  AAy.s = RandomNumbers([-1,1], R*°F)

(4)  Abg; = RandomNumbers([-1,1], R%L)

(5)  Awp = [ApAAse]

(6) b, = [b(L)AbaL]

(7)  Compute AHy = g(AA 451 - Xgy + Absy)

(8)  Compute Ky = f(K_yy, Hygyr AH)

() Compute By = f(By_1), Koo, Hy AHgy, )

{Using CEOS-ELM Method}

(10) else

(11)  Compute Ky = Ky ;) + Hj Hyy

(12)  Compute By = f(By-ry Kug» Hug» Tiry)

(13) end if

(14) return B, Ky

ALGORITHM I: Algorithm OSELMSeq {OS-ELM sequential}.

-
Concept 1
m outputs
'f\i Concept 2
Inputs “~ | moutputs
Source 1 : . ,..\]
Source 2 : i
d inputs &Oé
Source N
~— '/\‘} Concept S
Shared weight N m outputs
L hidden nodes v \}
ki
g

FIGURE 3: Output marginalization in AOS-ELM. The new block of
output nodes assembled when the new concept S presented. Each
concept has the same m output nodes quantity. Total output nodes
become S x m output nodes.

4. Experiments

4.1. Experiments Design in Classification. To verify our
method, we designed some experiments with the following
purposes:

(i) To investigate the effectiveness of AOS-ELM on
tackling three concept drift scenarios (VD, RD, and
HD) in two sequential patterns (sudden changes and
recurring context). We used various data set starting
with synthetic data set (SEA, STAGGER) and then
with real data set in handwritten recognition (MNIST,
USPS). Each data set has different drift characteristics.
This experiment is presented in Sections 4.2 and 4.4.

We also demonstrated the AOS-ELM capability as
drift detection role in Section 4.3 using SEA data set.

(ii) To investigate the effectiveness of AOS-ELM on trans-
fer learning to combine different data set sources.
This experiment is presented in Section 4.4 using two
data set sources (MNIST and USPS) in handwritten
recognition problem.

(iii) To investigate the effect of hidden nodes increase in
the drift events and how it impacts performance. This
experiment is presented in Section 4.5.

We used Matlab™ running on Microsoft Windows™
Computer with 4-core 2.5 GHz processor and 8 GB memory.
Our experiments are organized as follows:

(1) Simulation benchmark tests on the data sets com-
monly used in concept drift handling of stream
data, for example, SEA [19] and STAGGER [20] (see
Table 2(a)). Both data sets are binary classification
problem. SEA has 3 inputs with random integer values
from 0 to 9. STAGGER has three inputs with multiple
category values from 1 to 3 (total inputs are 9). SEA
and STAGGER are the examples of concept drift
caused by discriminant function changes while the
number of attributes and classes from all concepts
is still the same. The change type is sudden drift.
The expected result is that the classifier has good
performance for the newest concept [22].

(2) We tested our algorithm with real-world public data
sets from MNIST numeric (0 to 9) [17] and the
USPS alphanumeric (A to Z, 0 to 9) handwritten data
set [18]. We used original grey-level image attributes
[Xgrey] of MNIST data set and the combination of
[Xgrey] with additional attributes from the 9 x 9 bins
histogram of orientated gradients (Xyog) of grey-
level image features [30]. For USPS, we added more
data with Gaussian random and salt-pepper noises.
Refer to Table 2(a) for detailed data set information.

(3) We designed the initial input weights and bias based
on robust OS-ELM with regularization scalar ¢ (ROS)
[31] and then based on initial random from the
normal distribution (NORM). The activation func-
tion is sigmoid. The pseudoinverse function is the
orthogonal projection using ridge regularization.

(4) Let us define the following concept as

(i) C, is MNIST[X
(ii) C, is MNIST[X
(iii) C, is MNIST[X
(iv) C, is MNIST[X
(v) Cs is MNIST[X
(vi) Cqis USPS[X

grey] class (1-6),

grey] class (7-10),
greyXnog] class (1-6),
greyXnog] class (7-10),
greyXnog] class (1-10),

greyXnog] class (1-10, A-Z).

We followed the simulated concept drift methods
in Dries and Riickert [32]. We simulated sudden
drift by splitting the composition into two groups,
for example, C; and C,, and recurring context by
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Require: X, € [-1, RPN
Agyy = Model;_) - A
Ensure: A,
(1) d_yy = SizeofAttributes(Model_,))
(2) dy, = SizeofAttributes(X,)
(3) if dyy >d_,) then
(4)  &6d=dy—dgy
(5)  AAgy = RandomNumbers([-1,1], R**)

6) A=

{The construction of input weight in virtual drift scenario}
(7) else
8) Ay =Agy
(9) endif
(10) return Ay,

ALGORITHM 2: Algorithm AOSELMVDSeq {AOS-ELM sequential-virtual drift}.

Require: T, € [0, 1[JR™"

By = Modely_, - B
Ensure: ﬁ(k—l)
(1) my._yy = Sizeof Classes(Model._,))
(2) myy = Sizeof Classes(T )
(3) if myy > my_,) then
(4)  dm=mgyy—mg_
(5) AﬁLxém =0
(6) ﬁ(k-l) = [ﬁ(k—l)Aﬁ]

{The construction of output weight in real drift scenario}

(7) end if
(8) return ﬁ(k_l)

ALGoRrITHM 3: Algorithm AOSELMRDSeq {AOS-ELM sequential-real drift}.

Require: X, € [-1, 1]R™N, T, € [0, 1]RV™,

Ay 1y = Model;_ - A

b, = Model;_,,-b

K-y = Model_,, - K

By = Modely_y - B
Ensure: Model,
(1) By_1y = AOSELMRDSeq(T ), Model;_,y)

{The construction of output weight in real drift scenario}
(2) Ay = AOSELMVDSeq(X ), Model;_,))

{The construction of input weight in virtual drift scenario}
(3) (B> Ky) = OSELMSeq(X s> Ty Agrys brs Kooy

ﬁ(kfl), IncreaseHiddenNodes)
(4) Model;, = SaveModel(A ), by, Ky, Byy)
(5) return Model,

ALGORITHM 4: Algorithm AOS-ELM sequential-hybrid drift.
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Single ELM outputs §

Classifier S

FIGURE 4: Hierarchical ELM ensemble for MNIST + USPS experi-
ment. The gray shadow showed the new classifiers assembled when
the new concept presented.

shuffling the composition of C; and C,. We set the
sequential training flow to be the following drift
equation:

>

(a) Experiment 1: virtual drift: MNIST[X,..,] v}

MNIST([X grey Xpi06)»

(b) Experiment 2: real drift: for recurring con-
text, C; g shuffled(C,,C,); for sudden drift:
CirpCo

(c) Experiment 3: hybrid drift: C, 3}, shuffled(C;,
Cy)

(d) Experiment 4: MNIST + USPS transfer learning:
Cs zp G-

(5) We measured the performance based on Table 2(c).
The testing accuracy and Cohen’s Kappa are to show
the quantitative measurement. The predictive accu-
racy is to demonstrate the trend in a line chart. The
sudden drift performance is based on the forgetting
capability that compared the testing accuracy of the
latest concept against all the previous concepts.

(6) We compared the AOS-ELM performance with non-
adaptive online sequential and offline version of ELM
classifier. The performance expectation of sequential
version classifier is to approximate the offline version
of the classifier (desiderata for online classifiers [22]).
We also compared with adaptive ELM ensemble
method (see Figure 4). We designed the hierarchical
ensemble using two models of ELM classifier with
different roles (see Figure 4). The first role is a
binary classifier that acts as a director based on one
against all (OAA) classification. The binary classifier
needs all sequential training data to be recalled
(full memory). Another role is the data classifier.
This ensemble requires total 25 — 1 classifiers for S
concepts, thus, not effective for consecutive concept
drift case, for example, SEA concepts. The ensemble
also applied outdated classifier pruning when the

TABLE 2: Data set dimension, quantity, evaluation method, and
performance measurement.

(a) Data set dimension and quantity

Dataset Concepts Inputs Outputs Quantity (xconcepts)
SEA 4 3 2 20000 (x4)
STAGGER 3 9 2 4400 (x3)
MNIST 2 784, 865 10 70000 (x2)
USPS 1 865 36 48908 (x1)
(b) Evaluation method

Data set Evaluation method Training Testing
SEA 5-fold 16000 (x4) 4000 (x4)

cross-validation
STAGGER 5-fold 3520 (x3) 880 (x3)

cross-validation
MNIST Holdout (10x trials) 60000 (x2) 10000 (x2)
USPS Holdout (10x trials) 35050 13858

(c) Performance measurements
Measure Specification
The accuracy of classification in % from

Accuracy

# correctly classified/# total instances

The accuracy measurement of the future

Predicti . .
redictive accuracy sequential training data [20]

The accuracy measurement of the testing

Testi .
esting accuracy data set excluded from the training

The testing accuracy differences between

Forgetting capability  the current concept with the previous
concepts
Cohen’s kappa and The statistic measurement of interrater

kappa error agreement for categorical items

ensemble detects that the previous attributes need to
be replaced.

4.2. SEA and STAGGER Concepts Result. We addressed the
question whether nonadaptive OS-ELM and CEOS-ELM
with 8L increase could handle the concept drift situation.
We compared between AOS-ELM with no 6L increase (AOS-
ELMI) and with 8L increase (AOS-ELM2). We used 5-fold
cross-validation and compared between NORM and ROS
parameter. For SEA, parameters L, = 3000 and §L = 500
increase per drift. For STAGGER, parameters L, = 9 and
OL = 5 hidden nodes increase per drift.

The AOS-ELM has better accuracy with better recovery
time (see Tables 3(a) and 3(b)) than CEOS-ELM, whereas
nonadaptive OS-ELM fails (see Figure 5). The AOS-ELM2
improved the forgetting capability better than AOS-ELML. In
comparison with Kolter and Maloof result using dynamically
weighted majority (DWM) of naive Bayes (DWM-NB) for
SEA, AOS-ELM result is near to the DWM result. Compari-
son with inducing decision trees (DWM-ITI) for STAGGER
[20], AOS-ELM outperformed DWM (see Tables 3(a) and
3(b)).
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TABLE 3: Average testing accuracy in % for each concept between OS-ELM, CEOS-ELM, AOS-ELMI, and AOS-ELM2.
(a) Testing accuracy in % for SEA with C; 35, C, zp C3 rp Ca
Method Parameter C, C, C, C,
OS-ELM NORM 89.48 + 0.33 86.47 £ 0.37 83.41+0.93 85.32 £ 0.45
ROS 89.51 £ 0.37 86.43 +0.38 83.49 £ 0.95 85.31 £ 0.49
CEOS-ELM NORM 82.40 + 0.27 89.33 £ 0.43 75.80 £ 0.87 90.30 + 0.35
ROS 84.54 £ 0.59 89.96 + 0.59 77.97 £1.05 90.26 = 0.69
AOS-ELMI NORM 89.84 £ 0.28 90.03 £ 0.25 89.67 £ 0.61 90.33 + 0.39
ROS 89.76 + 0.34 90.02 + 0.25 89.76 + 0.55 90.34 + 0.38
AOS-ELM2 NORM 50.58 + 1.18 50.71+1.19 48.50 £10.10 90.34 + 0.30
ROS 65.78 £1.21 65.67 £ 1.19 64.09 +£1.89 90.14 £1.34

(b) Testing accuracy in % for STAGGER with C; 3, C; zp C3

Method Parameter C, C, C,
OS-ELM NORM 51.89 + 3.48 81.61 + 4.74 6718 £5.80
ROS 49.77 £1.96 84.16 + 1.61 66.93 +2.00
CEOS-ELM NORM 21.98 £ 1.57 53.66 + 4.34 97.84 £ 4.32
ROS 23.23 +1.93 5211+ 2.35 99.27 +1.45
AOS-ELMI NORM 97.64 £1.95 100.00 £+ 0.00 100.00 £ 0.00
ROS 100.00 + 0.00 100.00 + 0.00 100.00 + 0.00
AOS-ELM2 NORM 59.66 + 5.65 70.91+10.93 100.00 £ 0.00
ROS 56.20 + 9.56 69.41 + 14.05 100.00 £ 0.00

4.3. Concept Drift Detection. The drift detection works based
on loss estimation (see Figure 2) that compared current
prediction accuracy with the previous feedback. Using similar
method on [33, 34], we can evaluate the intersection point
between accuracy decrease and increase in Figure 6. If the
consecutive loss performance exceeded a certain threshold,
then drift warning status is triggered. We measured the out-
put performance from the new concept output and compared
with the previous output. If it met certain criteria, then the
new AOS-ELM is committed. Otherwise, the previous AOS-
ELM is rolled back.

4.4. MNIST and MNIST + USPS Result. We measured the
testing accuracy based on holdout test data by 10x experiment
trials. The results are as follows.

Experiment 1 (virtual drift). The AOS-ELM of [Xge, X1106]
has Cohens kappa of testing accuracy 9572 (0.21)%
approximated to its nonadaptive ELM and offline ELM of
[XgreyXtoG] version with the same hidden nodes number
L = 2000. It has better accuracy than single attribute [X,]
or [ Xyl only (see Table 4(b)). It proves our explanation in
the theoretical background on Section 3.1.

Note. We set L, = 200 for [Xyog] ELM based on the same
ratio between number of input nodes with hidden nodes of

[X grey] ELM.

Experiment 2 (real drift). The final result is shown in
Table 5(b): the AOS-ELM has better Cohen’s kappa perfor-
mance for all concepts than ELM ensemble and little exceeds
its nonadaptive and offline ELM (Table 5(b)).

As in the split composition, the AOS-ELM with 6L
increase has better performance in forgetting capability than
the AOS-ELM with no 8L increase (see Table 8(b)).

Experiment 3 (hybrid drift). The final result is shown in
Table 5(c): the AOS-ELM has better Cohen’s kappa perfor-
mance for HD than ELM ensemble and approximates to its
nonadaptive and offline ELM.

Experiment 4 (MNIST + USPS transfer learning). The AOS-
ELM has better Cohen’s kappa performance for both numeric
and alphabet concepts than ELM ensemble (see Table 5(d))
and approximates to its nonadaptive and offline ELM. The
AOS-ELM shows better recovery time than ELM ensemble
in Figure 7.

4.5. The Effect of Hidden Nodes Increase. The initial size
of hidden nodes L, selection is important to have good
generalization performance. Researches [3, 6] suggested for
the hidden nodes size to be at minimum equal to the rank
value of training data. However, in a data stream, it is hard to
determine a fixed number of hidden nodes following that sug-
gestion. The larger L requires more computation resources
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FIGURE 5: Predictive accuracy of AOS-ELMI (black line A) and AOS-ELM2 (black dashes A) compared with OS-ELM (blue line x) and

CEOS-ELM (blue dashes x).

TABLE 4: Average testing accuracy and Cohen’s kappa in % for MNIST VD experiment (other ELM parameters are same: ROS, 6L = 0,

0N = 1000) with 10x trials.

(a) Benchmark result, nonadaptive OS-ELM and offline ELM

Performance ELM method [Xgrey] (L = 2000) [X1oc] (L =200) [XgreyXHOG] (L = 2000)
. OS-ELM 95.32 +0.12 94.64 + 0.15 96.86 £ 0.13

Testing accuracy

Offline ELM 9533 £0.13 94.66 £ 0.15 96.85 + 0.06
Cohen’s kappa OS-ELM 94.80 (0.24) 94.04 (0.25) 96.51 (0.19)

Offline ELM 94.81(0.23) 94.06 (0.25) 96.50 (0.19)

(b) VD experiment, AOS-ELM (L = 2000)

Drift Testing accuracy Cohen’s kappa
MNIST [ X, ] 35 MNIST [X,o, Xpr06] 96.15 + 0.08 95.72 (0.21)
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>
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FIGURE 6: Predictive accuracy of AOS-ELM in SEA for each concept
with m output (see Figure 3). We can consider the intersection
point between accuracy decrease of previous concept and accuracy
increase of current concept as change point (displayed as thin
vertical shadow line).

and processing time, probably not giving a significant result
at the end. Thus, we have a requirement to increase 6L in
sequential stage [9].

1
W
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FIGURE 7: Predictive accuracy of AOS-ELM (black line) over
sequential data for MNIST + USPS compared with ELM ensemble
(blue dash line).

The experiment result in Table 6 shows that the perfor-
mance improved when certain hidden nodes size increases.
We used different initial hidden nodes size (L) condition:
2000, 666 (the rank value of initial training data), and 713
(the rank value of total training data). We used also different
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TABLE 5: Average testing accuracy and Cohen’s kappa in % for MNIST RD, HD, and MNIST + USPS transfer learning experiment (other ELM
parameters are same: ROS, L = 2000, 6L = 0, N = 1000) with 10x trials.

(a) Benchmark result, nonadaptive OS-ELM and offline ELM

Testing accuracy Cohen’s kappa
Source Class
OS-ELM Offline ELM OS-ELM Offline ELM
MNIST [Xgrey] (1-6) 95.99 + 0.15 96.00 + 0.14 95.21 (0.30) 95.22 (0.30)
(7-10) 94.30 + 0.22 94.32 £ 0.19 92.50 (0.48) 92.53 (0.48)
MNIST [XgreyXHOG] (1-6) 97.59 + 0.11 97.49 + 0.09 9710 (0.23) 97.00 (0.24)
(7-10) 95.76 + 0.26 95.87 + 0.12 94.40 (0.42) 94.55 (0.42)
MNIST + USPS [XgreyXHOG] (1-10) 96.01 + 0.10 96.08 + 0.08 95.56 (0.02) 95.65 (0.02)
(A-Z7) 99.94 + 0.02 99.94 + 0.02 99.94 (0.02) 99.93 (0.02)
(b) RD experiment, ELM ensemble (3 classifiers, full memory) versus AOS-ELM
Source Concept Testing accuracy Cohen’s kappa
ELM ensemble AOS-ELM ELM ensemble AOS-ELM
MNIST [Xgrey] C, (1-6) 94.58 + 0.17 96.09 + 0.12 93.54 (0.35) 95.10 (0.31)
C, (7-10) 91.60 + 0.29 94.34 + 0.16 89.04 (0.57) 92.56 (0.48)
(c) HD experiment, ELM ensemble (3 classifiers, full memory, outdated classifier pruning) versus AOS-ELM
Source Concept Testing accuracy Cohen’s kappa
ELM ensemble AOS-ELM ELM ensemble AOS-ELM
MNIST [Xgrey] C, (1-6) 94.48 +0.33 97.01 + 0.18 93.42 (0.35) 96.42 (0.26)
MNIST [XgreyXHOG] C, (7-10) 92.29 £ 0.36 96.05 + 0.19 89.95 (0.55) 94.78 (0.40)
(d) MNIST + USPS experiment, ELM ensemble (5 classifiers, full memory, outdated classifier pruning) versus AOS-ELM
Source Concept Testing accuracy Cohen’s kappa
ELM ensemble AOS-ELM ELM ensemble AOS-ELM
MNIST [XgreyXHoG] C; (1-10) 88.17 £ 11.06 95.91 £ 0.12 86.94 (0.33) 95.46 (0.22)
USPS [XgreyXHOG] Cs (A-2) 99.80 + 0.05 99.95 + 0.03 99.79 (0.40) 99.95 (0.02)

conditions of hidden nodes increase (6L) by using ROS
parameters on the drift event: 0 (no increase), 500, 1000, and
2000. However, the larger L, has better influence than 6L
increase.

We studied the effect of hidden nodes increased in the
sequential phase as follows.

(1) “Underfitting” Condition. “Underfitting” is the condition
when the model does not fit the data well enough which
makes nonconvergence. Based on an empirical experiment
with 8L increase in the sequential phase on Table 7, we inves-
tigated particular condition when the AOS-ELM classifier
has a bad result. We realized that the ELM performance is
dependent upon finding general matrix inverse of H. Based
on orthogonal projection method in CEOS-ELM, we can
employ the rank value of P as evaluation parameter to detect
“underfitting”.

The P is approximation to matrix (H'H)™". The full rank
of P, is ideally equal to L. However, certain condition in
the sequential training, for example, poor training data or
poor learning parameter selection, may cause the diagonal
squared matrix P to be less diagonalizable [35], thus not full
rank anymore.

In the sequential learning, we can compare Rank(P)
before and after hidden nodes increase. The expected result
is positive increment. If the rank value becomes lower after
hidden nodes increase, then it has a higher probability for
“underfitting” condition to occur. Rank(P) is determined by
the block size of training data, the number of hidden nodes
increment, the ¢ scalar selection in ROS parameter, the acti-
vation function, input weight, and bias random assignment
method. In this experiment, we focused on the block size,
the number of hidden nodes, and ¢ scalar selection. Using
Rank(P) as evaluation parameter is more efficient because we
do not need to compute .

(2) Sudden Drift. In Tables 8(a) and 8(b), the hidden nodes
increase can improve the forgetting capability on sudden drift
(it reduced the accuracy of the outdated concept).

In CEOS-ELM, when 8L increases in the same time
with drift, it makes [g; Ag[z] and the new concept target
[o] € T, in split composition, while previous concept [ ] €
T,. Thus, in the process of finding f it becomes simplified
because [H,AH,] is partially trained by t, only and not by t,.
Thus, it reduced the generalization capability of [H,AH,] to
recognize T, problem.
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TABLE 6: Testing accuracy in Cohen’s kappa (kappa error) in % AOS-ELM MNIST for different L, and SL.
Scenario L, SL=0 SL = 500 6L = 1000 SL = 2000
2000 95.92 (0.21) 96.37 (0.20) 96.83 (0.18) 96.89 (0.18)
VD 666 93.10 (0.27) 95.18 (0.23) 96.18 (0.20) 95.60 (0.22)
713 93.30 (0.26) 95.31 (0.22) 96.28 (0.20) 96.09 (0.20)
2000 94.71 (0.24) 94.93 (0.23) 95.39 (0.22) 95.42 (0.22)
RD 630 91.3 (0.30) 91.67 (0.29) 93.61 (0.26) 94.04 (0.25)
713 91.71 (0.29) 92.70 (0.28) 93.82 (0.25) 94.23 (0.25)

TABLE 7: Predictive accuracy performance in AOS-ELM for MNIST using different parameters and Rank(P) before and after 8L increase.
Each experiment is repeated 100x trials to get the probability of predictive accuracy < 50%.

Scenario L, L Batch size c Before After Pred. acc. <50%
630 500 1000 10 630 1130 0%
630 500 500 10 1130 1122 7%
630 500 100 10 1130 614 5%
630 500 10 10 640 640 0%
630 100 1000 10 630 730 0%

RD 630 100 500 10 730 730 0%
630 100 100 10 730 730 0%
630 100 10 10 640 640 0%
2000 1000 100 5 2000 1868 3%
2000 1000 100 2000 1947 16%
2000 1000 100 0.5 2000 1946 17%
2000 1000 100 0.05 2000 2100 0%
666 500 500 5 666 1166 0%
666 500 100 5 666 1166 0%

VD 666 100 500 5 666 766 0%
666 100 100 5 666 766 0%
666 50 500 5 666 716 0%
666 50 100 5 666 716 0%

5. AOS-ELM in Regression

We can use the similar real drift scenario with output
marginalization and output amplification to solve concept
drift problem in regression. In this experiment, we used AOS-
ELM with single input node and single output node per
concept. We defined the following concept as

(i) C, is sinc function with 50000 training/5000 testing,

(ii) C, is sinus function with 50000 training/5000 testing,

(iii) C; is gaussian function with 50000 training/5000
testing.

The sequential experiments are following drift equations:

(1) For Experiment 1, C, 3, C,,
(2) For Experiment 2, C; 3 C, zp GCs.

We presented the result on Figures 8-10 to compare
the performance of each concept at the end of each train-
ing experiment. Our objective is to show the AOS-ELM
regression capability to keep the previous regression concept
knowledge. We select the constant value giving the best
regression result of each concept. The AOS-ELM has L, =

100, 6L = 0, and sigmoid function. More drifts occurring will
weaken the older concepts. Thus, the AOS-ELM needs larger
amplifier constant value.

6. Simulation in Big Data Stream: Intrusion
Detection System (IDS) KDD Cup 1999

IDS is a network security technology that scans any network
packet traffic to detect any potential exploits, then sending the
alarm or taking some active action to Intrusion Prevention
System. Some machine learning methods have been applied
with the hope of improving detection rates and adaptive
capability [36].

In this experiment, we used KDD Cup 1999 Competition
data set. The full data set had 4898431 network packets
grouped to be 23 classes (One normal class and 22 attack
names based on a signature-based detection) [37]. The data
set has a control information (CI) header for delivering the
data in numerical and multicategorical values as features.
We focused on service names (IP ports) attributes because
they are specific differentiators for applications. The CI and
the number of attack classes are not stationary. We analyzed
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FIGURE 9: Regression result of C, for Experiment 1 (red dash line)
using constant value 1.3 and Experiment 2 (black dash line) using
constant value 3.
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TABLE 8: Average testing accuracy in % for RD experiment. For SEA,
we started from C, to C,. For MNIST, we started from C, to C,.

(a) Sudden drift effect caused by split training composition with hidden
nodes 8L increase

Data AOS-ELM oL Concept Testing accuracy
0 G, 90.00 + 0.59
oo W
+
500 2 e =L
G, 90.12 + 0.52
0 C, 96.42 +0.21
MNIST Ly = 2000 C, 93.68 +0.23
500 C, 1759 + 0.98
G 97.08 + 0.15

(b) MNIST RD simulation: the effect of hidden nodes 6L increase for split
and shuffled training composition (L, = 2000)

Data SL Composition C, C,
Split 96.42+0.21 93.68 +0.23
Shuffled 96.09 £0.12 9434 +0.16
MNIST 500 Split 1759 £ 0.98 97.08 £ 0.15
Shuffled 96.53 £0.12  94.29 +0.25
1000 Split 8.65+1.13 97.64 + 0.18
Shuffled 96.74 £0.14  94.78 £0.10
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FIGURE 11: The changes on service names and number of classes
following the streaming data.

the data set for the growing of service names and the number
of class attack in the whole data set on Figure 11. The challenge
in IDS data set is imbalanced data between the classes. The
highest number of data is for “normal” class, and the lowest
number is for “spy” class (only 2 packets). To simplify the
experiment, we use oversampling by adding more data based
on the random normal distribution of packet signatures
and under sampling approaches by dropping some samples
randomly.

Based on the growing of service names and the number of
classes analysis (see Figure 11), we designed one drift scenario
based on two concepts (Table 9(b)). C; has ten classes and 37
service names and C, has 23 classes and 70 service names.
Total training data for each concept is 920000 packets. There
is no data repetition from the previous event, except at the end
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TABLE 9: Performance comparison of AOS-ELM and nonadaptive
OS-ELM to validation data set C, in %.

(a) Benchmark result, nonadaptive OS-ELM

Concept ~ Parameters Testing accuracy Cohen’s kappa
C, OS-ELM 50.87 + 0.01 45.81(0.54)
C, OS-ELM 94.58 + 0.05 94.03 (0.24)

(b) Performance result on the drift event, AOS-ELM

Drift Parameters  Testing accuracy ~ Cohen’s kappa
C, G, AOS-ELM1 9218 +2.73 91.38 (0.29)
C, G, AOS-ELM2  94.64 + 0.06 94.10 (0.24)
End of full C, AOS-ELM1 93.45£1.18 92.78 (0.27)
End of full C, AOS-ELM2 94.57 £ 0.11 94.02 (0.25)

of C, sequential training. The composition between C,/C, on
HD event is 230000/690000. The validation data set of C, is
selected from all packets from minority classes and randomly
selected original majority classes (10422 packets). We used
holdout method with 5x trials. We used AOS-ELMI for 6L =
0 and AOS-ELM2 for L = 500 (other ELM parameters are
same: L, = 1000, NORM, sig). The AOS-ELM result in this
experiment can approximate the nonadaptive OS-ELM on C,
(see Table 9(b)).

7. Challenges and Future Research

Based on AOS-ELM experiments, we face some challenges,
which are as follows:

(i) We need to investigate the optimum transition space
that minimizes the gap to the new concept learning
model. In certain case, the AOS-ELM may have the
“underfitting” condition and require larger training
data to achieve the new convergence.

(ii) We need to check the consistency of AOS-ELM
for different pseudoinverse methods (e.g., Greville’s
method [23]).

We suggest some ideas for AOS-ELM future researches as
follows:

(i) The need for transfer learning to solve big data
problem when the distribution data changes.

(ii) The AOS-ELM integration with other ELM meth-
ods, for example, Weighted OS-ELM for imbalanced
learning [38], ELM Autoencoder (ELM-AE) [39], and
Stacked ELM [40].

(iii) A detailed systematic explanation based on rule
extraction [41] for AOS-ELM in handling adaptive
environment.

8. Conclusion

The proposed method gives better adaptive capability than
nonadaptive OS-ELM and CEOS-ELM in terms of retaining
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the recognition performance when handling concept drifts.
It uses a simple line of code easy to deploy especially
for consecutive drifts, compared with adaptive ensemble
methods. While most adaptive classifiers work differently
for each of virtual, real drift, and hybrid drift scenarios, the
AOS-ELM tackles those drifts through simple block matrix
reconstruction and rank evaluation.

AOS-ELM satisfied the requirement criteria in terms of
accuracy, simplicity, speed, and flexibility. However, in certain
VD and HD cases, the AOS-ELM accuracy may not exceed
the nonadaptive sequential ELM, which include the future
training data. In RD cases, the AOS-ELM has better accuracy.
In a real data implementation, the nonadaptive ELM is better
and preferred when we know exactly the future behavior of
data. However, we can not predict it precisely. We believe
using larger training data, the AOS-ELM performance will
approximate the expected value of nonadaptive sequential
ELM or offline ELM, which use the future training data.
The AOS-ELM can also add learning adaptation function to
the previous offline learning model. It makes AOS-ELM an
excellent choice for the unpredictable situation.

The AOS-ELM tackles sudden drift change type as well
as recurrent context change type. The output marginalization
strategy is implemented by simply shifting the output nodes
belonging to the latest concept. The AOS-ELM does need to
increase the hidden nodes to improve the forgetting capability
for sudden drift change type. To make sure of the convergence
to the expected learning model, we proposed the rank value
of the pseudoinverse autocorrelation hidden nodes matrix as
evaluation parameter to prevent “underfitting” condition that
makes the accuracy performance dropped.

We can consider the AOS-ELM as another type of ELM
ensemble formation using shared and interconnected hidden
nodes between ensemble members. We can implement the
AOS-ELM in similar fashion compared to the ELM ensemble
for adaptive learning scheme, but with better performance,
simplicity, and more resource efficiency. However, the AOS-
ELM does have some drawbacks. Any hidden node changes
could impact all notions.

Competing Interests

The authors declare that they have no competing interests.

Acknowledgments

This work is supported by Higher Education Center of
Excellence Research Grant funded by Indonesia Ministry of
Research, Technology and Higher Education (Contract no.
1068/UN2.R12/HKP.05.00/2016).

References

[1]1 J. A. Gama, L Zliobaite, A. Bifet, M. Pechenizkiy, and A.
Bouchachia, “A survey on concept drift adaptation,” ACM
Computing Surveys, vol. 46, no. 4, article 44, pp. 1-37, 2014.

[2] P.B. Dongre and L. G. Malik, “A review on real time data stream
classification and adapting to various concept drift scenarios,”
in Proceedings of the 4th IEEE International Advance Computing



16

(10]

(16]

(17]

(18]

(19]

[20]

Conference (IACC ’14), pp. 533-537, Gurgaon, India, February
2014.

G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning
machine: theory and applications,” Neurocomputing, vol. 70, no.
1-3, pp. 489-501, 2006.

G.-B. Huang, H. Zhou, X. Ding, and R. Zhang, “Extreme
learning machine for regression and multiclass classification,”
IEEE Transactions on Systems, Man, and Cybernetics, Part B:
Cybernetics, vol. 42, no. 2, pp. 513-529, 2012.

G.-B. Huang, “An insight into extreme learning machines:
random neurons, random features and kernels) Cognitive
Computation, vol. 6, no. 3, pp- 376-390, 2014.

G. Huang, G.-B. Huang, S. Song, and K. You, “Trends in extreme
learning machines: a review;” Neural Networks, vol. 61, pp. 32—
48, 2015.

G.-B. Huang, “What are extreme learning machines? filling the
gap between Frank Rosenblatt’s dream and John von Neumann’s
puzzle,” Cognitive Computation, vol. 7, no. 3, pp. 263-278, 2015.
N.-Y. Liang, G.-B. Huang, P. Saratchandran, and N. Sundarara-
jan, “A fast and accurate online sequential learning algorithm
for feedforward networks,” IEEE Transactions on Neural Net-
works, vol. 17, no. 6, pp. 1411-1423, 2006.

Y. Lan, Y. C. Soh, and G.-B. Huang, “A constructive enhance-
ment for Online Sequential Extreme Learning Machine,” in
Proceedings of the International Joint Conference on Neural
Networks (IJCNN °09), pp. 1708-1713, Atlanta, Ga, USA, June
20009.

L. I. Kuncheva, “Classifier ensembles for detecting concept
change in streaming data: overview and perspectives,” in Pro-
ceedings of the 2nd Workshop SUEMA (ECAI °08), pp. 5-10,
Patras, Greece, 2008.

T. G. Dietterich, “Ensemble methods in machine learning,’
in Proceedings of the Ist International Workshop on Multiple
Classifier Systems (MCS ’00), pp. 1-15, Springer, 2000.

G. Chandrashekar and E Sahin, “A survey on feature selection
methods,” Computers and Electrical Engineering, vol. 40, no. 1,
pp. 16-28, 2014.

1. Zliobaite, “Learning under concept drift: an overview;” CoRR-
Computing Research Repository, 2010.

A. Budiman, M. 1. Fanany, and C. Basaruddin, “Construc-
tive, robust and adaptive OS-ELM in human action recogni-
tion,” in Proceedings of the International Conference on Indus-
trial Automation, Information and Communications Technology
(IAICT ’14), pp. 39-45, Bali, Indonesia, August 2014.

S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE
Transactions on Knowledge and Data Engineering, vol. 22, no.
10, pp. 1345-1359, 2010.

Q. Yang, “Transfer learning beyond text classification,” in Pro-
ceedings of the Ist Asian Conference on Machine Learning (ACML
’09), Advances in Machine Learning, pp. 10-22, Springer,
Berlin, Germany, 2009.

Y. LeCun and C. Cortes, “MNIST handwritten digit database,”
2010, http://yann.lecun.com/exdb/mnist/.

S. Roweis, Data for matlab hackers handwritten digits,
http://www.cs.nyu.edu/~roweis/data.html.

W. N. Street and Y. Kim, “A streaming ensemble algorithm
(SEA) for large-scale classification,” in Proceedings of the 7th
ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining (KDD ’01), 2001.

J. Z. Kolter and M. A. Maloof, “Dynamic weighted majority:
an ensemble method for drifting concepts,” Journal of Machine
Learning Research, vol. 8, pp. 2755-2790, 2007.

(21]

[22]

[24]

[25]

(26]

(27]

(31]

[34]

[37]

(38]

Computational Intelligence and Neuroscience

J. Gao, W. Fan, J. Han, and P. S. Yu, “A general framework
for mining concept-drifting data streams with skewed distribu-
tions,” in Proceedings of the 2007 SIAM International Conference
on Data Mining (SDM ’07), 2007.

L. Kuncheva, “Classifier ensembles for changing environments,”
in Multiple Classifier Systems, E Roli, J. Kittler, and T. Windeatt,
Eds., vol. 3077 of Lecture Notes in Computer Science, pp. 1-15,
Springer, Berlin, Germany, 2004.

A. van Schaik and J. Tapson, “Online and adaptive pseudoin-
verse solutions for ELM weights,” Neurocomputing, vol. 149, pp.
233-238, 2015.

K. Cao, G. Wang, D. Han, J. Ning, and X. Zhang, “Classification
of uncertain data streams based on extreme learning machine;”
Cognitive Computation, vol. 7, no. 1, pp. 150-160, 2015.

L. Devroye, L. Gyorfl, and G. Lugosi, A Probabilistic Theory of
Pattern Recognition, Springer, New York, NY, USA, 1996.

C.M. Grinstead and J. L. Snell, Introduction to Probability, AMS,
2003, http://www.dartmouth.edu/~chance/teaching_aids/books_
articles/probability_book/book.html.

L. C. A. Corsten, “Statistical methods: the geometric approach
(David J. Saville and Graham R. Wood),” SIAM Review, vol. 34,
no. 3, pp. 506-508, 1992.

R. Strack, Geometric approach to support vector machines learn-
ing for large datasets [Ph.D. thesis], Virginia Commonwealth
University, Richmond, Va, USA, 2013.

A. Tosifidis, “Extreme learning machine based supervised sub-

>

space learning,” Neurocomputing, vol. 167, pp. 158-164, 2015.

O. Ludwig Junior, D. Delgado, V. Gongalves, and U. Nunes,
“Trainable classifier-fusion schemes: an application to pedes-
trian detection,” in Proceedings of the 12th International IEEE
Conference on Intelligent Transportation Systems (ITSC °09), pp.
1-6, St. Louis, Mo, USA, October 2009.

M.-T. T. Hoang, H. T. Huynh, N. H. Vo, and Y. Won, “A robust
online sequential extreme learning machine;” in Proceedings of
the 4th International Symposium on Neural Networks: Advances
in Neural Networks, pp. 1077-1086, Springer, Berlin, Germany;,
2007.

A. Dries and U. Riickert, “Adaptive concept drift detection,”
Statistical Analysis and Data Mining, vol. 2, no. 5-6, pp. 311-327,
2009.

K. Nishida and K. Yamauchi, “Adaptive classifiers-ensemble
system for tracking concept drift, in Proceedings of the 6th
International Conference on Machine Learning and Cybernetics
(ICMLC °07), pp. 3607-3612, Hong Kong, August 2007.

C. Alippi, G. Boracchi, and M. Roveri, “Just-in-time classifiers
for recurrent concepts,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 24, no. 4, pp. 620-634, 2013.

G. H. Golub and C. E Van Loan, Matrix Computations, Johns
Hopkins University Press, Baltimore, Md, USA, 3rd edition,
1996.

S. K. Wagh, V. K. Pachghare, and S. R. Kolhe, “Survey on
intrusion detection system using machine learning techniques,’
International Journal of Computer Applications, vol. 78, no. 16,
pp. 30-37, 2013.

J. Gama, “Knowledge discovery from ubiquitous streams—
datasets for concept drift,” http://www.liaad.up.pt/kdus/pro-
ducts/datasets-for-concept-drift.

B. Mirza, Z. Lin, and K.-A. Toh, “Weighted online sequential
extreme learning machine for class imbalance learning,” Neural
Processing Letters, vol. 38, no. 3, pp. 465-486, 2013.



Computational Intelligence and Neuroscience

[39] N.Zhang, S. Ding, and Z. Shi, “Denoising Laplacian multi-layer

[40

[41

J

J

extreme learning machine,” Neurocomputing, vol. 171, pp. 1066
1074, 2016.

H. Zhou, G.-B. Huang, Z. Lin, H. Wang, and Y. C. Soh, “Stacked
extreme learning machines,” IEEE Transactions on Cybernetics,
vol. 45, no. 9, pp- 2013-2025, 2015.

N. Barakat and A. P. Bradley, “Rule extraction from support

vector machines: a review;” Neurocomputing, vol. 74, no. 1-3, pp.
178-190, 2010.

17



= _'A'. ' N - -
Advances in b ,“ . e industal Engineering
iR, ARINE - -
L& s S . Applied
. - o Computational

Intelligence and Soft
Ep/mputing—'

The Scientific ISR —
World Journal Sensor Networks

Advances in

Fuzzy

Modelling &
Simulation
in Engineering

e

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Computer Networks
and Communications P eEsl

Artificial
Intelligence

Advances in
iomedical Imaging. M Artificial
‘ol Neural Systems

s

International Journal of
Computer Games 5 in
Technology oy re Engineering

Reconfigurable
Computing

Computational o
Journal of ¢ Hu;jja[)TCOrjj|3L|tey‘ \ntengence and 2 Electrical and Computer
Robotics Interaction Neuroscience Engineering

SN



