9 research outputs found

    A multipath routing method for tolerating permanent and non-permanent faults

    Get PDF
    The intensive and continuous use of high-performance computers for executing computationally intensive applications, coupled with the large number of elements that make them up, dramatically increase the likelihood of failures during their operation. The interconnection network is a critical part of such systems, therefore, network faults have an extremely high impact because most routing algorithms are not designed to tolerate faults. In such algorithms, just a single fault may stall messages in the network, preventing the finalization of applications, or may lead to deadlocked confi gurations. This work focuses on the problem of fault tolerance for high-speed interconnection networks by designing a fault-tolerant routing method to solve an unbounded number of dynamic faults (permanent and non- permanent). To accomplish this task we take advantage of the communication path redundancy, by means of a multipath routing approach. Experiments show that our method allows applications to finalize their execution in the presence of several number of faults, with an average performance value of 97% compared to the fault-free scenarios.Presentado en el IX Workshop Procesamiento Distribuido y Paralelo (WPDP)Red de Universidades con Carreras en Informática (RedUNCI

    A multipath routing method for tolerating permanent and non-permanent faults

    Get PDF
    The intensive and continuous use of high-performance computers for executing computationally intensive applications, coupled with the large number of elements that make them up, dramatically increase the likelihood of failures during their operation. The interconnection network is a critical part of such systems, therefore, network faults have an extremely high impact because most routing algorithms are not designed to tolerate faults. In such algorithms, just a single fault may stall messages in the network, preventing the finalization of applications, or may lead to deadlocked confi gurations. This work focuses on the problem of fault tolerance for high-speed interconnection networks by designing a fault-tolerant routing method to solve an unbounded number of dynamic faults (permanent and non- permanent). To accomplish this task we take advantage of the communication path redundancy, by means of a multipath routing approach. Experiments show that our method allows applications to finalize their execution in the presence of several number of faults, with an average performance value of 97% compared to the fault-free scenarios.Presentado en el IX Workshop Procesamiento Distribuido y Paralelo (WPDP)Red de Universidades con Carreras en Informática (RedUNCI

    Conditional Fault-Diameter of Torus Networks

    Get PDF

    Resilient Routing Implementation in 2D Mesh NoC

    No full text
    With the rapid shrinking of technology and growing integration capacity, the probability of failures in Networks-on-Chip (NoCs) increases and thus, fault tolerance is essential. Moreover, the unpredictable locations of these failures may influence the regularity of the underlying topology, and a regular 2D mesh is likely to become irregular. Thus, for these failure-prone networks, a viable routing framework should comprise a topology-agnostic routing algorithm along with a cost-effective, scalable routing mechanism able to handle failures, irrespective of any particular failure patterns. Existing routing techniques designed to route irregular topologies efficiently lack flexibility (logic-based), scalability (table-based) or relaxed switch design (uLBDR-based). Designing an efficient routing implementation technique to address irregular topologies remains a pressing research problem. To address this, we present a fault resilient routing mechanism for irregular 2D meshes resulting from failures. To handle irregularities, it avoids using routing tables and employs a few fixed configuration bits per switch resulting in a scalable approach. Experiments demonstrate that the proposed approach is guaranteed to tolerate all locations of single and double-link failures and most multiple failures. Also, unlike uLBDR it is not restricted to any particular switching technique and does not replicate any extra messages. Along with fault tolerance, the proposed mechanism can achieve better network performance in fault-free cases. The proposed technique achieves graceful performance degradation during failure. Compared to uLBDR, our method has 14% less area requirements and 16% less overall power consumption

    Políticas de encaminamiento tolerantes a fallos

    Get PDF
    El uso intensivo y prolongado de computadores de altas prestaciones para ejecutar aplicaciones computacionalmente intensivas, sumado al elevado número de elementos que los componen, incrementan drásticamente la probabilidad de ocurrencia de fallos durante su funcionamiento. El objetivo del trabajo es resolver el problema de tolerancia a fallos para redes de interconexión de altas prestaciones, partiendo del diseño de polí­ticas de encaminamiento tolerantes a fallos. Buscamos resolver una determinada cantidad de fallos de enlaces y nodos, considerando sus factores de impacto y probabilidad de aparición. Para ello aprovechamos la redundancia de caminos de comunicación existentes, partiendo desde enfoques de encaminamiento adaptativos capaces de cumplir con las cuatro fases de la tolerancia a fallos: detección del error, contención del daño, recuperación del error, y tratamiento del fallo y continuidad del servicio. La experimentación muestra una degradación de prestaciones menor al 5%. En el futuro, se tratará la pérdida de información en tránsito.L'ús intensiu i perllongat de computadors d'altes prestacions per a executar aplicacions computacionalment intensives, sumat a l'elevat nombre d'elements que els componen, incrementen dràsticament la probabilitat d'ocurrència de fallades durant el seu funcionament. L'objectiu del treball és resoldre el problema de tolerància a fallades per a xarxes d'interconnexió d'altes prestacions, partint del disseny de polítiques d'encaminament tolerants a fallades. Busquem resoldre una determinada quantitat de fallades d'enllaços i nodes, considerant els seus factors d'impacte, probabilitat d'aparició. Per a això s'aprofita la redundància de camins de comunicació existents, partint des d'enfocaments d'encaminament adaptatius capaços de complir amb les quatre fases de la tolerància a fallades: detecció de l'error, contenció del dany, recuperació de l'error, i tractament de la fallada i continuïtat del servei. L'experimentació mostra una degradació de prestacions menor al 5%. En el futur, es tractarà la pèrdua d'informació en trànsit.The intensive and continous use of high-performance computers to execute computationally intensive applications, coupled with the large number of elements that make them up, dramatically increase the likelihood of failures during their operation. This works focuses on solving the problem of fault tolerance for high speed interconnection networks by means of designing fault tolerant routing policies. The goal is to solve a determined number of link and node failures, considering its impact factor and occurrence probability. To acomplish this task we take advantage of the communication path redundancy, through adaptive routing approaches that fulfils with the four phases of the fault tolerance: error detection, damage confinement and assessment, error recovery, fault treatment and continuous service. The experiments shows performanceâs degradation under 5%. In the future, weâll treat the loose of information in transit

    Efficient mechanisms to provide fault tolerance in interconnection networks for pc clusters

    Full text link
    Actualmente, los clusters de PC son un alternativa rentable a los computadores paralelos. En estos sistemas, miles de componentes (procesadores y/o discos duros) se conectan a través de redes de interconexión de altas prestaciones. Entre las tecnologías de red actualmente disponibles para construir clusters, InfiniBand (IBA) ha emergido como un nuevo estándar de interconexión para clusters. De hecho, ha sido adoptado por muchos de los sistemas más potentes construidos actualmente (lista top500). A medida que el número de nodos aumenta en estos sistemas, la red de interconexión también crece. Junto con el aumento del número de componentes la probabilidad de averías aumenta dramáticamente, y así, la tolerancia a fallos en el sistema en general, y de la red de interconexión en particular, se convierte en una necesidad. Desafortunadamente, la mayor parte de las estrategias de encaminamiento tolerantes a fallos propuestas para los computadores masivamente paralelos no pueden ser aplicadas porque el encaminamiento y las transiciones de canal virtual son deterministas en IBA, lo que impide que los paquetes eviten los fallos. Por lo tanto, son necesarias nuevas estrategias para tolerar fallos. Por ello, esta tesis se centra en proporcionar los niveles adecuados de tolerancia a fallos a los clusters de PC, y en particular a las redes IBA. En esta tesis proponemos y evaluamos varios mecanismos adecuados para las redes de interconexión para clusters. El primer mecanismo para proporcionar tolerancia a fallos en IBA (al que nos referimos como encaminamiento tolerante a fallos basado en transiciones; TFTR) consiste en usar varias rutas disjuntas entre cada par de nodos origen-destino y seleccionar la ruta apropiada en el nodo fuente usando el mecanismo APM proporcionado por IBA. Consiste en migrar las rutas afectadas por el fallo a las rutas alternativas sin fallos. Sin embargo, con este fin, es necesario un algoritmo eficiente de encaminamiento capaz de proporcionar suficientesMontañana Aliaga, JM. (2008). Efficient mechanisms to provide fault tolerance in interconnection networks for pc clusters [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/2603Palanci

    Développement d'architectures HW/SW tolérantes aux fautes et auto-calibrantes pour les technologies Intégrées 3D

    Get PDF
    Malgré les avantages de l'intégration 3D, le test, le rendement et la fiabilité des Through-Silicon-Vias (TSVs) restent parmi les plus grands défis pour les systèmes 3D à base de Réseaux-sur-Puce (Network-on-Chip - NoC). Dans cette thèse, une stratégie de test hors-ligne a été proposé pour les interconnections TSV des liens inter-die des NoCs 3D. Pour le TSV Interconnect Built-In Self-Test (TSV-IBIST) on propose une nouvelle stratégie pour générer des vecteurs de test qui permet la détection des fautes structuraux (open et short) et paramétriques (fautes de délaye). Des stratégies de correction des fautes transitoires et permanents sur les TSV sont aussi proposées aux plusieurs niveaux d'abstraction: data link et network. Au niveau data link, des techniques qui utilisent des codes de correction (ECC) et retransmission sont utilisées pour protégé les liens verticales. Des codes de correction sont aussi utilisés pour la protection au niveau network. Les défauts de fabrication ou vieillissement des TSVs sont réparé au niveau data link avec des stratégies à base de redondance et sérialisation. Dans le réseau, les liens inter-die défaillante ne sont pas utilisables et un algorithme de routage tolérant aux fautes est proposé. On peut implémenter des techniques de tolérance aux fautes sur plusieurs niveaux. Les résultats ont montré qu'une stratégie multi-level atteint des très hauts niveaux de fiabilité avec un cout plus bas. Malheureusement, il n'y as pas une solution unique et chaque stratégie a ses avantages et limitations. C'est très difficile d'évaluer tôt dans le design flow les couts et l'impact sur la performance. Donc, une méthodologie d'exploration de la résilience aux fautes est proposée pour les NoC 3D mesh.3D technology promises energy-efficient heterogeneous integrated systems, which may open the way to thousands cores chips. Silicon dies containing processing elements are stacked and connected by vertical wires called Through-Silicon-Vias. In 3D chips, interconnecting an increasing number of processing elements requires a scalable high-performance interconnect solution: the 3D Network-on-Chip. Despite the advantages of 3D integration, testing, reliability and yield remain the major challenges for 3D NoC-based systems. In this thesis, the TSV interconnect test issue is addressed by an off-line Interconnect Built-In Self-Test (IBIST) strategy that detects both structural (i.e. opens, shorts) and parametric faults (i.e. delays and delay due to crosstalk). The IBIST circuitry implements a novel algorithm based on the aggressor-victim scenario and alleviates limitations of existing strategies. The proposed Kth-aggressor fault (KAF) model assumes that the aggressors of a victim TSV are neighboring wires within a distance given by the aggressor order K. Using this model, TSV interconnect tests of inter-die 3D NoC links may be performed for different aggressor order, reducing test times and circuitry complexity. In 3D NoCs, TSV permanent and transient faults can be mitigated at different abstraction levels. In this thesis, several error resilience schemes are proposed at data link and network levels. For transient faults, 3D NoC links can be protected using error correction codes (ECC) and retransmission schemes using error detection (Automatic Retransmission Query) and correction codes (i.e. Hybrid error correction and retransmission).For transients along a source-destination path, ECC codes can be implemented at network level (i.e. Network-level Forward Error Correction). Data link solutions also include TSV repair schemes for faults due to fabrication processes (i.e. TSV-Spare-and-Replace and Configurable Serial Links) and aging (i.e. Interconnect Built-In Self-Repair and Adaptive Serialization) defects. At network-level, the faulty inter-die links of 3D mesh NoCs are repaired by implementing a TSV fault-tolerant routing algorithm. Although single-level solutions can achieve the desired yield / reliability targets, error mitigation can be realized by a combination of approaches at several abstraction levels. To this end, multi-level error resilience strategies have been proposed. Experimental results show that there are cases where this multi-layer strategy pays-off both in terms of cost and performance. Unfortunately, one-fits-all solution does not exist, as each strategy has its advantages and limitations. For system designers, it is very difficult to assess early in the design stages the costs and the impact on performance of error resilience. Therefore, an error resilience exploration (ERX) methodology is proposed for 3D NoCs.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF

    Topology Agnostic Methods for Routing, Reconfiguration and Virtualization of Interconnection Networks

    Get PDF
    Modern computing systems, such as supercomputers, data centers and multicore chips, generally require efficient communication between their different system units; tolerance towards component faults; flexibility to expand or merge; and a high utilization of their resources. Interconnection networks are used in a variety of such computing systems in order to enable communication between their diverse system units. Investigation and proposal of new or improved solutions to topology agnostic routing and reconfiguration of interconnection networks are main objectives of this thesis. In addition, topology agnostic routing and reconfiguration algorithms are utilized in the development of new and flexible approaches to processor allocation. The thesis aims to present versatile solutions that can be used for the interconnection networks of a number of different computing systems. No particular routing algorithm was specified for an interconnection network technology which is now incorporated in Dolphin Express. The thesis states a set of criteria for a suitable routing algorithm, evaluates a number of existing routing algorithms, and recommend that one of the algorithms – which fulfils all of the criteria – is used. Further investigations demonstrate how this routing algorithm inherently supports fault-tolerance, and how it can be optimized for some network topologies. These considerations are also relevant for the InfiniBand interconnection network technology. Reconfiguration of interconnection networks (change of routing function) is a deadlock prone process. Some existing reconfiguration strategies include deadlock avoidance mechanisms that significantly reduce the network service offered to running applications. The thesis expands the area of application for one of the most versatile and efficient reconfiguration algorithms available in the literature, and proposes an optimization of this algorithm that improves the network service offered to running applications. Moreover, a new reconfiguration algorithm is presented that supports a replacement of the routing function without causing performance penalties. Processor allocation strategies that guarantee traffic-containment commonly pose strict requirements on the shape of partitions, and thus achieve only a limited utilization of a system’s computing resources. The thesis introduces two new approaches that are more flexible. Both approaches utilize the properties of a topology agnostic routing algorithm in order to enforce traffic-containment within arbitrarily shaped partitions. Consequently, a high resource utilization as well as isolation of traffic between different partitions is achieved
    corecore