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1 INTRODUCTION 

For more than five decades, electrical engineers, computer and material scientist have built integrated 

circuits with increasing complexity and capabilities. In the early days of silicon semiconductor industry, it was 

predicted that the integration density (i.e. number of transistors per chip) would double every 18 months 

(Moore’s Law) [Moo65]. Nowadays, all system functionalities (i.e. processing, memory, I/O, analog) are 

integrated on a single chip (or package) with more than one billion transistors / chip (i.e. Giga-Scale 

Integration GSI). The 10
12 transistors / chip (i.e. Tera-Scale Integration TSI) milestone should be reached by 

the end of this decade. In the System-on-Chip (SoC) integration paradigm, hardware and software designers 

work together to offer systems with high computational power that satisfy the performance, energy-efficiency 

and reliability requirements. 

However, improvements of computing performance and energy-efficiency by technological scaling lead to 

high development cost. Multi-processing became a powerful strategy to increase system performance by 

leveraging data-level and instruction-level parallelism. User applications are divided in tasks that run in 

parallel on one or more processing elements (i.e. Multi-/Many-Processor System-on-Chip MPSoC). Figure I-1 

represents the ITRS trends in many-core system complexity. 

 
Figure I-1 Many-core system complexity trends [ITRS07] 

The logic and memory size increases such that today chips comprise ~5× more logic elements and 

memory arrays than in 2007. By 2020, chips are expected to have up to 20× more logic and 27× more 

memory components. The increase of logic size is mainly due to the increasing number of processing 

elements. As shown above, today we have just entered the hundreds-cores era, but within a decade chips are 

expected to have more than one thousand cores (many-core SoCs). 

Unfortunately, the increased complexity of chips cannot be efficiently managed by traditional design 

paradigms. Technological scaling raises a serious issue that was overlooked in older technology nodes: wires 

do not scale the same way as transistors. In the last decade this problem gained a lot of attention since, in 



Vladimir Pasca                                                                                                                                                                  14 

very-deep sub-micron (VDSM) technologies, wire delays begin to dominate the delays of logic gates. Despite 

well-known reliability issues (i.e. electro-migration, diffusion in silicon), the high conductivity of copper 

made it the suitable candidate to replace aluminum in chip wiring since 1998. Developments in copper 

interconnect technologies and low-K dielectrics reduced signal propagation delays and improved signal 

integrity. However, the delays of copper wires increase in advanced technology nodes while the gate delays 

decrease. For aluminum, the breakeven point was for the 250 nm technology node (i.e. around year 2000), 

while for copper it was at the 150 nm technology node (i.e. around year 2005). In Figure I-2, the wire and gate 

delay trends are represented for different technology nodes. 

 
Figure I-2 Trends of interconnect and transistor delays for sub-micron technologies [ITRS05] 

The trends above show that, relative to 250 nm technology node, the gate and local wire (i.e. first metal 

layers M1-M3) delays decrease from generation to generation, while the global interconnect (i.e. top-most 

metal layers) relative delay increases. In the 32 nm technology node, gates are up to 5× faster than in 250 nm 

technologies, while signal propagation on global wires is up to 50× slower. The delay challenge of global 

wires can be partially alleviated by inserting repeaters. In this case, the relative delays of global wires are 5× 

larger. However, the delay gain is paid in extra area and power for the repeaters. In [ML04], it was shown that 

the dynamic power dissipated on interconnects accounts for ~50% of the total chip power consumption and 

about 90% of this power is dissipated on global wires. For advanced technology nodes (i.e. below 32 nm) that 

study also predicted that the dissipated on wires will account for 65% of the total chip power. Therefore, 

interconnects are the performance bottleneck in GSI / TSI technologies. 

Technology scaling poses another challenge: traditional bus-like interconnect fabrics are not scalable for 

SoCs comprising hundreds or thousands of Intellectual Property (IP) blocks. Communication contention due 

to arbitration reduces the overall system performance. In embedded MPSoCs, a widely accepted solution to 

this problem is the packet-switched interconnection fabric: the Network-on-Chip (NoC). Similarly to the 

ISO/OSI model in computer networks, NoCs also have abstraction layers, which are shown in Figure I-3. 
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Figure I-3 Abstraction layers of NoC-based MPSoCs [BdM02] 

In most communication-centric systems, on-chip communication is performed by load / store transactions 

(i.e. transaction-based communication), using a specific protocols (e.g. AMBA-AXI, VCI/OCP). Initiator (or 

master) nodes (e.g. CPU), begin transactions by making load / store requests to targets (or slaves) modules 

(e.g. memory). In software, application-level read / write operations to memory are translated into system-

level load / store transactions. At transport-level, these transactions are split in request / response messages 

that are packetized and forwarded to the network. Packets are processed at network-level and they are 

transmitted from source to destination in a pipelined way. At data link-level, routers exchange flow control 

units (flits) over the physical communication environment PHY. 

The interconnect problems can be solved at technological level using 3D integration. In 3D chips, silicon 

layers are stacked and connected by shorter vertical wires called Through-Silicon-Vias (TSVs). The power 

and timing improvements promises of stacked 3D integration are mainly due to the reduced average 

interconnect length. At system-level, the joint use of 3D integration and NoC-centric design paradigms open 

the way to novel energy-efficient architectures with significant performance improvements. 

Despite recent technological progress, TSV-based 3D chips are not considered mature enough for large-

scale production. Interconnect test, manufacturing costs, yield and reliability, thermal management and heat 

removal are among the greatest challenges of this technology. In 3D MPSoCs using NoCs as system-level 

interconnect fabric, testing and ensuring high reliability / yield becomes increasingly difficult. Intra-/inter-die 

communication reliability is paramount for communication-centric MPSoCs. Faults that occur during network 

traversal may lead to system failures. Hence, efficient interconnect test strategies and error resilience 

techniques are no longer a nice-to-have, but a must-have feature. In this thesis, three main issues of NoC-

centric 3D MPSoCs are addressed: interconnect TSV test, yield and reliability. 

Interconnect Built-In Self-Test (IBIST) strategies have proven to be efficient in testing on-chip and board-

level interconnects for structural and functional faults. If inter-die synchronization can be guaranteed in 

stacked 3D chips, then similar IBIST methodologies can also be used for TSV tests. Although existing test 

pattern generators can be used for TSV tests, they have poor fault coverage (e.g. only structural faults like 
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opens and shorts are detected) or they are too conservative, leading to high test costs. Using the victim-

aggressor scenario, where signal transitions on victim wires are affected by signal transitions on aggressor 

wires, the K
th
-Aggressor-Fault (KAF) model is proposed. For KAF-based TSV tests, depending on their 

distance to the victim TSV, neighboring aggressors are organized in classes called aggressor orders. The 

novelty of this approach is that, depending on the TSV technology, higher order aggressors may not be 

considered for tests. The major advantages of this strategy are simpler test circuitry and fewer test patterns, 

which translates into shorter test duration. 

Error resilience of 3D NoCs against TSV permanent and transient faults can be efficiently improved by 

different single-/multi-layer strategies. In multi-layer schemes, the task of fault mitigation is shared across 

several abstraction layers (e.g. data link and network). In 3D NoCs, error resilience can be ensured at data link 

and / or network levels, on NoC components (i.e. links and routers). The main contributions of this thesis on 

error resilient strategies are summarized in the following. 

In modern chips, transient faults are responsible for more than 80% of system failures [BdM02]. In 3D 

NoCs, transients can affect both wires (i.e. intra-die wires and TSVs) and different router components (e.g. 

buffers, arbitration logic). To leverage transient errors on NoC links, correct data transmission is ensured by 

implementing retransmission-/correction-based error control schemes on intra-/inter-die links. Reliable 

transmission through the entire network (i.e. links and routers) is ensured by network-level error resilience 

schemes on individual flits. In the multi-layer framework, link-level and network-level protection are jointly 

used in order to ensure reliable communication. Flits are individually encoded at the source, and correction 

stages are inserted on links along the path such that multiple errors do not cumulate. 

Permanent TSV faults due to manufacturing defects have a dramatic impact on 3D chip yield. The 

proposed data link-level solutions to repair TSV failures in 3D NoCs are: Spare-and-Replace (TSV-SnR) and 

Configurable fault-tolerant Serialization (CSL). At network-level, TSV permanent faults are mitigated by 

instructing routers to forward packets around faulty components (i.e. inter-die links). An important feature of 

the proposed TSV-fault tolerant routing algorithm (TSV-FTR) is that it does not use virtual channels to ensure 

deadlock freedom, a critical property for NoCs. 

In aggressive 3D technologies, chips are expected to have thousands and tens of thousands TSVs. For such 

complex systems, in-field TSV failures may cause serious reliability issues. Therefore, a Built-In Self-Repair 

strategy based on spare TSVs and adaptive serialization (IBIRAS) has been developed. The main benefit of 

this approach is that no external intervention is required, as the repair signals are determined on-chip using the 

interconnect test diagnosis vector. 

Although solutions to the TSV reliability / yield issues exist, it is difficult to determine which of these 

strategies is better suited for a given 3D NoC. Choosing the best error resilience configuration for a 3D NoC 

architecture, which must satisfy yield and reliability targets for a given failure rate, is very difficult. One-fits-

all solutions do not exist, as each technique has its own advantages and limitations with respect to costs (i.e. 

area, power, TSV count) and impact on system performance. The area and power budget could be very limited 

and, depending on system requirements, the performance penalty due to error mitigation should be very low. 
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Moreover, the possibility to jointly use error resilience at different abstraction layers (i.e. data link and 

network) makes new costs-performance trade-offs possible. To address this challenge, an error resilience 

exploration (ERX) tool for 3D NoCs is proposed in this thesis. Hence, given a 3D NoC configuration, 

different error-resilient configurations (i.e. single-layer and multi-layer) are implemented and evaluated (i.e. 

area, power and network latency) such that designers can choose the optimal solution. 

In the remaining of this manuscript, all above contributions are detailed as follows. Chapter 2 presents a 

state-of-the-art on 3D integration technologies and their implications on system architectures. Different 3D 

integration strategies and challenges, and (3D) NoC-related design, test and reliability issues with existing 

solutions are discussed. In Chapter 3, the novel KAF model used for TSV self-tests in NoC inter-die links is 

presented. The error resilience strategies and exploration tool for 3D NoCs is presented in Chapter 4. Data link 

and network-level fault tolerance solutions for transient and permanent faults are presented with different 

scenarios in which they can be jointly used in multi-layer error resilience schemes. Chapter 5 presents an 

assessment of the error resilience schemes in the context of 3D mesh NoCs. The objective of this study is to 

show the resilience capabilities of each solution and identify different trade-offs. The error resilience 

exploration concept with its application to 3D NoCs is presented in Chapter 6. Using the error resilience 

exploration tool (ERX), the impact of error resilience on system performance is assessed for a 64-tiles 3D 

MPSoCs which is implemented in SystemC using the SoCLib cycle-accurate bit-accurate (CABA) library 

[SL]. Finally, Chapter 7 concludes this thesis and discusses further research directions. 
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Stacked 3D integration is an emerging technology that promises heterogeneous system integration with 

reduced power consumption and increased performance. Layers of active silicon are stacked and vertically 

connected by Through-Silicon-Vias (TSVs). Today, TSV-based 3D integration is not yet fully mature and new 

design and test concepts are being developed. While novel techniques are used to improve the 3D chip 

compound yield and reliability, several other techniques have been adapted from well-established fields. In 

this chapter, TSV-based 3D integration fundamental concepts and challenges are presented. As the main 

focus of this thesis are the test and reliability / yield issues of the 3D system interconnect fabric (i.e. 

Network-on-Chip), different solutions to the above mentioned challenges are presented in the context of (3D) 

NoCs. 

2.1 3D Integration using TSVs 

The System-on-Chip (SoC) paradigm primarily addresses the complexity of off-chip interconnects by 

integrating all system components in a single package. From Multi-chip-Modules (MCMs) to Systems-in-

Package (SiPs) and Systems-on-Package (SoPs), the number of components / cm2 has steadily increased in the 

last decades. Although systems become more complex and offer more functionality, integrating them in a 

single package becomes a great challenge. The key technology for more system-level integration is 3D 

stacking using Through-Silicon-Vias (TSVs). 

The benefits of TSV-based 3D integration are mainly achieved by stacking active silicon layers. These 

layers are connected using short (i.e. tens of µm) inter-die wires called Through-Silicon-Vias (TSVs), as 

represented in Figure II-1 (a). In 3D Systems-on-Chip (3D SoC), performance improvements and power 

savings are achieved by replacing long global interconnects of 2D SoCs with shorter TSVs. Compared to 2D 

chips, the average interconnect length is reduced by a factor proportional to the square root of the number of 

layers in the stack [PF09]. In Figure II-1 (b), the connection between blocks A and C of a 2D SoC is replaced 

by TSVs, significantly reducing the wire length. 
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Figure II-1 TSV-based stacked 3D integration (a) [Lu03] reduces the average global interconnect length (b) 

Unlike traditional chips, each layer of the 3D stack can be implemented in different technologies. The 

advantages of TSV-based 3D integration are not limited to integration heterogeneity. A power reduction of 

40% was reported in [Pat11] for a stacked 3D chip. In the same paper, the chip footprint of 3D ICs is also 

reduced and more capabilities can be integrated in a single package (i.e. up to 4× density increase). Moreover, 

the flexibility of 3D system architectures enables an up to 400% performance improvement. 

The manufacturing processes of 3D chips are more complex than in traditional CMOS. There are many 

different processing technologies to choose from. Each process has its advantages and disadvantages in terms 

of compatibility with existing CMOS manufacturing processes, manufacturing throughput and reliability. The 

main steps in manufacturing 3D chips are wafer thinning, TSV formation and bonding. The order in which 

these processes are performed can be different, leading to different trade-offs. In Figure II-2, the main 

manufacturing processes with respect to TSV formation are presented. 

 
Figure II-2 Summary of 3D chip manufacturing steps (source: YOLE Development) 

In the via-first approach, the TSVs are manufactured first by etching the bulk silicon and depositing the 

TSV metal (i.e. copper or tungsten). After the lithographic processes for transistors manufacturing and metal 
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layers deposition, the wafer is flipped and, while bonded to a carrier wafer, the bulk silicon is thinned down to 

tens of µm (i.e. until the TSV tips are visible). Before stacking the wafer, backside preparation processes and 

de-bonding from the handling carrier are performed. In the via-middle approach, TSVs are formed in 

intermediate steps between transistor manufacturing and metal layers deposition. In the via-last approach, 

after the lithographic processes for transistors and metal layer, the wafer is flipped. Then, the wafer is thinned 

while bonded to a carrier wafer and TSVs are formed. After backside preparation processes, the carrier wafer 

is removed and the thinned wafer is ready for bonding. In the via-after-bonding approach, TSVs are 

manufactured after the wafers bonding and thinning processes. 

Depending on the die/wafer orientation, bonding can be made face-to-face, back-to-back and face-to-back. 

It is also possible to have wafer-to-wafer (w2w), die-to-wafer (d2w) and die-to-die (d2d) bonding. In the w2w 

approach, entire wafers are bonded. The advantage of this approach is high manufacturing throughput. 

Unfortunately, this strategy can result in poor compound yield, as faulty dies are likely to be stacked on 

functional ones. Another limitation of wafer-level processing is that dies must have the identical sizes, while 

in the d2w strategy dies with different sizes can be stacked. The d2w process also has the advantage of higher 

yield, but the manufacturing throughput is reduced, as individual dies are tested before bonding (i.e. Known-

Good-Die KGD). The d2d approach has the potential of providing maximum yield, as only dies that pass pre-

bond tests are stacked. However, similar to the d2w case, the throughput is significantly reduced and test / 

manufacturing costs are higher. 

TSV-based stacked 3D integration is used in different applications such as CMOS Image Sensors (CIS) 

[HJN08], and memories [KCH10], Memory-on-Logic (MoL) [Loh08, HAG10, VG11], and Logic-on-Logic 

(LoL) [FDG12]. MoL systems comprise a single layer of interconnected processing cores (ASIC) which 

exchange data with memory layers. In LoL MPSoCs, two or more stacked dies of processing cores exchange 

messages. In this case, the global interconnect fabric, which connects these cores, spans across two or more 

layers, ensuring both intra-die and inter-die communication. 

3D integration is an emerging and rapidly growing technology. Despite its promises, several challenges 

must be addressed before 3D stacking becomes main-stream. In the following section, the major challenges of 

TSV-based 3D integration and potential solutions are presented.  

2.2 Challenges of TSV-based 3D Integrated Systems  

Testing, reliability and yield, thermal management and costs remain the major challenges of TSV-based 

3D integration. In recent years, these issues have been addressed by the scientific community using novel 

solutions or re-implementing existing ones. In this section, a review of major contribution in solving these 

challenges is presented. 

2.2.1 Testing TSV-based 3D ICs 
Among the most important challenges is how to efficiently test 3D system architectures. A common 

strategy is to test each die before bonding (i.e. Known Good Die bonding) and then perform final chip tests. It 

has been shown that this strategy pays-offs only when the die yield is not very high [Mar10]. For a 3D chip 

comprising many dies, it is also possible to perform partial stack dies testing. In other words, each time a die 
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is stacked, the existing partial stack is tested. In Figure II-3, a 3D chip test flow with intermediate pre-bond 

and post-bond test steps is represented [MZ09]. 

 
Figure II-3 Stacked 3D chip test flow [MZ09] 

The manufacturing throughput of the partial-stack test strategy is very low, as tests are performed both 

pre- and post-bonding. In order to improve manufacturing throughput, it is possible to remove intermediate 

test steps. A challenge in pre-bond tests is that it requires access to the die using dedicated access pads. 

However, because these tests are often performed on thinned dies/wafers, reliability problems arise, as test 

pins could damage the die/wafer [MZ09]. 

Design-for-Test (DfT) circuitry is required to ensure full controllability and observability of 3D system 

components (i.e. TSVs, cores, dies). In order to ensure efficient testing, there are several requirements that the 

Test Access Mechanism (3D TAM) should satisfy. The 3D DfT architecture must be scalable with respect to 

the number of dies. In order to have higher production testing, a parallel access mechanism, which provides a 

trade-off between implementation costs and test access bandwidth, should be considered [MZ09, Mar10, 

MCK12]. Another possible requirement of 3D test is modularity: cores and TSVs are tested as separate units. 

If this requirement is fulfilled then it is possible to optimize testing for specific fault models, enable test flow 

optimization optimize the number of test elevators (i.e. TSVs used for test data transmission in upper layers) 

[NGC10] or reduce test duration [NCG11]. In Figure II-4, an example of state-of-the-art 3D TAM based on 

the IEEE 1149.1 and IEEE 1500 standards is given [MCK12]. 
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Figure II-4 Example of a Simple 3D Test Acess Mechanism [MCK12] 

In this 3D DfT architecture, die-level test wrappers are considered for each die in the stack. The main 

features of the standardizable die wrapper are serial and parallel interfaces for wrapper instructions / low-

bandwidth tests and high-bandwidth test data; TestTurns that feed data back to the bottom die; Test Elevators 

that propagate test data up and down the stack; optional test pads for pre-bond testing; and an optional 

inclusion / exclusion mechanisms for embedded IPs. 

The most important feature of the 3D TAM is the possibility of inter-die wire testing. Interconnect tests 

can be performed similarly to boundary scan (IEEE 1149.1) and built-in self-test strategies in on-chip and 

board-level wires. In the following, interconnect failure modes and strategies to sensitize these faults are 

presented. 

2.2.2 Testing Through-Silicon-Vias 
The TSV failure modes are not fundamentally different from on-chip and board-level interconnects. In all 

cases, interconnect manufacturing and aging/wear-out defects are modeled using the basic faults: open, short, 

stuck-at, and delay faults. In the open fault model, a wire is assumed broken and its terminals are electrically 

disconnected. In the short fault model, two ore more wires are electrically connected when they should not be. 

Depending on the technology, either AND or OR logic gates can be used to obtain the resulting value of the 

wires. For stuck-at faults, the signal sent on a wire is stuck at a ‘0’ or ‘1’ value, independently of the values 

sent on the wire. In the case of delay faults, the signal eventually assumes the correct value, but more slowly 

(or rarely, more quickly) than normal. Possible causes of delay faults are process variation, crosstalk, etc. 

Sensitizing these faults requires dedicated test circuitry that ensures both interconnect controllability and 

observability. In the following it is shown how the boundary scan and interconnect built-in self-test strategies, 

which have been used for on-chip interconnect tests, are used for TSV tests. 
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2.2.2.1 Boundary Scan 

The main purpose of the commonly used IEEE 1149.1 (Boundary Scan) standard is Printed Circuit Board 

(PCB) wire testing. This standard can be adapted for 3D ICs such that TSV interconnect test can be performed 

in a similar way. The major advantages of Boundary Scan are a reduced number of test pins and a relatively 

small number of test patterns necessary to sensitize structural faults (e.g. open, shorts). To illustrate how TSVs 

can be tested, let us consider the two stacked dies such that the lower die is connected with the upper die 

through N TSVs. The simplified boundary-scan architecture is presented in Figure II-5. 
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Figure II-5 Boundary Scan Test for regular TSVs TSV1-TSVN 

The N-bits test vector T1-TN is serially shifted in the chip through the TDI port and transported to the lower 

scan cells SC1 to SCN. Once the test vector is loaded in these cells, the control signal TDS is set and the scan 

cells contents is transmitted through the N TSVs and loaded in the SC1
* to SCN

* scan cells from the upper 

layer. Then, under the control of the external tester, the response vector T1*-TN* (i.e. contents of SC1
* to SCN

*) 

is shifted out on the TDO port. In order to reduce test times, while the response vector is shifted out, the next 

test vector may be loaded in SC1 to SCN. After the test phase, the external tester compares the test and 

response vectors in order to identify faulty TSVs. Note that the TSVTDI, TSVTDO and TSVTDS vertical 

connections must be functional in order to guarantee test correctness. 

Test vectors are generated off-chip using different algorithms based on counting sequences [Kau74], 

modified counting sequences [GM82], true/complement sequences [Wag87], marching ones, etc. Since tests 

are performed at the lower frequencies of external testers, only structural faults can be detected. 

2.2.2.2 Interconnect Built-In Self-Test 

TSV interconnect delay faults testing can be performed by adopting at-speed test strategies similar to those 

developed for on-chip and board-level interconnects. However, it is necessary to have good inter-die 

synchronization, for such implementations to be possible. 
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Interconnect Built-In Self-Test (IBIST) strategies are used for testing global on-chip and board-level 

interconnects. Implementing IBIST strategies in TSV-based 3D systems comes with some advantages: fewer 

test pins / test elevators and simplified external testers, as test vectors (or test stimuli) are generated on-chip. 

Because tests are performed at nominal clock rates (i.e. at-speed tests), delay faults (including delay faults due 

to crosstalk) can also be sensitized. Let us consider a TSV bundle with N wires that connect two stacked dies. 

In Figure II-6, a simplified IBIST test architecture adapted for 3D interconnects is represented. 
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Figure II-6 Interconnect Built-In Self-Test for N regular TSVs 

During the test phase (i.e. TEST=’1’), N bits test vectors T1-TN are generated by Test Pattern Generators 

(TPGs) in the lower die and transmitted on TSVs. In the upper layer, the received vector T1
*
-TN

* is compared 

to the original transmitted vector locally generated by a second TPG identical to the one in the lower layer. 

The response analysis cells (RA) compare the response and test vectors, and iteratively build the diagnosis 

vector DV1-DVN. In each response analysis cell RAi, a XOR gate compares the received test stimulus Ti
* with 

the expected one Ti. Using an OR gate, any mismatch of these signals is stored in RA’s internal flip-flop Fi. At 

the end of the test phase, the diagnosis vector which identifies the faulty TSVs is stored in RA’s internal flip-

flop FF1-FFN. 

The IBIST main component is the TPG block. Test patterns can be generated using different algorithms, 

depending on the targeted TSV fault models (e.g. open, short, delay). In the case of open and short faults, the 

TPG module generates test patterns using algorithms such as Counting Sequence, Modified Counting 

Sequence, or True/Complement Sequence. In order to detect delay faults, both ‘0’-‘1’ and ‘1’-‘0’ transitions 

have to be activated for every wire. The marching-‘1’/’0’ and rearranged True/Complement test sequences can 

be used for delay faults. Interconnect at-speed tests using Linear Feed-back Shift Registers (LFSRs) and 

Multiple-Input Shift Registers (MISRs) have been proposed for on-chip interconnect tests [SD02]. LFSR 

optimization techniques are also possible. For example, the authors of [PCZ01] have used Markov chains to 
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generate realistic switching activity. The disadvantage of LFSR-based solutions are high aliasing probability 

(i.e. multiple faults impact the MISR’s capability to detect them), long test sequence for detecting all faults, 

and relatively low fault coverage. 

In [Jut04], at-speed tests for delay faults are performed using Interleaved True/Complement Counting 

(ITCC) sequences where complemented vectors are transmitted right after their true valued counterparts.  

ITCC sequences sensitize some delay faults due to crosstalk, as the complemented values ‘0’/’1’ and ‘1’/’0’ 

are transmitted on any two pair of wires. In [CDB99] a worst-case test strategy for delay faults due to 

crosstalk has been proposed for on-chip interconnects. This strategy can detect both structural / delay faults, 

but the test sequence is very long (i.e. for N wires a total of 8N vectors are used, compared to the 2·[log2(N)] 

vectors of ITCC) and the hardware implementation costs are non-negligible. Using the aggressor-victim 

scenario, the Maximum Aggressor Fault (MAF) model proposed in [CDB99] takes into account the crosstalk 

effects between a set of aggressor wires and a victim wire. Signal transitions on the victim wire are affected by 

the crosstalk noise induced by transitions on all other wires. 

Few of these delay faults strategies have been implemented in a 3D integration setting. For example, 

LFSR-MISR techniques have been implemented for TSV self-test [HHH10]. In this test strategy, which is 

represented in Figure II-7, TSVs are assumed are distributed on regular arrays. 

 
Figure II-7 Built-In Self-test and Repair for Through-Silicon-Vias [HHH10] 

In order to reduce test durations, TSVs are tested one row at a time and a single spare is allocated for every 

row. The number of dedicated TSVs required by this self-test and self-repair strategy is high: for each TSV 

row, a single TSV is necessary to indicate in the lower die that the functional spare replaces a faulty regular 

TSV. 

Another post-bond interconnect TSV BIST strategy was proposed in [HLC11]. In this scheme, it is also 

considered that TSVs are distributed on regular arrays. In Figure II-8, the BIST architecture for the TSVs of a 

die is represented. In this architecture, outbound TSVs are the TSVs that carry signals off the current die and 

inbound TSVs are those TSVs that carry signals from the neighboring die. 
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Figure II-8 Post-bond TSV BIST for bidirectional TSVs set as inboud and outbound for a given die [HLC11] 

The BIST consists of a row decoder, a test pattern generator (TPG), and a test data transportation and 

evaluation (DTE) circuit. The BIST control signals (BCS) and enable signal (BIST_en) manage the BIST 

operation. In order to reduce test and diagnosis duration, TSVs are tested one row at a time. The decoder 

selects a row for test pattern application or test response evaluation. The TPG generates control signals and 

test patterns for the decoder and the DTE. The DTE consists of shift registers and a comparator such that it can 

perform the test pattern/response transportation using the shift register and the test response evaluation using 

the comparator. TSVs in the same column are connected to a column line (CL) through a multiplexer or a tri-

state buffer. For an outbound TSV, a multiplexer is used to select a signal from the functional circuit (FI) or 

the CL. For an inbound TSV, a tri-state buffer is used to pass or block the signal to the test circuit. The benefit 

of this approach is that it requires less time and on-chip resources than IEEE 1500 test wrappers. However, 

1+c+2·r cycles are needed to test the r×c TSV array for a single test pattern. 

Recent advances in testing 3D ICs and TSVs enable chip manufactures to adopt 3D integration. Moreover, 

the compatibility of 3D DfT with well-established IEEE standards such as IEEE 1149.1 and IEEE 1500 will 

facilitate the use of this technology in future designs. However, for products to be successful, testing is only 

part of the solution. The 3D chip reliability and yield challenges and potential solutions are discussed in the 

following section. 

2.2.3 Reliability and Yield 
The key to any successful product, including 3D MPSoCs, is whether it is reliable (i.e. there are very few 

failures during its expected lifetime) and the manufacturing yield is high enough such that very few units are 

discarded due to manufacturing defects. In order to ensure high reliability and yield, faults that may occur 

during manufacturing processes and system lifetime must be mitigated. In this section, major fault tolerant 

solutions proposed for 3D ICs are discussed. However, in order to understand how fault tolerant solutions are 

used, a brief classification of faults is presented first. 

2.2.3.1 Faults classification 

Depending on their nature, faults can be permanent or temporary (i.e. transient and intermittent). In 

general, a permanent fault always occurs when a particular set of conditions exists. In hardware, permanent 
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faults model physical defects and they affect the circuit behavior always in the same way. They usually 

include the faults due to manufacturing process defects. During normal operation, a number of aging / wear-

out mechanisms can occur in the long term. Such faults (e.g. electro-migration in wires) are initially revealed 

as intermittent faults until they finally provoke a permanent fault. 

A transient fault disturbs the normal operation of an element in the system for a limited period of time. 

Outside this time period, the affected element operation is not influenced. Transients usually do not cause 

physical damage to the device, but the effects of a transient fault may last even after its duration ends. 

Transient faults in MPSoCs are mainly represented by the so-called soft errors. These are caused by 

interferences of any kind, but also by the impact of cosmic rays and radiation on silicon. Soft errors generated 

by radiation impact are mostly present in harsh environments with very high concentration of radiations or 

particles (e.g. space or nuclear power plants). However, with the advanced technology downscaling and the 

voltage and capability reduction, the circuit sensitivity to soft errors is significant even in normal 

environments [Nic05]. 

An intermittent fault is defined as a malfunction of a device or system that occurs periodically, either at 

regular or irregular intervals. Outside of these periods, the device or system functions normally. The cause of 

an intermittent fault is several contributing factors occurring simultaneously. Intermittent faults in 

interconnects typically cause burst errors. 

Single or multiple faults can occur in the system. They can occur in one or several parts of the system: 

transmission lines and combinational logic wire values can be delayed or inverted, while register values and 

memory bits can be inversed. 

Due to the increased complexity of 3D ICs, errors are more than a possibility. Moreover, intra-die and 

inter-die parametric variations and errors cumulate, leading to potentially low yield and reliability. In the 

following, different yield improvement strategies that mitigate permanent faults due to manufacturing defects 

are presented. 

2.2.3.2 Manufacturing defects in 3D ICs 

Pre-bond die tests help improving the chip yield, as only functional dies are stacked (i.e. KGD bonding). In 

[THV10], a compound yield improvement strategy for wafer-level processing is proposed. Using a wafer 

repository, wafers are bonded such that faulty dies are on the same position. Using this strategy the probability 

that packages contain faulty dies can be significantly reduced. In [Sin11], the symmetry of wafer has been 

used for matching faulty dies and improving the overall chip yield. 

Another yield improvement strategy consists in allocating spare layers. Unfortunately, this strategy can be 

efficiently implemented only for 3D memories, which have highly regular architectures. For example, the 

authors of [TH11] use redundant layers and dedicated layer replacement circuitry that alleviates the issues of 

electrical fusing by using a series of address comparators. 

In the KGD paradigm, TSV defects are the main cause of yield loss. Void formation, lamination due to 

thermally induced stress, height variation, and XY misalignment are major TSV failure mechanisms [PCF07, 

KXM09, LCD09]. 
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Inter-die wire failures due to manufacturing are often mitigated using spare-and-replace strategies (i.e. 

hardware redundancy) where functional spare TSVs replace faulty regular TSVs. Hardware redundancy is 

proposed in [HHC10] for ASIC applications where TSVs are packed in blocks with one spare per block. 

Signals are routed on TSVs through a chain of MUXes. When faulty TSVs are detected, the signals 

transmitted on that TSV and on all subsequent TSVs in the chain are shifted by one position. The MUXes are 

controlled by arrays of e-fuse memories that are programmed using scan chains. For TSV failure rates (i.e. 

probability that a single TSV is faulty) up to 0.01%, one spare is allocated for each TSV block such that the 

TSV yield is raised up to 99.99%. However, the fault recovery rates (i.e. the probability that the fault pattern 

can be repaired) drop to 90% and 95%, when there are 50 and 25 TSVs per block, respectively. Hence, for the 

same number of TSVs, higher yield can only be achieved by partitioning the TSVs in more groups and 

allocating more spares / chip. 

For 3D DDR3 DRAM memories [KCH10], TSV connectivity check and repair is used to improve the 

yield (>98%) of stacked chips comprising four layers connected by 300 TSVs. In the proposed schemes, 

which are represented in Figure II-9, one additional spare is considered for every pair of signals (2:1) or two 

additional spares are added for every four signals (4:2). 

   
 
 
 
 
 
 
 
 
                                                        (a)                                                            (b) 

 
Figure II-9 TSV check and repair strategy for 4 signals A,B, C, D [KCH10] 

TSVs are tested externally for open and short faults and using scan chains which output diagnosis vectors 

to external diagnosis circuitry. Faulty TSVs are repaired by their neighbors by programming arrays of e-fuses. 

Thus, detour paths decrease, reducing interconnect routing complexity and capacitive loads. For TSV 

technologies with 80µm pitch, the authors report a ~2% chip area overhead due to the total footprint of spare 

TSVs. 

In [ZKA11], the grouping strategy was used within TSV bundles in order to efficiently use spare resources 

for different TSV defect distributions. Their experimental results showed that having fewer groups and more 

spares pays-off for high failure rates. The authors of [JXE12] use the row/column repair strategy for regular 

arrays of TSVs. Hence, for each N×M TSV array an extra row / column of spares (i.e. N+M spares) is added 

such that faulty spares are replaced by their nearest neighbor. Using specific repair algorithms, they can 

achieve better yield with fewer spares than existing group-based solutions. 
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Although manufacturing defects remain the main source of faults in 3D ICs, in-field failures and transient 

errors during normal system operation could compromise the entire system. In the following, existing 

reliability enhancement solutions specific to 3D ICs are presented. 

2.2.3.3 Reliability in 3D ICs 

Stacking silicon dies causes major thermal issues that have a dramatic impact on reliability. It is expected 

that higher temperature gradients inside 3D chips accelerate the TSV fault rates due to electro-migration 

[EK08]. Solutions to this issue include adding thermal vias [LHZ06] or micro-channel liquid-cooling 

[BMR08]. Similar to 2D technologies, it is also possible to avoid hot spot formation in silicon layers 

containing processing cores by careful thermal-aware task mapping. For 3D systems, this solution was 

explored in [ZGS08, CAA09]. In [CAR10], an energy-efficient hardware-software solution based on liquid 

cooling and task mapping was proposed. 

Another reliability issue for 3D ICs is signal integrity during TSV traversal. In [GWP09, LSL11, LSL11a], 

it has been shown that TSV coupling has a negative effect on signal integrity. In this case, transient faults due 

to crosstalk are likely to occur during system operation, especially because we may use high frequency signals 

on TSVs, raising serious reliability concerns. A solution to this issue is to shield TSVs by interleaving 

functional TSVs with grounded vias [GWP09]. The disadvantage of this solution is that the number of TSVs 

per chip doubles. The authors of [LSL11] have found that if the distance between TSVs is increased then the 

effects of coupling are reduced and circuits perform better (i.e. shorter critical paths). However, increasing the 

minimal TSV pitch by 2.5µm from 10µm results in a design area overhead of 31%. For area-sensitive designs, 

a placement-refinement strategy (i.e. TSV coupling-aware placement) is also proposed. In [LSL11a] it has 

been shown that TSV spacing is not always enough and two alternative solutions are proposed (i.e. shielding 

sensitive TSVs and buffer insertion), each with its advantages and disadvantages. In the first case, eight 

grounded TSVs (i.e. north, worth-west, west, south-west, south, south-east, east and north-east) are inserted 

around sensitive TSVs in order to minimize its interference with neighboring TSVs. In the second case, TSV 

drivers are over-designed in order to compensate crosstalk between neighboring wires. 

Different chip-level solutions to the test, reliability and yield challenges of 3D ICs have been presented in 

the last sections. However, the main objective of this work is to address these challenges in the context of 3D 

Networks-on-Chip (3D NoCs). In the following section, an overview of 3D NoC design is presented along 

with test, yield and reliability improvement solutions that are specific to 3D NoCs or have been adapted from 

2D NoCs. 

2.3 Networks-on-Chip in 3D Systems 

The challenge of communication-centric MPSoC design is to implement a scalable, energy-efficient global 

interconnect fabric. Connecting hundreds or even thousands of cores in an efficient way becomes possible 

using packet-switched networks (i.e. Networks-on-Chip) [BdM02, AT03]. In NoC-centric designs, IP blocks 

are interconnected and communication is performed using specific system-level protocols such as VCI/OCP 

or AMBA AXI. 
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For 3D MPSoCs, designing a scalable interconnect fabric poses several challenges. Adding the third 

(vertical) dimension to the 3D NoC brings more flexibility, but challenges due to inter-die synchronization, 

low TSV reliability and yield must be addressed. In this section it is shown how the transition from 2D to 3D 

NoC can be made. It is worth noting that the design, test and reliability challenges of (2D) NoCs have been 

the subject of numerous papers in the last decade. Hence, some of these solutions have been (or could be) 

adapted to a stacked 3D integration setting. 

2.3.1 From 2D NoCs to 3D NoCs 
In transaction-based systems, communication is initiated by a master (initiator) node that sends a request to 

a slave (target). After the request is processed, a response is returned to the initiator. This form of 

communication is more common in MPSoCs for mobile and high performance embedded applications than 

connection-based communication, which consists in explicit message passing between IPs. In Figure II-10, a 

transaction between an initiator and a target is represented. 

 

 
INITIATOR 

 
REQUEST NETWORK 

 
RESPONSE NETWORK 

  

TARGET 
NETWORK 

INTERFACE 

NETWORK 

INTERFACE 

 
Figure II-10 IP blocks with initiator and target interfaces connected by  a NoC 

A common technique in transaction-based communication is to have two physically separated networks for 

requests and responses. This solution has the advantage that it guarantees high-level deadlock freedom (i.e. 

deadlocks at transaction-level) [HGR07]. The request message of the initiator IP, which is packetized by the 

network interface, is routed through the request network to the target IP. The request message is recreated and 

it is processed by the local target IP. The response message of the target IP is packetized by the network 

interface and transmitted to the initiator through the response network. At this point, the initiator can decide 

whether the protocol ended correctly or not. 

In MPSoCs, abstraction layers hide implementation details of different functionalities. In the example 

above, although the packetization, packet routing, and flow control mechanisms are hidden from the IP 

blocks, communication services are transparently available to them. 

It is worth noting that there are no fundamental differences at system-level between 2D and 3D NoCs: IP 

blocks exchanged messages using store/load transactions. However, the IP blocks of 3D systems are 

distributed across the stacked dies. Therefore, there are many design solutions for the global communication 

fabric. Let us consider two dies for a stacked 3D system. In Figure II-11, two possible 3D interconnect fabrics 

are represented. 
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Figure II-11  Interconnect fabric strategies for stacked 3D SoCs 
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In the first case, a 2D fabric interconnects IP blocks within each layer and die-to-die communication is 

performed via dedicated interface blocks (e.g. Low-Latency Interface from MiPi Alliance [LLI]). The 

advantage of this approach is that each layer can be designed independently, with different communication 

protocols, network architectures (e.g. topology, data size, link-level synchronization) and even CMOS 

technology (i.e. heterogeneous interconnect fabric). Moreover, link-level synchronization and serialization 

issues of inter-die communication are hidden from the intra-die communication fabric. However, the off-die 

communication module has the difficult task of ensuring functional compatibility between the intra-die NoCs. 

Alternatively, it is possible to implement an interconnect fabric that spans across multiple layers (see 

Figure II-11 (b)). In this case, all IP blocks implement the same communication protocol and the performance 

penalties due to protocol conversions are eliminated. However, inter-die synchronization and serialization 

must be addressed at lower abstraction layers (data link and physical). In the remaining of this thesis, only 

such NoC interconnect fabrics are considered for 3D MPSoCs. In the following section, some design 

considerations of 3D NoCs are presented. 

2.3.2 3D NoC Design 
3D NoCs have their routing nodes distributed across the stack and they have a mix of intra-die/inter-die 

links. The 3D NoC ensures inter-die and intra-die communication of the IP blocks. Depending on the IP block 

distribution, the 3D NoC may have different topologies. For example, Figure II-12 shows an MPSoC with N 

IP blocks that are connected using 3D NoCs with regular (a), quasi-regular (b) or custom topologies (c). 
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Figure II-12 MPSoC implemented using 3D NoCs 

Routers are responsible for forwarding incoming packets in the requested direction. The header flit of each 

packet is checked first in order to determine the next hop. The header is immediately forwarded in the 

requested direction and subsequent flits are sent as they arrive, in a pipelined fashion. Extrapolated to all 

routers along a path, one packet can span across a number of routers (i.e. it worms its way through the 

network). From the circuit implementation perspective, 3D NoC routers are planar structures (i.e. 2D circuits) 

with interfaces to inter-die links. Although decomposed 3D router architectures that span across multiple 

layers have been proposed in [CNP07, PED08], such implementations require very high density TSVs that are 

not available in the near future technologies [MZ09]. Hence, in this thesis it is considered that 3D routers are 

planar circuits with ports for intra-die and inter-die communication. 
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Because 3D NoC topologies expand in the vertical dimension, their connectivity is higher and the network 

diameter (i.e. maximal distance between any two routers) can be reduced. It has been shown that, compared to 

2D NoCs, the performance metrics (i.e. latency and throughput) are significantly improved [PF07, FP09, 

QLD09]. In [FP09], the performance improvements of 3D NoCs were assessed for 3D mesh, 3D thorus, 

ciliated mesh, and hybrid network-vertical bus architectures. TSVs are an expensive resource, as their 

footprint is non-negligible. NoC-based MPSoCs with custom / application-specific 3D topologies that 

optimize TSV utilization, power consumption and system performance have been proposed in [YL08, 

SMB09]. 

The TSV count can be reduced by implementing serialization techniques for inter-die links [Pas09, 

DVS11]. In [Pas09] it was shown that this approach leads to minor penalties on system performance: for the 

SPLASH benchmark, the performance penalty is less than 5% when all vertical links perform 64:1 

serialization. An alternative solution was proposed in [BSS08], where a series of 3D NoC topologies with 

partial vertical connectivity have been proposed. Their results have shown that reducing the number of inter-

die links has a minor impact on system performance. 

Synchronization is another important aspect of 3D NoCs, as correct clock distribution across the silicon 

stack is very difficult. This issue was addressed in [LAB08], where an existing link-level mesochronous 

synchronization mechanism was implemented in the inter-die links of 3D NoCs. 

In order to cope with synchronization, power and variability issues, the author of [TVC10] propose a fully 

asynchronous 3D NoC architecture. This network architecture uses asynchronous serialization to reduce the 

number of TSVs / chip. Moreover, in order to reduce router complexity, a hierarchical architecture was 

proposed. Hence, complex 7-port routers are decomposed into more simple 5-port and 3-port sub-routers. 

Testing and fault-tolerance of NoCs are topics that have been addressed by the research community. 

Although most of this work was developed for 2D NoCs, it can be implemented in a 3D integration 

framework. In the following, the main contributions to NoC testing and fault tolerance are presented. 

2.3.3 NoC Testing 
Most test efforts in the SoC paradigm are focused on testing IP blocks. The shift to communication-centric 

design styles (i.e. NoCs) raised the question on how to test the system interconnect fabric. NoC test strategies 

must address two main problems: testing individual routers and testing links. Although this thesis addresses 

link testing (i.e. inter-die links are the particularity of 3D NoCs), router test strategies are presented for 

completeness. 

The authors of [VDG03] suggested that the NoC can be considered a simple IP block with two 

particularities: it is composed of many identical sub-cores (i.e. links, routers, and network interfaces), and it 

occupies a central position in the system, its role being to interconnect other IP blocks. In NoC-based systems, 

the NoC is tested first and, if faulty components are detected, then the chip is discarded or sent for further 

diagnosis. The NoC regularity allows the re-use of test data for all identical components (e.g. routers, links). 

The link and router test issues were also addressed in [GIS07]. Tested links/routers are reused for 

transporting test data to components-under-test in a recursive manner. The authors have also proposed a test 
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parallelization mechanism based on multi-cast protocols such that test data is simultaneously sent to multiple 

routers/links-under-test. The external tester accesses the NoC through a network interface and the off-chip 

generated test vectors (i.e. test packets) are sent through the network. 

Because NoCs are relatively complex structures that spread across the chip, different Built-In-Self-Test 

(BIST) strategies have also been used for testing NoC routers and links [GPI06, GIS07]. Hence, routers and 

links are tested periodically or under external control. In [GPI06], the Maximum Aggressor Fault (MAF) 

model proposed in [CDB99] is used for implementing interconnect BIST strategies for NoC links. In [GIS07], 

the authors have shown that traditional BIST implementations for FIFOs are not efficient for NoCs, and they 

propose a distributed BIST architecture. 

In [ZGB10], a complex BIST architecture is used for testing the DSPIN NoC [PG07] communication 

channels (i.e. router FIFOs and inter-router short wires) and internal router components (i.e. routing logic, 

FSM, and intra-router long wires). This off-line BIST strategy is then used for initializing the 2D mesh DSPIN 

NoC by deactivating faulty components. 

In [GIS06], on-line fault detection and location based on code-disjoint elements and parity check were 

proposed for NoC routers and links. During NoC normal operation, faults are detected by encoding flits at 

router inputs and comparing the results at its outputs. If faults are detected then fault containment and 

recovery actions are taken. 

It is also important to have test capabilities during system life-time. Therefore, a series of software-based 

test and diagnosis strategies have been proposed. The authors of [KNG09] proposed a mechanism for 

discovering fault-free paths between a specific I/O port and fault-free processor cores. The result of this 

process is a fault-free communication map, which is used for finding the NoC fault-free components and 

configuring them. This centralized solution is driven by the complex configuration master (i.e. smart I/O port). 

Thus, this method induces a weak point into the chip, as the I/O port is the critical resource. 

The Distributed Cooperative Configuration Infrastructure (DCCI) [ZRG11] uses embedded Configuration 

Firmware (CF) in each cluster of the MPSoC. This fully-distributed solution has the benefit that the fault-free 

communication map is built locally by exchanging messages with neighboring nodes. Nodes that present 

faults are considered black-holes and their location is reported in order to define a configurable fault-tolerant 

routing algorithm that avoids them. 

2.3.4 Reliability and Yield 
In VDSM technologies, soft-errors (i.e. single-even transients SETs, single event upsets SEUs), power grid 

fluctuations, power supply noise, electro-magnetic-interference (EMI) are contributing factors to increasing 

error rates. Higher clock rates, lower voltage levels and increasing inter-wire coupling exacerbate crosstalk on 

wires. NoC transmission errors, due to transients on links and routers, affect system reliability and may lead to 

system failures. 

Routers and links can also be affected by permanent faults due to manufacturing and aging / wear-out 

defects. Thus, fault-tolerance capabilities must be included in NoCs in order to ensure reliable 

communication. In this section, an overview of NoC fault tolerance strategies is presented. 
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2.3.4.1 Fault-tolerant routing 

At network-level, router and link permanent faults are mitigated using fault-tolerant routing algorithms. 

When router and link failures are taken into account, even regular topologies manifest some degree of 

irregularity. In such cases, even simple algorithms become more complex, as they must find alternative 

source-destination paths around faulty components. Although routing based on (reconfigurable) routing tables 

is always a possible fault-tolerant solution even for irregular topologies, it is difficult to develop optimized 

approaches [AN05]. 

An important feature of fault-tolerant routing algorithms is that it must not deteriorate network 

performances in the case when there are no faults. Usually, a simple routing scheme is used in regular 

topologies in the fault-free case. After faults appear, fault-tolerant routing is used. Switching between 

deterministic and adaptive routing is also exploited to reduce congestions and reducing the overall routing 

overhead [HM04]. 

The simplicity and regularity of 2D NoC topologies (i.e. mesh, thorus) enabled the implementation of 

efficient fault-tolerant algorithms [ZGT08, FDC09, RFR10]. These fault-tolerant routing algorithms have 

been designed only for 2D mesh/torus topologies, based on different approaches such as faulty blocks, turn 

models, intermediary nodes, virtual channels or networks etc. [CA95, CC01, HS04]. 

Another type of NoC fault-tolerant communication based on redundant messages has also been proposed 

in [DM03]. Instead of sending a unique message from source to destination, multiple copies of the same 

message are sent on different paths. Packets traversing faulty components and all but the only first correctly 

received packet are dropped. Fault-tolerant communication algorithms are analyzed in [PLB04]: two different 

flooding algorithms (gossip and direct) and one random walk algorithm are investigated. The results of this 

analysis show that the flooding algorithms have an exceedingly high communication overhead. The redundant 

random walk overhead is significantly reduced, while useful levels of fault-tolerance are maintained. From the 

energy consumption point of view, the random walk strategy proved to be considerably more efficient. 

2.3.4.2 Link repair 

Link-level spare-and-replace strategies consist in replacing faulty wires with functional spares. The 

interconnect yield of 2D NoC links can be significantly improved with minor costs by adding spare wires and 

a balanced configuration fabric [GIS06a]. Unfortunately, it is not always possible to include enough spares to 

ensure high reparability. This problem was addressed in intra-die interconnect technologies by link-level 

serialization. 

Time redundancy with error correction codes (i.e. Hamming single error correction codes) is proposed in 

[TLP07] for self-timed on-line reconfigurable intra-die links. When permanent or intermittent faults are 

detected and no functional spare wires are available, data is split, duplicated and sent encoded in two 

transmission cycles. The link uses single error correction (SEC) codes to correct transient errors and to detect 

on-line interconnect faults. In this syndrome store-based (SSB) detection scheme, the error indicator vector of 

the Hamming correction block is monitored in order to detect intermittent or permanent faults (i.e. error 

correction is performed for the same position). 
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The interconnect variability of NoC links is addressed in [HSS09] by a technique called phit reduction 

(PR). This technique can be implemented at link-level where data is sliced in smaller data blocks that are 

serially transmitted. At network-level, PR consists in reducing the data size for the entire network. Packets 

that are expected to traverse partial faulty links are further serialized (i.e. each flit comprises fewer bits than 

the normal flit size), causing the packet length to increase considerably. This serialization / deserialization 

process is performed at source / destination by reconfiguring the network interfaces. The experimental results 

of [HSS09] showed that the local (link-level) phit reduction strategy is significantly better in terms of 

performance and power than the global (network-level) solutions. 

Partial faulty links with application-specific routing are jointly used in [PKC10] for high performance and 

energy efficiency in 2D NoCs. It was shown that when they are jointly used, they have very little impact on 

the system performance. The link-level fault tolerant mechanism of [VSN10] addresses the problem of on-line 

fault detection and diagnosis and uses partial faulty links between the routers. The scheme relies on the fault 

diagnosis vector, which indicates the position of the faulty wires, to create at the link interfaces mask vectors. 

These vectors indicate which data bits are received on the functional wires. Experimental results using the 

SPLASH benchmark have shown that performance penalties are less than 5% even for high interconnect 

failure rates. 

2.3.4.3 Signal encoding 

Coding on-chip signals is a powerful technique that can solve the delay, power and reliability problems of 

on-chip wires. The power dissipation on wires can be reduced by static or adaptive low-power coding schemes 

[KBS00, ZLS02] that reduce the self-/coupling-transition activity. Most low-power codes are not linear and 

they are complex and lead to significant overheads, making them less effective for relatively short 

interconnects like on-chip busses or NoC links [KNM04]. Crosstalk avoidance codes [DTK01, VK01, SAS04, 

DZK08] reduce the worst-case delay by ensuring that a transition from successive code words does not cause 

transitions on opposite directions on adjacent wires. The simplest methods to satisfy this condition are to add 

grounded lines between active lines or duplicate data wires. The number of additional lines increases 

significantly for crosstalk avoidance codes because there are no linear codes that avoid critical switching 

patterns with less than 100% redundancy [SS05] (i.e. twice as many wires). Error detection (EDC) (e.g. parity, 

CRC, Berger codes) and correction codes (ECC) (e.g. Hamming, Hsiao) improve on-chip communication 

reliability. EDC and ECC are jointly used in complex coding schemes with improved error correction 

capabilities [SS05, GBB08]. 

Coding is also used with error recovery mechanisms (e.g. retransmission) in different error control scheme 

for flit and packet protection at different abstraction levels (i.e. data link, network and transport). In [BBM05], 

the AMBA AHB fabric of SoCs based on the LEON3 processor from the Gaisler IP Library is enhanced with 

error resilience. The AHB implementation is modified in order to accommodate the error detection and 

retransmission mechanisms. Every time errors are detected, the slave retry mechanism of AMBA AHB 

notifies the master (i.e. LEON3 cache controller) that it should retry the transaction (i.e. system-level 

recovery). If access to the bus is not lost, a new load/store transaction is initiated, resulting in potentially high 
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performance loss. Error correction is also implemented, without affecting the AMBA AHB protocol and with 

minimal impact on transaction timing (i.e. 2 AMBA AHB clock cycles per transaction are lost for encoding 

and decoding). Although there are no system-level assessments, the authors have concluded that 

retransmission is more efficient than error correction. However, they have recognized the limitations of their 

study with respect to the performance evaluation and the communication fabric. 

The authors of [MTV05] provide an in-depth analysis of different link-/network-level error control 

schemes for NoCs. Parity and CRC codes are used for network-level error detection on individual flits and 

packets, while error recovery is based on transport-level packet retransmission. In this scheme, individual flits 

are encoded using ECC and transport-level packet retransmissions are performed when multiple errors are 

detected. At link-level, flit and packet retransmission schemes are also considered. Their findings indicate that 

the packet-/flit-level scheme is more efficient both in terms of energy and performance. Similar results have 

been presented in [JLV05], where flit-level error correction encoding over the entire network is found to be 

more efficient than network-level packet retransmission. In [RAM07], data link-level and network-level error 

correction schemes using Hamming, Hsiao and symbolic codes have been proposed for Spidergon STNoC. 

Unlike previous approaches, the error control mechanisms are configurable, as the error correction modules 

can be bypassed if data integrity is not critical. 

Error control affects system performance, as error recovery penalizes the overall network latency. 

Performability has been defined as a performance metric for dependable systems with performance 

degradation. In [EAR10], the performability/energy tradeoffs of NoC links using error detection, correction 

with retransmission are discussed with respect to noise power, time constraints, and wire length. The study has 

been carried of the three classes of link error control schemes: automatic retransmission query (ARQ), 

forward error correction (FEC) using single error correction (SEC) codes and hybrid error correction and 

retransmission (HYB) using Hamming SEC codes. The findings of that study can be summarized as follows. 

At the maximum voltage swing, the maximum achievable performability of error correction and 

retransmission (HYB) is always higher than what is achievable from detection and retransmission (ARQ), and 

correction (FEC). For a given performability constraint, HYB consumes less energy than ARQ and FEC, 

except for when short wires are used, or when tight time constraints are imposed. When short wires are used, 

HYB provides the best performability, but consumes the most energy, while FEC provides the least 

performability and consumes the least energy. Finally, when tight time constraints are imposed, HYB and 

FEC provide almost the same performabilities and can provide better performabilities than ARQ. However, 

FEC consumes less energy than HYB, making it the better choice. 

2.3.4.4 Robust router architectures 

Circuit-level fault tolerant solutions for sequential and combinational logic blocks [Nic99, AN00] may 

improve router and NoC reliability. Some of these techniques have also been implemented for NoCs [FKC06, 

PNK06, TMS07] in order to mitigate transient and delay faults in link and routers. Of course, these solutions 

can also be implemented for 3D NoC routers. Hardware redundancy can also be used at network level to 
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improve system robustness. In this case, node faults due to manufacturing defects are mitigated using spare 

nodes [SC11]. Hence, functional spares replace faulty nodes by circuit-level network reconfiguration. 

In [CPB06], N-modular-redundancy (NMR) techniques were used for improving router-level reliability. 

NMR approaches are expensive, since each component must be implemented N times. This solution may not 

be efficient at network-level, as some components are impossible or prohibitively expensive to duplicate. 

Moreover, when functional spares run out, the loss of a single router or link means the loss of the entire 

network. VICIS [DFB12] is a highly resilient NoC that maintains high reliability by leveraging the inherent 

router-/network-level redundancy. It provides higher reliability than NMR-based solutions with a 42% area 

overhead. In VICIS, each router uses a BIST to diagnose hard faults and runs a number of algorithms to best 

use error correction codes (ECC), port swapping, and a crossbar bypass bus to mitigate them. Distributed 

algorithms are used for solving network-wide problems, protecting the network against critical failures in 

individual routers. 

2.3.4.5 Extensions to 3D NoCs 

Some of the above mentioned techniques have been implemented for 3D NoCs. At network level, fault-

tolerant routing algorithms have also been applied to regular or quasi-regular 3D NoC topologies [RAA10, 

PZ11]. However, the hardware costs are non-negligible, as traffic traveling up and down the stack is separated 

on independent virtual/physical channels, in order to prevent deadlocks. 

In [LML08], faulty TSVs of 3D NoCs vertical links are repaired by replacing them with functional spares. 

MUX-based crossbars reroute data and control signals on functional TSVs. These signals are generated off-

chip and they are stored in one-time-programmable (OTP) memories. For 9.75 defects per million, the TSV 

yield is improved from ~67% to more than 99.99% by allocating two wires for each signal. The area 

overheads of the entire chip are reported to go up to ~2.1% in 130 nm technologies and ~3.8% in 65 nm. The 

results also show that, as the TSV pitch scalability is not compatible with that of CMOS, spare-based repair 

using grouping may lead to higher area overheads in advanced technologies. 

2.4 Conclusion 

This chapter overviewed the main challenges of 3D integration and focused on the on-chip communication 

challenge of 3D MPSoCs. The test, yield and reliability issues of 3D MPSoCs can be alleviated using 

innovative techniques that explore the particularity of 3D integration, or reusing well-established techniques. 

Interconnect Built-In Self-Test (IBIST) strategies have the main advantage that no external intervention is 

required. In 3D MPSoCs, testing thousands and tens of thousands of TSVs becomes more efficient using 

IBIST implementations. Although existing solutions can be used for TSVs, they can be too conservative and 

lead to high overhead and long test times. In the following chapter, a TSV-IBIST implementation using the 

novel Kth
-order Aggressor Fault (KAF) model is presented in Chapter 3. 
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The inter-die links of 3D NoCs are crucial components, as most energy-efficiency and performance benefits 

are due to them. In this chapter, the inter-die link test issues are addressed by an Interconnect Built-In Self-

Test (IBIST) strategy. The proposed test strategy sensitizes structural permanent faults like opens and shorts, 

and also delay faults due to crosstalk. One of the fault models that can sensitize such faults is the well-known 

Maximum Aggressor Fault (MAF) model. However, this model is too conservative and it leads to long test 

sequences and non-negligible hardware costs. Therefore, an alternative solution is proposed: the K
th

-

Aggressor Fault (KAF) model. In the new model, the aggressors of victim wires are the neighbor wires 

within a distance order K. The aggressor order K is technology-dependent and is determined such that the 

test times are minimal and the fault coverage is maximal. A configurable KAF-based IBIST implementation 

where tests can be performed using different aggressor orders K is also presented. Although the 

configurable IBIST area is significant, interconnect tests during system lifetime can be performed using 

lower aggressor orders, significantly reducing test duration. 

3.1 3D NoC Inter-die Interconnect BIST 

Interconnect Built-In Self-Test strategies may be used for testing the TSVs of inter-die links in 3D NoCs. 

The major advantages of an off-line Interconnect Built-In Self-Test (IBIST) strategy are the capability for at-

speed testing and minimal external intervention. In this section, the IBIST architecture for TSVs is described 

along with existing test pattern generation strategies. 

3.1.1 Testing TSV faults and defects 
Void formation, lamination due to thermally induced stress, height variation, and XY misalignment are the 

major TSV failure mechanisms [LCF07, KXM09, LCD09]. Stacking silicon dies causes major thermal issues 

that have a dramatic impact on reliability. It is expected that higher temperature gradients inside 3D chips 

accelerate the TSV fault rates due to electro-migration [EK08]. Moreover, in [GWP09, LSL11, LSL11a] it has 

been shown that TSV coupling has a negative effect on signal integrity. 

The TSV failure modes are not fundamentally different from on-chip and board-level interconnects. In all 

cases, interconnect manufacturing and aging/wear-out defects are modeled using the basic faults: open, short, 

stuck-at, and delay faults. These faults are permanent, as they affect the interconnect behavior always in the 

same way. In order to illustrate the delay faults due to crosstalk, the aggressor-victim scenario is considered. 
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Signal transitions on a single wire are affected by the crosstalk noise induced by transitions on all other wires. 

In Figure III-1, these faults are summarized for victim wire W2 and aggressors W1 and W3. 
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Figure III-1 Fault due to crosstalk in the aggressor (W1-W3) – victim (W2) scenario 

If the victim carries the constant signal ‘0’ / ’1’ then the rising / falling transition on the aggressor TSVs 

causes a small voltage glitch on the victim wire, see Figure III-1 (a,b). If this glitch is large enough then it can 

be captured by a flip-flop. If transitions on victim and aggressor wires are in opposite directions then the rising 

/ falling victim transition is delayed by the falling / rising aggressor transition, as shown in Figure III-1 (c,d). 

When the propagation delay is integral in designing setup and hold times, speed up of the signal from nominal 

delay is possible, giving rise to two more possible error conditions. The two faults, called rising and falling 

speed-up, are represented in Figure III-1 (e,f). 

Although solutions like TSV shielding, spreading and buffer insertion have been proposed in order to 

reduce the effects of TSV coupling, they are not complete. Defects and parametric variations may affect the 

TSV coupling and the susceptibility to crosstalk noise. Worst-case design solutions that compensate delay 

faults due to crosstalk often prove to be too conservative and lead to significant costs. It is known that, for on-

chip interconnect, it is more efficient to use less conservative design rules for crosstalk between wires and 

perform interconnect tests for delay faults due to crosstalk [CDB99]. Similarly to on-chip interconnects, TSV 

tests can be performed in order to detect crosstalk delay faults due to manufacturing and in-field failures 

during system life-time. 

3.1.2 Interconnect BIST architecture 
One of the advantages of IBIST is that tests are performed at nominal clock rates (i.e. at-speed tests). 

Hence, open, shorts and also delay faults (and delay faults due to crosstalk) can be detected. In NoC designs, it 

is very common to have unidirectional router-to-router links. Although NoC bidirectional links can be 

implemented, the extra costs required at the router interfaces makes them less attractive. Let us consider 3D 

NoCs with unidirectional links of width N. In Figure III-2, the simplified IBIST test architecture is represented 

for the inter-die link that connects the lower-die transmitter router TX and the upper-die receiver router RX. 
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Figure III-2 Inter-die Link Interconnect Built-In Self-Test (IBIST) 

During the test phase (i.e. TEST=’1’), the TX router interface is disabled (i.e. no new data can be sent) and 

N bits test vectors T1:TN are generated in the lower die by Test Pattern Generators (TPGs) and transmitted on 

TSVs. In the upper layer, the received vector T1
*
:TN

* is compared to the original transmitted vector generated 

by a second TPG, identical to the one in the lower layer. During tests, the response analysis cells (RA) 

compare the response and test vectors and iteratively build the diagnosis vector DV1:DVN. In each response 

analysis cell RAi, a XOR gate compares the received test stimulus Ti
* with the expected one Ti. Using an OR 

gate, any mismatch of these signals is stored in RA’s internal flip-flop Fi. At the end of the test phase, the 

diagnosis vector which identifies the faulty TSVs is stored in RA’s internal flip-flop FF1:FFN. In order to 

improve circuit timing, intermediate retiming stages may be added. In this case, the upper die TPG must be 

delayed by a number of clock cycles equal to the number of the retiming stages. During the operational mode 

(i.e. TEST=’0’), the timing of the link is slightly affected by the 2:1 MUXes delays added on the IN:I1 to 

ON:O1 signal propagation paths. However, for most implementations, this impact is negligible. 

One of the challenges of implementing IBIST techniques is to ensure good inter-die synchronization. This 

is not an issue for 3D MPSoCs with Intellectual Property (IP) blocks implemented in 2D technologies with 

different voltage/frequency domains. However, the global interconnect fabric, which spans across the silicon 

layers and uses TSVs for inter-die communication, must be synchronous or mesochronous (i.e. the same 

frequency, but different phase). For fully-synchronous NoC fabrics, no synchronization is needed for the 

IBIST scheme. For mesochronous vertical links, communication is implemented using link-level clock 

synchronizers [LAB08] or multiple-clock FIFOs. In both cases, two clocks are used in the destination layer 

(i.e. upper layer in Figure III-2) for signal synchronization. Hence, the IBIST remains in the fully-synchronous 

domain of the transmitter die (i.e. lower die in Figure III-2). 
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To sensitize all types of faults due to crosstalk on NoC links, the Maximum Aggressor Fault (MAF) model 

[CDB99] has been used for NoC link IBIST [GIS07]. However, the implementation costs and complexity are 

non-negligible (e.g. more than 30% area overhead for a 2D five-port router with virtual channels [GIS07]), as 

8N test patterns are necessary to sensitize the faults for N wires. 

In the case of TSV tests, inter-die link IBIST complexity can be reduced by restricting the number of 

aggressor TSVs to the nearest neighbors of the considered victim wire. It is important to note that the 

crosstalk-induced delay faults on TSVs are mainly due to the coupling between neighboring TSVs and not all 

TSVs connecting two dies. The proposed solution, which is presented in the following section, is the Kth-order 

Aggressor Fault (KAF) model that takes into account the distance between wires. Depending on the TSV 

spatial distribution, potential aggressors are classified in classes (i.e. K-orders). 

3.2 K
th

-aggressor Fault Model for TSVs 

The Kth-Aggressor Fault (KAF) model enables crosstalk-induced delay fault detection by partitioning 

TSVs in aggressors and victims using the aggressor-victim scenario. In this section, the TSV partitioning in 

aggressor and victim set is presented for the Kth aggressor orders. 

3.2.1 Defining aggressor orders 
In 3D chips, vertical wires are distributed such that they do not affect the functionality of active logic 

blocks, facilitate heat removal and limit intra-die wire routing congestion. TSVs connecting two stacked 

layers may be uniformly distributed on regular arrays (e.g. MxM) or they may have non-uniform (irregular) 

distributions. In the proposed fault model it is considered that, for a given TSV distribution, the aggressors of 

a victim TSV are all the TSVs within a distance given by the minimal TSV pitch p and an arbitrary constant K 

(i.e. aggressor order). In Figure III-3, the first (K=1), second (K=2) and third (K=3) order aggressor of a 

victim TSV are represented for regular and non-uniform distributions. 
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Figure III-3 1st, 2nd and 3rd aggressor sets for regular (a) and non-uniform (b) TSV distributions 

The first order aggressors are all the TSVs within a range p; the second order aggressors are all the TSVs 

that can be found between p and 2p distance away and the third aggressor set consists of TSVs that are more 

than 2p away from the victim TSV, but less than 3p. In general, the K-order aggressors of a victim wire and 

all TSVs within a distance range p·(K-1) and p·K. Note that the minimal pitch p is a technology-dependent 

constant that could partially compensate crosstalk effects between neighboring TSVs.  
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For a given aggressor order K, the victim TSV set is defined as a collection of TSVs such that transitions 

on any TSVs within the same set do not affect each other. In other words, each set contains TSVs such that no 

TSV in the set can be considered a K-order aggressor for other TSVs in the set (i.e. the distance between every 

pair of TSVs is more than K·p). In the following, an algorithm for determining the TSV victim set of a TSV 

bundle is presented. 

3.2.2 TSV partitioning in victim sets 
The challenge of KAF-based pattern generation process is to correctly identify the victim sets. In the case 

of TSVs, this process is straightforward, as only the distance between TSVs has to be considered. In other 

words, the only criteria needed for including two wires TSVi and TSVj in different victim sets is the distance 

between them Dist(TSVi,TSVj). For N TSVs and an aggressor order K, the victim sets V1…Vw are determined 

using the algorithm in Figure III-4. 
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S = 0 ; 

for i=1 to N do Set(TSVi)=0; 

while(notCovered())do 

    S++; 

    VS=φφφφ; 
    for i=1 to N do 

        Free(TSVi)=true; 

    for i = 1 to N 

        if(Free(TSVi)and(Set(TSVi)==0)) then 

            Set(TSVi)=S; 

            VS= VSU{TSVi}; 

            for j = 1 to N do 

                if((i!= j)and(Dist(TSVj,TSVi)≤p·K) then 

                    Free(TSVj) = false; 

                end if; 

      end for; 

 end if; 

    end for; 

end while;  
Figure III-4 TSV partitioning algorithm using the Kth order aggressors for N TSVs 

Initially, no victim subsets exist and the TSVs are not attached to any group, as shown in lines 1-2. The 

notCovered() function returns true if at least one TSV not attached to a victim subset exists (i.e. there is at 

least one j such that Set(TSVj)=0). In line 5, the current victim subset VS is initialized for a given victim subset 

index S. In line 9 the first wire TSVi, which is not attached to any victim subset (i.e. Set(TSVi)=0) and not in 

the aggressor set of any wire in the current victim subset (i.e. Free(TSVi)=true), is determined. In lines 10-11, 

if such a wire exists then it will be included to the current victim set VS (i.e. Set(TSVi)= S). In lines 12-16, all 

the aggressors of TSVi (i.e. if TSVj is aggressor of TSVi then Free(TSVj) is false) are marked, in order to 

prevent including them in VS. The aggressors are determined and marked in lines 13-15 using the distance 

Dist() function, the minimum pitch p and the aggressor order K. If there are unattached TSVs in the bundle 

then the victim subset index S increases in line 4 and the process above is repeated. The algorithm ends when 

each TSV belongs to a single victim set. In the worst case, this process takes N iterations, as the number of 

victim sets is smaller than the number of wires. 

For regular and non-uniform TSV distributions in an inter-die link, the algorithm above determines the 

victim subsets. For a minimal pitch p, the TSV victim sets {V1,…,Vw} are represented in Figure III-5 for the 1st 

aggressor order K=1. This example shows that, for a regular array, the 25 TSVs are partitioned in the w=2 
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victim sets represented in Figure III-5 (a). For the non-uniform distribution, the 23 TSVs are partitioned in 

w=3 victim sets shown in Figure III-5 (b). 
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Figure III-5 The victim sets for 1st order aggressors in regular (a) and non-uniform (b) TSV distributions 

Partitioning TSVs in victim sets can also be performed using graph coloring. In this case, the graph G has 

N vertices that correspond to the N TSVs. Given an aggressor order K, an edge E connects two vertices i and j, 

if the distance between TSVi and TSVj is less than K·p. The vertex color represents the victim set of the 

corresponding TSV and the graph chromatic number (i.e. number of colors necessary to cover the graph) 

represents the number of victim sets w. Although both techniques give the same results, the graph coloring 

approach is more complex than the proposed partitioning algorithm in Figure III-4, as it often implemented 

using a backtracking strategy. 

The KAF-based patterns must sensitize delay faults due to crosstalk between neighboring TSVs. However, 

as shown in Figure III-2, test patterns also traverse intra-die wires connecting the MUXes to TSVs, buffers 

and intra-die wires in the upper layer that connect TSVs to RA cells. Hence, faults on these components are 

also sensitized. Because all the ‘0’-‘1’ and ‘1’-‘0’ transitions are activated on every wire, all potential delay 

faults are sensitized. Open faults are also sensitized, since different signal values are transmitted on each TSV. 

Short faults are sensitized, but only those between aggressors and victims, since signals transmitted on TSVs 

of a victim set are identical. If there is a short between TSVs of the same victim set then this fault is not 

detected. However, victims of the same set are distant and the probability of such faults is very low, as shorts 

usually affect neighboring wires. Depending on the circuitry layout, a solution to avoid missing such faults is 

to use higher aggressor orders. 

The main advantage of the KAF model over other similar models consists in reduction of the test times. 

For example, in the MAF model [CDG99] all neighboring wires are potential aggressors. In this case, each 

victim set contains a single TSVs and the test sequence is repeated N times for a bundle of N TSVs. 

Using the KAF model, it is possible to test all TSVs within the same victim set in parallel. In the 

following, the implementation of KAF-based TPGs is presented. 
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3.3 Implementation of KAF-based IBIST 

During the test phase, test patterns are generated both for aggressor and victim TSVs. The number of test 

sequences required to sensitize the six types of crosstalk delay faults is represented in Figure III-6 for an 

aggressor and victim TSV configuration. 
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Figure III-6 Reduced test patterns for crosstalk-induced fault 

Although there are six fault classes that are sensitized using 12 test vectors, the test sequence can be 

reduced to 8 vectors by rearranging and merging identical transitions. These test vectors can sensitize opens, 

short and delay faults due to crosstalk between one victim TSV and its aggressors. During tests, these signals 

are sent on each victim / aggressor TSV. In the remaining of this section two hardware implementations of 

KAF-based TPGs are detailed. 

3.3.1 Generating KAF Test Patterns 
Let us consider that the TSV bundle is split in w victim sets {V1,V2,…,Vw}. During TSV tests, each subset 

Vi identifies the victim wires, while the remaining TSVs are aggressors. During tests, the w victim TSV 

subgroups are tested by sending victim signals PV on each TSV in Vi and aggressor signals PA on the 

remaining TSVs. In Figure III-7, the KAF-based traffic pattern generator is presented. 
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Figure III-7 Traffic Pattern Generator for KAF-based BIST 

Shift counters with w positions CNT1-CNTw indicate the active victim subsets. For each victim set Vi, there 

is a 2:1 MUX that controls which of the victim-aggressor signals is mapped on its TSVs. If TSVs in set Vi are 

tested then CNTi=’1’ and PV is transmitted on all TSVs in Vi. The other positions of the counter are ‘0’ PA is 

transmitted on the aggressor TSVs (i.e. TSVs not in Vi). 

The victim and aggressor signals are generated using a finite state machine (FSM). The FSM has two 

inputs: START that initiates the FSM, and END that indicates the end of the victim set count. The SHIFT 

output of the FSM is an enable signal for the shift counter: when SHIFT=’1’ then the counter value shifts one 
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position. The aggressor and victim signal values for the current state are generated (see Figure III-6) on the PA 

and PV outputs. In Figure III-8, the nine-state FSM that generate the shift control signal and the aggressor-

victim signals is represented. 
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Figure III-8 FSM for generating aggressor / victim test signals 

In the idle state S0, the inter-die 3D NoC link is in normal operation mode. When the interconnect test 

phase is initiated (i.e. START=’1’), the shift counter indicates the first victim set V1 and the FSM transitions to 

state S1. In this state, PV=’0’ is sent on all victim TSVs in V1 and ‘0’ is sent on aggressor TSVs. Then, the 

FSM will perform transitions from S1 to S2, then from S2 to S3 and so on, until it arrives in S8. In each of 

these states, the enable signal of the counter is ‘0’ and the aggressor-victim signal values are sent out on PA 

and PV, according to the eight vector values in Figure III-6. When the S8 state is reached, the shift counter 

status is checked. If the shift counter has finished counting the victim sets, then the END signal is set to ’1’ 

and the FSM performs the S8 to S0 transition. Otherwise, for the currently active victim set Vi, the counter 

value increments, SHIFT=’1’ (i.e. CNTi=’0’ and CNTi+1=’1’), and the FSM goes through the S1-S8 states 

again for the next victim set Vi+1. 

The delay of the KAF-based IBIST circuitry represented in Figure III-2 comprises the TPG delay (i.e. 

δFSM+δMUX), the 2:1 MUX delay δMUX, the interconnect and buffer delays δWIRE, and the RA cell delay δRA= 

δFF+δXOR+δOR. Hence, tests can be performed at high clock rates. For example, in a 65 nm low-power 

technology, the IBIST can be clocked at 2 GHz. 

The difficulty in applying the KAF model is that the aggressor order must be determined for each TSV 

technology such that there is no fault coverage loss and the test times are minimal. An improvement of this 

implementation consists in modifying the test generation strategy with capabilities to perform tests for 

different aggressor orders. In the following section, a configurable KAF-based TPG implementation is 

presented. 

3.3.2 Configurable KAF-based Test Patterns 
Under-estimating the K-order reduces test duration, but fault coverage is reduced, as shorts between victim 

TSVs of the same set are not detectable. If higher aggressor orders are used then there are more victim TSV 

sets. However, the longer test sequence generated for higher aggressor orders may not sensitize more delay 

faults due to crosstalk. In this section, the implementation of configurable KAF-based TPGs is presented. The 
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test logic can be configured during system lifetime with different TSV victim sets by adjusting the aggressor 

order with a value K ranging from KMIN to KMAX. The configurable KAF-based TPG architecture is shown in 

Figure III-9. 
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Figure III-9 Configurable KAF pattern generator 

During interconnect tests, the aggressor or victim signal sent on each TSV is determined using shift 

counters that indicate the active victim set Vi. Given the maximal aggressor order KMAX, the N TSVs are 

partitioned in maximum wMAX of victim subsets (V1,…,VvMAX). Thus, a programmable shift counter with wMAX 

positions (CNT1-CNTwmax) is used in order to indicate the active victim set. For an aggressor order K, the 

number of victim sets w is determined by the Configuration Logic block. 

When the TSVs are partitioned in victim sets using the algorithm in Figure III-4, it is possible that some 

wires TSVi are in the nth partition for an order K1 and in the mth partition for a different order K2. Thus, the 

behavior of TSVi (i.e. value of signal Bi) is given by the counter’s nth position in the first case and on the mth 

position in the second case. To illustrate this, let us consider a 4×4 TSV array. In Figure III-10, the victim sets 

are represented for the first K=1 (a) and second K=2 (b) aggressor orders. 
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Figure III-10 Victim subsets for 4x4 TSVs for K=1 (a) and K=2 (b) aggressor orders 

From these plots it can be seen that, for K=1 and K=2, some TSVs are in different victim sets. For 

example, TSV5 is in the second victim subset for K=1 and it is in the third victim subset for K=2, while TSV1 

and TSV16 remain in the same group. The behavior of TSV5 is given by the first position of the counter for 

K=1 and by the third position for K=2. 
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The counter position selection process is done for each wire TSVi by a crossover switch whose inputs are 

the counter positions CNT1-CNTwmax and whose outputs are the TSV victim-aggressor control signals Bi. For 

each wire TSVi, the victim signal PV is sent if Bi=’1’, and the aggressor signal PA is sent if Bi=’0’. The 

crossover switch is implemented using MUXes or arrays of switching elements controlled by the matrix 

control signal M. For each valid CNTi-Bj signal pair (i.e. there is an aggressor order for which TSVj is in Vi) 

there is a unique select signal Mi,j. When Mi,j is active, the input signal CNTi is mapped on output Bj. The 

crossover switch control signals Mi,j are determined by the Configuration Logic block. This block is 

implemented using truth tables that have the aggressor order K as input. 

For the 4×4 TSV bundle, the crossover switch must be able to map the counter positions CNT1-CNT6 to the 

MUX selection signals B1-B16 of each wire TSV1-TSV16. Let us consider that the TPG can generate test patterns 

for the 1st and 2nd aggressor orders. In this case, the signal sent on each TSV is determined by the counter 

register (i.e. the current victim according to the partitioning in Figure III-10). The mapping process of victim / 

aggressor signals on TSVs (i.e. MUX selection signals B1-B16) is performed by the crossover switch 

represented in Figure III-11. 
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Figure III-11 Crossover switch structure for 4x4 TSVs having K=1 (w=2) and K=2 (w=6) aggressor orders 

In the example above, TSV5 is in the second and third victim sets for K=1 and K=2, respectively. In Figure 

III-11 there are two switching elements, one of which is active at a time, that connects B5 to CNT2 and to 

CNT3, respectively. Similarly, B10 is connected to CNT2 and CNT1 such that M2,10=’1’ for K=1 and M1,10=’1’ 

for K=2. 

A benefit of the configurable TPGs is reduced interconnect test duration during system lifetime. For 

example, initial tests could be performed with the highest aggressor order KMAX in order to detect all possible 

errors. Then, in order to reduce link off-line duration due to tests, the aggressor order can be gradually reduced 

KMIN. For example, M TSV interconnect test phases performed for an aggressor order K1 require 8·M·w1 

cycles, where w1 is the number of victim sets. However, if m of these test phases are performed for a lower 

aggressor order K2 then the test duration is reduced by 8·m·(w1-w2) cycles, where w2 represent the number of 

victim sets for K2. 

The configurable KAF-based IBIST delay comprise the TPG delay (i.e. δFSM+δMUX), the 2:1 MUX delay 

δMUX, the interconnect and buffer delays δWIRE, and the RA cell delay δRA= δFF+δXOR+δOR. These delays do not 

comprise the Configuration Logic and crossover switch delays, as the input signal K is constant during the 
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TSV test phase. Therefore, high-speed configurable IBIST implementations are possible. For a 65 nm low-

power technology, the configurable IBIST can be clocked at frequencies as high as 2 GHz. 

3.4 Experimental Results 

In this section, the costs and test duration of KAF-based IBIST implementations presented in the previous 

section are estimated. The IBIST is implemented and evaluated for the 3D NoC unidirectional inter-die links 

that have TSVs arranged on regular grids. The costs are evaluated for a 65 nm low power technology and a 

NoC working at a nominal 1 GHz clock frequency (i.e. the nominal clock frequency of the 3D NoC seven-port 

router). 

3.4.1 Test duration 
Without loss of generality, let us consider an 8×8 regular TSV array with a pTSV=10 µm pitch and the KAF 

constant p=pTSV. In this case, the maximum aggressor order is K=10, as the maximum distance between any 

two TSVs in the 8×8 array is ~99.4µm, which represents less that K=10 TSV pitches p=10µm. The algorithm 

in Figure III-4 was used for determining the victim sets V1…Vw for any aggressor orders between K=1 and 

K=10. In Figure III-12 the number of test patterns (i.e. 8·w, where w is the number of victim sets) is 

represented for different aggressor orders. 
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Figure III-12 Plot number of test patterns vs. K-aggressor order 

When lateral TSV coupling is the main contributor to crosstalk-induced noise, tests can be performed for 

the 1st aggressor order (i.e. K=1). In this case, there are only two victim sets and 16 test patterns have to be 

generated. When the effects of high-order aggressors are taken into account, the number of victim TSV groups 

increases. The limit case, which corresponds to the MAF model, is when K=10. In this case, 64 victim sets 

(i.e. each TSV is alone in its victim set) are found and 512 test patterns are generated. 

The KAF-based test patterns generated for the highest aggressor order are identical to the patterns 

generated using the MAF model, as the aggressors of each victim are all the other TSVs in the bundle. In 

Figure III-12, there is an almost linear dependency between the number of test patterns generated and the 

aggressor set. Hence, for a TSV technology, if the aggressor order is correctly estimated then the test duration 

can be reduced significantly. MAF-based tests have a linear dependency on the number of wires (i.e. for N 
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wires there are 8N test patterns). For KAF-based tests with a given aggressor order K, the number of victim 

subsets w determines the number of test patterns. To illustrate this dependency, M×M TSV arrays with 

different aggressor orders are considered. In Figure III-13, the number of test patterns for different aggressor 

orders K is given. 
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Figure III-13 Number of test patterns vs. K-aggressor order 

These results show that, for small aggressor orders (i.e K=1 and K=3), the number of test vectors slightly 

changes with the M×M TSV grid size. For each victim TSV, the aggressors are bounded to a relative small 

area and there are few victim subsets. If the aggressors of each TSV represent only a small fraction of the total 

number of TSVs then the number of victim sets does not depend on the number of TSVs. When the aggressor 

order increases, a dependency of the test pattern count on the TSV count is observed. In this case, the 

aggressors of each victim TSV are bounded to a larger area and more victim sets are required to cover the 

TSV bundle. Hence, for smaller grid sizes (e.g. 3×3 and 4×4), the KAF-based IBIST is identical to the MAF-

based IBIST (i.e. K ≥5), as the aggressors are all the remaining TSVs in the bundle. 

3.4.2 KAF-based IBIST area evaluations 
In the IBIST area assessments, the 3D NoC inter-die link test circuitry in the upper and lower dies (see 

Figure III-2) are synthesized in a 65 nm low-power technology. In order to emphasize the benefits of KAF-

based testing, MAF-based and marching-‘1’ implementations have also been considered. 

3.4.2.1 IBIST 

For the hardware cost evaluations, the IBIST modules on the transmitter side (i.e. lower die components: 

TPG and 2:1 MUXes) and the receiver sides (i.e. upper die components: TPG and RA cells) are considered 

separately. In Figure III-14, the area of the upper-die and lower-die IBIST components is estimated for an 8×8 

TSV bundle with different aggressor orders. 
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Figure III-14 Area of TSV Interconnect BIST components for an 8x8 TSV array when different K-aggressor orders are considered 

For upper-die and lower-die IBIST components, the area variation is entirely due to the TPGs. For all 

aggressor orders, 64 MUXes are needed in lower die and 64 RA cells in the upper die, respectively. The IBIST 

cumulated area increases almost linearly from ~800 gates for K=1 to ~1900 gates for K=10, but the TPGs 

account for less than 25% of the area. This linear dependence is due to the increase of the number of victim 

sets with the aggressor order. These results show that the IBIST area depends on the chosen aggressor order. 

For K=10, KAF-based tests are identical to MAF-based tests. Hence, for K<10, the area of the KAF-based 

IBIST is lower (i.e. up to 3× smaller for K=1) than for MAF-based tests. For aggressor orders up to K=7, the 

results show that the KAF-based IBIST area is less than that of conventional marching-based IBIST 

implementations whose upper and lower die modules require ~700 and ~1075 gates, respectively. 

In Figure III-15 (a,b), the area of the IBIST upper die and lower die components is estimated for TSV 

arrays of different size and for different aggressor orders K. For comparison, the IBIST area for TPGs using 

the marching-‘1’ pattern generation algorithm are also evaluated. 
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(a)  Lower die BIST area                                                                                    (b) Upper die BIST area  
Figure III-15 The KAF-based TSV BIST area of the lower and upper die components for differet TSV array sizes and aggressor orders 

For a given aggressor order K, the area of IBIST components increases with the number of TSVs, as the 

number of 2:1 MUXes and RA cell increases. The area increase is also attributed to TPGs, as the number of 

victim sets also increases with the grid size (see Figure III-13). However, for low aggressor orders (i.e. K=1), 
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the IBIST use the same TPG circuitry and the extra area is entirely due to lower-die MUXes and upper-die 

RAs. 

For a given number of TSVs, increasing the aggressor order leads to larger IBIST area, as the TPGs are 

more complex. Overall, the impact of TPGs on the IBIST area becomes significant, as the gap between K=1 

and K=7 increases with the number of TSVs. For larger M×M TSV bundles, low-order KAF-based IBIST 

implementations occupy up to 2× less area than high order implementations. 

Compared to marching ’1’-based IBIST, the KAF-based strategy requires less area for large grid sizes and 

low aggressor orders. Moreover, marching-‘1’ test strategies have another major disadvantage: they can 

sensitize only open, short and delay faults, but no delay faults due to crosstalk. 

3.4.2.2 Configurable IBIST 

The configurable KAF TPGs alleviates some limitations of the simple scheme by choosing different 

aggressor order K for tests during system lifetime. The 8×8 TSV array has the maximum aggressor order 10 

and the aggressor order can range from 1 to KMAX, where 2 ≤ KMAX ≤ 10. In Figure III-16, the impact of the 

maximal aggressor order KMAX on the IBIST area is represented. 
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Figure III-16 Area of the configurable KAF-based BIST component for different maximal aggressor orders KMAX 

The area overhead increase of configurable IBIST is non-negligible. The extra area is entirely due to the 

TPG modules, as the number of MUXes and RA cells is the same (i.e. 64 for the 8×8 TSV array). Increasing 

the maximal aggressor order leads to complex TPGs. Hence, the IBIST area increases by up ~175% when 

KMAX increases from 2 to 10. The major contributor to the area overhead is the crossover switch with wMAX-

inputs and 64-outputs. In the case of KMAX=10, the crossover switch accounts for more than 55% of the IBIST 

area. 

In Figure III-17 (a,b), the area of the configurable IBIST upper die and lower die components is determined 

for TSV arrays of different size and for different maximal aggressor orders. 
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(a)  Lower die BIST area                                                                                             (b) Upper die BIST area  
Figure III-17 Area of configurable KAF-based BIST components for different maximal aggressor orders and grid sizes 

For a given maximal aggressor order KMAX, the IBIST area increases with the grid size, as the number of 

2:1 MUXes and RA cells increases. The increasing complexity of TPGs also increases the overall area, as for 

each TSV there is a 2:1 MUX that select the aggressor or the victim signal. For a given TSV grid size M×M, 

the IBIST area increase is entirely due to the TPG. For 3×3 and 4×4 TSV bundles (i.e. 9 and 16 TSVs, 

respectively), there are no variations with KMAX, because the maximum aggressor order is KMAX=4 and 

KMAX=6, respectively. It can be noticed that the area difference between the IBIST with low (i.e. KMAX=3) and 

high (i.e. KMAX=7) aggressor orders increases with the grid (i.e. number of TSVs) size. 

Although the KAF-based IBIST configurability costs are significant, one of its benefits is the reduction of 

interconnect test duration during system lifetime. In the case of KMAX=10, the initial tests performed at K=10 

take 512 cycles. Subsequent tests during system lifetime can be performed at K=1, which requires only 16 

cycles (i.e. 32 times faster). Hence, if m out of M test phases are performed with K=1 instead of K=10 then 

test times are reduced by a total of m·496 cycles. Therefore, this solution becomes attractive in systems that 

regularly perform TSVs tests. Another possible advantage of this implementation is to increase the aggressor 

order K of the KAF-based test during system life-time, in order to take into account the TSV aging defects. 

Finally, this strategy can also be used for calibrating a TSV technology before production. In other words, 

different TSV configurations are fabricated and an optimal aggressor order is experimentally determined. 

3.5 Conclusion 

Facing the challenges of testing 3D integrated systems, a TSV Interconnect Built-In Self-Test technique 

(IBIST) to cope with opens, shorts and delay faults due to crosstalk is presented. The proposed test strategy 

uses the novel Kth-Aggressor Fault (KAF) model. For a victim TSV, its potential aggressors are divided based 

on their orders (i.e. K-orders), depending on their distance to the victim. Compared to existing delay fault-

aware test methodologies, the test times are significantly improved, as several victim TSVs are concurrently 

tested. 

The KAF model is used for implementing the Test Pattern Generator (TPG) of a generic TSV IBIST 

architecture. Experimental evaluations showed that, along with lower test times, the proposed KAF-based 

IBIST occupies up to three times less area than IBISTs using the maximum aggressor fault model (MAF) or 

the marching-‘1’/’0’ algorithm. The main challenge on the KAF model is to choose the value of K that ensures 
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minimal test time without fault coverage loss. To solve this problem, a configurable TPG implementation 

allowing TSV tests for different aggressor orders has been proposed. Compared to the original proposal, the 

configurability costs are high, but the test times can be significantly reduced during system life-time. 

Increasing the aggressor order K during system lifetime could help detect aging defect. Also, the configuration 

capabilities may be useful in calibrating a TSV technology before full-scale production. 

The reliability and yield remain major challenges of 3D MPSoCs. Although pre-bond testing helps in 

discarding dies with faulty intra-die components, TSV failures remain the major cause of yield loss. In 3D 

Networks-on-Chip, this problem is addressed by spare-based repair, serialization and fault tolerant routing in 

Chapter 4. Transient faults, which affect data bits during link and router traversal, reduce system reliability 

and may lead to system failures. Thus, data link and network-level solutions based on error control strategies 

are also proposed in the following chapter. 
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We have seen that testing the 3D NoC inter-die links can diagnose TSV permanent faults due to 

manufacturing defects or aging. Without any repair mechanisms, permanent faults affect messages 

transmitted on the NoC and they could have dramatic effects on the system behavior. Transient faults, which 

may not be diagnosed during TSV tests, could also affect the integrity of data traversing the NoC. Therefore, 

error resilience strategies are mandatory in order to ensure correct data transmission. In this chapter, the 

3D NoC reliability and yield challenges due to unreliable TSV technologies are addressed at two abstraction 

layers: data link level and network level. Although single-layer solutions are able to cope with TSV faults, 

their efficiencies are often counter-balanced by their relatively high costs. In order to cope with these issues, 

a multi-layer approach, which leverages data link and network solutions, is proposed. 

4.1 Data link  error resilience for transient faults 

Error resilience against transients on the inter-die and intra-die links of 3D NoCs is ensured using hardware 

redundancy and error control schemes. At the transmitter side, the flow control units (flits) are encoded before 

being sent on the physical wires (PHY). The received encoded flits are checked for transmission errors. If 

errors are detected then they are handled by the error recovery mechanism, which is usually implemented by 

means of error correction or flit retransmission. The flow control signals ensure the NoC correct behavior. 

Transient faults on these signals are most likely to lead to system failure. Therefore, aggressive protection 

strategies such as triple modular redundancy (TMR) are used. 

In this section, implementations of the three main classes of error control schemes are presented. Forward 

Error Correction (FEC) schemes rely on error correction codes that are capable to correct an arbitrary number 

of errors on the link. Automatic Retransmission Query (ARQ) schemes use data retransmission error recovery 
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mechanisms every time transmission errors are detected. Finally, Hybrid Error Correction and 

Retransmission (HYB) schemes combine the first two schemes such that if correction is not possible then the 

flit is retransmitted. 

4.1.1 Forward Error Correction 
Forward Error Correction (FEC) schemes correct one or more erroneous bits that affect signals on a given 

link. Error resilience is ensured by means of error correction codes (ECC) [CL06], which are capable of 

correcting one or more transmission errors, depending on the Hamming distance of every selected code. In 

Figure IV-1, two routers TX and RX connected by a NoC link with FEC protection are represented. 
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Figure IV-1 Forward Error Correction (FEC) scheme 

On the transmitter TX side (i.e. upstream interface), flits are encoded by the ENC module. Data and error-

control bits are then transmitted on the physical wires (PHY). The error detection module DET on the receiver 

RX side, checks the received signals for transmission errors. The error correction module COR corrects 

detected errors before flits are sent to the subsequent stages. Depending on circuit timing, one or more 

retiming stages could be necessary between TX and RX. These stages could be inserted between the encoder 

and the PHY, between the PHY and the DET module, or between the DET and the COR modules. 

In the worst case, data encoding, transmission on PHY, error detection and correction take one clock cycle 

each, and the three retiming stages are considered. If no transmission errors are detected then the correction 

module is bypassed and flits traverse the link in two cycles. If errors are detected then an extra cycle is 

required for error correction. During this correction cycle a new data could arrive. Therefore, in order to 

prevent data conflicts on DO, a Finite State Machine (FSM) controls the downstream interface. Once an error 

is detected, the correction stage bypass mechanism is disabled. Flits go through the correction stage and link 

latency increases to three cycles. In other words, once an error is detected, all subsequent flits are delayed for 

one cycle, even if no errors are detected.  The correction bypass remains disabled until all the flits of the 

current burst are transmitted. In Figure IV-2, the time diagrams of flits traversing the FEC-protected link are 

presented. 
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Figure IV-2 Time diagram of flit arrival at the receiver router when there are no faults (a), when errors are detected for flit A (b) 
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When A is affected by transient errors during PHY traversal (A* on DPHY in Figure IV-2(b)), the errors are 

detected in the second cycle. In this case, flit A* is discarded at the downstream interface and it is not 

forwarded to the receiver RX. An extra cycle is needed for error correction. Therefore, flit A will arrive error-

free at the receiver router after three cycles. Flits B and C follow A in a pipelined way such that the correction 

delay on A also affects their arrival time. Since C is the last flit in the burst, after it traverses the detection 

stage, the downstream FEC interface returns to normal operation (i.e. correction bypass enable). Flit D, which 

is the first flit of a new burst, traverses the link in two cycles if no errors are detected. 

The link reliability (i.e. probability that flits traverse the link without any faults) depends on the correction 

capabilities of the coding scheme. Multiple error correction coding schemes like Low-Density Parity Check 

(LDPC) and Reed-Solomon (RS) are too complex and prohibitively expensive for NoC links. Therefore, most 

implementations use different forms of Hamming Single Error Correction (SEC) codes. For such codes, it is 

important to know the codeword size that can be reliably transmitted on the PHY. 

Let us assume the single wire error rate εwire and a target flit error rate εT, which represent the probability 

that an n bits link is affected by an uncorrectable error. The goal is to determine the link size n such that 

Hamming SEC protected flits reliably traverse it (i.e. the probability of double errors is less than εT). For 

Hamming SEC codes, the number of error control bits m is the smallest number that satisfies 2m ≥ n+m. 

Hence, n is determined such that the probability of an uncorrectable error (i.e. multiple error 1-ε0-

ε1=ε2+ε3+…+εn+m, where εi represents the probability that i out of n+m bits are affected by faults) is less than 

εT. In Figure IV-3, the number of data bits n that can be reliable transmitted is represented for different single 

TSV fault rates and target error rates. 

 
Figure IV-3 Data size for reliable transmission using FEC 

The results above show that the number of data bits that can be reliably transmitted on PHY decreases if 

the single wire error rate εwire increases for a given flit error rate target εT. For a constant error rate εwire, higher 

reliability targets can be achieved only when fewer data bits are transmitted. Hence, in the case of error-prone 

communication channels, the maximal number of transmitted data bits must be reduced in order to achieve the 
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reliability targets. For example, it is not possible to sent more than 48 data bits with an error rate below 10
-7 on 

a PHY with εwire ≥ 10
-5. 

Data bits protection during transmissions can be improved by implementing codes with multiple error 

correction capabilities. When multiple error correction is necessary, SEC codes are interleaved, composed or 

modified in order to correct particular multiple fault patterns. In interleaved SEC codes data bits are split in 

two or more disjoint groups and each of these groups is encoded using a SEC code. In general, having more 

groups increases the correction capabilities of the code: when data is split in g groups, all multiple error 

patters of up to g errors can be corrected if the errors are distributed such that there is at most one error per 

group. The correction capabilities of interleaved Hamming codes represent the probability that there is at most 

one error per group. In Figure IV-4, the correction probabilities are represented for 32 data bits split in one, 

two, three and four groups. 

 
Figure IV-4 Correction probabilities of interleaved Hamming SEC codes for 32 data bits 

As expected, the correction capabilities increase with the number of groups. For a uniform error 

distribution, ~50% of all double errors are correctable when two groups are used. However, when there are 

four groups, this probability increases to ~75%, as it is less likely to have two errors in the same group. Data 

interleaving affects the codeword size and the number of wires needed for data transmission. For example, 32 

data bits can be encoded on 38 code bits using a single group Hamming SEC, 42 code bits for two groups and 

48 for four interleaved groups. This has a non-negligible impact on the number of wires / link and the overall 

TSV footprint. 

4.1.2 Automatic Retransmission Query 
Automatic Retransmission Query (ARQ) schemes rely on data retransmission to recover after transmission 

error detection. In the upstream link interface, flits are encoded and stored in dedicated retransmission buffers 

(RTFIFO) before being sent on the PHY. Transmission errors are detected in the downstream interface by the 

error detection module DET.  If no errors are detected then flits are forwarded to the receiver RX. If errors are 

detected (i.e. Error=’1’) then the faulty flit is dropped and a retransmission request is made. The ARQ 
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mechanism represented in Figure IV-5 is also referred as go-back-N retransmission, where N refers to the 

number of cycles between the moment when the error was detected and the retransmitted data is received. 
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Figure IV-5 Go-back-N Automatic Retransmission Query (ARQ) scheme 

Upon the reception of the detect error signal in the upstream interface, the Retransmission Logic stalls TX 

and starts sending flits from the retransmission FIFO. After all the flits initially stored in RTFIFO have been 

correctly received, the Retransmission Logic enables new flit transmissions from TX. Depending on the circuit 

timing, fault-free data transmission can take up to two cycles, as two retiming stages are considered between 

the TX and RX routers. 

The RTFIFO is implemented as a barrel shift buffer whose size is determined by the number of cycles 

between the moment when the flit is sent and the moment when transmissions from TX are disabled by the 

retransmission request for the initial faulty flit. In Figure IV-6, the time diagram of the ARQ-protected link is 

represented for a retransmitted flit A. 
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Figure IV-6 Time diagram of go-back-N retransmission when errors are detected 

After the error is detected for flit A, the upstream Retransmission Logic disables transmissions from TX. 

However, by the time TX is stopped and retransmission starts, thee flits B, C, and D, could have been sent. 

These flits will arrive at the downstream interface where they will be discarded. While TX is stalled, flits A, B, 

C and D are resent from the retransmission FIFO. If these retransmitted flits arrive fault-free then they are 

forwarded to the receiver router (DO). If errors are detected for the retransmitted flits then all subsequent 

retransmitted flits are dropped and a new retransmission phase starts. The retransmission buffer must have at 

least four positions, as the retransmission penalty is four cycles. If no retransmission request is received within 

four cycles after a flit is sent, then it is assumed that it was correctly received and the flit is discarded from 

RTFIFO. 
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The error detection capabilities of the coding scheme are very important in ensuring reliable 

communication. Higher error detection capabilities reduce the probability of flits leaving the link affected by 

errors. In ARQ, error detection is done using error detection codes like parity, interleaved parity (i.e. data bits 

are split in groups and a parity bit is added for each group) or Cyclic-Redundancy-Check (CRC) codes. 

Despite the improved error detection capabilities of interleaved parity codes, increasing the number of groups 

has an impact on the number of wires used for parity bits transmission. For m interleaved groups there are m 

extra wires used for parity bits. However, the main limitation of interleaved parity encoding is that it cannot 

detect all multiple error patterns. In order to improve the error detection probability, parallel CRC codes are 

implemented. In general, CRC codes with a generator polynomial G(X) of degree p can detect all burst errors 

of length less than p. 

In the ARQ scheme, if errors are detected after a predetermined number of consecutive retransmission 

cycles then it is very likely that errors are due to permanent faults. The number of allowed retransmissions 

depends on the probability of transients in successive transmission cycles. Since this probability is often very 

low, a single retransmission cycle can be considered. If a flit is not correctly received the first time, then it is 

very likely that it will be received fault-free the second time. Errors detected for retransmitted flits are most 

likely caused by a permanent fault. In this case, specific error recovery strategies such as spare-based and 

serialization-based repair could be used. 

4.1.3 Hybrid Error Correction with Retransmission 
The Hybrid Error Correction with Retransmission (HYB) scheme combines the FEC and ARQ solutions 

presented above. In the upstream interface, flits are encoded and simultaneously copied in the retransmission 

buffer RTFIFO before being sent on the PHY. On the receiver’s side, if the detected error cannot be corrected 

then a retransmission request for the flit is sent. In Figure IV-7, the HYB error resilience scheme is presented. 
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Figure IV-7 Hybrid error correction and retrasmission scheme for NoC links 

In a fault-free transmission, flits require two cycles to traverse the link, as two retiming stages are inserted. 

When an error is detected and corrected, the link latency increases to three cycles. The correction block 

bypass mechanism is controlled by an FSM similar to the one used in the FEC scheme. Hence, after a fault 

correction, the latency remains three cycles until the burst ends or a retransmission request is done. If an error 

is detected, but cannot be corrected, then the latency increases, as the flits go through the retransmission 

mechanism similar to that of ARQ. In this case, the RTFIFO size has an extra position, as the correction circuitry 

delay is included in the retransmission roundtrip delay. In Figure IV-8, the time diagram of different faulty 

flits transmissions are represented. 
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Figure IV-8 Time digram for HYB go-back-N scheme 

In the case of a correctable transmission error shown in Figure IV-8 (a), the protected link behaves like the 

FEC-protected one. The delay for the flits A, B, C is three cycles and the delay of flit D, which is sent in a 

different burst, is two cycles. In the case of a detected un-correctable error represented in Figure IV-8 (b), flits 

B, C, D and E are sent before the STOP signal disables TX. These flits are discarded at the downstream 

interface and they are retransmitted from RTFIFO after flit A. 

Because an extra cycle is necessary for error correction, the RTFIFO is implemented as a barrel shift buffer 

with at least five positions. If the transmitter does not receive a retransmission request within five cycles after 

the flit is sent then it assumes that it was correctly received and it is discarded from RTFIFO. After a 

retransmission request, flits are sent from the RTFIFO until they are correctly received. In the case of 

uncorrectable errors detected after a predetermined number of retransmission cycles, higher-level error 

recovery mechanisms (e.g. packet dropping, retransmission) are necessary. In the uncorrelated fault model, 

transients are unlikely to affect consecutive retransmission cycles. Therefore, the Retransmission Logic 

module is greatly simplified by allowing a single retransmission for each flit. 

Unlike FEC schemes where only error correction is necessary, in HYB schemes both error correction and 

detection capabilities are used. Hamming SEC codes cannot be used since there is the syndrome aliasing 

problem (i.e. double errors and single errors have the same error syndrome) that cause a miscorrection in the 

case of double errors. Thus, Hamming SEC codes extended with a parity bit such that it has single error 

correction and double error detection (SECDED) capabilities are used. 

Since the link reliability depends on the code correction and detection capabilities, it is important to 

determine the maximal number of data bits that can be reliably sent on PHY. Let us consider an n bits link 

with a single transient fault rate εwire. The objective is to determine the data size n that can be transmitted such 

that the probability of having an undetectable error is less than a flit reliability target εT. Unlike in Figure IV-4, 

n is determined such that there are at least three out of n+m bits are affected by errors (i.e. ε3+ε4+…+εn+m), 

where m is the number of error control bits. If a double error is detected then a retransmission request is made 

and the probability of having double errors in consecutive transmission cycles is very low (i.e. less than 10
-20 

for the uncorrelated fault model). In Figure IV-9, the number of data bits that can be reliably transmitted on 

TSV-based communication channels using Hamming SECDED encoding is represented for different single 

TSV fault rates and target error rates. 
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Figure IV-9 Data size for reliable transmission using HYB 

Compared to the Hamming SEC codes used in FEC, more data bits can be reliably transmitted for the same 

error rate εwire and flit error target εT. While more than 128 data bits, cannot be sent on FEC-protected links 

with error rates εwire >10-5 and targets less than 10
-7, HYB-protected links can reliability send the data bits even 

for a flit error rate below 10
-9. However, as shown in Figure IV-8, the link latency increases significantly in 

case of a retransmission. 

Since the retransmission penalty is non-negligible, improving error correction capabilities reduce the 

probably of a retransmission. Similarly to FEC, Hamming SECDED codes are interleaved such that multiple 

errors can be corrected. 

4.1.4 Link protection strategies in 3D NoCs 
3D NoCs consist of many inter-die and intra-die links that are implemented in different interconnect 

technologies. The error resilient links presented in the previous sections protect flits against transmission 

errors on the PHY. In a 3D network, each flit traverses many links and routers on its source-destination path. 

Maximal transmission reliability is achieved by protecting all links along the path. Note that it is not necessary 

to implement the same error resilience scheme on all links. This heterogeneous protection strategy is applied 

for networks containing links with different PHYs and error rates. Despite the reliability benefits, this 

protection strategy comes with high performance penalties, as the latency of each link increases by at least one 

cycles, and non-negligible costs. 

An alternative is to trade reliability for performance, area and power, by protecting some links of the NoC 

(i.e. selective protection). This way, source-destination paths comprise both protected and un-protected links.  

In the case of selective link protection, if the path reliability constraints are satisfied then the performance 

penalties and overheads are reduced. 

For 3D NoCs, the selective protection strategy consists in protecting only inter-die links. This way, 

transient errors that occur on the inter-die PHY are mitigated, resulting in some path / network reliability 
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degradation. In Figure IV-10, the inter-die link protection strategy is represented for regular and quasi-regular 

3D NoC topologies. 

 
(a) (b) 

 
Figure IV-10 3D NoCs with regular (a) and quasi-regular (b) topologies using inter-die protected links 

Because only inter-die links are protected, transients on intra-die links cumulate along the source-

destination path, reducing the network reliability. If the selective inter-die protected network reliability is less 

than the reliability target then the error resilience strategies may be implemented also for intra-die links. 

The error control schemes presented above target only transient faults and they often fail if wires are 

affected by permanent faults. At data link level solutions like spare-based repair and serialization can be used 

for masking such faults. In the following section, different data link strategies for TSV repair are presented.  

4.2 Data Link error resilience for permanent faults 

Data link-level TSV repair techniques must deal with TSV permanent faults due to manufacturing and 

aging defects. In 3D NoC links, permanent TSV faults due to manufacturing defects are mitigated using 

spares (i.e. TSV Spare-and-Replace) and serialization (i.e. Configurable fault-tolerant Serial Links) 

techniques. Using the off-chip resources of external testers, TSVs are tested for structural faults (e.g. open, 

short) and the repair signals are computed. For systems comprising hundreds and thousands of TSVs, ensuring 

high reparability using spare-based repair could require more TSV / chip than available on-chip. Therefore, at 

the expense of serialization / deserialization circuitry and reduced inter-die link latency and throughput, high 

TSV yield can be ensured without using spares. 

In complex 3D chips having thousands of TSVs, the off-chip test and repair processes take a long time. 

Moreover, permanent TSV faults due to aging and wear-out, which are not covered by off-chip test and repair 

strategies, are also likely to occur. Therefore, on-chip self-test and self-repair strategies may become 

necessary and the Interconnect Built-In Self-Repair and Adaptive Serialization (IBIRAS) strategy is jointly 

used with the IBIST technique presented in Chapter 3. 

4.2.1 TSV Spare-and-Replace (TSV-SnR) 
Spare-and-replace (SnR) is a fault-tolerant strategy based on hardware redundancy that consists in 

replacing faulty components with functional spares. In 3D integrated systems, the TSV manufacturing yield is 

improved by allocating some redundant TSVs that are used for replacing faulty regular TSVs. In this section, 

an implementation of the TSV-SnR scheme is presented. A repair costs reduction strategy based on TSV 

grouping is also presented. 

4.2.1.1 TSV-SnR Architecture 

After 3D chip packaging and final tests, faulty TSVs are identified using an interconnect test strategy (e.g. 

Boundary-Scan). Using an on-chip repair fabric (i.e. crossover switch), faulty TSVs are replaced with 
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functional spares. In order to reduce the timing overhead of signal rerouting on functional spares, it is 

considered that regular and redundant TSVs are in the same bundle. In Figure IV-11, the TSV-SnR repair 

modules are represented for a bundle with n regular wires and r spares. 
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Figure IV-11 Repair fabric for n regular TSVs and r spares 

The n signals X1-Xn propagate from the lower to the upper die through the repair fabric. Crossover switches 

in the lower die map the input signals X1-Xn to n fault-free TSVs in the bundle W1-Wn+r. In the upper die, 

the crossover switch performs the reverse operation, remapping the received signals on W1-Wn+r, to their 

original positions X1*-Xn*. 

The crossover switches are implemented as arrays of switching elements (e.g. pass-transistors or tri-state 

buffers) or one-hot MUXes. The crossover switch control signals (i.e. repair signals) indicate on which wires 

signals are mapped. Let us consider that each regular TSV can be replaced by any functional spare. In Figure 

IV-12, the pass-transistor implementation of the crossover switch is shown. 

 

… 

 
Figure IV-12 Spare-and-Replace crossover switch with n inputs and n+r outputs 

It can be seen that each signal Xi can be mapped on its initial position Wi and also on any of the spares 

Wn+1-Wn+r. If all regular TSVs are fault-free, each signal Xi is transmitted on Wi. The control (or repair) signals 

Ti,j indicate whether the input signal Xi is mapped on wire Wj. There is one repair signal for each switching 

element and the n·(r+1) signals are stored in the one-time-programmable (OTP) memory, which is 

programmed using the scan chain after the repair signals have been determined off-chip. For n regular and r 
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spare TSVs, the lower die crossover switch has n inputs and n+r outputs. The upper die crossover switch is 

symmetric, as data signals received on the n+r TSVs are remapped on their original positions. 

The crossover switch architecture shown in Figure IV-12 has the disadvantage that there are more drivers 

for the spare TSVs. Moreover, physical distribution within the TSV bundle could result in different signal 

propagation delay. Therefore, balanced crossbar implementation similar to those proposed in [GIS06a] can be 

used in order to minimize the impact of signal rerouting on propagation delays. 

The TSV-SnR costs are given by the spare TSV footprint σTSV, crossover switch area σ×-over and the OTP 

memory σOTP necessary to store the repair signals Ti,j. Therefore, a trade-off between the interconnect footprint 

and circuitry area may reduce the costs, without affecting the interconnect yield. A possible cost optimization 

strategy based on TSV grouping is presented in the following. 

4.2.1.2 Optimization of TSV-SnR costs 

Partitioning the regular TSVs in two or more groups and allocating spares for each group may reduce the 

crossover switch complexity. Let us assume that the n regular TSVs and r spares are partitioned in g groups of 

sizes: n1…ng, and r1…rg. In this case, the crossover switch is decomposed in g sub-switches with ni inputs and 

ni+ri outputs, which is less complex, as r1…rg < r. 

The challenge of grouped-based SnR is finding the spare configuration that achieves the yield target YT 

with minimal costs. To address this issue, let us consider a TSV bundle with n regular TSVs that can be split 

in g groups, where g ≤ n. Without loss of generality, it is considered that each TSV has an YTSV yield, and 

faults are uniformly distributed. The algorithm used for finding the optimal TSV-SnR configuration consists in 

successive estimation of costs for different group sizes. In Figure IV-13, the algorithm pseudo-code is 

presented. 

01: for g=1…n 
02:    [n1,…,ng] ≈  gn / ; 

03:    [r1,…,rg]  = 0; 
04:    Y = YTSV

n; 
05:    while (Y < YT) 
06:       i = ((i+1) mod g) + 1; 
07:       ri = ri + 1; 
08:       Y =Yield(n1,…, ng; r1, …,rg) 
09:    end; 
10:    area = estimate_area(n1,…,ng; r1,…,rg); 
11:    if (area < smallest_area) then 
12:       store(n1,…,ng; r1,…,rg); 
13:    end; 
14: end; 

 
Figure IV-13 Optimal Spare-and-Replace configuration process 

For a given group size g, the regular TSVs are split in g quasi-equal groups n1…ng. If correlated faults are 

considered then the partitioning strategy in line 02 is more complex. For example, if faults are more likely on 

the TSV bundle boundary then groups containing TSVs at the boundary would be smaller. In lines 05-09, 

given a TSV partitioning [n1,…,ng], the number of spares is increased for one group at a time until the target 



Vladimir Pasca                                                                                                                                                                  66 

yield is achieved. In line 08 the interconnect yield is evaluated using the Yield() function for the configuration 

with g groups. The estimate_area() function returns the repair fabric area (i.e. area of crossover switches, 

storage elements for repair signals and spare TSV footprint for the targeted technologies). If the current 

configuration has smaller area than previous ones then it is stored. At the end of this process, the Spare-and-

Replace configuration with minimal area for the targeted yield is returned. 

When the costs of adding spares are acceptable, the TSV-SnR technique can be used. Unfortunately, TSVs 

are an expensive resource to have and it is not always possible to allocate enough spares such that high yield 

targets are achieved. For the inter-die links of 3D NoCs, an alternative solution to TSV-SnR is fault-tolerant 

serialization: flits transmission in two or more cycles using functional TSVs. 

4.2.2 Configurable Serial Fault-Tolerant Links (CSL) 
The Configurable Fault-Tolerant Serial Link (CSL) methodology ensures high TSV yield without relying 

only on spares. In 3D NoCs, this technique is used for repairing TSV permanent faults due to manufacturing 

defects. CSL relies on serialization when there are not enough fault-free spares to replace faulty regular TSVs. 

In this section, the proposed CSL architecture and repair process is described along with a cost reduction 

strategy based on regular TSV grouping. 

4.2.2.1 CSL Architecture 

In 3D NoCs, let us consider inter-die links with N regular and R spare TSVs used for data transmission. 

Inter-die links are functional if at least MMIN out of N+R TSVs are fault-free. Thus, the worst-case number of 

cycles required for serial transmission is KMAX=N/MMIN. The CSL configuration is done after interconnect 

tests using the diagnosis vector which identifies M functional TSVs. If M ≥ N then there are enough functional 

spares such that all faulty regular TSVs are repaired and data bits are sent in a single cycle. If M < N then 

groups having up to M data bits are sequentially sent on functional TSVs. The upstream register uses N flip-

flops to store the data bits that will be sent in groups of M. In the downstream interface, the received data 

signals are remapped on their original positions. These signals are loaded in M out of N flip-flops of the 

downstream register that recreates the original data. In this case, N data bits transmission takes K=N/M 

cycles. In Figure IV-14, the CSL upstream and downstream interfaces are connected to the transmitter TX and 

the receiver RX router interfaces. 
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Figure IV-14 N-bits Configurable fault-tolerant Serial Link (CSL) 

The transmitter TX is allowed to send data (USDATA) only when the upstream interface is ready (USRD = ’1’). 

If data is not serialized then the upstream and downstream registers are bypassed, and transmission request are 

directly passed to the receiver (DSRD=USRQ). In serialization mode, for each transmission request (USRQ=’1’) 

the data bits are loaded in the upstream register. Then, the upstream interface disables the link (USRD = ’0’) 

until the current transmission ends (i.e. for K cycles). Once the N data bits have been loaded in the 

downstream register, the downstream interface signals the receiver RX that the data DSDATA is ready 

(DSRD=’1’).  

The crossover switches map data signals on and from functional TSVs under the control of the Matrix 

Control Signal Selection (MCSS) modules. The crossover switches are implemented as matrix arrays of 

switching elements like tri-state buffers and pass-transistors, or as one-hot MUXes. Starting from the most 

significant position, each data bit Xi is mapped on its initial TSV Wi+R. As CSLs tolerate up to N+R-MMIN 

faults, when regular wire Wi+R is faulty, it can be replaced by one of its rightmost N+R-MMIN neighboring 

wires: Wi+R-1, Wi+R-2,…,Wi-N+MMIN. If there are not enough wires to the right (i.e. W0 is the last wire in the 

bundle) then wires are reallocated starting from the most significant position WN+R-1. 

The set of crossover switch control signals T = (Tij) indicates on which functional TSVs data signals are 

mapped. In the upstream interface, the control signal Tij is active when Xi is mapped on Wi+R-j, where 0 ≤ i < N 

and 0 ≤ j ≤ N+R-MMIN. The upstream and downstream crossover switches and their control signals are 

transposed, as data bits mapped on different wires must be remapped on their original positions. When data is 

serialized, the control signals T command the crossover switches to map at most M data bits on the functional 

TSVs. This process is done for each transmission cycle and K=N/M sets of control signals T0, T1,…, TK-1 

must be used for sending the N bits message. The current state of the counter (CNT) is used by the Matrix 

Control Signal Selection (MCSS) module to select the corresponding set T of control signals. The pass-

transistor implementation of the upstream crossover switch for four bits links with R=1 spare is represented in 

Figure IV-15. This link is functional if at least MMIN=2 of its wires are fault free. 
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Figure IV-15 4-inputs and 5-outputs upstream crossover switch with the corresponding control signals 

For the 4-bits link with one spare, each data bit can be mapped on four wires. As mentioned before, these 

wires are allocated starting with the most significant position. Hence, data bit X3 can be mapped on any wire 

W4-W1, and X2 is mapped in W3-W0. It can be noticed that for X1 there are no remaining wires to the right. 

Hence, a wrap-around is used such that X1 can be mapped on W2, W1, W0, and W4. Similarly, X0 can be 

mapped on W1, W0, W4, and W3. 

When data serialization is enabled, the counters in the link interfaces are configured to count the K 

transmission cycles. When transmission starts (USRQ=’1’), they are initialized and the link status is determined 

by their status signals READY and END. The upstream signal disables transmissions from TX when it counts 

the transmission cycles (i.e. READY=’0’). The END signal is activated when the counting sequence has 

finished. In the downstream interface, this signal is delayed one clock cycle and it indicates that serial 

transmission finished and data is ready (DSRD=END
clk+1). If there are clock constraints that impose one or 

more register stages between the two interfaces then the downstream counter initialization signal must be 

delayed by the same number of clock cycles as the pipeline length. 

The CSL serialization cycles K, repair signals T0, T1 …TK-1, and downstream register enable signals E0, 

E1…EK-1 are determined off-chip using the interconnect test diagnosis vector. These signals are stored in a 

one-time-programmable (OTP) memory at the CSL upstream and downstream interfaces. In the following, the 

off-chip repair signal computational process is presented. 

4.2.2.2 Off-chip repair signal computation 

A total of K= N/M different sets T of control signals are used when links are configured to serialize data. 

Therefore, a maximum of KMAX sets of N·(2·N+R-MMIN+1) control signals are stored in each CSL interface. 

The functional blocks used to compute the repair signals off-chip are represented in Figure IV-16. 
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Figure IV-16 Computational blocks used to determine the number of transmission cycle K, the matrix control signals T, and the downstream register 

enable signals E 
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First, the number of functional wires M is determined by counting 0s in the diagnosis vector DV. If there 

are not enough functional wires then the link is faulty. If there are at least MMIN functional wires then the 

number of transmission cycles K and the flip-flop enable signals E are computed for each transmission cycle 

by the PARTITION/DIVIDE block. The downstream register enable signals E0,…,EK-1 indicate on which 

positions data signals are transmitted. For example, if the ith position on Ek is’1’ then the ith data bit Xi is 

transmitted in the kth transmission cycle. The crossover switch control signals T are determined by the 

MAPPING LOGIC block using the register enable signals of each transmission cycle and the diagnosis vector. 

If M ≥ N then data bits XN-1, …, X0 are sent in a single cycle K = 1 and the flip-flop enable signals E0 may 

have any values, as the upstream and downstream registers are bypassed. If M<N then transmission in a single 

cycle is not possible and data bits XN-1,…,X0 are split in K groups of size at most M. A simple way to 

determine which data bits are sent is to consider groups of M starting from the most significant ones. Thus, the 

enable signals of the most significant M FFs are active in the first cycle, then the following M signals and so 

on. In general, data bits XN-kM-1,…,XN-(k+1)M, are sent in the kth transmission cycle, where 0 ≤ k < K. If M does 

not divide N then data bits X(N mod M)-1,…,X0 are sent in the last transmission cycle. 

The crossover switch control signals T and the enable signals E are determined from the diagnosis vector 

for each transmission cycle. When Xi is sent in the k transmission cycle, the downstream register ith FF is 

enabled, i.e. Ek
i =‘1’. Data bit Xi is mapped on the functional TSV Wi+r-j (i.e. DVi+r-j = ‘0’) if it is not used by 

any data bits Xn-1,…,Xi+1 sent in the same cycle. With these conditions, the recursive expression of Tij in the kth 

transmission cycles is given in equation (1). 
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Where IMAX identifies the most significant data bit that can use wire Wi+R-j. As data bits are mapped starting 

from the most significant bit XN-1, the initial conditions of equation (2) are: 
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To illustrate serial data transmission, let us consider a CSL with four data bits X3,X2,X1 and X0, four regular 

TSVs W4, W3,W2,W1 and one spare W0, of which wires W4 and W1 are faulty. Therefore, there are only three 

functional TSVs and data transmission takes two cycles. In the first cycle, data bits X3, X2 and X1 are sent on 

the first available functional TSVs starting from W4, W3, and W2, respectively: W3, W2 and W0. The upstream 

crossover switch control signals T0 and flip-flop enable signals E0 are represented in Figure IV-17 (a). In the 

second cycle, the remaining data bit X0 is sent on wire W0, as it is the first functional wire on which X0 can be 

mapped. The control signals for this transmission cycle are represented in Figure IV-17 (b). The X values in 

Figure IV-17 indicate that the crossover switch has no corresponding switching element for that position and 

no control signals are needed. 
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(a)                                                                 (b)  
Figure IV-17 CSL control signals for the two-cycle transmission of 4 data bits on 3 functional TSVs: (a) the crossover switch and FF enable signals 

T0 and E0 for the first cycle and (b) the crossover switch and FF enable signals T1 and E1 for the second tranmission cycle 

The CSL costs depend both on the TSV technology and the serialization / deserialization circuitry area. 

Using the grouping strategy, it is possible to reduce the complexity of the serialization circuitry and reduce 

CSL costs. The grouping-based cost reduction strategy is presented in the following. 

4.2.2.3 Signal Grouping 

In order to reduce CSL complexity, let us consider that the N data signals of each link are split into NG 

groups. For each group of Nj regular TSVs, a number of Rj spares are allocated. The CSL functionality is now 

separated in a serializing part and a signal remapping part. In Figure IV-18, the partitioned upstream crossover 

switch of a CSL with N data bits and NG=4 groups is represented. 
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Figure IV-18 Logical decomposition of the upstream crossover switch for CSLs with 4 groups 

 Within each of the four groups A, B, C, and D, only spare-based repair is performed (i.e. no serialization). 

Groups are considered functional if the number of faulty TSVs does not exceed the number of spares. Hence, 

only functional groups are used to transmit the data in several transmission cycles. The repair stage in Figure 

IV-18 comprises several crossover switches for performing TSV repair in each group. Its control signals take 

constant values during all transmission cycles. For each of the data signal groups {ANj-1,…,A0}, {BNj-1,…,B0}, 

{CNj-1,…,C0} and {DNj-1,…,D0}, the crossover switch control signals come directly from the OTP memory. 

The serialization stage in Figure IV-18 comprises a crossover switch for connecting the data bits 

corresponding to the repaired and unrepaired groups to the positions corresponding to the repaired TSV 

groups. The control signals of this crossover switch change at each of the K cycle of a serial transmission. 

Thus, the MCSS selects the appropriate set of signals from OTP for each transmission cycle. 

Similar to the optimization process of TSV-SnR, it is possible to find a grouped CSL configuration with 

minimal area. Given the number of regular TSVs n, the maximum number of spares rMAX and the minimum 
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number of functional groups gmin, the algorithm in Figure IV-19 determines the partitioning such that the CSL 

area is minimal and the target yield is achieved. 

01: for g=1…gmin 
02:       [n1,…,ng] ≈  gn / ; 

03:        [r1,…,rg]  = 0; 
04:       Y = YTSV

n; 
05:       while (Y < YT) 
06:        i = ((i+1) mod g) + 1; 
07:        ri = ri + 1; 
08:  Y =Yield(g, gmin, n1, r1,…, ng, rg); 

09:       end; 
10:       area = estimate_area(n1,…,ng; r1,…,rg); 
11:       if (area < smallest_area) then 
12:        store(n1,…,ng; r1,…,rg); 
13:       end; 
14: end; 

 
Figure IV-19 Area optimization process for CSLs 

Starting with one group, the regular TSV are split in quasi-equal groups, since a uniform fault distribution 

is considered. In lines 05-09, spares are allocated for each group n1,…,ng until the reliability target is achieved. 

The interconnect yield is estimated for each group, assuming that at least gmin groups are functional. For the 

uncorrelated fault model, a formula for the Yield function in line 08 can be found in Chapter 5 (i.e. Equations 

V-4, V-5). For each group configuration, the CSL configuration area is estimated and, if this area is smaller, it 

is stored. At the end of this process, the CSL configuration with the smallest area is returned. 

4.2.3 Interconnect Built-In Self-Test, Self-Repair and Adaptive Serialization 
A major limitation of the TSV-SnR and CSL is that only structural faults due to manufacturing defects can 

be repaired. In order to ensure high 3D NoC link TSV reparability for permanent faults due to interconnect 

aging and wear-out, a strategy for on-chip TSV test and repair is necessary. In this section, this issue is 

addressed by the built-in self-test and spare-/serialization-based repair (IBIRAS) strategy. 

4.2.3.1 IBIRAS Architecture 

The self-repair and adaptive serialization techniques are jointly used in IBIRAS to ensure inter-die 

communication in 3D integrated systems using highly defective vertical wires. Similar to TSV-SnR, 

interconnect built-in spare-based self-repair (i.e. IBISnR) consists in replacing faulty regular TSVs with fault-

free spares. However, in the case of highly defective TSVs, this technique cannot efficiently maintain high 

reparability levels, as functional spares may run out. To this end, IBIRAS uses adaptive serialization to repair 

inter-die links that cannot be fixed using spares. The Interconnect BIST, IBIRAS Reconfiguration Logic, 

Serialization, and Deserialization modules for an n-bits inter-die link are represented in Figure IV-20. 
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Figure IV-20 Self-repair and adaptive serial link 

The self-repair and serialization/deserialization signals have to be generated on both sides of the inter-die 

link. Therefore, after TSV interconnect tests, the diagnosis vector DV must be stored on both sides of the link. 

As mentioned in Chapter 3, the diagnosis vector DV1-DVn+r is stored in the response analysis flip-flops FF1-

FFn+r (upper die in Figure IV-20). From these FFs, the diagnosis vector is serially transmitted through DTRANS 

into the lower-die register. This operation is done by configuring the upstream DV register as a feed-back shift 

register and the downstream register as a shift register. Thus, n+r cycles after the interconnect tests, DV1-

DVn+r is stored in both layers where it is further used to determine the IBIRAS repair signals. 

The parameters of the design are the number of data bits n, the number of spare TSVs r, and the minimum 

acceptable number of fault-free TSVs mLIMIT which determines the maximum acceptable number of 

serialization cycles KMAX. If the number of fault-free TSVs is less than mLIMIT then the link is assumed failed. 

The interconnect test diagnosis vector DV obtained in the test phase is used to determine the IBIRAS self-

repair and adaptive serialization control signals. The upstream and downstream Reconfiguration Logic 

modules replace faulty regular TSVs by fault-free spares. If the number of fault-free TSVs m is less than n and 

more than mLIMIT then the serialization / deserialization circuitry is enabled. Messages are serialized in the 

upstream interface by mapping only m out of n data bits on m fault-free TSVs until all the n bits of the 

message are transmitted. At the downstream interface, the received data bits are stored in a Deserialization 

Register in order to recreate the original message. 

Even if an inter-die link is reparable (i.e. m ≥ mLIMIT), the self-repair correctness may be compromised if 

errors occur during the diagnosis vector serial transmission from the upper to the lower layer. Faults on the 

DTRANS inter-die connection cause the repair logic to generate inconsistent repair signals. This connection is 

critical and protection against transient and permanent faults is ensured using triple modular redundancy 
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(TMR). The IBIRAS technique is independent on the link flow control protocol. The link control signals are 

routed on fault-free TSV in priority. 

4.2.3.2 Self-repair circuitry 

The self-repair strategy of IBIRAS consists in shifting each input signal bi by one or more positions, until 

reaching the first fault-free TSVs that is not yet occupied by another signal. The Reconfiguration Logic 

consists in a crossover switch and a combinational logic block that generates the switch control signals. In 

Figure IV-21, the MUX-implementation of the crossover switch is illustrated for a 4-bits link with four regular 

TSVs, W1-W4, and one spare W5. In this example, the link is functional if there are at least 2 fault-free TSVs 

(i.e. mLIMIT = 2). In the worst case, flits are sent in two transmission cycles. 

W5 W4 W3 W2 W1 

b1 b2 b3 b4 

M1 M2 M3 M4 MUX2 MUX1 MUX3 MUX4 

 
Figure IV-21 MUX implementation of the crossover switch in the reconfiguration logic 

For n regular and r spare TSVs, the upstream Reconfiguration Logic crossover switch has n inputs and n+r 

outputs. If all regular TSVs are fault-free, each bit bi of the message is transmitted on TSV Wi. The crossover 

switch must be able to shift each input bi by n+r-mLIMIT positions for 1≤i≤ mLIMIT-1, and by n+r-i-1 positions 

for mLIMIT≤i≤n-1, as the link is considered functional if there are at least mLIMIT fault-free wires. The MUXi 

control signals Mi are encoded as one-hot codes and they represent the number of positions each input bi must 

be shifted. Using the Mi
j notation (i.e. the jth signal of MUXi control signal Mi), for each input bi with 

0≤i≤mLIMIT-1, the Mi MUX control signals are Mi
1-Mi

n+r-mLIMIT+1; for each bj with mLIMIT≤j≤n, the Mj MUX 

control signals are Mj
1
-Mj

n+r–j. The downstream Reconfiguration Logic is mirrored, as data signals received on 

the n+r TSVs are mapped on the downstream crossover switch n outputs. 

The MUX control signals are computed using the diagnosis vector DV1-DVn+r. The equations of the control 

signals of MUX1 are simple, as the repair process starts from signal b1. These equations are: 
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The equations for MUXi control signals are more complex, as they have to take into account the fault-free 

TSVs already occupied by other positions. To reduce the cost of the logic generating them, iterative equations, 

which generate the control signals of position i+1 by using the control signals of lower order positions, are 

used. These equations are given below: 

( )jiiiiji

j

iji

j

i

j

iji

j

i DVDVDVMjDViDVMDVMMDVM +++−+
−

+
−

+++ ⋅⋅⋅⋅+++⋅⋅+⋅+⋅= ...... 21
1

1
21

11      (4) 

The iterative equations (3,4) enable low-area hardware implementations of the repair function, but their 

recursive nature induces large delays. The DV values of their inputs are computed just once after the test and 
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diagnosis phase and remain constant until the next test phase. They stay unchanged during circuit normal 

operation and their delays do not impact the link timing. 

4.2.3.3 Adaptive serialization circuitry 

Link flow control signals are repaired in priority and they are connected to the less significant positions of 

the self-repair MUXes. As the number of control signals is small compared to the total number of TSVs, self-

repair will ensure their repair. However, it is possible that the number of fault-free TSVs is insufficient for 

repairing the data signals. In this case, the serialization circuitry is activated to transfer data signals in several 

cycles. In Figure IV-22, the serialization and de-serialization circuitry is represented. 
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Figure IV-22 n-bit Serialization (a) and Deserialization (b) modules without extra rotate cycle 

Each of the serialization/deserialization modules comprises a configuration logic block that determines the 

internal control signals like the interface statues (BUSY), number of positions to rotate / shift the serialization / 

deserialization register content. These signals are determined using the interconnect test diagnosis vector DV. 

The main phases of the adaptive serialization scheme are: load data bits in serialization register (SR), serial 

transmission from SR to deserialization register (DR), register contents rotate / shift and forward message from 

DR downstream. 

In the first transmission cycle of the serialization/de-serialization process, the values coming from the 

mSHIFT right-most positions of the serialization register SR are transmitted and loaded into the mSHIFT left-most 

positions of the Deserialization Register DR. At the same time, SR rotates its contents by mSHIFT positions to 

the right to prepare them for the next transmission cycle. In the second transmission cycle, the mSHIFT right-

most positions of SR are loaded into the mSHIFT left-most positions of DR, which also shifts its contents by 

mSHIFT positions to the right. At the same cycle SR rotates its contents by mSHIFT positions to the right. This is 

repeated at each transmission cycle except for the last rotation of SR (i.e. the one performed at cycle n/m - 

1), which prepares the contents of SR for the last transmission cycle (cycle n/m). During this cycle SR 
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rotates its contents to the right by R positions instead of mSHIFT positions, with R = mSHIFT if mSHIFT divides n 

and R = rSHIFT = n mod mSHIFT otherwise. Loading the incoming bits in the mSHIFT left-most positions of the 

deserialization register DR instead of the mSHIFT right-most positions (used in the previous section) is 

equivalent to rotating its content by mSHIFT positions to the right. Based on this observation, the extra rotation 

of mSHIFT positions can be eliminated, and the message is transmitted in n/m cycles, instead of n/m +1. 

In order to load data from the mSHIFT right-most positions of SR into the mSHIFT left-most positions DR, the 

upstream Reconfiguration Logic is implemented to connect fault-free TSVs to its left-most outputs. As the 

reconfiguration is driven by DV, which points to the positions of the m fault-free TSVs, this solution will 

connect the m-fault free TSVs to the m left-most outputs of the upstream Reconfiguration Logic. To resolve 

this issue, a sequential circuit that modifies the content of the DV register by setting to ‘1’ all positions of DV 

after the first right-most positions containing mSHIFT ‘0’s. This way, the Reconfiguration Logic will consider 

all other positions as faulty and will connect the mSHIFT right-most fault-free TSVs to its mSHIFT left-most 

outputs. 
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Figure IV-23 Circuit for diagnosis vector modification 

In the circuit represented in Figure IV-23, the n+r flip-flops of the downstream DV Register are connected 

into a shift register configuration. The value mSHIFT is loaded in the counter. The counter decrements each time 

signal DV1 is ‘0’. The Signal Zero decodes the all 0s state of the counter. When Zero becomes ‘1’ it holds the 

counter, blocking it at its all ‘0’s state. After n+r shifts, the state of the diagnosis vector DV has been modified 

to DV’. The above operations are performed once after the test and diagnosis phase. Thus, computing DV’ 

they will not delay system operation, as it can be performed during DV serial transmission between dies. 

In this section, data link solutions for TSV permanent faults have been presented. These solutions are 

based on well-known spare-based and serialization strategies. While TSV-SnR and CSL are aimed at TSV 

faults due to manufacturing, the proposed IBIRAS approach can be used with an efficient IBIST scheme to 

ensure high TSV reparability during system lifetime. 

4.3 Network error resilience for transient faults 

In Section 4.1, the transient faults that affect flits traversing inter-die links are mitigated using data link 

error control schemes. Within 3D NoCs, flits traverse many routers, intra-die and inter-die links on their 

source to destination path. The network interface (NI) implements the transport and network levels, as it builds 

packets from transaction messages. These packets are further divided in flits that are sent through the 

interconnection network to destination. Thus, the network can be modeled as a black-box whose input/output 
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ports are connected to the NI. Transients may affect flits anywhere along the path, reducing communication 

reliability. In this section, flit integrity is addressed by network-level Forward Error Correction (NL-FEC). 

4.3.1 Network-level Forward Error Correction 
In NL-FEC, flits are encoded at source using error correction codes (e.g. Hamming, Hsiao) before being 

sent on the network. At destination, transmission errors through the network are detected and corrected. 

Unlike link-level FEC, where only transients on the PHY are corrected, in NL-FEC transients on inter-

die/intra-die links and routers are jointly mitigated. In Figure IV-24, a 3D Network protected using NL-FEC is 

represented. 
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Figure IV-24 Network-Level Forward Error Correction  

The encoding modules ENC are connected between the NI and the network. They append to each flit the 

error check bits of the error correction coding scheme. The decoding modules DEC check the flits leaving the 

network for errors. If errors are detected then they are corrected before the flit is forwarded to the NI. 

While flit data bits are protected using error correction codes, special care must be taken about the side-

band information (e.g. End-of-Packet, Begin-of-Packet). In NL-FEC, the side-band information bits are split 

in groups of up to two bits that are encoded using SEC codes. This choice for smaller group size is motivated 

by the fact that the side-band information is often used by routers during flit / packet processing. Hence, 

coding too many bits would affect router and network timing. If the EoP bit is encoded on three positions (i.e. 

TMR) then decoders (i.e. majority voters) are included in routers before the EoP is used. After the EoP flag is 

received, the router reallocates the output port to another input requesting that port. Hence, in the FSM 

controlling the output port, a majority voter is added for decoding the EoP field of the tail flit. 

Major changes in terms of network circuitry and wiring are also due to the increased flit size. The size of 

router internal buffers increases, as both data bits and error control bits are stored. More intra-die wires and 

TSVs are necessary for parallel encoded flit transmission. 

Transients on links and routers are corrected using Hamming SEC codes. If one clock cycle is necessary 

for data encoding, error detection and error correction, then the flit latency from source to destination 

increases by one clock cycles when no errors are detected and by two clock cycles when the detected error is 

corrected. Similarly to link-level FEC, the correction bypass mechanism is managed by a finite state machine 

(FSM). When an error is detected, the decoded switches off the bypass module in order to enable data 



Error Resilience in 3D Networks-on-Chip                                                                                                                         77 

correction and avoid data conflicts on the decoder outputs. After transmission ends, the decoder re-enables the 

correction bypass. 

Because NL-FEC correction is performed only at the destination node, transients cumulate along the 

source-destination path, affecting network reliability. The network communication reliability is defined as 

probability that a flit traversing it arrives at destination fault free. The network reliability is defined as the 

minimum of the reliability of all paths in the network (i.e. 2-terminal reliability). 

Given an NL-FEC protected network, the maximum flit size that can be reliably transmitted depends on the 

wire error rate εwire, router error rate εrouter and the targeted reliability level RT=1-εT. When Hamming SEC 

codes are used, the probability of cumulating double errors along the path must be less than εT. In Figure IV-

25, the flits size that can be reliable transmitted over a 10-hops path for a router flit error rate of εrouter=10
-8 

and uncorrelated faults. 

 
Figure IV-25 Number of data bits that can be reliably transmitted over a 10-hops path with a router error rate εrouter=10-4 

Increasing wire error rates and reliability targets make impossible the transmission of larger flits over long 

distances. Even for 10
-6 wire error rates, it is not possible to send more than 80 data bits with less than one un-

correctable error per flit in 10
7. Therefore, powerful codes with multiple error correction may be necessary in 

order to ensure the target reliability levels. When transients on routers are negligible, fewer data bits can be 

sent with the same reliability targets through the NL-FEC protected network than in the case of data link FEC. 

For example, only 22 data bits can be sent using NL-FEC for a reliability target of 10
-6 and a 10

-5 wire error 

rate, while with FEC link protection up to 132 data bits can be reliably sent. 

In order to cope with multiple errors that cumulate along the path, SEC codes are interleaved in order to 

increase the correction capabilities. However, the flit size, link width (i.e. wire count) and router overheads 

increase, as more error check bits are appended to each flit. 

4.4 Network error resilience for TSV permanent faults 

Permanent TSV faults do not affect only the inter-die link correct behavior, but the behavior of the entire 

network. Errors due to permanent faults could be managed at higher 3D NoC abstraction levels. Packets are 

routed from source to destination along designated paths. If the network contains faulty components (i.e. inter-
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die, intra-die links, and routers) then packets must be routed around these faulty components. The capability 

of avoiding faulty components is achieved by implementing fault-tolerant routing algorithms. In this section, 

a TSV fault-tolerant routing algorithm for 3D mesh NoCs is presented. 

4.4.1 TSV-Fault Tolerant Routing in 3D NoCs 
The proposed fault tolerant routing algorithm copes with TSV faults due to manufacturing defects. It 

assumes that all 3D NoC intra-die components (i.e. routers and intra-die links) are functional. When a router 

has a faulty inter-die port or when the adjacent inter-die link is faulty, packets must be rerouted on alternative 

fault-free paths. These alternative paths are not always minimal and they go through special nodes (i.e. master 

nodes) that have functional inter-die links in the requested direction. Depending on the link direction, these 

nodes are referred as master-up or master-down nodes. 

To illustrate the routing algorithm, let us consider a regular 3D mesh topology with seven-port router. Four 

ports are used for intra-die communication (i.e. NORTH, SOUTH, EAST, and WEST) with neighboring 

routers, one port is used for communication with the local IP (i.e. LOCAL) and two ports for inter-die 

communication (i.e. UP and DOWN). In the fault-free case, each router has functional inter-die links and 

packets are routed using the ZYX routing algorithm. The TSV-fault tolerant routing algorithm requires an 

extra register per router to store the intra-die coordinates of its master-up (XUP, YUP) and master-down (XDOWN, 

YDOWN) nodes. In Figure IV-26, the routing algorithm for the node with coordinates (XLOCAL, YLOCAL, ZLOCAL) is 

given. 

01: if (ZLOCAL = ZDEST) then 

02:     if (YLOCAL = YDEST) then 

03:         if (XLOCAL = XDEST) then OUTPUT(LOCAL); 

04:         elsif (XLOCAL > XDEST) then OUTPUT(NORTH); 

05:         else OUTPUT(SOUTH); 

06:         end if; 

07:     elsif (YLOCAL > YDEST) then OUTPUT(EAST); 

08     else OUTPUT(WEST); 

09:     end if; 

10: elsif (ZLOCAL > ZDEST) then 

11:    if(YLOCAL = YDOWN) then 

12:       if(XLOCAL = XDOWN) then OUTPUT(DOWN); 

13:       elsif (XLOCAL > XDOWN) then OUTPUT(NORTH); 

14:       else OUTPUT(SOUTH); 

15:       end if; 

16:    elsif (YLOCAL > YDOWN) then OUTPUT(EAST); 

17:    else OUTPUT(WEST); 

18:    end if; 

19: else 

20:   if(YLOCAL = YUP) then 

21:       if(XLOCAL = XUP) then OUTPUT(UP); 

22:       elsif (XLOCAL > XUP) then OUTPUT(NORTH); 

23:       else OUTPUT(SOUTH); 

24:       end if; 

25:    elsif (YLOCAL > YUP) then OUTPUT(EAST); 

26:    else OUTPUT(WEST); 

27:    end if; 

28: end if; 
  

Figure IV-26 TSV-fault-tolerant Routing algorithm in 3D meshes 

If the packet is in the destination layer (ZLOCAL = ZDEST) then, in lines 02-08, it is routed on the Y and X 

directions to the destination node (XDEST, YDEST, ZDEST). If the packet is not in the destination layer then it 
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should go UP if ZLOCAL<ZDEST, or DOWN if ZLOCAL > ZDEST. If the routing direction is UP, but the local node 

does not have a functional UP link (XUP ≠ XLOCAL, YUP ≠ YLOCAL), then, in lines 11-18, the packet is routed on 

the Y then the X direction to its designated master node (XUP, YUP). 

If the routing direction is DOWN, but the local node does not have a functional DOWN link (XDOWN ≠ 

XLOCAL, YDOWN ≠ YLOCAL), in lines 21-27, the packet is routed on the Y then the X direction to its designated 

master-down node (XDOWN, YDOWN). This process is reiterated by each node until the destination layer ZDEST is 

reached. In Figure IV-27, the routing algorithm is illustrated for two packets, from A to B and from C to D, 

traversing the 3×4×3 NoC with functional inter-die links (a) and some faulty inter-die links (b). 

  
(a) (b) 

 
Figure IV-27 3x4x3 3D mesh topology 

The A-to-B packet hops to A*, the master-up of mode A, as its up link is faulty. Then it is transmitted to 

node A’ in the second die, and then to node A” in the top destination layer. From A” it is routed to destination 

node B using the YX algorithm. 

The C-to-D packet hops on the down vertical link to node E. However, it cannot continue on this direction, 

since the down link of node E is faulty. Therefore, the packet is directed to master-down node E*. Here, it 

hops to node E’ where it is routed to the destination node D. 

It can be noticed that in both cases the fault-free paths have the same number of hops as the initial minimal 

paths. In other words, there is no performance penalty. However, this is not always the case. For example, the 

fault-free C to A path in Figure IV-27 (b) has two extra hops, as the master-down node of E is E*. 

The network cannot be considered functional just because there is a fault-free path between each pair of 

nodes. Deadlocks are cyclic dependencies between routed packets that are difficult to prevent and detect. In a 

deadlock situation, two or more packets wait for one another to free the buffers allocated to them. However, 

these packets cannot continue because they are in a cyclic dependency. They block the entire network and 

could lead to system failure.  

When packets are deviated from their normal paths, in order to avoid faulty inter-die links, deadlocks could 

appear. In many cases, deadlock is prevented by separating the traffic traveling up and down the stack using 

virtual channels [RAA10]. This solution has non-negligible costs, as the buffering resources of routers almost 

double. 

Instead of using virtual channels, it is possible to select master nodes such that there are no link cyclic 

dependencies [DT04]. Given a number of functional inter-die links, a master nodes allocation strategy is 

presented in following section. 
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4.4.2 Master Node Selection 
The master node selection (MNS) process consists in choosing the master-up and master-down nodes for 

all routing nodes such that the network is fully-connected (i.e. all functional nodes are able to communicate), 

deadlock-free, and the performance penalty is minimal. 

Deadlock freedom is a critical property of NoCs ensuring that packets traversing it are not blocked due to a 

cyclic link (or channel) dependency. For packet-switched wormhole networks, deadlock freedom can be 

proven using the Link Dependency Graph (LDG). The LDG is an oriented graph attached to a network that 

describes the inter-link dependencies for all network paths. The way to guarantee deadlock-freedom is to 

prove that there are no cycles in the network’s LDG. 

The proposed TSV-fault-tolerant routing algorithm is not deadlock-free for any master node selections. In 

Figure IV-28 (a), a network configuration that satisfies the connectivity requirements (i.e. there is a path 

between every nodes) is presented. The 2×2×2 mesh has only two functional inter-die links (i.e. from N2 to N6 

and from N7 to N3), and it uses the modified ZYX routing algorithm with packets travelling toward the 

destination layer first and then to the destination node using YX routing. This 3D NoC is not deadlock-free, as 

the LDG is not cycle-free. Let Lij be the link connecting nodes Ni and Nj. In Figure IV-28 (b), the L12-L26-L68-

L87-L73-L31-L12 cycle in the NoC’s LDG is represented. 
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Figure IV-28 3D mesh configurations having cycles in its LDG 

If two packets are simultaneously transmitted from nodes N6 to N2 (i.e. N6-N8-N7-N3-N1-N2) and nodes N3 to 

N7 (i.e. N3-N1-N2-N6-N8-N7) then these packets will create a deadlock, blocking communication between other 

nodes. 

The solution to the deadlock problem is to find alternative master nodes such that the LDG is cycles-free. 

Using the backtracking strategy, alternative master nodes that lead to a deadlock-free configuration could be 

found. The master selection process minimizes performance penalty (i.e. network latency) by taking into 

account the distance to master nodes and inter-die link latency.  Network latency is quantified using the zero-

load-latency (ZLL) model. In ZLL, the packet latency is determined by the delays of routers and links along 

the source-destination path, without taking into account packet contention. In Figure IV-29, the selection 

process algorithm is summarized for N routing nodes. 
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01: i = 1; 

02: while(i > 0) 

03:     allocate_node(i); 

04:         if allocation_exists then 

05:             if i = N then 

06:                 if deadlock_free_configuration() then 

07:                     if performant_configuration() then 

08:                         store_configuration(); 

09:                     end if; 

10:                 end if; 

11:             else 

12:                 i++; 

13:             end if; 

14:         else 

15:             i--; 

16:         end if; 

17: end while; 

 
Figure IV-29 Master Node Selection Algorithm 

In the algorithm, the master node selection process starts from node 1. The master-up/down nodes of the 

current node i are allocated in line 03. If these masters exist and master nodes have been allocated for all 

nodes (i.e. i=N) then the master node allocation is checked for deadlocks. If this configuration is deadlock-

free (deadlock_free_configuration() returns true) and it has better average latency than previous 

configurations (performant_configuration() returns true), then it is kept as the optimal configuration (see lines 

06-10). If there are unallocated nodes (line 11) then the sequence in lines 03-16 is reiterated for the next node 

i+1. If no allocation exists for the current node i then the algorithm backtracks to the previous node i-1, 

reallocate a new set of master nodes and reiterate lines 02-16. 

Regular nodes (i.e. nodes without functional inter-die links) can choose any master node within the same 

layer. In the allocate_node() procedure in Figure IV-29, each regular node goes through all its intra-die master 

nodes. A solution always exists, as long as there is a pair of routing nodes with both inter-die links functional. 

If a solution exists it will be found, but the execution times could be very long. For the NoC in Figure IV-28 

(a), no solution is possible, unless a functional link between N6 and N2, or N3 and N7 exists. 

In order to reduce the execution time, a possible solution is to stop at the first deadlock-free configuration 

found. However, there is no guarantee that network average latency is minimal. In order to minimize latency, 

in the master selection process priority is given to the closest nodes with the fastest inter-die links. Hence, the 

potential master nodes M of each regular node NL, are ordered using two parameters: the latency of the local 

node NL to candidate master node Ni path and the inter-die link latency Ki. For the modified MNS algorithm, 

the solution consists of closest master nodes with the fastest links and a deadlock-free configuration. In Figure 

IV-30, the modified master node selection algorithm is presented. 

01: i = 1; 

02: while(i > 0) 

03:     allocate_node(i); 

04:         if allocation_exists then 

05:             if i = N then 

06:                 if deadlock_free_configuration() then 

07:                     store_configuration(); 

08:     break; 

09:                 end if; 

10:             else 

11:                 i++; 

12:             end if; 

13:         else 

14:             i--; 

15:         end if; 

16: end while; 

 
Figure IV-30 Fast Master Node Selection Algorithm 
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It is difficult to show that the MNS algorithms presented in this section are efficient, since there are no 

analytical formulas that predict their execution time. In order to have some time determinisms, it is possible to 

determine solutions for particular inter-die link fault patterns and store these solutions in a repository. After 

inter-die link tests, the status of each link is known. The NoC inter-die link fault distribution is then compared 

to that of the pre-determined solutions. If a best-fit solution is found then it is used for router configuration, 

otherwise the network is considered irreparable and the entire chip is discarded. 

4.5 Multi-layer Error Resilience for 3D NoCs 

In the previous sections a series of error resilience techniques for transient and permanent faults on TSVs 

have been presented. Each of these solutions is specific to an abstraction layer (i.e. data link and network) and 

NoC component (i.e. links and routers). When the system complexity and failure density increases, it becomes 

increasingly difficult to ensure correct system functionality with minimal costs (e.g. area and power 

overheads, TSV count) and without affecting system performance. This issue can be addressed using a multi-

layer error resilience framework. In this section, the multi-layer error-resilience solutions to TSV permanent 

faults due to manufacturing defects and transits are presented. 

4.5.1 Multi-layer TSV yield improvement 
In the KGD stacking strategy, TSV manufacturing defects remain the main cause of 3D chip yield loss. In 

NoC-based 3D MPSoCs, link-level spare-and-replace and configurable serialization ensures high TSV 

reparability even when the amount of spares is very limited. TSV manufacturing defects can also be handled 

by repairing the network such that no source-destination paths go through inter-die link containing faulty 

TSVs. This network configuration process is performed off-chip, using the TSV test diagnosis vector. 

In the multi-layer approach, data link (i.e. TSV-SnR, CSLs) and network-level solutions are jointly used in 

order to ensure high yield and reduce repair costs (i.e. number of spares). After final tests, 3D chips with 

faulty / un-reparable intra-die components (e.g. links, routers, network interface, or IP blocks) are discarded. If 

no such faults are detected then the TSV interconnect test diagnosis vector of all inter-die links is analyzed. In 

Figure IV-31, the diagram of the 3D NoC repair and configuration process is represented. 
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Figure IV-31 NoC-based 3D MPSoC configuration process 
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After the off-chip 3D NoC link TSV test and diagnosis, the link repair signals are computed. If no solution 

is possible (i.e. more faults that functional spares or no serialization is possible) then that link is diagnosed as 

faulty. After all links have been evaluated, the list of functional links with their serialization rate K is passed to 

the master node selection module together with different constraints (e.g. deadlock-freedom, fully-connected 

network, minimal latency). If a solution to the MNS problem exists then links and routers are configured by 

storing the link repair signals and master nodes coordinates in local one-time-programmable (OTP) memories. 

This multi-layer scheme can repair many permanent faults due to manufacturing, as a solution to the MNS 

problem exists if there is at least one pair of routers between the stacked layers that are connected by two 

unidirectional links. Since inter-die links can now be configured to serialize data, the master-node selection 

process becomes more complex, as the serialization rate of each link must be taken into account. Ideally, the 

master of each regular node should be the closest node with the lowest serialization rate for the adjacent inter-

die link. 

4.5.2 Multi-layer reliability improvement 
In the multi-layer reliability improvement strategy, data link-level and network-level error correction are 

jointly used for correcting transient faults during network (i.e. link and router) traversal. However, instead of 

re-encoding the already encoded flit, the error check bits computed at the source node are used for link-level 

error detection / correction. This way, the overheads are smaller, since no link-level encoding are necessary. 

Of the three classes of link-level correction, only the Forward Error Correction (FEC) can be jointly used 

with Network-Level-FEC (NL-FEC). In the case of ARQ, if faults occur before the flit traverses the current 

link then a retransmission request is performed. Although Hamming codes have good error detection 

capabilities, it is not possible to recover by simple retransmission from such errors. In this case, 

retransmissions are made until the retransmission mechanisms times-out. Then, as data link error recovery is 

not possible, high-level recovery mechanisms must be used (e.g. packet dropping, transaction dropping and 

transaction retry). The HYB scheme will make a retransmission request only if the error cannot be corrected. 

In this case, SECDED codes must be used at network-level in order to avoid miss-correction. Like in the ARQ 

case, retransmission is effective only for faults occurring on the current link. If errors occur before then the 

retransmission mechanisms will time-out and high-level error recovery techniques must be used. Hence, these 

solutions may be suitable if and only if it is known that faults are more likely to occur on these protected links. 

The joint data link-/network-level FEC scheme consists in adding a series of error detection and correction 

stages at some input ports of 3D NoC routers. In terms of reliability, this scheme is better than NL-FEC, as 

fault can cumulate only between two consecutive correction stages. The challenge of NL-FEC with link 

correction stages is how to select which links to protect. For 3D NoCs, correction could be implemented for 

inter-die links, as show in Figure IV-32.  
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Figure IV-32 Network-level FEC protection with inter-die error detection/correction 

Using this approach, errors can cumulate only within each layer, without contaminating neighboring 

layers. In terms of reliability, the error resilience of NL-FEC with inter-die correction stages depends on the 

intra-die communication reliability. 

If intra-die reliability is not high enough then intra-die correction stages must be included. Without loss of 

generality, let us consider a 2D mesh XY intra-die network and the maximal path length pMAX on which 

reliable communication can be achieved. Assuming Y-first routing, the maximal path length is Y+X and there 

are four such paths. In order to ensure that there are no paths longer than pMAX, a correction stage is added after 

every pMAX
th hop on every path in the network. In Figure IV-33, the intra-die correction stages of a 4×4 mesh 

with pMAX=4 are represented. 

 

Y 

X 

 
Figure IV-33 4×4 mesh NoC with correction stages every pMAX=4 hop 

The correction stage insertion algorithm analyzes every path in the network and adds a correction stage 

after the 4th hop from the last correction stage. Hence, a total of six correction stages are necessary within each 

4×4 layer of the 3D NoC. 

4.6 Conclusion 

In this chapter a series of single- and multi-layer strategies for mitigating TSV permanent and transient 

faults have been presented. Permanent TSV failures due to manufacturing and aging/wear-out defects can be 

repaired using the spare-based approach (TSV-SnR) or using less conventional solutions such as serialization 

(CSL, IBIRAS) and fault tolerant routing (TSV-FTR). Transient faults can be detected and corrected using 

signal encoding combined with link-level retransmission (ARQ, HYB) or correction at data link (FEC) and 

network levels (NL-FEC). These techniques are only part of the solution. Individually, they could solve all the 
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TSV reliability and yield problems, but the costs and impact on network / system performance could be non-

negligible for unreliable technologies. To this end, a multi-layer TSV error resilience strategy that uses these 

solutions is proposed. 

In the following chapter, each error resilience strategy is fully assessed for a fully-synchronous 3D mesh 

NoC with different reliability / yield targets and interconnect failure rates. This analysis is aimed at identifying 

different fault-tolerance capabilities, costs and network performance trade-offs. 
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In 3D Networks-on-Chips, error resilience techniques are implemented at different abstraction levels. Each 

single/multi-layer strategy has its advantages and limitations with respect to the hardware costs (i.e. area / 

power overheads, number of redundant TSVs) and the impact on network performance and connectivity. In 

this chapter, the configuration process is presented for each error resilience scheme. The costs in terms of 

area / power overheads, TSV count and performance penalties are evaluated for different setups in order to 

identify trade-offs in single-/multi-layer strategies. The experimental assessments of the error resilience 

schemes are performed on seven-port routers used in 3D mesh NoC topologies. 

5.1 TSV Permanent Faults in 3D NoCs 

Manufacturing yield is one of the major roadblocks in getting TSV-based 3D integration mainstream. 

When known-good-die (KGD) bonding strategies are used, the inter-die connections (i.e. TSVs) are major 

contributors to the yield loss. In 3D NoCs, the TSV manufacturing yield of inter-die links is improved using 

spare-based (TSV-SnR) and serialization-based (CSL) repair. TSV faults can also be repaired at network level 

by configuring routers to send packets around faulty inter-die links (TSV Fault-Tolerant Routing). In this 

section, the repair capabilities, area overheads and impact on network latency of these error resilience schemes 

are evaluated. 

5.1.1 Data link yield improvement strategies 
TSV manufacturing yield can be improved by allocating enough spare TSVs such that all faulty regular 

TSVs are replaced by functional spares (TSV-SnR). For highly defective technologies, allocating too many 

spares raises other challenges such as manufacturing costs due to higher number of TSVs / chip. In 3D NoCs, 

link-level serialization (CSL) is proposed as an alternative to spare-based repair. In the following, the repair 
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capabilities of spares-based and serialization-based schemes are assessed. Different trade-offs for link-level 

repair with respect to the number of TSVs / chip and repair fabric area are also discussed. 

5.1.1.1 TSV Spare-and-Repair 

3D NoCs comprise tens or hundreds of inter-die links whose cumulated TSV faults may result in poor 

yield. TSV Spare-and-Replace (TSV-SnR) must ensure link reparability such that the link yield YLINK is greater 

than a yield target YT. Typical values for YT are well above 99%, as the compound yield of all inter-die links 

must be high (i.e. > 98%). Using the uncorrelated fault model, the yield of an n-bits link with r spares that can 

replace any faulty regular TSV can be expressed as [KM07]: 
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Using equation (V-1), the number of spares r per link is determined such that YLINK ≥YT. In other words, the 

fault tolerance capabilities of TSV-SnR protected links depend exclusively on the number of spares r. Let us 

consider that the cumulated link yield of a 20-inter-die links 3D NoC must be at least 99%. Thus, the target 

yield of each link is YT=99.95% (i.e. 0.9995
20 ~0.99). From equation (V-1) it is determined that TSV failure 

rates up to dTSV=1% (i.e. YTSV=0.99) can be handled with r=3 spares/link for n=32-bits links, and r=5 

spares/link for n=64-bits links. 

The main question one faces when using spare-based TSV repair is how to allocate spare resources for a 

TSV failure rate dTSV such that the yield target is achieved and different constraints (e.g. repair fabric area or 

TSV count) are met. In the remaining of the section, the main focus is the optimal use of spare resources. To 

this end, the impact of the TSV technology on the number of spares necessary to achieve a target yield is 

assessed. 

Let us consider an MPSoC with inter-die links having TSVs with 15µm pitch. In order to assess the impact 

of TSV technology, the TSV pitch pTSV is reduced from 15µm to 10µm, such that twice as many inter-die 

wires can be integrated without increasing the total TSV footprint. If the extra TSVs are used for increasing 

the throughput of each inter-die link (i.e. double link data size) then the number of links does not changes and 

each link must achieve its 99.95% yield target, as the overall 20 inter-die links target yield is 99% (i.e. 

0.9995
20 ~0.99). If the TSVs are used for increasing the number of links then the link yield target increases. In 

this case, there are twice as many inter-die links and each link must achieve a yield target of 99.975% (i.e. 

0.99975
40 ~0.99). In Figure V-1, the impact of the TSV technology on the number of spares, which is 

determined using equation V-1, is represented for 32-bits and 64-bits links. 
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Figure V-1 Number of spares for 32-bits and 64-bits inter-die links 

The number of spares r increases with the number of regular TSVs, the TSV failure rate dTSV and the target 

yield YT. In the case of dTSV=0.1%, the 99.95% target yield is achieved using r=1 spares for n=32, and r=2 

spares for n=64. The number of spares increases to r=4 for 32-bits links and r=5 for 64-bits links, when the 

failure rate is 1% and the target yield is 99.975% (i.e. 10 µm pitch and twice as many links / chip). 

When the TSV density increases and the link width increases from 32 bits to 64 bits, the number of spares 

per link increases for the same target yield of 99.95% and failure rate dTSV (see 32-Bits YT=99.95% and 64-bits 

YT=99.95% configurations in Figure V-1). In the case of dTSV=0.3%, a total of 680 TSVs with 15µm pitch are 

used for 32-bit inter-die links. When the TSV density doubles, the number of 10 µm pitch TSVs necessary for 

64-bit link with the same target yield increases to 1340 (i.e. less than double). 

When the number of links increases, more spare TSVs could be necessary to achieve the higher 99.975% 

target yield for the same failure rate dTSV (see 32-Bits YT=99.95% vs. 32-bits YT=99.975, 64-Bits YT=99.95% 

vs. 64-bits YT=99.975%). For example, in the case of dTSV=0.3%, the same number of spares is necessary to 

achieve the target yield (i.e. 2 spares for 32 bits links, and 3 spares 64 bits links). However, in the dTSV=0.9% 

case, an extra spare is necessary for both 32 and 64 bits links. Moreover, the number of TSVs necessary to 

achieve the target yield could exceed that of available TSVs. In the case of 32 bits links, 700 TSVs with 15 

µm pitch are necessary to achieve the 99.95% target, while 1440 TSVs (i.e. more than double) are necessary 

for 10 µm pitch TSVs. 

There are few studies that show correlations between the TSV density and the TSV failure rate. Depending 

on how mature the TSV technology is, increasing the TSV density could also affect the TSV failure rate dTSV. 

Ideally, integrating more TSVs has a negligible impact on dTSV. In order to assess the impact of dTSV, let us 

pessimistically consider that the TSV density and failure rates are proportional. Hence, doubling the number 

of TSVs per chip would double dTSV. The 32-bits inter-die link with dTSV=0.3% needs only two spares to 

satisfy the target yield for the 3D NoC with 20 inter-die links (i.e. 680 15µm pitch TSVs). When the TSV 

density doubles, the TSV failure rate is dTSV=0.6% and 64-bits links require r=4 spares for the same 3D NoC 
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configuration with 20 links (i.e. 1260 10µm pitch TSVs). If the number of links increases then the 99.975% 

target yield is achieved by allocating r=3 spares per link (i.e. 1400 10µm pitch TSVs). 

From these results it can be concluded that, in order to minimize the number of spares, the TSV-SnR 

strategy should be implemented for larger groups of regular TSVs (i.e. 3D NoC inter-die links should not be 

partitioned). Although allocating spares for more TSVs can reduce the TSV count, the TSV-SnR crossover 

switch size increases. This is due to the fact that, when there are fewer spares / chip, there are also more 

replace possibilities for each regular TSV. 

In order to reduce the crossover switch complexity and minimize repair fabric area, the grouping strategy 

was proposed in the previous chapter. Let us consider that the n regular TSVs and r spares of each inter-die 

link are partitioned in g groups with n1…ng regular TSVs (i.e. n1+…ng=n) and r1…rg spares (i.e. r1+…+rg=r). 

The TSV yield is given by the probability that there are up to ri faulty TSVs in each group i. Similarly to the 

previous case, the link yield using the uncorrelated fault model is expressed as: 
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In equation (V-2), when there are g groups and faults between groups are not correlated, the number of 

spares ri is determined such the ni regular TSV group yield is above YLINK
1/g.  Let us consider a 32-bits link 

with a target yield YT=99.95%. In Figure V-2, the number of spares for 32-bits links is represented for g=1, 

g=2, and g=4 groups, assuming single TSV failure rates dTSV up to 1%. 
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Figure V-2 Number of spares of 32-bits links when different grouping strategies are considered 

Increasing the number of groups results in higher group yield targets that can only be achieved using more 

spares. When dTSV=1%, the number of spares increases from 3 to 8, as there are ri=2 spares for each group. In 

the g=4 case, each input signal can be mapped on three different wires: the initial regular TSV and two spares. 

Hence, the crossover switch complexity is reduced compared to the g=1 case, where each signal can be 

mapped on four different wires: the initial regular TSV and three spares. For the 3D NoC seven-port router, an 

assessment of area overheads is presented in section 5.1.1.3. 
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In 3D NoC links, Spare-and-Replace strategies have the advantage that, as long as signal propagation 

through the repair fabric and PHY is less than a clock cycle, they have no effect on network performance. In 

the hardware implementations, crossover switches are often implemented as arrays of tri-state buffers. Hence, 

the extra delays due to the repair fabric are often negligible.  

The evaluations above indicate a major limitation of spare-based repair: it cannot always achieve the target 

yield with a limited number of spares. In 3D NoC inter-die links, these limitations are alleviated using repair 

strategies based on serialization. 

5.1.1.2 Configurable Serial Links 

The faulty TSVs of 3D NoC inter-die links can be repaired by implementing configurable fault-tolerant 

serialization (CSL) strategies. In this section, the fault tolerance capabilities of CSLs are assessed with respect 

to the TSV failure rate. Let us consider inter-die links with N data bits such that each TSV bundle comprises N 

regular TSVs and very few spares. In the CSL strategy, links are functional if at least MMIN TSVs are 

functional. Hence, up to F=R+N-MMIN faults can be repaired. For uncorrelated TSV faults, the link yield YLINK 

is expressed as: 
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Equation (V-3) represents the probability that at least MMIN out of N+R TSVs are functional. Given the 

number of spares R, the number of minimal functional wires MMIN is determined such that the link yield is 

above a target YT. Increasing the number of TSVs enables 3D NoC configurations with wider inter-die links or 

with more inter-die links. Unlike TSV-SnR, where the number of spares depends on the number of regular 

TSVs and the failure rate dTSV=1-YTSV, in CSLs it is only MMIN that changes, as the N and R values are design 

constants. In terms of costs, only the repair fabric complexity is affected, while the link throughput is reduced 

due to serialization in the case when there are more than R faults. 

Let us consider 32-bits and 64-bits 3D NoC links with up to R=4 spares per link. In Figure V-3, the TSV 

yield of inter-die CSLs is represented for different configurations (i.e. number of spares R and minimum 

number of functional TSVs MMIN). 
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Figure V-3 TSV yield for 32-bits (a) and 64-bits (b) links using CSL 
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The results above show that the interconnect yield improves when the number of reparable faults F 

increases either by considering more spares or by reducing MMIN. For a given F, the TSV yield is higher when 

there are fewer spares, as the probability of having more faults depends on the total number of TSVs per link 

(or bundle). Wider links (i.e. more regular and spare TSVs) have higher failure probability, as having more 

TSVs increases the probability than some of them are faulty. For example, being able to repair F=2 faults 

results in a 99.6% TSV yield for 32-bits links, and 97.5% for 64-bits links. Hence, for wider links to achieve 

similar yield levels, the repair capabilities (i.e. more spares or lower MMIN) must be increased. 

CSLs can achieve high yield targets without using spares even when dTSV=1%. However, the crossover 

switch complexity increases, since the minimal number of functional TSVs is reduced and the mapping 

capabilities for each wire increase. 

Signal grouping was introduced as a way to reduce CSL complexity. Let us consider that the N+R TSVs of 

a link are split in g groups of n1…ng regular TSVs and r1…rg spares such that the link is functional if at least 

gMIN groups are functional. The TSV yield of group (ni, ri) is the probability that at least ni TSVs are 

functional. For uncorrelated faults, the group yield Ygroup is expressed as: 
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Without loss of generality, let us assume that these groups have the same yield: Ygroup
1
=…Ygroup

g
=Ygroup. 

The CSL-protected link yield is the probability of having at least gMIN functional groups. For uncorrelated TSV 

faults, it is expressed as: 
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In order to assess the impact of grouping on the CSL yield, let us consider 32-bits and 64-bits links with 

regular TSVs split in g=2 and g=4 groups, with spares distributed between these groups. In Figure V-4, the 

TSV yield is represented for different grouped CSL configurations having gMIN=1. 
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Figure V-4 TSV yield for 32-bits (a) and 64-bits (b) grouped CSLs 
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The results show that, even if no spares are used, high yield can be achieved by increasing the number of 

groups. When there are two regular TSV groups without any spares, the yield drops to 97.8% for 32-bits links, 

and 92.3% for 64-bits links. The higher yield loss of 64-bits links is due to the fact that the probability of 

having 32 functional TSVs per group is less that the probability of having 16 functional TSVs per group. 

Adding one or two spares per group increases the TSV group yield. Therefore, even if there are fewer 

partitions, the link yield is significantly higher than in the no-spares (i.e. r=0) case. 

TSV-SnR can achieve arbitrarily high yield target by repairing faulty TSVs using functional spares, while 

in CSLs faulty TSVs are not used for data transmission, which is serialized. In the CSL case, the number of 

TSVs per chip is reduced at the expense of serialization / deserialization circuitry. The TSV-SnR and CSL 

techniques have been implemented for the fully synchronous seven-port router used in 3D mesh NoCs. The 

router has two ports for inter-die communication and the TSV repair is implemented only for them. In the next 

section, a comparative analysis of these techniques is presented. 

5.1.1.3 Inter-die link repair trade-offs 

Each link repair strategy has its advantages and limitations: spare-based repair may run out of spares, but 

they do not affect link performance, while CSLs do not use spares, but they serialize data. In this section, the 

two techniques are assessed with respect to their cost. In the comparative analysis, let us consider the seven-

port 3D NoC router implemented in a 65nm low-power technology process and TSVs with a 15µm pitch. 

The 32-bits router is initially configured such that the SnR and no-spares CSL repair schemes achieve the 

99.95% target yield YT. In order to assess the impact of TSV scaling, it is considered that the TSV pitch is 

reduced to 10µm. In this first case, the 3D NoC data size doubles (i.e. 64-bits routers), without affecting the 

number of (64-bits) inter-die links. In the second case, the NoC has twice as many 32-bits inter-die links and 

each link must achieve a 99.975% target yield. In Figure V-5, the area overheads are summarized for 

ungrouped CSL with no spares and SnR configurations for the 32-bits and 64-bits routers. 
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Figure V-5 Seven-port router area overheads for different TSV-SnR and CSL configurations 
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These results show that, in terms of area overheads, the spare-based solution is more area efficient than 

serialization. Increasing the TSV density by reducing pTSV to 10µm may lead to wider 64-bits inter-die links or 

twice as many 32-bits links. If no variation of dTSV with TSV density is considered, the area overheads of SnR 

remain within a ~1.5% range, whereas the CSL overheads increase by up ~6%. The variation of CSL area 

overheads are due to the complex serialization circuitry. Adding more mapping possibilities for each TSV 

increases the crossover switch complexity and also the number of 2:1 MUXes in the Matrix Control Signal 

Selection (MCSS) module. 

Increasing the TSV failure rates dTSV and the density (i.e. pTSV=10µm) leads to higher area overheads for 

both TSV-SnR and CSLs. However, the gap between two solutions is smaller for pTSV=15µm and it decreases 

with dTSV. In other words, when the spare TSVs footprint is significant, serialization-based repair could lead to 

configurations with fewer TSVs / chip and also smaller area overheads. When the TSV density doubles, the 

area overheads are higher for both SnR and CSL, despite the smaller TSV footprint. The area overheads of 64 

bits links with 10µm pitch are lower than that of 32-bits links with 10µm pitch TSVs. 

The TSV-SnR costs depend on the TSV and CMOS technologies. In a 65nm process, the repair fabric costs 

are determined for two TSV technologies with 10 µm and 15 µm pitches. For 32-bits links, the cost 

optimization algorithm found configurations where regular TSVs are grouped. A TSV-SnR area reduction of 

3.75% (i.e. less than 0.7% of router area) was determined for 10 µm TSV pitch and dTSV=0.4%. In this case, 

the 32 regular TSVs are split in two groups if 16 TSVs and four spare TSVs are allocated for every link. For 

64 bits links, there are also cases where partitioning pays-off. The maximal area gain is 3.89% (i.e. ~0.7% of 

router area) for dTSV=1% and YT=99.975%. However, the number of extra spares per link increases from r=5 

to r=7. In the analyzed technological nodes, partitioning regular TSVs in groups does not lead to significant 

area savings. Although the crossover switch complexity is reduced, the number of spares / chip can be 

significant. 

The cost reduction strategy based on TSV grouping was also proposed for CSLs. Let us consider that there 

are up to g=4 groups of regular TSVs and the links are functional if at least one of these groups is functional 

(i.e. gmin=1 and there are up to four serialization cycles). If the g=4 and gmin=1 configurations do not satisfy 

the yield requirement then spares are allocated until the target is achieved. In the 65 nm process, the CSL 

configurations determined for 32-bits inter-die links with 15µm TSV pitch and YT=99.95% indicate an area 

overhead up to 5.69% for dTSV up to 1%. Reducing the TSV pitch to 10µm and widening the link to 64-bits 

leads to spare-free CSL configurations with g=4 groups and area overheads up to 7.37%. For 32-bits links 

with higher yield targets and lower TSV pitch, the CSL grouping strategy reduces the area overheads from 

13.95% to 7.69%. Hence, grouping for CSL leads to non-negligible cost reduction, but these overheads are 

still above those of TSV-SnR. Moreover, there are cases when the CSL grouping strategy needs spares in order 

to achieve its target. 

The results presented in this section have shown that it is possible to ensure high link reparability using 

fewer spares than in TSV-SnR schemes. The area overheads of the complex serialization / de-serialization 

circuitry often exceed the footprint of redundant TSVs in spare-based repair. Therefore, CSL may be suited 
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only for 3D MPSoCs having a very limited number of TSVs. In 3D NoCs, an alternative to link-level fault-

tolerant serialization is network configuration such that inter-die links are not used during packet routing. 

5.1.2 Network-level fault-tolerant routing algorithm 
In the network-level solution, the 3D NoC TSV yield is defined as the probability of successful repair of 

all inter-die links. For the TSV fault-tolerant routing (TSV-FTR) algorithm, this means that a master node 

exists for each router, and the network configuration is deadlock free. The probability of chip failure due to 

faulty inter-die links is very low, as solutions to the Master Node Selection problem exist if there are at least 

two nodes in neighboring layers, which are connected by a pair of functional inter-die links. In this section, 

the costs of TSV-FTR are assessed for 3D mesh NoCs. 

Let us consider the seven-port router of 3D mesh NoCs, which implements the ZYX routing algorithm. In 

order to improve network resilience, the TSV fault-tolerant routing algorithm based on ZYX, which was 

presented in Chapter 4 Figure IV-23, is implemented. The hardware implementation of the ZYX routing 

algorithm comprises three comparators for the X, Y, and Z directions. Each of these comparators validates one 

of its equal (E), less (L), and greater (G) outputs. In the case of the TSV-FTR, two implementations are 

possible: low-area and high speed, which are represented in Figure V-6 (a) and (b), respectively. 

(a) 

(b) 

 
Figure V-6 Low-area (a) and high-speed(b) implementations of ZYX-based TSV-FTR 

In the low-area implementation, the area overheads are negligible (i.e. less than 0.5% in a 65 nm low-

power process). However, there is an impact on router timing, which now has a maximal frequency of 

~900MHz (i.e. Tclk=1.115 ns). In the high-speed implementation, the impact of the modified routing module 

on the router timing is minimal. The target frequency of 1 GHz is maintained for the 65 nm target technology, 

but the router is more complex. The area overhead of the routing logic modules, which implement the routing 

function, is ~100%, as there are seven comparators instead of three. 

The routing algorithm modules account for less than 10% of the router area. Hence, adding fault tolerant 

routing capabilities incurs an area / power overhead of ~7.7%/5.4% for 32-bits routers and 6.18%/4.9% for 

64-bits routers. It can be noted that these overheads are similar to that of TSV-SnR with a TSV failure rate of 

dTSV=1% and they are slightly lower than CSL configurations without any spares. However, the FTR area 
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overheads do not depend on the TSV failure rate and pitch. In the case of high-density TSVs (i.e. TSV pitch of 

10µm or less) with low failure rates, FTR is more expensive than SnR (see Figure V-5) 

In 3D NoCs, the costs of TSV yield improvement can be distributed across the data-link and network 

levels. The advantage of this approach is that the costs of error resilience can be reduced. In Chapter 4, a 

multi-layer solution for TSV yield was proposed. This strategy, which leverages TSV-SnR, CSLs and TSV-

FTR, is assessed in the following. 

5.1.3 Multi-layer TSV yield improvement  
 

The 3D NoC TSV yield is defined as the probability of successful repair using TSV-SnR, CSL and the 

Master Node Selection algorithm of the fault-tolerant routing (TSV-FTR) strategy. In this section, the costs of 

the multi-layer scheme in different configurations are assessed. The comparative study also includes an 

assessment of the impact of single-layer (i.e. CSL, TSV-FTR), and multi-layer (i.e. SnR-CSL and SnR-FTR) 

solutions on the 3D NoC latency. 

5.1.3.1 Area overheads 

Let us consider the seven-port router of 3D mesh NoCs with the ZYX routing algorithm. In order to 

improve its resilience, the high-speed ZYX-based TSV-FTR algorithm is implemented. Although high 

reparability is achieved by the routing algorithm alone, spare-based repair and serialization / deserialization 

circuitry is added. The CSLs serialize data in two cycles and each link is functional if there are up to two 

faulty TSVs per link. In TABLE I, the area overheads of the enhanced routers are summarized for 32-/64-bits 

networks with TSV pitch of 15µm and 10µm. 

TABLE I SEVEN-PORT ROUTER AREA OVERHEADS [%] FOR DIFFERENT YIELD IMPROVEMENT STRATEGIES 

Data Size 

(bits) 
pTSV (µm) 

FTR+ 

1 Spare 

FTR+ 

2 Spares 
FTR+CSL 

FTR+ CSL+ 

1 Spare 

10µm 11.89% 13.82% 16.53% 18.65% 

32 

15µm 12.01% 14.95% 16.53% 19.25% 

10µm 9.62% 11.76% 16.08% 19.95% 
64 

15µm 9.98% 12.33% 16.08% 20.1% 

 

In the case when TSV-FTR is improved with spare-based repair, the probability of link failure is reduced 

and fewer master nodes must be determined. Hence, depending on the TSV technology, the router overheads 

increase from 7.7% / 6.8% to 12% / 9.9% rates for 32 / 64 data bits. Although adding more spares will not 

lead to significant yield gains, the probability of link failures is significantly reduced. Hence, the impact on 

network performance is expected to be reduced, as fewer packets will be rerouted on alternative fault-free 

paths. 

The joint use of serialization and TSV-FTR has the major benefit that no spare TSVs are required. In this 

case, serialization reduces the link failure rate (i.e. up to one faulty TSV is repaired using serialization), but it 
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leads to a much more complex master node selection, off-chip repair and network configuration processes. 

Information about serializing links, which is computed off-chip after the TSV tests, must be taken into 

account when master nodes are selected. In terms of area overheads, this solution is more expensive (i.e. 16%) 

than solutions using spares, but it does not depend on the TSV technology. 

When all three solutions (i.e. spares, serialization and fault-tolerant routing) are implemented, one fault is 

repaired using the single spare, a second fault is repaired using serialization (i.e. MMIN=31 for 32 bits links and 

MMIN=63 for 64 bits links) and more than two faults cause link failure. Compared to other solutions in TABLE 

I that tolerate up to two faulty TSVs / link, the area overheads increase by up to ~8%. Thus, this solution is 

less efficient. 

The results above have shown that, when no spares are used, the fault tolerant routing can ensure high TSV 

reparability with slightly lower costs than CSLs (i.e. the area overheads are up to ~4% lower). Adding spares 

has a small impact on the link yield and their contributions to the area overheads are non-negligible. However, 

having spares may improve network performance, as some TSV faults will not cause link serialization or 

failure. To assess the impact on network performance, a comparative study of these strategies is presented in 

the following. 

5.1.3.2 Impact on network latency 

The selection of an optimal yield improvement strategy cannot be based only on the estimated costs in 

terms of area, power, and number of TSVs. The impact of error resilience on network performance must also 

be considered. In this section, the impact of single-/multi-layer yield improvement strategies on the network 

latency is studied. 

Let us consider a 3D mesh NoCs with error resilience implemented at data link and / or network levels. In 

the first case, only network-level repair is considered (i.e. TSV fault-tolerant routing FTR). In the second case, 

inter-die links are implemented as CSLs without any spares and no network-level repair is considered. The 

impact of TSV-SnR is not assessed, as it will not affect network latency. In the joint data link CSL+SnR 

strategy, one spare is considered for each inter-die link, while other faults are repaired using serialization. In 

the multi-layer scheme, the following configurations are considered: TSV-FTR with TSV-SnR (i.e. one spare 

per link), and no-spare CSLs (i.e. FTR+CSL with two tolerated faults per link). In Figure V-7, the latency 

overhead is shown for the 5×5×4 3D mesh topology using the TSV repair schemes above. The experimental 

evaluations were performed on a RTL platform with uniform traffic. In order to reduce the effects of traffic 

contention on performance degradation, packets is injected at very low rates such that the network is in a near 

zero-load mode.  
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Figure V-7 Latency Overhead for 5x5x4 mesh topology using different strategies 

Even for small TSV failure rates, there is a network latency penalty when FTR and CSLs are used without 

any spares. If there is a single faulty TSV, the link containing that wire is considered faulty in FTR, or it 

serializes data transmission. When the number of faulty TSVs increases, more links are faulty or serialize data 

such that for dTSV=0.1% the latency increases by ~1.8% for FTR and 0.9% for CSL. The network performance 

degrades further for higher TSV failure rate. In the dTSV=1% case, the FTR-protected network has a ~9.1% 

latency overhead, while serialization penalizes the latency by up to 6%. 

When spares can be added, the failure / serialization probability of inter-die links drops. In the case of 

CSL+SnR, a single fault per link is tolerated without using serialization. In this case, the latency overhead is 

less than 1% for lower failure rates up to 0.7%. When TSV-SnR is jointly used with FTR, the network latency 

is not affected, as most faults are repaired using two spare TSVs. For higher failure rates there are more faulty 

inter-die links. In this case, the network latency increases by up to 0.5%, as packets are routed around these 

faulty links. 

In the multi-layer scheme, one fault is mitigated using spares and the second one using serialization. The 

link is faulty when there are more than two faults. In this case, the FTR algorithm routes packets around such 

links. For low error rates, the spare TSV is used for link repair without affecting network performance. When 

the number of faults increases, inter-die serialization and longer fault-free paths due to packet rerouting 

increase the network latency. In the multi-level scheme, the network latency goes up by 2% for dTSV=1%. 

However, it was previously shown that the area overheads of this approach are very high. 

The results presented in this section show that a multi-layer approach pays-off in some cases. While FTR 

and CSLs solutions ensure high yield without using spares, their impact on network performance is not always 

negligible. Experimental results have shown that CSLs can ensure high yield with less significant impact on 

network latency than FTR. In other words, if there are TSV limitations then a serialization-based solution is 

more efficient in terms of performance, but its costs are slightly higher. 



Experimental Evaluation of Error Resilience Strategies                                                                                                  99 

Having spares and additional repair logic using serialization or fault-tolerant routing can improve the TSV 

yield, while the performance overheads are less than 2%. The results show that the joint use of SnR, CSLs and 

FTR leads to high overheads, without any significant performance improvement compared to the SnR+FTR or 

SnR+CSL approaches. For the same number of TSV faults tolerated using link-level solutions, SnR jointly 

used with FTR ensure both high yield and negligible performance penalties (i.e. less than 1% when two spares 

per link are considered). 

Whether a single-layer or a multi-layer solution is used, the schemes analyzed in this section have a major 

limitation: they can be used only for repairing TSV faults due to manufacturing defects. In systems 

comprising hundreds or thousands of TSVs, strategies to tolerate in-field TSV failures are necessary. In the 

following, the costs of the spare-based and serialization-based equivalents of TSV-SnR (i.e. IBISnR) and CSL 

(i.e. IBIRAS) are evaluated. 

5.1.4 In-field TSV failures 
Although in-field permanent faults are less likely to occur than transient faults, such failures could cause 

serious reliability concerns for 3D chips comprising many TSVs. In such cases, the failure of a single TSV 

could compromise the entire system. In this section, an assessment of the IBIST and IBIRAS (i.e. spare-

/serialization-based repair) strategies is presented for 3D NoC seven-port routers. 

The on-chip self-test (Interconnect BIST) circuitry has the advantage that, depending on the generated test 

patterns, it can detect both structural and parametric TSV faults. At system start-up or during system normal 

operation, 3D NoC inter-die links can enter an off-line TSV test-diagnosis phase followed by repair. The test 

patterns are generated using the KAF model, as described in Chapter 3. In order to reduce the self-test circuitry 

and test duration, TSV tests are performed using the first aggressor order. TSV tests of n-bits links take 16 

cycles (i.e. there are two victim sets and for each set there are eight test vectors), while the diagnosis vector 

serial transmission and repair process take n and 4 clock cycles, respectively. Hence, the inter-die link is off-

line for n+20 clock cycles. 

After TSV tests, the on-chip repair process can be performed using spares (Interconnect Built-In Spare and 

Replace - IBISnR) or adaptive serialization. Assuming a TSV failure rate during system life-time dTSV, the 

number of spares per link r is determined such that TSV faults are repaired with a probability above RT. This 

process is similar to the one presented in the previous section for TSV-SnR. In this case, dTSV in Equation V-1 

represents the TSV failure probability during system life-time and Y represented the probability that the link is 

reparable (i.e. at least n out of n+r TSVs are functional). 

IBIRAS perform serialization-based repair when there are not enough spare TSVs. This solution is very 

useful, as it is very difficult to accurately predict the amount of redundancy necessary for the inter-die links to 

be functional during system life-time. Similarly to CSLs, the IBIRAS link is functional if at least MMIN of its 

TSVs are functional. For a given TSV failure rate during system life-time dTSV, MMIN of a link with N regular 

TSVs and R spares is determined using equation (V-3). 

In a 65nm process, the IBIST and IBIRAS spare-based and serialization-based repair modules are 

implemented at the 32-/64-bits inter-die link interfaces of the seven-port router. In order to assess the impact 
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of TSV technologies, the TSV pitch is 15µm and 10µm. A reparability target of 99.95% for each inter-die link 

is considered, without taking into account any correlations between the TSV failure rate during system life-

time dTSV and TSV density. Increasing the TSV density may result in 3D NoC configurations having wider 

links or twice as many links. In the latter case, the link reparability target is 99.975%. In Figure V-8, the area 

overheads of the 32-/64-bits seven-port router are represented. 
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Figure V-8 Area overheads for on-chip spare-based (IBISnR) and serialization-based (IBIRAS) repair 

Adding TSV test and repair capabilities during system life-time has non-negligible costs. Compared to 

TSV-SnR and CSLs, the router area (i.e. router logic and regular TSV footprint) overheads increase from ~10% 

to more than 40%. The extra area is due to the on-chip TSV diagnosis vector storage and serial transmission 

circuitry, which accounts for ~30% of IBIRAS area, and the on-chip repair logic, which determines the 

crossover switch control signals and accounts for more than ~20% of IBIRAS / IBISnR area. The area 

overheads due to the KAF-based TPG modules are negligible (i.e. less than 5% of the total router area). The 

area overhead variation with the TSV failure rate and link size is mainly due to the increasing complexity of 

the crossover switches and repair logic. For IBIRAS and IBISnR, adding an extra mapping position for each 

regular TSV (i.e. improve link reparability) doubles the size of the repair logic. Hence, the repair logic area 

increases with dTSV and the link width. 

Unlike TSV-SnR, the IBISnR area overheads decrease with the TSV pitch for higher TSV densities and the 

same number of links (e.g. “32-bits IBISnR 10µm” and “32-bits IBISnR 15µm” in Figure V-8 ). This is caused 

by the reduced TSV pitch and also by the on-chip repair fabric. Although there are more spares / link in the 

10µm pitch case, the overhead due to the repair fabric is smaller than that due to the TSV pitch. Doubling the 

data size, as a result of TSV pitch reduction to 10µm, results in higher overheads for all cases of TSV failure 

rates (see the “32-bits IBISnR 15µm” and “64-bits IBISnR 10µm” configurations above). 

Although no spares are used, the costs of IBIRAS are larger than for spare-based repair. However, when 

the TSV failure rate increases, it can be noticed that the gap between IBIRAS and IBISnR area overheads is 
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reducing such that 32-bits serialization repair is more efficient that spare-based repair for failure rates above 

0.5%. In the case of 64-bits links, the serialization costs are less than those of spare-based repair for failure 

rates above 1%. This is explained by the fact that in the IBIRAS case no spares are used. Therefore, there are 

no area penalties for the spare TSV footprint and the IBIST size remains the same in the IBIRAS case, as no 

extra circuitry is necessary for spare TSVs test and diagnosis. 

Choosing between IBIRAS and IBSnR cannot be based on the area overheads alone. The impact on system 

performance could be unacceptable for some real-time systems. In this case, serialization solutions cannot be 

safely used. Not allowing serialization during system life-time means that all in-field failures must be repaired 

using spares. In this case, accurate TSV failure models must be developed in order to ensure an optimal spare 

resource allocation. 

5.1.5 Remarks on mitigating TSV permanent faults 
The error resilience schemes have been assessed with respect to costs, overheads and impact on network 

performance. Each scheme comes with its own set of rules on how it must be instantiated such that the yield / 

reparability targets are achieved event if the number of available TSVs is limited. Using the uncorrelated fault 

model, the impact of TSV technologies and different trade-offs have been discussed in detail. The 

experimental results for TSV permanent faults are summarized as follows. 

In the case when in-field failures are not considered, 3D NoCs can be repaired using spares (i.e. TSV-SnR), 

serialization (i.e. CSL), fault tolerant routing (i.e. TSV-FTR), or any combination of these solutions. For low 

and medium TSV failure rates, spare-based solutions have the advantage of smaller overheads and no impact 

on network performance. In order to minimize the number of spears / chip, it was shown that it is more 

efficient to allocate spares for the entire link. However, the high costs of the repair fabric may be reduced by 

grouping the regular TSVs in groups and allocating fewer spares / group. 

For high TSV failure rates the number of spares necessary for repair increases, making this solution less 

attractive. Compared to CMOS technologies, the footprint of TSVs in a chip is high and, in order to reduce 3D 

chip costs, the number of TSVs is limited. Thus, in order to ensure high yield when no spares are available 

serialization and fault tolerant routing are used. Experimental results have shown that, when no spares are 

available, serialization solutions have a small advantage in terms of performance, but the area overheads of 

these solutions are similar. The situation is different when some spares are used, as TSV-FTR becomes more 

efficient both in terms of costs and performance. Using all three solution proves to have high costs with no 

real benefits in terms of performance. 

Having to mitigate in-field failures poses several challenges: the TSVs must be tested, the repair logic must 

be integrated on chip. Using the IBIST strategy, the off-line repair scheme based on spares (IBISnR) and 

serialization (IBIRAS) have been analysed. Experimental results have shown that spare-based repair has some 

benefits in terms of costs for small and medium TSV failure rates. However, when not enough spares can be 

added due to high integration costs, IBIRAS is used. The results also showed that for highly defective TSVs 

with a significant TSV footprint relative to the area of the repair logic, the costs of IBIRAS proves to less than 

those of spare-based repair. 
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Note that the results presented in this section have been validated for the seven-port router used in 3D 

mesh NoCs. They are used to show how to configure these schemes and justify different instantiation choices. 

For example, if two spares are available per link and having two groups with one spare per group achieves the 

yield target then this configuration should be used. Repairing TSV permanent faults is only part of the error 

resilient solution. In the following section an assessment of error resilience strategies for transient faults is 

presented. 

5.2 Transient TSV faults in 3D NoCs 

The path reliability ρpath is the probability that a flit, which traverses the path, arrives at destination fault-

free. Transient faults may affect the flit during router and link traversal, causing serious reliability challenges 

that could lead to system failure. The reliability of an n-hops path (i.e. n routers, n-1 intra-die and inter-die 

links) is expressed using the router and link reliability (i.e. probability that flits traverse links and routers fault-

free ρlink and ρrouter), as shown below: 

nn routerrouterrouterlinklinklinkpath ρρρρρρρ ⋅⋅⋅⋅⋅⋅⋅=
−

......
21121

    (V-6) 

In this section, an assessment of data link and network error resilience strategies for 3D NoCs is presented. 

Data link solutions improve path reliability by reducing the link fault probability (i.e. increase ρlink in equation 

(V-6)), while network-level solutions improve path reliability by mitigating errors at destination. The benefits 

in terms of reliability and costs of selective link protection and joint data link and network error correction are 

discussed. 

In the reliability assessments, the probability of transients on a single intra-die and inter-die wire is 

assumed to be up to εwire=10
-4, which is significantly more than the error rates considered in literature 

[BBM05, MTV05, AER10]. In the uncorrelated faults model the flit error rate εlink=1-(1-εwire)
n is proportional 

with the link size n. Thus, the link reliability is ρlink=99.68% for 32-bits flits, and ρlink=99.36% for 64-bits flits. 

Because faults are uncorrelated, most errors are due to single faults, which occur with a 0.31% for 32-bits 

links and 0.63% for 64-bits links, rather than multiple faults (e.g. double faults occur with a 0.0004% 

probability for 32-bits links and 0.002% for 64-bits links). 

The router reliability ρrouter quantifies the probability that a single flit traverses the router (i.e. input/output 

FIFOs, internal crossover switches) fault-free and not the probability that the router functionality is affected 

by transients. Errors that affect routing logic, internal state registers (e.g. FIFO pointers, FSM state register, 

etc), and other combinational logic are not addressed in this thesis. 

Although the link reliability seems high enough, paths comprise many links and routers. For example, in 

the case of 12-hops paths, even if a ρrouter=99.99% router reliability is assumed, there is a 96.23% probability 

that flits arrive fault-free for 32-bits flits, and 92.6% for 64-bits flits. When extended to packets with eight 

flits, communication reliability drops to 72% and 54%, respectively. In other words, ~¼ packets traversing the 

32-bits path contain errors and almost ½ of packets traversing the 64-bits path arrive with errors. The goal of 

error resilience techniques is to increase communication reliability to acceptable levels, which are often above 

99.99%. 
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5.2.1 Data link error resilience 
The data link error resilience schemes improve communication reliability by improving link reliability ρlink. 

In the following, the costs of error control strategies (i.e. Forward Error Correction, Automatic 

Retransmission Query and Hybrid Error Correction and Retransmission) are estimated for the seven-port 

routers of 3D mesh NoCs. 

5.2.1.1 Reliability assessments 

In choosing a link protection strategy, one faces the problem of selecting an appropriate coding strategy 

such that the link reliability satisfies the targets. In this section, the reliability of each error control scheme is 

assessed for different coding strategies. An error detection and correction code selection strategy based on 

interleaving is also presented for the cases where multi error mitigation is necessary. 

For Forward Error Correction (FEC) schemes, link reliability ρFEC depends on the code error correction 

capabilities. The probability ρFEC that flits correctly traverse links is given by the probability that the transient 

faults pattern is correctable. For k-bits flits (i.e. data and error check bits), if i errors occur with the probability 

εi and corrected with probability Ci then ρFEC is given by: 
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Equation (V-7) shows that the link reliability is the probability that no error occur or that error that occur 

are corrected. FEC-protected link reliability can be improved by implementing codes with multiple error 

correction capabilities. For on-chip communication, most FEC schemes rely on Single Error Correction 

(SEC) codes like Hamming. When multiple error correction is desired, SEC codes are interleaved: data bits 

are split in two or more disjoint groups and each of these groups is encoded using a SEC code. Having more 

groups increases the correction capabilities of the code: when data is split in m groups, multiple error patters 

of up to m errors can be corrected if the errors are distributed such that there is at most one error per group. 

Thus, C1=1 for Ci≠0, for m ≥i>1, and Ci=0, for i>m. 

Let us consider a 12-hops path where all links are protected using FEC with interleaved Hamming codes. 

In Figure V-9, the cumulated reliability of 32-bits and 64-bits links along the path is represented. The link 

reliability is determined using equation (V-7) with different correction probabilities, depending on the number 

of interleaved SEC codes. 
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Figure V-9 Link-component of 12-hops path reliability for 32 (a) and 64 (b) bits FEC-protected links 
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Hamming SEC codes improve the reliability of each link such that 64-bits flits traverse the 12 hops fault-

free with a probability above 99.975%, while 32-bits flits traverse path with a probability above 99.994%. 

When interleaving is considered, the link reliability increases, as up to four errors per link (i.e. “Hamming×4” 

in Figure V-9) can be corrected. When interleaved codes are used, the number of wires per link (i.e. codeword 

size) k increases. Although the probability of single errors ε1 increases, the probability of having multiple 

errors remains very low. Therefore, the reliability gains by SEC interleaving are relatively small: up to 

0.005% for 32-bits links and up to 0.02% for 64-bits links. 

The reliability of Automatic Retransmission Query (ARQ) scheme ρARQ is directly affected by the code 

error detection capabilities ε and residual error rate rez (i.e. probability that errors are not detected). Let Di 

represent the probability that i errors are detected for the k-bits encoded flit. Using Di, the error detection 

capabilities ε and its residual error rate rez are expressed as: 

∑
=

⋅=

k

i

iiD

1

εε         (V-8) 

( )∑
=

⋅−=

k

i

iiDrez

1

1 ε         (V-9) 

In the go-back-N retransmission scheme, successive transmissions are not independent events and ρARQ 

depends on the successful transmission of N-1 previous flits, where N is the retransmission buffer size. For 

N=4, let us consider three consecutively sent flits F1, F2 and F3. If a retransmission request is made for F1 then 

flits F2 and F3 are discarded even if they are received correctly. The probability that no errors are detected for 

F1 depends on ε and nRT, where nRT is the maximum number of consecutive retransmission requests for the 

same flit. As mentioned in the previous chapter, the retransmission logic is simplified by allowing only one 

retransmission (i.e. nRT=1). In equation (V-10), the probability that F1, F2 and F3 correctly traverse the ARQ-

protected link is given. 

( ) ( ) 3111 ≤≤−⋅+⋅−= ireziiARQ
i εερ        (V-10) 

From this equation it is clear that the link reliability depends on the error detection probabilities. For the 

12-hops path, let us consider perfect routers and ARQ-protected links. The link component of path reliability 

(i.e. ρlink1·…·ρlink11) is determined for 32-bits and 64-bits flits using different parity encoding strategies: simple 

parity, interleaved parity on two and four groups and CRC-8 using the generator polynomial 

G(X)=1+X
4
+X

5
+X

8. In Figure V-10, the cumulated link reliability of 32-bits and 64-bits links is represented. 
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Figure V-10 Link-component of 12-hops path reliability for 32 (a) and 64 (b) bits ARQ-protected links 

Compared to the un-protected link case, the 32-bits and 64-bits link reliability increases from 99.63% to 

99.96% and from 99.36% to 99.84%, respectively. Compared to FEC, the lower reliability of ARQ is mainly 

due to the go-back-N retransmission mechanism. Even when a flit arrives correctly, it is discarded and 

retransmitted if the flit before was erroneous. In the un-correlated fault model multiple errors per link are 

unlikely. Therefore, most errors are detected and there are no major reliability differences for different coding 

schemes. 

The reliability of hybrid error-correction and retransmission (HYB) schemes depends on the coding 

correction / detection capabilities and its residual error rate rez (i.e. probability that errors go undetected). For 

k bits flits, let Di represent the probability that i-out-of-k errors are detectable and Ci represent the probability 

that i-out-of-k errors are correctable. Note that for most error correction codes the detection capabilities exceed 

the correction ones and Di ≥ Ci for i≥1. In HYB, retransmissions requests are made only for flits having 

uncorrectable, but detectable errors. The probability of detectable, but uncorrectable errors εR is expressed as: 
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In the go-back-N retransmission strategy, the reliability of flit transmission depends on the transmission of 

previous N-1 flits, where N is the retransmission buffer size. For N=5, let us consider four consecutively sent 

flits F1, F2, F3 and F4. If a retransmission request is made for F1 then flits F2, F3 and F4 are discarded even if 

they are correctly received. In this case, the probability that flit F1 arrives error-free at the link downstream 

interface depends on εR and nRT (i.e. the maximum number of retransmission requests). The probabilities that 

F2-F4 arrive error-free depend on the previous flits. Using the same reasoning as for ARQ, the HYB link 

reliability is given in equation (V-12) for each Fi with 1≤i≤4. 

( ) ( ) 4111 ≤≤⋅+⋅−= iRii
R

HYB
i εερ        (V-12) 

HYB schemes rely on Single Error Correction Double Error Detection (SECDED) codes like extended 

Hamming codes (i.e. Hamming SEC with a parity bit for double error detection) or Hsiao codes. The multiple 

error correction issue is addressed by SECDED code interleaving. Even when no interleaving is considered, 

the HYB-protected link reliability is significantly higher than for FEC and ARQ schemes (i.e. >> 99.99% even 
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for εwire=10
-4). In HYB links, single errors are corrected, double errors cause retransmission, and triple errors 

are very unlikely. Moreover, in case of a retransmission, it is very unlikely that double errors affect 

consecutive transmission cycles. For the 12-hops path, the cumulated reliability of all links exceeds 

99.9999%, even for 64-bits links. 

The results above have shown that link-level protection is a powerful strategy for improving path 

reliability. Protecting each link of the 3D NoC may prove expensive and, in some cases, un-necessary. In the 

following, the reliability of selective link protection strategies is evaluated. 

5.2.1.2 Selective inter-die link  protection 

In 3D NoCs, let ρh and ρv represent the probabilities that flits traverse unprotected intra-die / inter-die links 

fault-free, respectively. For paths comprising nh intra-die links and nv inter-die links, the cumulated link 

reliability along the path is expressed as:  
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path ρρρ ⋅=         (V-13) 

The link-level error resilience schemes improve the 3D NoC communication reliability by reducing the 

probability of transient errors on intra-die and inter-die link traversal. The probability that flits traverse 

without errors protected intra-die / inter-die links (i.e. ρh’ / ρv’ ) is given by equations (V-7, V-10, V-12). 

Using these equations, the path reliability can be expressed as: 
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Protecting all links in 3D NoCs might be prohibitively expensive. In order to reduce these costs, the 

selection protection scheme is used. Therefore, error resilience is implemented only for inter-die links. The 

probability that flits correctly traverse the selective protected path is given in equation (V-15). 
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There is a reliability loss when only inter-die links are protected, as intra-die links are not protected. Errors 

on intra-die link propagate to destination, causing a reliability loss. Moreover, path reliability cannot be 

improved above a level determined by the intra-die error rates. 

In order to assess the impact of all links and inter-die links protection strategies, let us consider a 12-hops 

path with nh=9 intra-die links and nv=2 inter-die links. In Figure V-11, the path reliability is represented for 

32-bits (a) and 64-bits links (b) when all links and selective inter-die link protection strategies are used. Note 

that a wire error rate of 10
-6 is assumed for intra-die links. 
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Figure V-11 Path reliability with error resilient inter-die links (i.e. selective inter-die protection SEL) and full-link protection (ALL) for an intra-die 

wire failure rate of εwire=10-6 

Intra-die errors will cumulate along the path, resulting in some reliability penalty: 0.012% for 32-bits links 

and 0.025% for 64-bits links. For Hamming SEC protected links (i.e. FEC), the path reliability drops when the 

inter-die wire error rate is 10
-4. In this case, the path reliability is dominated by transients on inter-die link. The 

reliability gap is wider for CRC-based ARQ: 99.995% for all link protection and 99.97% for inter-die link 

protection. In the case of Hamming SECDED HYB scheme, there is no visible drop for higher inter-die error 

rates: all inter-die errors are mitigated at link-level and they do not propagate to the destination. 

For higher intra-die error rates, the reliability penalty increases, since intra-die faults are more likely to 

occur. In the case where intra-die wires error rates is εwire=10
-4, the link component of path reliability will 

decrease from ~99.9%, in the case of all link protection, to ~97.5% for 32-bits flits and ~94.5% for 64-bits 

flits. Therefore, reliable communication by selective inter-die link protection cannot be guaranteed in this 

case. 

The selective link-level protection is an efficient strategy for networks with less strict reliability targets. 

This strategy can also be used in the case when non-protected links have low-medium error rates (i.e. εwire 

<10
-6). In order to assess the benefits of selective inter-die link protection in 3D NoCs, a comparative study 

with respect to the costs in terms of area and power, and impact on network performance, is presented in the 

following. 

5.2.1.3 Area and power overheads 

The link-level error resilience schemes using the all links and the selective inter-die link protection 

strategies are implemented for seven-port routers in a 65nm technology. In order to maintain the target 1GHz 

clock frequency, intermediate retiming stages are inserted between the PHY, the encoding, and the error 

detection / correction modules.  

In FEC-protected links, a single retiming stage is necessary between the encoder and the decoder. Hence, 

for 32-bits and 64-bits links, data encoding and PHY traversal take one clock cycle, while error detection and 

correction is performed in another cycle. An intermediate retiming stage is also inserted for ARQ-protected 

links. In the first cycle data is encoded and PHY is traversed, while error detection and retransmission request 

is performed in the second cycle. In the case of HYB schemes, it is not possible to detect, correct the error and 
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sent the retransmission request within a clock cycle. Hence, in the first transmission cycle the data bits are 

encoded and the physical link is traversed, in the second cycle errors are detected, and in the third cycle errors 

are corrected and retransmission requests are sent. 

Adding intermediate retiming stages between the router interfaces raises the issue of input buffer overflow: 

when the receiver interface signals that the input buffer is full, the transmitter interface could have sent a new 

flit that cannot be stored in the input FIFO. This problem is addressed by adding q extra positions to the input 

buffer such that if the buffer has n positions, its full signal will be active when at least n-q of its positions are 

occupied. In the cases above, a single position is added for each input buffer of a protected link. 

In TABLE II, the area and power overheads of 32-bits and 64-bits routers (without the TSV footprint) are 

summarized for all links and selective inter-die link protection strategies using FEC (i.e. interleaved Hamming 

SEC codes), ARQ (i.e. CRC codes and interleaved parity) and HYB (i.e. interleaved Hamming SECDED 

codes) error control schemes. 

TABLE II AREA/POWER OVERHEADS [%]  FOR 32/64 BITS SEVEN-PORT ROUTER WITH LINK-LEVEL PROTECTION ON ALL LINKS AND INTER-DIE 
LINKS ONLY 

32 Bits 64 Bits 

All links Inter-die links only All links Inter-die links only 
Error 

Control 
Strategy Area (%) Power (%) Area (%) Power (%) Area (%) Power (%) Area (%) Power (%) 

FEC 

SEC 
25.90 35.78 8.46 11.22 26.7 35.32 8.73 11.51 

FEC SEC×2 26.98 38.36 9.09 12.12 27.39 37.43 8.9 12.02 

FEC 

SEC×4 
28.11 43.22 9.41 13.23 27.95 40.34 9.16 13.31 

ARQ  

CRC-5 
36.65 46.96 10.2 13.45 39.9 48.6 11.25 14.17 

ARQ 

CRC-8 
38.17 48.44 10.71 13.50 44.52 48.78 11.13 14.26 

ARQ 

PARITY×4 
42.85 57.21 12.16 16.44 45.64 43.07 16.35 10.63 

HYB 

SECDED 
77.15 95.49 21.34 27.58 83.56 95.35 22.98 27.97 

HYB 

SECDED×2 
77.16 103.11 21.27 29.32 81.57 99.03 22.62 29.31 

 

The results show that inter-die link protection is ~3× less expensive than all links protection, as error 

protection is implemented for two of the six adjacent links. Improving the link reliability by using FEC 

schemes with interleaved Hamming codes (i.e. SEC×2 for two groups and SEC×4 for four groups) increases 

the router area and dissipated power, as the complexity of the coding scheme increases. Although the area 

overhead increase from one group to four interleaved groups is less than 1% for 32-bits routers and 2% 64-bits 

routers, the code word size increases from 38 to 48 and 71 to 84, respectively. Hence, when the TSV footprint 

is considered (i.e. 10µm pitch), the area overheads of inter-die link protection are between 11.5% and 17% for 

32-bits routers, and between 9% and 13% for 64-bits routers. 
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In ARQ schemes the retransmission buffer size is N=3 flits, as a single retiming stage is inserted between 

the PHY and decoder. Although ARQ uses simpler codes than FEC, its slightly larger overheads are due to the 

retransmission buffer. The main advantage of ARQ over FEC is that fewer extra wires are needed for error 

control bits transmission. The number of extra TSVs per link is 4 TSVs for interleaved parity on four data 

groups (i.e. PARITY×4), 5 TSVs for CRC-5 (i.e. G(X)=1+X+X
3
+X

5) and 8 TSVs for CRC-8 (i.e. 

G(X)=1+X
3
+X

5
+X

6
+X

8), for both 32 and 64 bits routers. In a 10µm pitch TSV technology with interleaved 

parity on four groups, the area overheads are ~10% for 32-bits links and 13% for 64-bits links. Interleaved 

parity encoding is less complex than for CRCs, but the area overheads are slightly larger, while the power 

overheads are smaller for 64-bits routers. Although the ARQ costs are slightly larger than those of FEC, the 

advantage of this solution is that fewer TSVs are necessary for error check bits transmission. 

Hybrid error correction and retransmission schemes offer the best link-level reliability, but their area and 

power overheads are significantly higher. Because error detection / correction and the retransmission request 

cannot be done in a single cycle, an intermediate retiming stage is considered between the detection and 

correction stage. Hence, the retransmission FIFO size is N=4 and two extra positions are added in the router’s 

input buffers in order to prevent data loss. Because double errors must be correctly identified, Hamming 

SECDED codes must be used. Interleaving increases the error correction and detection capabilities, but it also 

increases the coding and decoding complexity. Moreover, the number of wires used for error check bits 

transmission is larger. In the case of 32 bits links, the number of TSVs increases from 7 to 12, when the data 

bits are encoded using two interleaved groups. 

5.2.1.4 Impact on network latency  

Network latency is a performance metric that indicates the time needed by a packet to traverse the network 

flit-by-flit. When all links are protected, the latency of each traversed link increases by one clock cycle even if 

no errors are detected. In the case of inter-die link protection, the packet latency increases only for the 

traversed inter-die links. When transient errors are detected, the latency of ARQ-protected links increases, as 

flit retransmission takes up to four cycles. 

In the case of 32-bits and 64-bits FEC-protected links, error detection and correction is done in a single 

cycle. Hence, the link latency is not affected by the error rate εwire. For ARQ-protected links, flits affected by 

transients traverse the link in four cycles instead of two. The latency of HYB-protected links depends on 

whether the error is correctable or not. If the error is correctable then the flit latency is three cycles. When a 

retransmission request is sent, the flit latency is five cycles. 

In the network latency estimations, errors are injected with the same error rate on protected intra-die and 

inter-die links. Note that in the case of selective inter-die protection, no intra-die errors are considered, as 

there are no mechanisms to mitigate them. Let us consider the 4×4×4 3D mesh NoC on which eight-flit 

packets are randomly transmitted with a uniform distribution. In Figure V-12, the average network latency of 

the 32-bits and 64-bits 3D NoC is represented of all-links and selective link protection using FEC, ARQ, and 

HYB. 
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Figure V-12 Average network Latency for 32-bits (a)and 64-bits (b) 4×4×4 3D NoCs  

The results above show that the performance penalty of selective inter-die link protection is significantly 

smaller than that of all link protection. In the case of low error rates, the network latency increases by more 

than one cycle for inter-die link protection and by almost four cycles for all link protection (i.e. ~15% latency 

overhead). Increasing the error rates impacts the network latency, as error recovery may take up to three 

cycles per link.  

As mentioned before, there is no impact of εwire on the network latency when links are protected using 

FEC. However, interleaved Hamming SEC codes are used for higher values of εwire. For ARQ, the impact of 

link-level flit retransmission on the latency is noticeable for error rates higher than 10
-5. In HYB protected 

links with Hamming SECDED codes, when single errors are detected the network latency increases, as error 

correction is performed in an extra cycle. 

For the un-correlated transient fault model, the impact of HYB on network latency is mainly due to the 

extra cycle needed for error correction. In the evaluations above, the flit size is also important, as the flit error 

rate depends on its size. Therefore, the performance penalties are slightly higher for 64-bits links, as transients 

are more likely to occur. 

The results in this section have shown that reliable communication can be achieved by means of link-level 

error resilience. Protecting all links of a network may prove to be too expensive and leads to high overheads 

and performance penalties (i.e. ~15% latency overhead). In the selective link protection strategy, path 

reliability is traded for lower area / power overheads and network performance. Experimental results have 

shown that this strategy pays-off when intra-die links and router are less prone to errors. However, transients 

on links can also be mitigated at network level. In the following section an assessment of network-level 

solutions is presented. 

5.2.2 Network-level error resilience 
Transient errors on the PHY can be mitigated at network-level by encoding individual flits at the source 

node and correcting errors at destination (i.e. Network-level Forward Error Correction NL-FEC). Unlike in 

link-level solutions, flits traverse a series of intra-die / inter-die links and routers before errors are detected and 

corrected. Therefore, NL-FEC mitigates transients that affect flits during link and router traversal. 
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5.2.2.1 Reliability assessments 

For NL-FEC protection, let us consider an n-hops path that comprises n routers and n-1 intra-/inter-die 

links. The probability that a flit correctly arrives at destination ρNL-FEC can be expressed using the probability 

that it traverses routers and links fault-free (i.e. ρr, ρl): 
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In equation (V-16), e represents the number of correctable errors per flit. Since errors are corrected only at 

destination, they may cumulate along the source-destination path. Hence, error resilience is improved by 

implementing multiple error correction codes based on interleaved SEC codes. 

Let us consider a 12-hops path with a single wire error rate εwire ≤10
-4 and a router reliability ρr=99.99%. 

(i.e. the probability that a single flit traverses the router fault-free). In Figure V-13, the NL-FEC protected 

reliability of a 32-bits and 64-bits 12-hops path is represented. 

  
Figure V-13 Path reliability for 32-bits and 64-bits networks using NL-FEC with interleaved Hamming 

When the path is not protected, the probability that flits traverse it correctly drops to less than 90% for 

εwire=10
-4

. When flits are encoded using a SEC code, the path reliability is above 99.95% for 32-bits flits and 

99.8% for 64-bits flits. SEC code interleaving increases the error correction capabilities such that up to four 

errors per flits can be corrected. In this case, the path reliability is above 99.999% for 32-/64-bits links. 

Network-level protection ensures higher reliability by mitigating transients both on links and routers, while 

link-level solutions correct only link errors. For a 12-hops path with 99.99% router reliability, link-level and 

network-level FEC solutions are implemented. Error correction modules are implemented at destination for 

NL-FEC, while LL-FEC is implemented for all links in the path. In Figure V-14, the path reliability is 

represented for different interleaved Hamming SEC codes. 
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Figure V-14 Path reliability for 32-bits and 64-bits networks using link-level and network-level FEC 

Although link-level protection improves path reliability, it cannot exceed the 99.9% boundary set by the 

router reliability. Network-level protection ensures higher path reliability, as errors that cumulate on routers 

and links are corrected. The probability of cumulating multiple un-correctable faults increases for wider links 

and high wire error rate. In this case, the NL-FEC path reliability drops while LL-FEC path reliability remains 

high, as most errors are corrected. It can be noted that the NL-FEC path reliability is lower than LL-FEC path 

reliability for 64-bits flits and error rates higher than εwire≥8·10
-5. The NL-/LL-FEC reliability breakeven point 

shift to the left when link failures are more likely than router failures (i.e. router reliability drops). Interleaving 

SEC codes enable NL-FEC scheme to correct up to two errors per flit. In this case, the path reliability is above 

99.999% even for εwire=10
-4. At link-level, interleaved SEC codes can correct double errors such that there is a 

reliability gain. However, this gain is relatively small, since the probability of double errors is the uncorrelated 

faults model is low. 

5.2.2.2 Area and power overhead estimations 

The NL-FEC encoding / decoding modules are added to the LOCAL input / output ports of the 32-bits and 

64-bits 3D NoC seven-port routers. In TABLE III, the area and power overheads are summarized for different 

Hamming SEC coding schemes. 

TABLE III OVERHEADS OF NL-FEC PROTECTED SEVEN-PORT ROUTERS 

32-bits 64-bits 
Error correction scheme 

Area (%) Power (%) Area (%) Power (%) 

Hamming SEC × 1 19.81 15.55 18.84 9.75 

Hamming SEC × 2 33.61 30.61 24.93 16.62 

Hamming SEC × 4 49.88 48.78 37.72 28.98 

 
The router area and power overheads are mainly due to input / output buffers, which account for ~90% of 

router area. When flits are encoded, the buffer size increases, as the error check bits are appended to the 

original flit. The complexity of encoding / decoding modules increases with data size. However, the area / 

power overheads decrease, as the error control bits / data bits ratio decreases: 6 error control bits for 32 data 

bits and 7 error control bits for 64 data bits. 
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Interleaving SEC codes leads to larger flits (i.e. more error check bits are necessary to protect data) that 

have a major impact on the area / power overheads of NL-FEC protected routers. When there are two and four 

interleaved data groups, the number of control bits increases from 6 to 10 and 16 for 32-bits networks, and 

from 7 to 12 and 20 for 64-bits networks. Thus, the number of intra-die / inter-die wires increases in order to 

allow data and error check bit parallel transmission. Compared to link-level FEC, NL-FEC is more expensive 

when interleaved codes are used (i.e. LL-FEC area / power overheads are up to 28% / 40%). 

In the 65nm process, flit encoding and error detection / correction can be performed within one clock for 

32-bits and 64-bits NL-FEC. Hence, there is no impact on network performance. This result, together with the 

area / power overheads and reliability assessments above show that NL-FEC is more efficient in the case when 

network performance is critical and multiple transients do not cumulate along the path. 

5.2.3 Multi-layer error resilience 
A limitation of network-level FEC is that faults cumulate along the path, leading to uncorrectable error 

patterns. In the multi-layer approach, network reliability is improved by adding link-level Forward Error 

Correction capabilities. Using the flit error control bits appended at the source node, correction is possible at 

link-level by adding correction stages. 

5.2.3.1 Reliability assessments 

Let us consider a path having n routers (i.e. n-1 identical links) and c intermediate correction stages. The 

path reliability (i.e. the probability that flits correctly arrive at destination) is given by the probability that all 

errors are corrected by the intermediate correction stages or at destination. Assuming that there are s=c+1 

sections with n1…ns routers each, the path reliability is given by: 
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Equation (V-17) shows that network reliability (i.e. the minimal path reliability) depends on the code 

correction capabilities and the path length between correction stages. In the multi-layer scheme, Hamming 

codes are used for single error correction (SEC). However, when multiple error correction is required, SEC 

codes are interleaved. 

For a 12-hops path with 32-/64-bits links and a router reliability ρr=99.99%, let us consider that correction 

stages are inserted every two, three, four and six hops. In Figure V-15, the reliability of NL-FEC schemes with 

up to six intermediate correction stages and with interleaved Hamming SEC codes on four groups are 

represented. 
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Figure V-15 Comparison of link-level and network-level FEC for 32 bits routers  

In both 32-bits and 64-bits networks, the path reliability of NL-FEC with intermediate correction stages is 

higher that in the cases where simple NL-FEC schemes are used (i.e. correction only at the destination node, 

NL-FEC 1). Although path reliability targets above 99.75% can be achieved without intermediate correction 

stages, adding correction stages significantly improves path reliability. 

The reliability improvement observed for NL-FEC with correction stages is due to the fact that faults are 

less likely to cumulate over shorter path sections. Hence, the reliability increases when the path sections 

between correction stages are shorter. For example, reliability targets above 99.999% are achieved when 

intermediate correction stages are considered every two hops (i.e. NL-FEC 6). 

NL-FEC with interleaved Hamming SEC codes improves path reliability. In the examples above, the path 

reliability of NL-FEC×4 is similar to that of NL-FEC with four intermediate retiming stages (i.e. correction 

every three hops) for 32-bits. In some cases, SEC interleaving provides better path reliability that SEC with 

correction stages, as double errors are more likely to cumulate along path sections than multiple uncorrectable 

errors along the entire path. 

5.2.3.2 Area and power overheads 

In 3D NoCs with NL-FEC, correction stages can be inserted such that faults can cumulate on path sections 

no longer than pMAX. Hence, up to six ports (i.e. NORTH, SOUTH, EAST, WEST, UP and DOWN) of the 

seven-port router may have correction stages. In the 65 nm process, a retiming stage is added before each 

correction stage in order to maintain the 1GHz network clock frequency. In this case, flit transmission on the 

PHY and error detection / correction are performed in two clock cycles. The insertion of the retiming stage 

raises the data loss problem: by the time the buffer FULL signal of the receiver router arrives at the transmitter 

router, a flit could be in the correction retiming stage. Therefore, in order to avoid data loss, an extra position 

is added for input buffers having a correction stage. In TABLE IV, the area and power overheads for the 

seven-port router with up to six correction stages are summarized. 

The area / power overheads increase with the number of error correction stages. The area overheads are 

due to the larger flit size, the correction logic and the protected input buffers with an extra position. Compared 

to NL-FEC, protecting a single port increases the area overheads by 10%, while the power overheads almost 

double. Although the encoding / decoding complexity increases with data size, the overheads of 64-bits flits 



Experimental Evaluation of Error Resilience Strategies                                                                                                  115 

are slightly lower than for 32-bits, as the relative number of error correction bits is 7/64 instead of 6/32. The 

correction complexity outweighs the buffer size when the number of correction stage increases. In this case, 

the area and power overheads exceed 40%. 

TABLE IV AREA / POWER OVERHEADS [%] OF MULTI-LAYER ERROR RESILIENCE  

32-bits 64-bits 
Error correction scheme 

Area (%) Power (%) Area (%) Power (%) 

SEC with 1 port 27.64 23.19 26.75 17.83 

SEC with 2 ports 32.43 29.01 31.83 23.81 

SEC with 3 ports 34.54 30.25 37.77 29.57 

SEC with 4 ports 40.15 39.79 43.02 35.28 

SEC with 5 ports 45.65 46.3 50.86 42.12 

SEC with 6 ports 48.02 48.84 53.97 45.55 

 

In 3D NoCs, it is assumed that correction stages are added only for inter-die links and only two ports have 

error detection and correction stages. Hence, intra-die and inter-die errors will not propagate between layers, 

as errors are corrected before the incoming flits are stored in the router input FIFO. Compared to the link-level 

approach (see all links protection in TABLE II), the area overheads of the multi-level solution are ~5% larger, 

but they dissipate ~10% less power. Although network-level solution with interleaving SEC codes can ensure 

similar reliability levels, the multi-layer solution is more efficient than NL-FEC with two interleaved groups 

for 32-bits links. However, the complex Hamming SEC encoding/decoding logic and the buffer protection 

against flit drop makes the multi-layer solution less efficient for 64-bits. Moreover, interleaving SEC codes 

also requires more TSVs for error check bits transmission. 

5.2.3.3 Impact on network latency 

In the multi-layer scheme, adding the correction stages has a negative impact on network latency, as one 

clock cycle is lost every time flit errors are detected and corrected. Because error detection and correction is 

performed in a single cycle, the network latency is not affected by the decoder at the destination router. 

Moreover, there are no variations of link latency with the error rates, as error detection and correction is 

performed in a single cycle. 

Let us consider 3D NoCs with intermediate correction stages inserted for all links and for inter-die links, 

respectively. In Figure V-16, the impact of correction stages on the network latency is represented for 

different 3D mesh topologies for uniform random traffic. 
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Figure V-16 Impact of intermediate correction stages on network latency 

Adding intermediate correction stages increases the link latency by one clock cycle. Hence, the average 

network latency increases by more than 12% in the case when all links have correction capabilities. The 

variations in network latency overheads with the topology are explained by the average path lengths. Flits 

make on average 2.41 hops for the 3×3×2 topology and 3.78 hops for the 4×4×4 topology. Hence, the 

performance penalty is higher for network where packets traverse more links with correction stages. 

Including error correction only for inter-die links reduces the latency overheads to less than 5%. Unlike the 

previous case where all links have correction capabilities, the variations of latency overheads are explained by 

the average number of inter-die hops, as only paths using such links are penalized. The 5×5×2 topology has 

relatively high average hop count (i.e. 3.79), but only half of its paths comprise inter-die links. Therefore, 

when only inter-die links are protected, the latency overhead is reduced from 16% to ~2%. As the number of 

inter-die links per path increases, so does the latency overhead. In the 4×4×4 topology, ~75% of paths are 

inter-die and the latency overhead is ~5%. 

5.2.4 Remarks on mitigating transient faults 
In the previous sections, a complete evaluation of error resilient strategies for transient faults was 

presented. Using the uncorrelated fault model, it was shown how each error control scheme should be 

configured in order to achieve the 3D NoC reliability target. The results presented in this section are 

summarized as follow. 

At the data link level, error-control schemes improve path reliability by mitigating transients on the 

physical wires (i.e. intra-die wires and TSVs). For the seven-port router, protecting links using error correction 

codes (i.e. Forward Error Correction schemes) has slightly smaller overheads (i.e. up to 10% for all links 

protection) than retransmission-based schemes that use simpler error detection codes. Unfortunately, using 

error correction codes requires a significant amount of TSVs for sending the error control bits. Thus, they 

cannot be used if there are TSV limitations and ARQ schemes, which require fewer error check bits, must be 

used. If error correction is not enough for FEC schemes then retransmission capabilities are added. The hybrid 
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error correction and retransmission schemes achieve very high reliability targets, but they incur the higher area 

/ power overheads (i.e. up to 50% more than FEC). 

In 3D NoCs it was shown that the overheads can be reduced almost three times by protecting only inter-die 

links. This area / power benefit also comes with improvements in terms of performance, as the latency delay 

of inter-die links increases. Despite these benefits, the selective inter-die link protection strategy has limited 

reliability improvements capabilities, making it suitable for technologies where inter-die links are more likely 

to be affected by transients than intra-die components (i.e. routers and intra-die links). 

Major limitations of link error control schemes include the relatively high performance penalty (i.e. at least 

one cycle is lost for each hop in the all link protection scheme) and its inability to mitigate transients on router 

buffers. When adding correction codes for inter-die link is not an issue, these challenges are jointly solved for 

individual flits using network-level forward error correction (NL-FEC). For low error rates (i.e. at most one 

transient per flit along the path), NL-FEC proves more efficient in terms of area and power than all links 

protection. For higher error rates, interleaving Hamming SEC codes ensure higher reliability with negligible 

impact on network latency, but the costs increase significantly (i.e. ~20% more area than all links FEC). 

An alternative to interleaved codes is a multi-level use of Forward Error Correction, where flits are 

encoded at the source node and error detection and correction is performed at destination and at intermediate 

correction stages. For high error rates, this solution is better in terms of area / power overheads than NL-FEC 

(i.e. up to 17% smaller overheads). However, using this strategy will have a greater impact on network 

latency, as error correction takes at least one clock cycle. Hence, when correction is performed for inter-die 

links, the latency overheads are up to 5% for 3D mesh topologies. 

5.3 Conclusions 

In this chapter, the error resilience schemes for TSV permanent and transient faults have been analyzed. 

Experimental results have shown that permanent TSV faults due to manufacturing defects can be efficiently 

mitigated using link-level and network-level repair. In the cases where no spare TSVs can be used, 

serialization (CSL) and fault-tolerant routing (TSV-FTR) provide alternatives to spare-based solutions. 

Although they ensure high TSV reparability, CSL and TSV-FTR solutions affect network performance. 

Adding spares improves network performance, but the costs of serialization with spares (i.e. up to 20% area 

overhead) exceed those of fault-tolerant routing with spares. In the multi-layer approach a limited number of 

spares can be allocated for inter-die links and fault-tolerant routing is more efficient than serialization. 

In-field TSV failures are more difficult to repair, as external testers have no access to TSV of the repair 

fabric. In this case, the Interconnect Built-In Self-Test (IBIST) and Built-In Self-Repair and Adaptive 

Serialization (IBIRAS) solutions are implemented on-chip. TSVs are tested during system life-time using 

KAF-based test patterns and faulty TSVs are repaired using functional spares (i.e. IBISnR) or by link 

serialization. Embedding such capabilities has non-negligible costs, as the router overheads go up to 40% 

when the TSV failure rate during system lifetime is dTSV=1%. 
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Mitigating transients on inter-die links in an efficient way is more difficult, as there are many possible 

solutions. At link-level it was shown that Forward Error Correction is more efficient. This solution has the 

disadvantage that it requires a significant amount of redundant TSVs for the error control bits. An alternative 

are retransmission-based schemes (ARQ) that use error detection codes, which requires less error check bits. 

In this case, the performance penalty increases, as flit retransmissions depend on the flit error rate. When 

adding error control bits is not an issue, the reliability shortcomings of link-level error control are alleviated 

by network-level FEC schemes. Flits are individually encoded at source and errors are detected and corrected 

at destination. Although there is no impact on network performance, as flit encoding and decoding is 

performed in a single clock cycle, the disadvantage of this scheme is that in unreliable technologies multi 

faults will cumulate along the path, making error correction impossible or prohibitively expensive. Although 

SEC code interleaving could solve this issue by having multiple error capabilities, an inter-die multi-layer 

solution proves more area / power efficient in some cases. Hence, link-level and network-level FEC are 

jointly used to correct errors cumulated along intra-die path sections. This way, higher communication 

reliability is achieved with less than 5% overhead on network latency. 

Despite the work in error resilience schemes, it is not clear which of these solutions is better suited for a 

given 3D NoC application. In designing an MPSoC, good practices may lead to solutions that are too 

conservative and that lead to over-designed systems. Identifying the best error resilient NoC configuration at 

design time is a challenging task, as there are many aspects that must be taken into account. An exhaustive 

analysis of 3D NoC error resilient schemes similar to the one presented in this chapter is time-consuming. 

Therefore, a strategy that finds the best error resilience configuration is necessary. In the following chapter the 

error resilience exploration process is introduced, along with an implementation for 3D NoCs. Using a highly 

configurable library of single-/multi-layer fault-tolerant solutions, error resilience is automatically 

implemented and evaluated for the given 3D NoC architecture. The result of the exploration process is a list of 

potential solutions, which satisfy the reliability / yield requirements for the targeted fault rates. Using the costs 

(i.e. area, power, and timing) and performance evaluations, the system designer decides which of these 

solutions is better suited for the 3D NoC-based design. 
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There are many error-resilience schemes for 3D NoCs, but it is very difficult to select an optimal solution. 

One-fits-all solutions do not exist and an exhaustive search of all error resilience solutions often proves 

inefficient, yielding strategies that are too conservative. In this chapter, this challenge is addressed by an 

Error Resilience eXploration (ERX) methodology. Different 3D NoC error resilience strategies are 

implemented and assessed, with respect to hardware costs (i.e. area, power) and impact on network latency, 

such that reliability and yield targets are achieved with a limited number of TSVs. This process is performed 

early in the design phases, helping system designers to choose the best solution that satisfies their 

requirements. In order to validate ERX and assess the impact of error resilience on system performance, a 

system-level case study is considered. For a 64-tiles 3D MPSoC, which is interconnected by a 4×4×4 3D 

mesh NoC, different error resilient configurations are determined using ERX. The best solution is chosen 

and the system-level impact of error resilience is assessed using a SystemC simulation platform based on 

cycle-accurate SoCLib library. 

6.1 Error resilience exploration for 3D NoCs 

Designing complex 3D systems with reliability and yield targets becomes increasingly difficult when the 

number of cores per chip goes in the order of hundreds or even thousands. In literature, there are many 

schemes that allow system designers to mitigate different faults. 3D NoCs can be designed to achieve different 

yield / reliability targets using one or more of the existing fault tolerant solutions presented in Chapter 4. 

Unfortunately, designing systems to be reliable often leads to non-negligible hardware costs and performance 

penalties that are difficult to accurately assess. In the early design stages, finding an optimal solution is very 

difficult. The alternative is to perform an error resilience exploration process, where different fault tolerant 

strategies are assessed early in the design stage such that designers may chose an optimal solution. In this 

section, the process of exploration is detailed for 3D NoCs. 

In Chapter 2 several NoC design strategies have been briefly presented. In both academic and industrial 

environments, NoCs are often designed using dedicated tools that automatize many steps of the design 

process. For example, the design flow of Spidergon STNoC [DCC11] allows designers to build a NoC-based 

system with different topologies and then generate the simulation platform for the targeted system. Although 
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such tools enable architecture exploration, they give very little information on how reliability could be 

achieved1. Using a similar approach it is possible to generate 3D NoC error resilient configurations that satisfy 

different yield / reliability targets. These configurations can then be assessed using existing design flows such 

that the system designer can choose one of these strategies by comparing different performance-costs results. 

A 3D NoC design flow has been built around the fully synchronous seven-port router (see Appendix). 

After the designer chooses the size of the 3D mesh (i.e. the X, Y, and Z dimensions) and the data size, the 

RTL code of the NoC is generated. For this 3D mesh NoC design flow, an error resilience exploration tool 

(ERX) has been developed. In the following chapter, the architecture and functionality of ERX are described. 

6.2 The ERX tool 

The error resilience exploration (ERX) tool for 3D mesh topologies finds different configurations of the 

single-/multi-layer strategies presented in Chapter 4, which are implemented to the original NoC such that 

reliability and yield targets are achieved. In Figure VI-1, the diagram of the 3D NoC error-resilience 

exploration flow is presented. 
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Figure VI-1 Error-resilience exploration (ERX) diagram for 3D NoCs 

In ERX, a 3D mesh NoC is defined by its size (i.e. number of nodes in the X,Y, and Z directions) and the 

number of data bits. In order to configure different error resilience schemes, the TSV failure rate (i.e. 

probability of permanent faults due to manufacturing and aging defects) dTSV, the TSV error rate εTSV (i.e. the 

probability of a transient on a single TSV), the intra-die wire error rate εwire, and the flit error rate / router εrouter 

are given as technology-specific inputs. Each error protection strategy is configured such that the reliability 

and yield targets RT and YT are achieved. Moreover, it is possible to select configurations that use up to a 

certain number of TSVs / link. 

After the exploration process, the tool returns a list of potential solutions with the impact on the network 

average latency. The network latency is a theoretical estimation, which is determined using the zero-load 

                                                           
 
 

1 In the case of Spidergon STNoC, a possible error resilient extension to the synchronous Spidergon STNoC links is 
presented in the Appendix 



Conclusions and Future Work                                                                                                                                          121 

latency (ZLL) model. Using the list of potential solutions, the RTL code of the error resilient NoC can be 

generated and further cost / performance evaluations can be performed. In the rest of this section, the selection 

process of error resilience strategies and the cost / performance assessment methodologies are presented. 

6.2.1 Error resilience scheme selection  
In the error resilience exploration process, fault tolerant schemes for transient faults are configured first, as 

data and error check bits are transmitted on regular TSVs. The tool may return one or more solutions for each 

data link and network level, or even some multi-layer solutions. The network reliability is given by the 

minimal reliability of all possible paths in the network (i.e. the minimal two-terminal reliability). When 

homogenous network components (i.e. there is no reliability variation of routers and links with the spatial 

distribution) are considered, the minimal path reliability is given by the longest path in the NoC. Thus, the 

network reliability for a single flit can be expressed using the error probability on routers εrouter, intra-die links 

εlink-2D, and inter-die links εlink-3D, as shown below: 
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Data link and network protection schemes are configured such that ρflit ≥ RT=1-εT. Data link solutions are 

determined first using the selective inter-die link protection strategies (i.e. minimize εlink-3D). If the targeted 

reliability level cannot be achieved for any error control scheme (i.e. forward error correction FEC, automatic 

retransmission query ARQ, and hybrid error correction and retransmission HYB) then an all-link strategy is 

considered (i.e. minimize εlink-2D and εlink-3D). The reliability of FEC / ARQ / HYB protected intra-die and inter-

die links are given in Chapter 5, equations (V-7, V-10, and V-12). 

Inter-die link FEC configurations that satisfy the reliability requirements are selected if there are enough 

spare TSVs for the error check bits. If the reliability improvements of FEC are not high enough then 

retransmission is added by implementing HYB schemes. Since FEC/HYB schemes use Hamming 

SEC/SECDED codes with one, two, or four interleaved groups, a significant amount of wires is necessary for 

sending these error control bits. When the number of TSVs per link is limited, these solutions cannot be 

implemented. The only alternative being ARQ protection, which uses error detection codes (i.e. interleaved 

parity codes) with fewer error check bits (i.e. at least two parity bits). 

In the case of link protection, transients that affect flits during router traversal propagate along the path, 

causing serious reliability issues. If there are enough TSVs to accommodate the error check bits of each flit 

then network-level error correction (NL-FEC) can be used. In this case, the interleaved Hamming codes may 

have one, two, or four groups, depending on the error rates and reliability targets. In the multi-layer scheme 

error correction stages are added for inter-die links. 

At the end of the reliability assessment process, a list of potential solution is returned. For each solution, 

one or more TSV repair strategies are determined. In Figure VI-2, the selection process for the repair schemes 

is presented. 
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Figure VI-2 Selection process for TSV permanent faults 

If only manufacturing faults are considered then spare-based (TSV-SnR), serialization-based (CSL) and 

fault tolerant routing (TSV-FTR) solutions can be considered. In the case of TSV-SnR repair, the number of 

spares / link necessary to achieve the reliability target is determined. If the number of spares is less than the 

maximum number of TSVs / link then more spares are allocated and the grouping strategy is used for cost 

reduction. For example, if at least three spares are necessary to achieve the yield target, but there can be up to 

four spares then the regular TSVs are split in two / four groups with two / one spare per group. Then, the 

configuration with fewer spares / group that satisfies the yield target is selected. If the number of spares 

exceeds the TSV count limit then CSL and TSV-FTR are used with as many spares as possible. When TSV 

failures during system life-time are considered, IBIRAS+IBIST schemes are used if there are not enough TSVs 

for spare-based repair (i.e. IBIST+IBISnR). 

For each error resilient configuration, the impact on network latency is analytically determined for the 

XYZ mesh NoC using the Zero Load Latency model. ERX can be used with existing ASIC flows for area and 

power estimations. In the following section the ZLL performance estimation methodology of network latency 

is presented. 

6.2.2 ERX network average latency analytic evaluation 
ERX determines the average latency for each protections scheme using the zero load latency (ZLL) model. 

This model allows fast estimation of the impact of error resilience on the network latency. For a packet that 

traverses the network along a path with p hops, the latency Lpath is defined as the sum of the latency on all 

links and routers along the path (i.e. p·δlink+(p+1)·δrouter) and the packet serialization delay δser (i.e. the delay 

necessary to inject the entire packet flit-by-flit). Using these notations, the packet latency is expressed as: 

serlinkrouterpacket ppL δδδ +⋅+⋅+= )1(       (VI-2) 

The router delay δrouter represents the time necessary for the flit to traverse the router. When links are not 

protected, it is considered that one clock cycle is necessary for flits to traverse it (i.e. δlink=1). Because 

encoding and decoding within one clock cycle is not possible, the latency of protected links is at least two 

clock cycles. Assuming that Hamming detection and correction can be done in a clock cycle, the latency of 

FEC-protected links is two cycles (i.e. δ’
link=2). In the case of ARQ-protected links, error detection enables the 

retransmission mechanisms. When errors are detected, the link latency increases to four cycles (i.e. δ’
link=4). 
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Flit retransmission is used in HYB scheme only when the error cannot be corrected. In this case, the link 

latency increases to five cycles (i.e. δ’
link=5), as a retiming stage must be included between the decode output 

and the retransmission logic input. In general, when ρlink represents the fault probability of the encoded flit, the 

link latency is expressed as: 

( ) fault

linklink

freefault

linklinklink δρδρδ ⋅−+⋅= − 1'       (VI-3) 

When all links are protected, the path latency increases by at least p cycles. In the selective link protection 

strategy, protecting fewer links along the path reduces the overall path latency. For np out of n-1 protected 

links, the path latency of a single flit with selective link-level protection is expressed as: 

( ) ( ) linkplinkprouterflit npnpL δδδ ⋅−+⋅+⋅+= '1      (VI-4) 

Network-level protection is aimed at protecting flits along the source-destination path. In network-level 

FEC, Hamming SEC encoders are added (i.e. δenc) on the router local input ports and decoder (i.e. δdec) on the 

local output ports. Hence, the path latency is expressed as: 

( ) decencserlinkrouterpacket ppL δδδδδ +++⋅+⋅+= 1      (VI-5) 

In most cases encoding and decoding can be done within one clock cycle and it is assumed that one cycle 

is needed for encoding (δenc=1) and one another cycle is needed for decoding (δdec=1). However, 

implementations where there is no penalty on network latency are possible. 

In the multi-layer scheme, error correction stages are inserted, in order to avoid error propagation and 

accumulation along the source-destination path. In the general case, when there are c intermediate retiming 

stages, the path latency increases by c decoding delays. 

( ) ( ) decencserlinkrouterpacket cppL δδδδδ ⋅++++⋅+⋅+= 11     (VI-6) 

Permanent interconnect faults are mitigated at link-level using spares and serialization. While spare-based 

repair has negligible impact on link latency, serialization increases link latency. For the p-hops path, let us 

consider that there are s links that serialize data transmission in T1, …,Ts cycles. Hence, the header flit latency 

is given by: 
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When flits are serialized by a CSL (or IBIRAS) link, they no longer form a continuous stream when they 

leave the link. This means that even if data is initially sent as a continuous stream (i.e. one flit / cycle), they do 

not arrive in a continuous stream. In the case of two-cycle transmission, the first data block arrives with a 

delay of one clock cycle and the subsequent flits leave the link every two cycles. Similarly, when data is 

serialized in four cycles, the delay of the first flit is three cycles and the remaining flits arrive every four 

cycles. 

This behavior will affect the packet latency, as flits will arrive at destination every Tmax-1 cycles, where 

Tmax is the maximal serialization rate of all links along the path (i.e. T1,…,Ts). For example, when a link with 

T=2 is followed by a link with T=4, flits arrive at the second link every two cycles and create backpressure, 

filling the router buffers. Thus, flits will exit the T=4 serializing link every four cycles. In the other case, when 
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a T=4 link is followed by a T=2 link, flits arriving every four cycles are delayed by two extra cycles. Since 

serial transmission ends before the new flit arrives, the relative distance between consecutive flits remains the 

same. Assuming that the serialization delay is one cycle per flit, the latency of a packet with F flits (i.e. 

δser=F) is given by: 
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Fault-tolerant routing is another solution to the TSV permanent faults problem. In this case, alternative 

paths, which contain only functional components, are determined between source and destination nodes. 

These alternative paths are not always minimal and d extra hops through intermediate nodes are performed. In 

this case, the packet latency is given by: 

( ) ( ) serlinkrouterpath dndnL δδδ +⋅−++⋅+= 1      (VI-9) 

These theoretical results are used by ERX to estimate the impact of the selected error resilient 

configurations on the average network latency (i.e. the average of all paths in the network). However, such 

analytical results may not be accurate enough. For more accurate performance assessments, ERX can forward 

the instantiated RTL model of the error resilient NoC to the simulation platform (see Appendix). In order to 

make the 3D NoC instantiation processes possible, the error resilience strategies used by ERX have been 

implemented as generic and highly configurable RTL modules (see Appendix). In the following section, the 

assessment methodology of the 3D router area and power is presented. 

6.2.3 ERX area evaluation 
The ERX tool estimates the costs of the error resilience strategy for the seven-port router used in the 3D 

mesh NoC design flow. In order to assess the costs of error resilience, the RTL model of the fault-tolerant 

seven-port router with error resilient interfaces is synthesized using the technology library provided by the 

designer. 

In the current version of the tool, the area /power evaluations are performed using an ASIC design flow 

based on Synopsys Design Compiler®. Since no libraries for TSV placement are used, the area estimations 

for the TSV footprint are determined from the pitch pTSV (i.e. area of a single TSV is pTSV
2). In Figure VI-3, the 

evaluation process is presented for the schemes determined by ERX. 



Conclusions and Future Work                                                                                                                                          125 

 

Generate seven-port 
router RTL code 

Synthesis router with 
error resilience 

(Design Compiler®) 
) 

Generate Area / Power 
/ Timing reports 

Add total TSV area 
(i.e. σTSV=pTSV

2) 

Solution
exists in 

List ? 

Get next solution 
from List 

YES 

ERX configurations 

Technology library 
Synthesis script 
Constraints file(s) 
    Max area 

    Max power 

    Clock rate 

     

NO 

Append area / power results 
to ERX configuration 

Timing 
satisfied? 

Add retiming stages 
to router interfaces 

NO 

YES 

 
Figure VI-3 Error resilience 3D NoC evaluation flow 

The hardware assessment process takes the list of ERX solutions and generates the RTL code for the 

modified seven-port router using the original router and the highly configurable library of error resilience 

schemes (see Appendix). This library comprises the implementations of the error resilience strategies 

presented in Chapter 4. Due to its high configurability, the number of retiming stages in each error resilient 

interface may vary. These retiming stages are inserted in order to improve circuit timing. For example, it is 

possible to have configurations where SEC/SECDED detection and correction are performed in a single cycle, 

or they are performed in separate cycles with an optional correction bypass stage. 

The area and power estimations are performed using interface configurations with the lowest number of 

retiming stages. If this configuration does not satisfy the timing constraints imposed by the designer then 

retiming stages are gradually introduced until no timing violations are detected. For this configuration, the 

area (i.e. area estimated by Design Compiler® and the TSV footprint) and power estimations are appended to 

the results returned by the tool. 

At the end of the assessment process the system designer has a series of solutions that satisfy requirements 

in terms of reliability / yield, timing and number of TSVs. Using these results he may choose a solution with 

minimal impact on network timing, or minimal router area / power overheads. To illustrate the use of ERX 

tool, a system-level assessment is presented in following section. 

6.3 System-level evaluation 

One of the most promising applications of 3D integration is logic-on-logic systems for massively-parallel 

MPSoC (i.e. SoC comprising hundreds or even thousands of processing elements – MP2SoC). Developing 
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such MPSoCs is outside the scope of this thesis. However, there are open-source simulation platforms that 

enable system designers to experiment novel concepts like MP2SoC, parallel programming, etc. One of these 

platforms is the SoCLib library [SCL], which comprises a series of SystemC cycle-accurate bit-accurate 

(CABA) models for microprocessors (e.g. ARM, MIPS, SPARC), memory controllers, interconnect fabrics 

(e.g. PI-bus, DSPIN, crossbars), and other peripherals (e.g. terminal emulators, interrupt controllers, DMA, 

timers, etc). In this section, the capabilities of ERX are proven for a 3D shared-memory system modeled using 

SoCLib. The 3D MPSoC consists of clusters arranged on a regular 3D mesh, which are globally 

interconnected by a 3D mesh NoC. The ERX solutions are determined for different scenarios. One of these 

solutions is chosen by the system designer and its impact on system performance is assessed. 

6.3.1 3D System Architecture 
For MP2SoC applications, the SoCLib library proposes a cluster/tile-based approach, where local / global 

communication is performed using the VCI [VCI01] protocol. In the VCI standard, communication is 

performed using load / store transactions between an initiator (e.g. CPU, DMA) and a target (e.g. memory 

controller). The cluster-based architecture has two levels of interconnect fabric: the local fabric, which is 

interconnecting modules within a cluster, and the global fabric, which ensures inter-cluster communication. 

The shared-memory 3D MPSoC consists of clusters interconnected by a 3D mesh NoC. Within each 

cluster, IP blocks communicate using the local crossbar. Each cluster contains at least one master (e.g. CPU) 

and one slave (e.g. memory controller, timer, TTY terminal, memory locks, etc.). Inter-cluster communication 

is performed through the 3D NoC whose network interface controller (NIC) is connected to the local crossbar 

and translates local transactions to NoC packets. The clusters are planar structures (i.e. they are implemented 

using 2D technologies) and only the 3D NoC spans across the silicon stack. In Figure VI-4, a two-layer 3D 

MPSoC with two clusters in each layer is represented. 
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Figure VI-4 3D MPSoC architecture with physically separated request and response networks 

The NIC of each cluster has both initiator and slave interfaces that are connected to the request and 

response networks. Physical separation of request and response networks is necessary in order to avoid high-
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level (i.e. transaction-level) deadlocks. In cluster T0, load / store transaction between CPU0 and RAM0 are 

carried on the local interconnect. If CPU0 from cluster T0 initiates a transaction with the slave device S6 from 

cluster T3, then transaction messages go through the network interface NIC of T0. These messages are 

translated into packets that are processed by the request network. The packetized request arrives at the 

network interface controller of T3 and then it is forwarded to slave S6, which processes the request. The 

response returned by S6 is packetized by the local NIC and it is sent through the 3D NoC to the initiator CPU0 

in T0. 

Virtual systems based on the SoCLib library are capable or running a series of applications, including full 

operating systems like eCos, RTEMS, MutekH, and DNA-OS. Unfortunately, the cycle-accurate simulation 

execution times increase exponentially with the number of CPUs, making such simulation impractical. Thus, 

simple applications that access different memory locations (i.e. global and local memory) are considered for 

system-level performance assessments. 

In the 3D mesh cluster configuration, each cluster is identified by a unique set of X,Y,Z coordinates. Within 

each cluster there are two processors and different slave devices such as on-chip memory, timers, memory 

locks, etc. Access to off-die memory is done through the memory controller RAM0 in cluster (0,0,0). In order 

to maintain compatibility with the 32-bits components of the SoCLib library, the request network flit size is 

37 bits (i.e. 32 data bits, four byte enable and one side-band information bit for End-of-Packet) and the 

response network size is 33 bits (i.e. 32 data bits and one EoP side-band information bit). 

Since SoCLib does not support 3D architectures, 3D mesh network interface controller (NIC) and fully-

synchronous seven-port router SystemC models have been implemented. The system designer can use these 

extensions to build 3D MP2SoC with different mesh topologies.  

For 3D systems comprising hundreds or thousands of cores, reliability and yield become serious 

challenges. Assuming fault-free intra-die and inter-die communication is no longer possible and error 

resilience strategies must be used in order to achieve the desired reliability / yield targets. The system designer 

may use the ERX tool to identify potential error resilience solutions for the 3D mesh request and response 

network. In the following section, several case studies are presented for an MPSoC with 64 clusters 

interconnected by a 4×4×4 3D mesh NoC. 

6.3.2 Error resilient configurations 
In the system-level evaluations, an MPSoC with 64 clusters is considered. Each of these clusters has up to 

four CPUs, a small on-chip memory and other components such as timers, interrupt / terminal controllers, and 

DMA. The 4×4×4 3D NoC global interconnect fabric consists of two physically separated networks with 33-

bits and 37-bits flits. The ERX tool is used to identify error resilient configurations for the request and 

response networks. The objective is to achieve the YT=99.99% TSV reparability (yield) target and the 

RT=99.9999% reliability target (i.e.  εT=1e-6). 

The experimental results of ERX are presented in the following for two experimental setups. Synopsys 

Design Compiler® was used for area / power / timing estimations for a 65 nm low-power technology. The 

synthesis process of the error resilient router was performed for a target clock rate of 1GHz. 
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6.3.2.1 First 3D MPSoC configuration 

In the first experimental setup, let us consider that errors on routers are negligible (i.e. εrouter=0), the error 

rates for intra-die and inter-die wires are εwire=10
-9 and εTSV=10

-6, respectively. In this setup, the TSV failure 

rate is dTSV=0.01%, no TSV in-field failures are considered, and up to 10 TSVs may be added for each inter-

die link. Note that 4 of these spare TSVs are used for TMR protection of flow control signals write and 

write_ok, leaving only 6 TSVs for data signals. 

In the non-protected case, the probability that a single flit correctly arrives at destination is ρflit=99.988% 

for the request network, ρflit=99.989% for the response network. This minor difference is due to the different 

flit size: in general, the error rate of a flit with n bits is εflit=1-(1-εwire)
n. In the uncorrelated fault model, it is 

more likely for larger flits to be affected by errors. In the initial configuration, the TSV yield (i.e. probability 

that all TSVs of all inter-die links are functional) is Y3D=49% Using ERX, the yield / reliability targets are 

achieved by the configurations presented below. 

In the first configuration, protection against transients on data bits is provided only on inter-die links using 

ARQ with interleaved parity on four groups (i.e. 4 TSVs for error check bits). Permanent TSV faults due to 

manufacturing defects are repaired using two spare TSVs. Hence, the regular TSVs of each link are split in 

two groups and a single spare is allocated for each group. The area / power overhead of this configuration are 

14%/10% for the request network routers, and 12%/9.5% for the response network routers. The network 

latency increases due to transients on inter-die links, as retransmissions are performed every time an error is 

detected. The estimated latency overhead is 2.5% for the request network and 2.49% for the response network. 

In the second configuration, inter-die links are protected using FEC schemes with Hamming SEC codes. In 

this case, all the remaining 6 spare TSVs are used for error check bits transmission. The TSV manufacturing 

defects are repaired using the TSV-FTR routing algorithm. The area / power overheads of this configuration 

are 19%/12% for routers in the request network, and 18.85%/11.55% for routers in the response network. In 

terms of performance, the network latency increases for packets traversing inter-die links, as the link latency 

increases by one clock cycle and the path length increases in the case when packets are routed around faulty 

links. Hence, the latency overhead is estimated at 2.2% for the request network and 2.17% for the response 

network. 

In the third configuration, inter-die links are protected using FEC schemes with Hamming SEC codes, 

while TSV manufacturing defects are repaired using link-level serialization (i.e. CSLs). The area / power 

overheads of this configuration are 19.5% / 12.3% for the routers in the request network, and 18.985% / 

11.65% for the routers in the response network. In terms of performance, the network latency increases for 

packets traversing inter-die links, as the link latency increases by one clock cycle. Moreover, inter-die links 

with faulty TSVs serialize data in two cycles, increasing the link latency to three cycles. Hence, the latency 

overhead is ~2% for the request network and 2.1% for the response network. 

The configurations presented above have a negligible impact on network latency. Thus, the decision to 

implement one of these strategies is based only on the area / power overheads. Due to its lower overheads, the 

first configuration is the obvious choice. 
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6.3.2.2 Second 3D MPSoC configuration 

In the second setup, let us consider that flits are affected by errors with the probability εrouter=10
-8, the error 

rates on intra-/inter-die wires are εwire= εTSV=10
-6, and the in-field TSV failure rate is dTSV=0.1%. In this setup, 

the probability that flits arrive at destination fault-free is ρflit=99.96% for the request network and ρflit=99.97% 

for the response network, while the inter-die link reparability (i.e. the probability that all links are functional 

during system lifetime) is less than 1% (i.e. 0.9999
96·37). The error resilient configurations returned by the ERX 

tool are summarized below. 

In the first configuration intra-die links are protected using forward error correction (FEC) with Hamming 

SEC codes, while inter-die links are protected using retransmission-based schemes with error detection codes 

(i.e. ARQ with two parity bits). Because there are some redundant TSVs available, permanent faults may be 

repaired using spares (i.e. IBISnR). Hence, two spares are allocated for each inter-die link of the 3D NoC. The 

area / power overheads of this configuration are 40%/35% for the request router and 41%/36% for the 

response router. The network latency increases, as encoding and decoding modules are inserted on all links. 

The estimated latency overhead is ~8% for the request network and 7.95% for the response network. 

In the second configuration, all links are protected using FEC with Hamming SEC codes. However, as 

most redundant TSVs are used for sending the error check bits, TSV permanent faults are repaired using 

serialization (i.e. IBIRAS). The seven-port router area / power overheads for this configuration are 42% / 37% 

for the request routers, and 42.5% / 37.7% for the response routers. The network latency estimations for this 

case are estimated to 10% for the request network and 9.85% for the response network. 

In the third configuration, network-level FEC (NL-FEC) protection with Hamming SEC codes is used for 

transient faults mitigation. Since there are no available TSVs for spare-based repair, permanent faults are 

repaired using serialization (i.e. IBIRAS). The area / power overheads are 43% / 35% for the request network 

and 43.5% / 36% for the response network. The ERX tools estimates an average latency overhead of 3% for 

the request network and 2.9% for the response network. 

The on-chip TSV test and repair capabilities increase the router area and power overheads above 40% and 

30%, respectively. Although the proposed error resilient configurations have similar overheads, the third 

configuration is more likely to be chosen, since its impact on network latency is very small. 

In this section, two 3D MPSoC case-studies have been considered for the ERX tool. Optimal solutions, 

with respect to area / power overheads and estimated network latency, have been identified. In order to assess 

the system-level impact of error resilience, these configurations have been implemented in SoCLib for 

system-level evaluations. These results are presented in the following section. 

6.3.3 Performance evaluations  
The system performance is affected by the error resilience schemes, as the latency of packets traversing the 

network increases. In the previous section, the impact of error resilience on network latency was determined 

using analytical solution based on the zero-load latency model. In this section, the accuracy of these results is 

enhanced by analyzing the impact of error resilience on the full system. In order to assess the system-level 
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impact on system performance, the optimal ERX solutions determined in the previous section have been 

implemented in the SoCLib library. 

Although the 3D platform modeled using SoCLib is able to run complex software applications (including 

OSes), the simulation times are very long for the 64-clusters MP2SoC. Therefore, in order to mimic the 

system functionality, each processing element executes a series of read/write memory operations. This way, 

both the local and the global interconnect fabrics are loaded with transaction messages. 

In the first error resilient setup, errors are injected only for inter-die links (i.e. εTSV=10
-6), since the error 

rate for intra-die links is very small and no intra-die link protection strategy is considered. Thus, flits on inter-

die request / response links are retransmitted with a ~0.35% probability (i.e. the probability that errors are 

detected on at least one link). Experimental results have shown that the performance (i.e. application 

execution time) penalty is negligible (i.e. less than 0.1%). 

In the second setup, the system comprises 9600 TSVs and up to 10 of these TSVs could fail during system 

lifetime. If these faults affect the TSV used for flit transmission then the affected inter-die links are configured 

to serialize data in two cycles. In the worst case, these faults affect 10 different links, which will serialize data 

and cause maximal performance penalty. Experimental results have shown that the performance (i.e. 

application execution time) penalty is higher than in the previous case (i.e. ~1%). 

The main contributor to the system performance penalty is due to the longer load/store protocol execution 

times. In Figure VI-5, the execution of a single transaction between an initiator and a target is represented for 

the initial (i.e. unprotected) and error-resilient setups. 

 
Figure VI-5 Transaction execution time in the (a) unprotected and (b) error-resilience platform 

In the error-resilient configuration, the extra delay of the protocol execution time is determined by the 

longer times required by the request and response packets to the networks. The small performance penalties 

(i.e. less than 1%) are explained by the fact that the 3D network traversal takes less than 10% of the 

transaction execution times. 

6.4 Limitations of  error resilience exploration 

Error resilience exploration is an early-design generic methodology whose limitations are briefly discussed 

in this section. First, it cannot be implemented into an existing NoCs design flow in an implementation-

agnostic way. In order to support the ERX instantiation and assessment strategies, the 3D NoC router and 

(error resilient) interfaces must be carefully implemented. The 3D NoC design flow used in this chapter has 

been extended with highly configurable error resilient interfaces (see Appendix). In general, adding such 

capabilities to the NoC design flow do not require any major modifications. An error-resilience framework for 
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Spidergon STNoC links is presented in the Appendix. This framework is then used in a full-system 

assessment using customized MPSoC designs from the Gaisler IP library. 

Being an early-design tool, ERX cannot accurately predict the area / power dissipated by the network. The 

area used by ERX comprises the circuit area estimations given by the synthesis tool and the TSV footprint 

determined using the TSV pitch. The power estimations are also given by the synthesis tool for a 100% 

switching activity on logic gates. Depending on the CMOS library, these estimations do not take into account 

the power dissipated on wires. Modifications to the area / power estimation methodologies are possible. For 

example, more accurate RTL-level and gate-level power estimations can be obtained using different netlist 

back-annotation and standard activity files. 

Another limitation of the ERX implementation is that it works only for 3D mesh topologies that use the 

fully-synchronous seven-port router architecture (i.e. no virtual channels, dimension-order routing, XON / XOFF 

flow control). Also, ERX considers only inter-die wire failures, as pre-bond testing strategies were assumed. 

Thus, alternative error resilience solutions based on fault-tolerant routing, where intra-/inter-die links and 

routers may fail, are not explored. 

6.5 Conclusion 

Error resilience exploration for 3D NoCs is an early-design process that helps designers achieve reliability 

and yield targets in NoC-based MPSoCs. This process consists in quick estimations of the hardware costs and 

performance penalties for 3D NoCs with different error resilient configurations. In this chapter, an ERX 

methodology and tool for 3D mesh NoCs has been presented. 

In order to show the ERX capabilities and assess the system-level impact of error resilience, ERX has been 

jointly used with an MPSoC design flow, which uses the SystemC SoCLib library. Using a 64-tiles 3D 

MPSoC partitioned on four stacked dies, the ERX tool found several configurations that satisfy the reliability / 

yield requirements of two experimental setups. By comparing the costs and impact on network performance of 

the configurations returned by ERX, a best solution was chosen. This solution was then manually implemented 

using the SoCLib library and a system-level simulation was performed in order to assess the impact of the 

selected error resilience strategy on system performance. The results have shown that despite the significant 

router area / power overheads, having error resilience does not have a major impact on system performance. 

Overall, it can be concluded that, for systems with reliability requirements, ERX enables designers to 

quickly identify the best solution. The costs of data link level and network level error resilience can be 

minimized by careful exploration, while the impact on system performance can be negligible. 





 

Chapter Seven 

7 CONCLUSION AND FUTURE WORK 

In very-deep sub-micron (VDSM) technologies, the power and delay problems of global wires can be 

alleviated at technological level by stacked 3D integration. From the system design perspective, 3D MPSoCs 

integrate more capabilities in a single chip. Interconnecting an increasing number of IP blocks, while ensuring 

high computation and communication throughput, requires a scalable solution: the Network-on-Chip. 

Despite the recent progress of Through-Silicon-Via (TSV)-based 3D integration technologies, they are not 

considered mature enough for large-scale production. Testing, manufacturing costs, yield and reliability, 

thermal management, and heat removal remain major challenges. In 3D NoC-based MPSoCs, intra-/inter-die 

communication reliability is paramount, as transmission faults during network traversal may lead to system 

failures. Therefore, efficient interconnect test strategies and error resilience techniques become mandatory. 

The TSV test, yield and reliability of 3D NoC-centric MPSoCs have been addressed in this thesis. 

Testing inter-die wires becomes increasingly difficult when the number of TSVs / chip is in the thousands 

or tens of thousands range. The Interconnect Built-In Self-Test (IBIST) strategy is proposed for testing TSVs 

of inter-die links in 3D NoCs. Among the advantages of this approach is the capability to sensitize both 

structural faults like opens and shorts, and parametric faults like delay faults and delay faults due to crosstalk. 

Using the aggressor-victim scenario, a new fault model has been proposed: the Kth
 Aggressor Fault (KAF) 

model. The aggressors of each victim wire are the TSVs within a distance given by the aggressor order K. The 

major advantages of KAF-based testing are shorter test times (e.g. 16 cycles for 1st aggressor orders and an 

arbitrary number of TSVs) and simple hardware implementation, which are up to 50% smaller than existing 

ones based on marching-ones and MAF-based tests. Moreover, a configurable KAF-based IBIST 

implementation was also proposed. Despite the relative high costs (i.e. almost twice the size of simple KAF-

based implementations) of configurable IBIST, being able to modify the aggressor order used for TSV tests 

has several advantages. First, tests during system lifetime can be performed for lower aggressor orders, 

reducing the off-line time of inter-die links. This strategy can also be used for calibrating TSV technologies 

before full-scale production. 

The TSV reliability and yield challenges of 3D NoCs can be addressed by a single-layer or a multi-layer 

approach. In 3D NoCs, the effort of mitigating permanent and transients faults on TSVs can be shared 

between the data link and network layers. Spare-based repair and serialization are two techniques used for 

repairing permanent TSV faults in inter-die NoC links. Different implementations have been proposed in 

order to address permanent faults due to manufacturing defects (i.e. TSV Spare-and-Replace, Configurable 

fault-tolerant Serial Links) and interconnect aging / wear-out (i.e. Interconnect Built-In Self-Repair and 

Adaptive Serialization). Network failures due to TSV manufacturing defects are avoided by implementing 

TSV fault-tolerant routing (TSV-FTR) algorithms. In the multi-layer approach, the data link serialization-

/spare-based strategies are jointly used with TSV-FTR in order to reduce costs and impact on network latency. 
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Transient faults, which account for most system failures, on intra-/inter-die links are handled by data link 

strategies based on data coding, error correction (i.e. Forward Error Correction) and retransmission (i.e. 

Automatic Retransmission Query), or network-level error correction (NL-FEC). 

In order to assess different trade-offs, the error resilience strategies have been implemented on the fully 

synchronous seven-port router of 3D mesh NoC. The experimental results have shown that, in most cases, 

traditional solutions like spare insertion (TSV Spare-and-Replace) and data retransmission (Automatic 

Retransmission Query) are not effective for TSV high failure rates. Error correction codes (ECC)-based 

solutions for link protection against transients prove to be more efficient in 3D NoCs. Instead of protecting all 

links in the network, it has been shown that protecting only inter-die links significantly reduces hardware 

costs, while the network latency penalty is reduced. 

Protection against permanent faults due to manufacturing defects can be ensured without using spares. In 

this case, links serialize data using the remaining functional TSVs (i.e. CSL) or routers deviate packets on 

alternative fault-free inter-die links (i.e. TSV-FTR). In both cases, the yield gain comes at the expense of 

additional circuitry for serialization or fault-tolerant routing. Experimental results have shown that, for highly 

defective TSVs, serialization with no spares provides the best performance-cost trade-off, while fault-tolerant 

routing with spares has lower hardware costs, but slightly higher performance penalty. 

TSV permanent faults during system life-time are a serious issue for 3D MPSoC comprising many TSVs 

with high defect densities. The solution adopted in this thesis is an off-line self-test and repair process at the 

link level. KAF-based Interconnect BIST strategies are jointly used with the Interconnect Built-In Self-Repair 

and Adaptive Serialization (IBIRAS) scheme, which ensures both spare- and serialization-based repair. 

Experimental results have shown that in current technologies serialization-based repair pays-off only when it 

is not possible to insert the necessary number of TSVs/ link. However, in future technologies the impact of the 

TSV footprint will be larger than that of the serialization / de-serialization circuitry, making serialization-

based solutions more attractive. 

Although there are many solutions to the TSV reliability / yield challenges, it is difficult to choose the best 

strategy for a given 3D system. One-fits-all solutions do not exist and each error resilience scheme has its own 

advantages and disadvantages in terms of costs and impact on system performance. Therefore, an error 

resilience exploration (ERX) tool has been proposed for 3D NoCs. ERX takes as inputs the NoC architecture 

(i.e. topology, flit size, etc), the reliability / yield requirements, and component failure rates (i.e. TSV failure 

rates due to manufacturing / aging and bit error rates on inter-die / intra-die links). Using the library of highly 

configurable error resilience techniques, it automatically implements and assesses different error resilience 

strategies for the targeted 3D NoC. The result is a set of solutions that satisfy the reliability / yield 

requirements and a series of constraints such as the number of TSVs / chip. Using these solutions, the system 

designer decides which solution is better fitted for the system. 

In an experimental case-study, the capabilities of ERX have been evaluated on a 3D massively-parallel 

MPSoC (MP2SoC) using a SystemC virtual platform based on the SoCLib library. The 3D MPSoC has 64 

clusters distributed across four layers and interconnected by a 4×4×4 3D NoC. For two experimental setups, 
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ERX identified several protection strategies, of which one solution (i.e. the optimal one) was implemented in 

the virtual platform. In both cases, the increased latency of the request and response networks has a negligible 

impact on the application execution time (i.e. less than 1%). These results show that, despite their non-

negligible costs, careful selection of data link and network solutions may not lead to any significant 

performance overhead.  

The solutions presented in this thesis are far from being complete and future directions can be envisaged. It 

is always possible to implement alternative fault tolerant solutions at data link and network level. Indeed, 

spare-based repair, serialization, and data encoding are not novel protection strategies and alternative 3D 

NoC-specific implementations can always be developed. Within the ERX framework, these solutions can be 

easily integrated by adding them in the library of error resilience strategies. 

Further extensions of ERX concern the assessment methodology. Throughout this thesis, costs (i.e. area / 

power) were evaluated using a standard synthesis flow with a 65 nm library. In future work, this flow can be 

extended to full 3D environments where assessments are performed in later design stages (e.g. after TSV / 

circuit place-and-route). Although ERX latency measurements are independent on the traffic patterns, the 

network latency was measured for random uniform traffic or using the zero-load latency (ZLL) model. 

However, in order to accurately predict the impact on system performance without relying on full-system 

simulations, the existing traffic models could be extended to support different pseudo-random distributions, 

synthetic traffic, or even real traffic traces. 

It is also possible to implement error resilience at other abstraction layers. At physical level, wire spacing 

or circuit-level protection strategies can improve overall system robustness. Transport-level retransmission, 

transaction-retry or software-based fault tolerance are other potential solutions. Although these solutions are 

outside the scope of ERX, which mainly targets 3D NoCs, it is possible to extend such an exploration platform 

that assesses costs and performance penalties at different abstraction layers. 
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L’intégration 3D est une nouvelle technologie qui permet l’intégration hétérogène de plusieurs composants 

semi-conducteurs sur la même puce. Des couches de silicium sont empilées est connectées par des fils 

verticaux Through Silicon Vias (TSVs). Cette technologie permet d’améliorer les performances des systèmes 

intégrés et de réduire la consommation. Malgré ces avantages, les problèmes de fiabilité, de rendement, de 

tests et de thermique restent parmi les grands défis de cette technologie. Dans cette thèse,  les problèmes de 

rendement, de fiabilité et de test des interconnections TSVs sont traités dans le contexte des Réseaux-sur-

Puce 3D (3D NoCs). Une stratégie d’autotest (Interconnect Built-In Self-test - IBIST) est proposée pour les 

liens 3D. Les problèmes de fiabilité et de rendement des TSVs sont traités dans un contexte uni/multi couche 

ou l’effort de masquer les fautes est partagé par les couches data-link et network du NoC. Ce chapitre est le 

résume des travaux présentées dans les chapitres précédents. 

8.1 Intégration 3D et les Réseaux-sur-Puce 

L’intégration 3D est une technologie émergente qui promet l’intégration hétérogène avec une basse 

consommation et des performances accrues. Les couches de silicium sont empilés et reliés par des 

fils Through-Silicon-Vias (TSV). Aujourd'hui, l'intégration 3D n'est pas encore à pleine maturité et la 

conception de nouveaux concepts et stratégies d'essai sont en cours d'élaboration. Alors que de nouvelles 

techniques sont utilisées pour améliorer le rendement et la fiabilité des puces 3D, plusieurs techniques ont été 

adaptées à partir de domaines bien établis. 

Les noeuds des NoCs 3D sont distribuées dans les couches de silicium et sont connecté par des liens intra-

die et inter-die, assurant la communication intra et inter-die entre les composants des systèmes. La topologie 

des NoC est totalement déterminée par la distribution et la connectivité des IPs du système. Pour un système 

avec N nœuds, les topologies régulières, quasi-régulières et spécifiques sont présentées dans la Figure II-12. 
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Figure VIII-1 MPSoC implemented using 3D NoCs 

La tâche des routeurs est d’envoyer les paquets dans la direction demandée. A chaque routeur, la direction 

du routage est déterminée après l’inspection de l‘entête du paquet. Les routeurs 3D sont des structures 

planaires (2D) qui ont des interfaces dédiées pour les liens intra-die et inter-die. 

Grâce aux liens verticaux, les topologies 3D ont une meilleure connectivité que les NoCs 2D. Plusieurs 

études ont montré que les performances des NoCs 3D sont nettement meilleures [PF07, FP09, QLD09], 

surtout pour les topologies mesh, thorus et ciliated mesh [FP09]. Les TSVs sont des ressources très chères est 

leur coût est non négligeable. Par conséquent, des topologies 3D spécifiques qui réduisent le nombre des TSV 

utilisées, la puissance consommée et qui améliorent les performances du système ont est été proposées [YL08, 

SMB09]. Des techniques de sérialisation [Pas09, DVS11] ont été proposées pour réduire le nombre 

d’interconnections verticales dans les puces 3D.  

Le test des interconnections et la tolérance aux fautes des NoCs sont des sujets de recherche très populaires 

dans la communauté. On trouve beaucoup de stratégies dédiées pour les NoCs 2D qui sont également utilisées 

dans un environnent 3D. Parmi les objectifs de cette thèse,  figurent le test et la fiabilité / rendement de la 

structure d'interconnexion des systèmes 3D. Des solutions différentes aux problèmes mentionnés ci-dessus 

sont donc présentées dans les sections suivantes. 

8.2 Stratégies de test pour les liens verticales dans les NoCs 3D 

Les liens verticaux des NoCs 3D sont des éléments essentiels, car la plupart des avantages en terme 

d'efficacité énergétique et de performance sont dues à eux. Dans cette section, les défis de test des liens 

verticaux sont traités par une stratégie d’autotest: Interconnect Built-In Self-Test (IBIST). La stratégie de test 

proposée doit sensibiliser les défauts structurels permanents tel que les opens et les shorts, mais aussi de 

retarder les défauts dus à la diaphonie pendant le fonctionnement du système. 

Les connections entre les soutes sont très souvent implémentés par des liens unidirectionnels. Pour un lien 

vertical entre le routeur émetteur TX et le routeur récepteur RX, l’architecture de test TSV-IBIST est représentée 

dans Figure III-2.  
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Figure VIII-2 Inter-die Link Interconnect Built-In Self-Test (IBIST) 

Pendant le test des interconnections TSV1-TSVN (TEST=’1’),  le routeur émetteur est bloqué et les vecteurs 

de test T1:TN sont générés dans la couche en bas par le Test Pattern Generator (TPG) et ils sont envoyées vers 

le récepteur RX. Dans la couche récepteur, les vecteurs de test reçus T1
*
:TN

* sont comparés avec les valeurs 

attendues. Les cellules d’analyse des reposes (RA) comparent ces valeurs pour générer le vecteur de 

diagnostique DV1-DVN qui indique les TSVs fautives. 

Les vecteurs de test qui sensibilisent les fautes de diaphonie peuvent être générés par des TPGs qui 

implémentent le modèle Maximal Aggressor Fault (MAF) [CDB99]. Malheureusement, ce modèle est trop 

conservatif et conduit à de longues séquences de test et à des coûts matériels non négligeables. On propose un 

nouveau modèle, le Kth
-Aggressor Fault (KAF). 

Dans les puces 3D les TSVs sont implémentés de façon à ce qu’ils n’affectent pas le fonctionnement des 

autres composantes. Les interconnections entre couches ont une distribution uniforme ou irrégulière sur des 

matrices MxM. Dans notre modèle, on considère que, pour un pitch p et un ordre K,  les agresseurs d’un TSV 

sont les TSVs les plus proches. Le première (K=1), deuxième (K=2), et le troisième (K=3) ordre d’agresseurs 

d’une victime sont représenté dans In Figure III-3, pour distributions régulières et aléatoires. 
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Figure VIII-3 Les 1er, 2ème et 3ème agresseurs d’un TSV dans une distribution reguliére (a) et aléeatoire (b) 

L’ordre K pour l'agresseur dépend de la technologie et est déterminé de telle sorte que les temps de test 

soient minimes et que la couverture de fautes soit maximale. En utilisant le modèle KAF avec un ordre K, on 

suppose que les TSVs sont partagés dans w sets sets {V1,V2,…,Vw}. Pendant le test, les TSV du set Vi sont 

victimes et les autres TSVs sont les agresseurs. Donc, pour les w sets, les signaux victime PV sont envoyés sur 

les TSVs du groupe Vi et les signaux PA sur les autres TSVs. Pour l’architecture BIST, le circuit qui génère les 

vecteurs de test est représenté dans Figure III-7. 
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Figure VIII-4 Generateur de Traffic pour IBIST avec le modèle KAF 

Dans cette implémentation, le compteur à w positions CNT1-CNTw est utilisé pour envoyé les signaux PV 

sur les TSVs victimes. Pour chaque groupe Vi, un multiplexeur 2:1 contrôle lesquelles des signaux victimes ou 

agresseurs sont envoyé sur les TSVs. Une mise en œuvre d’un  IBIST configurable où les tests peuvent être 

effectués en utilisant différents ordres d’agresseurs K est également possible. 

Les évaluations expérimentales ont montré que la durée du test en utilisant un BIST avec des TPGs basés 

sur le modèle KAF est réduite jusqu’à 16 cycles pour K=1. Les évaluations du coût on montré également que  

la surface du BIST est jusqu’à trois fois plus petite par rapport aux implémentations des TPGs avec des 

modèles existants comme le MAF ou le Marching. 

Le test des composants intra-die et inter-die des NoCs 3D ne peut pas garantir l'absence de fautes. 

Toutefois, ce n'est pas suffisant pour assurer une communication fiable. Les fautes transitoires ne peuvent pas 

être diagnostiquées lors des tests. Les erreurs affectant les messages échangés sur le NoC pourraient avoir des 
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effets dramatiques sur le comportement du système. Dans la section suivante des techniques de tolérance aux 

fautes pour les NoCs 3D sont présentées. 

8.3 Tolérance aux fautes multi niveaux dans les NoCs 3D 

Dans les NoCs 3D, la fiabilité et les défis du rendement dues à des technologies peu fiables TSV sont 

adressées à deux niveaux d'abstraction: data-link et network. Même si des solutions aux niveaux data-link et 

network sont capables de corriger les fautes des TSVs, leur efficacité est souvent contrebalancée par les coûts 

élevés. Donc, une approche multi niveaux, qui s'appuie sur des données des solutions de liaison, au niveau du 

réseau, est proposée. 

8.3.1 Tolérance aux fautes au niveau data-link 
Dans cette sous-section des stratégies pour les fautes transitoires et permanentes des TSVs sont présentées. 

La résistance contre les fautes transitoires et permanentes sur les liens inter-die est assurée par l’utilisation de 

la redondance et des systèmes de codages. 

8.3.1.1 Fautes transitoires 

La résistance face aux transitoires sur les liens est assurée par l’utilisation de la redondance matérielle et 

des systèmes de contrôle d'erreur. Du côté émetteur, les données (flits) sont codées avant d'être envoyées sur 

les fils physiques (PHY). Du côté récepteur, les flits codées reçues sont vérifiées pour les erreurs de 

transmission. Si des erreurs sont détectées, elles sont traités par le mécanisme de reprise, qui est 

habituellement mis en œuvre par des moyens de correction d'erreur ou de retransmission. Le contrôle de flux 

des signaux assure le comportement NoC correcte. Des fautes transitoires sur ces signaux sont plus 

susceptibles de conduire à une défaillance du système. Par conséquent, les stratégies de protection agressive 

telles que la redondance modulaire triple (TMR) sont utilisées pour ces signaux. 

La technique Forward Error Correction (FEC) a la capacité de corriger une ou plusieurs erreurs de 

transmission. Ces capacités sont données par la puissance de correction du code ou sa distance de Hamming. 

Pour deux routeurs TX et RX, le schéma du lien avec FEC est donné dans Figure IV-1. 
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Figure VIII-5 Schéma de la strategie Forward Error Correction (FEC) 

Du côté du routeur émetteur TX, les flits sont encodés par le module ENC. Après le codage, les bits de 

données et de parité sont envoyés sur les TSVs. Du côté du routeur récepteur RX, le module DET vérifie s’il y 

a eu des fautes de transmission. Toutes les erreurs détectées sont corrigées par le module COR, avant que les 

flits n’arrive à destination. 
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La retransmission est utilisée dans la stratégie Automatic Retransmission Query (ARQ) pour masquer les 

fautes transitoires. Le schéma de la technique ARQ est représenté dans Figure IV-5 et est aussi nommée 

retransmission go-back-N. 
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Figure VIII-6 Schéma go-back-N Automatic Retransmission Query (ARQ) 

Du côté de l’émetteur TX, les flits sont encodés par le module ENC et mémorisés dans des mémoires 

tampon de retransmission RTFIFO. Les fautes transitoires sont détectées par le module DET qui est implémenté 

du côté du récepteur RX. Une requête de retransmission est envoyée à l’émetteur, si des erreurs sont détectées, 

et les flits fautés sont renvoyés. 

La stratégie hybride de correction et retransmission (HYB) utilise les deux techniques présentées avant : 

FEC et ARQ. Donc, les flits sont codés et mémorisés du côté de l’émetteur TX et la retransmission est 

demandée si les erreurs détectées du coté du récepteur ne peuvent pas être corrigées. Le schéma de la stratégie 

HYB est présenté dans Figure IV-7. 
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Figure VIII-7 Schéma hybride avec correction et retransmission 

Les stratégies de tolérance aux fautes présentées sont implémentées au niveau des liens pour améliorer la 

fiabilité du réseau. On obtient une fiabilité maximale pour la stratégie où tous les liens sont protégés. Par 

contre, il n’est pas toujours nécessaire d’implémenter ces stratégies pour tous les liens. Pour les NoCs 3D les 

coûts de la tolérance aux fautes au niveau data-link sont réduits avec l’utilisation d’une stratégie de protection 

sélective des liens. Donc, seulement les liens verticaux sont protégés. 

8.3.1.2 Fautes permanentes 

Malgré les capacités de correction des techniques présentées dans la section précédente, des stratégies plus 

adaptées sont proposées pour les fautes permanentes des TSVs. Après le packaging, des stratégies de test  (par 

exemple Boudary Scan) sont utilisées pour identifier les TSVs fautés. En utilisant une structure de réparation 

sur puce et des TSVs redondants, les TSV fautés sont replacées par des voisins fonctionnels. Donc, la 

réparation des liens est assurée avec des stratégies de redondance matérielle ou de sérialisation. 
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Pour la stratégie de réparation des n TSVs avec r TSV redondants, le schéma du lien inter-die est donné 

dans Figure IV-11. 
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Figure VIII-8 Structure de réparation pour n TSVs avec r fils redondants 

Les signaux X1-Xn se propagent à partir de la couche inférieure vers la couche supérieure, en traversant les 

structures de réparation (Crossover Switch). Dans la couche inférieure, ces structures envoient  les signaux 

signals X1-Xn sur les premiers n TSVs fonctionnels. Les switches sont implémentés comme des matrices de 

commutation dont les signaux de commande sont les signaux de réparation qui indiquent comment les TSVs 

fautés sont remplacés. Un possible implémentation d’un switch est donné dans Figure IV-12. 

 
Figure VIII-9 Implémentation du crossover switch avec n entrées et n+r sorties 

Les coûts de la stratégie TSV-SnR sont donnés par la surface des TSVs redondants et la surface des 

structures de réparation. Même s’il y a des stratégies pour optimiser le coût, il n’est pas toujours possible 

d’assurer la réparation des liens. Donc, une stratégie de sérialisation est proposée dans la suite. 

Pour un lien, on assume N TSV réguliers et R TSV redondants. Le lien est fonctionnel si au moins MMIN fils 

ne sont pas fautés. Donc, on a besoin de jusqu’au KMAX=N/MMIN cycles pour la transmission sérielle des N 

bits de données. Le schéma d’un lien Configurable Serial Link (CSL) est présenté dans Figure IV-14. 
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Figure VIII-10 Implémentation du CSL pour N bits 

Quand le nombre des TSVs fonctionnels M est inférieur à N, le lien sérialise la transmission dans 

K=N/M  cycles. Du côté de l’émetteur, les N bits sont chargés dans un registre et pendant les K cycles de 

transmission jusqu’à M bits data sont envoyés sur les TSVs fonctionnels. Les signaux reçus du côté récepteur 

sont mémorisés dans un registre où le message entier est recréé. 

Cette technique, aussi que la réparation basée sur la redondance, utilisent une stratégie de test off-chip 

(Boundary Scan) pour identifier les TSVs fautifs. Les signaux de réparation son calculé par le testeur externe 

est ils sont programmées dans des mémoires fusibles (one-time-programable) via la chaîne de scan. Une 

implémentation on-chip est aussi possible. Dans ce cas, la stratégie de test et la partie de calcul des signaux de 

réparation sont embarquées aux interfaces des liens. 

Dans cette section des stratégies data link pour les fautes transitoires et permanentes ont été proposées. 

Dans la suite, plusieurs solutions au niveau network son présentées. 

8.3.2 Tolérance aux fautes au niveau network 
Des techniques de tolérance aux fautes sont implémentées aux niveaux plus haut. Dans cette section on 

propose des stratégies de tolérance aux fautes transitoires et permanentes au niveau network. 

8.3.2.1 Fautes transitoires 

Dans un NoC, les interfaces construisent des paquets qui sont envoyés sur le réseau flit par flit. Donc, on 

peut modéliser le réseau comme une boîte noire avec des entrées et des sorties connectées aux interfaces 

réseau. Dans cette section, les défis de fiabilité de la communication sur le NoC 3D sont résolus par la 

stratégie de correction network-level Forward Error Correction (NL-FEC), voir Figure IV-24. 
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Figure VIII-11 Network-Level Forward Error Correction 

  Dans NL-FEC, les flits sont codées aux noeuds source avec un code correcteur d’erreurs comme 

Hamming ou Hsiao. Du côté des noeuds récepteur, les erreurs de transmission sont détectées et corrigées. 

Dans les réseaux plus grands, les chemins sont plus longs et la probabilité d’avoir des fautes multiple à 

destination est non négligeable. Dans ce cas, des codées correcteurs capable de corriger des fautes multiples 

sont utilisées. Pour NL-FEC, on propose d’utiliser plusieurs codes SEC pour chaque partie des flits. 

8.3.2.2 Fautes permanentes 

Dans un réseau, les paquets sont dirigés de la source vers la destination sur les chemins indiqués par 

l’algorithme de routage. Quand il y a des composants fautés dans le réseau, l’algorithme de routage doit 

trouver des chemins alternatifs, autour de ces composants.  Pour les NoCs 3D avec une topologie mesh, on 

propose un algorithme de routage tolérant aux fautes capable de diriger les données autour des liens 3D fautés. 

Les chemins alternatifs qui évitent les liens avec des TSvs fautés ne sont pas minimaux, car ils contiennent 

des noeuds intermédiaires qui ont des liens verticaux fonctionnels (master nœuds). Pour une topologie mesh 

3D, quatre ports du routeur sont pour la communication horizontale dans les directions NORTH, SOUTH, 

EAST et WEST, et deux ports sont pour la communication verticale dans les directions UP et DOWN. Pour 

chaque nœud il y a un registre pour les coordonnées des nœuds master-up (XUP, YUP) et master-down (XDOWN, 

YDOWN). L’algorithme de routage pour le nœud (XLOCAL, YLOCAL, ZLOCAL) est représenté dans Figure IV-26. 
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01: if (ZLOCAL = ZDEST) then 

02:     if (YLOCAL = YDEST) then 

03:         if (XLOCAL = XDEST) then OUTPUT(LOCAL); 

04:         elsif (XLOCAL > XDEST) then OUTPUT(NORTH); 

05:         else OUTPUT(SOUTH); 

06:         end if; 

07:     elsif (YLOCAL > YDEST) then OUTPUT(EAST); 

08     else OUTPUT(WEST); 

09:     end if; 

10: elsif (ZLOCAL > ZDEST) then 

11:    if(YLOCAL = YDOWN) then 

12:       if(XLOCAL = XDOWN) then OUTPUT(DOWN); 

13:       elsif (XLOCAL > XDOWN) then OUTPUT(NORTH); 

14:       else OUTPUT(SOUTH); 

15:       end if; 

16:    elsif (YLOCAL > YDOWN) then OUTPUT(EAST); 

17:    else OUTPUT(WEST); 

18:    end if; 

19: else 

20:   if(YLOCAL = YUP) then 

21:       if(XLOCAL = XUP) then OUTPUT(UP); 

22:       elsif (XLOCAL > XUP) then OUTPUT(NORTH); 

23:       else OUTPUT(SOUTH); 

24:       end if; 

25:    elsif (YLOCAL > YUP) then OUTPUT(EAST); 

26:    else OUTPUT(WEST); 

27:    end if; 

28: end if; 
  

Figure VIII-12 Algorime de routage tolerant aux faultes pour les topologies mesh 3D 

Dans cet algorithme on utilise le routage horizontal YX pour arriver aux nœuds master-up si ZLOCAL<ZDEST, 

master-down si ZLOCAL<ZDEST, ou destination si ZLOCAL = ZDEST. L’algorithme est réutilisé par chaque nœud 

dans le chemin source-destination du paquet. Pour illustrer le fonctionnement de l’algorithme, on prend dans 

Figure IV-27 plusieurs cas avec et sans des liens fautés.  

  
(a) (b) 

 
Figure VIII-13 3x4x3 3D mesh topology 

Dans le chemin A-to-B, le lien UP du routeur A est fauté. Les paquets de A à B sont donc envoyé d’abord à 

A*, le master-up du routeur A. Après ils continuent leur chemin vers le nœud B via A’ et A’’.  Pour le chemin 

C-to-D on a des soucis car le lien DOWN du routeur E est fauté. Les paquets arrivant a E sont alors renvoyé au 

nœud  E*, le master-down du routeur E. 

8.3.3 Stratégies de tolérance aux fautes sur multiple niveaux 
Les stratégies proposées dans la section précédente essaye de masquer les fautes des TSVs a un seul niveau 

d’abstraction. Il est aussi possible de partager cette tâche sur plusieurs niveaux. Dans cette section on propose 

deux stratégies de tolérance aux fautes pour le NoCs 3D qui utilisent les niveaux data link et network. 

8.3.3.1 Fautes transitoires 
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Dans la stratégie de protection multicouche, des codes de corrections d’erreurs sont utilisées aux niveaux 

data link et network. Au niveau du réseau, les flits sont codés avec des ECC. La détection et la correction des 

erreurs sont effectuées au niveau network mais aussi au niveau des liens intermédiaires. Donc, la fiabilité est 

augmentée, car les fautes se cumulent entre deux étages de correction et non sur tout le chemin. Pour un NoC 

3D, ces étages de correction sont implémentés sur les liens verticaux, voir Figure IV-32.  
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Figure VIII-14 Implementation du NL-FEC avec correction au niveau des liens verticaux 

Si la fiabilité du réseau n’est pas suffisante, des étages de correction sont implémentés au niveau des liens 

intra-die. Pour un mesh 2D avec un nombre maximal de sauts fiables pMAX, on peut déterminer quelles sont les 

liens qu’il faut protéger. Dans Figure IV-33, six étages de correction sont rajoutés pour un mesh 4×4 avec 

pMAX=4. 

 

Y 
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Figure VIII-15 Stages de correction pour un mesh 4×4 avec pMAX=4 

Même si une telle stratégie est suffisante pour les fautes permanentes des TSVs, il y a des cas où les 

capacités de correction des fautes sont très limitées. Donc, une stratégie multi niveau pour les fautes 

permanentes est présentée dans la suite. 

8.3.3.2 Fautes permanentes 

La stratégie multicouche est utile pour les solutions de réparation des TSVs avec des fils redondants ou la 

sérialisation, mais aussi l’algorithme de routage tolérant aux fautes. Après le final, les puces 3D avec des 

composantes intra-die fautés ou irréparable sont jetées (Known-Good-Die testing). Donc, on a des systèmes 

qui contiennent seulement des TSVs fautés. Le diagramme de cette stratégie multi niveau est présenté dans 

Figure IV-31. 
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Figure VIII-16 Strategie de réparation multicouche pour les NoCs 3D 

On commence d’abord avec les réparations au niveau du lien. Après cette phase, on a la liste des liens 

verticaux fonctionnels et fautés. Pour chaque routeur avec un lien inter-die fauté, il faut lui trouver un master 

dans la direction du lien. Seulement si on trouve une solution pour tous les nœuds on peut configurer le NoC 

en programmant les mémoires one-time-programmable (OTP) des routeurs et des liens. 

Dans cette section, on a présenté plusieurs stratégies pour les fautes transitoires et permanentes des TSVs. 

Pour chaque stratégie, on peut trouver une configuration qui permet de tolérer un grand nombre de fautes. Par 

contre, c’est très difficile d’évaluer les coûts et l’impact sur les performances. Dans la suite, on présentera le 

sommaire des résultats expérimentaux pour le NoC 3D  avec une topologie mesh régulière. 

8.4 Résultats expérimentaux 

Les techniques de tolérance aux fautes sont implémentées pour le routeur sur les sept ports des NoCs 3D 

avec une topologie mesh. Dans cette section, les coûts et l’impact sur les performances et fiabilité du réseau 

sont déterminés pour les stratégies data link et network. 

8.4.1 Fautes transitoires 
Au niveau data link, les techniques FEC, ARQ et HYB sont utilisées pour améliorer la fiabilité des liens. 

Pour chaque méthode on peut trouver la configuration optimale pour garantir une fiabilité. Dans la section 

précédente, on a montré que il est possible de réduire les coûts des stratégies data link en utilisant la 

méthodologie de protection sélective des liens verticaux. Pour la technologie de 65nm,  les stratégies sont 

implémentées pour une fréquence de 1GHz. Les coûts relatifs en surface et puissance sont donnés dans 

TABLE V pour des routeurs avec 32 et 64 bits. 

TABLE V CÔUTS RELATIFS EN SURFACE ET PUISSANCE POUR LE ROUTEUR AUX SEPT PORTS AVEC LES DEUX STRATÉGIES DE PROTECTION 

32 Bits 64 Bits 

Tous liens Liens Inter-die Tous liens Liens Inter-die Strategie 

Surf. (%) Puiss. (%) Surf. (%) Puiss. (%) Surf. (%) Puiss. (%) Surf. (%) Puiss. (%) 

FEC 

SEC 
25.90 35.78 8.46 11.22 26.7 35.32 8.73 11.51 
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FEC SEC×2 26.98 38.36 9.09 12.12 27.39 37.43 8.9 12.02 

FEC 

SEC×4 
28.11 43.22 9.41 13.23 27.95 40.34 9.16 13.31 

ARQ  

CRC-5 
36.65 46.96 10.2 13.45 39.9 48.6 11.25 14.17 

ARQ 

CRC-8 
38.17 48.44 10.71 13.50 44.52 48.78 11.13 14.26 

ARQ 

PARITY×4 
42.85 57.21 12.16 16.44 45.64 43.07 16.35 10.63 

HYB 

SECDED 
77.15 95.49 21.34 27.58 83.56 95.35 22.98 27.97 

HYB 

SECDED×2 
77.16 103.11 21.27 29.32 81.57 99.03 22.62 29.31 

 

Ces résultants montre que les stratégies de protection sélective sont jusqu’à trois fois moins chère que la 

stratégie de protection pour tous les liens. Parmi les stratégies data link, on trouve que les coûts en  surface et 

puissance de la stratégie FEC sont les plus basses. 

Le fait de ne protéger que les liens verticaux a un impact sur la fiabilité des chemins source-destination 

dans le réseau. Pour un chemin comprenant 12 nœuds avec nh=9 liens intra-die et nv=2 liens inter-die, la 

fiabilité est représentée dans Figure V-11 pour des liens avec 32 et 64 bits. 

 
 
 
 
 
 
 
        (a)                                                                                              (b) 

 
Figure VIII-17 Fiabilité du réseau avec tolerace aux fautes sélective (SEL) et compléte (ALL) pour un taux de defaillance de εwire=10-6 pour les 

liens intra-die 

Les évaluations ci-dessous montrent qu’une baisse de la fiabilité de 0.012% pour les liens de 32 bits et de 

0.025% pour les liens de 64. Il faut noter que la variation de la fiabilité avec le taux de défaillance est 

négligeable pour la stratégie HYB. Donc, la stratégie de protection sélective est efficace pour les applications 

ayant des objectifs de fiabilité plus faible. Cette stratégie est aussi utile dans les réseaux avec des liens 

verticaux plus susceptibles aux fautes. 

Au niveau network, les modules de codage et de décodage sont implémentés au niveau du port LOCAL des 

routeurs.  Les coûts relatifs de la stratégie NL-FEC avec les différents schémas de codage correcteur d’erreurs 

sont présentés dans TABLE VI pour les routeurs aux 32 et 64 bits dans la technologie de 65 nm. 

TABLE VI COÛTS RELATIFS POUR LE ROUTEUR AVEC NL-FEC 



Vladimir Pasca                                                                                                                                                                  150 

32-bits 64-bits 
Error correction scheme 

Surf (%) Puiss (%) Surf (%) Puiss (%) 

Hamming SEC × 1 19.81 15.55 18.84 9.75 

Hamming SEC × 2 33.61 30.61 24.93 16.62 

Hamming SEC × 4 49.88 48.78 37.72 28.98 

 
Les résultats montrent que les coûts augmentent avec la complexité du code correcteur. Ces coûts sont dus 

aux mémoires tampon d’entrée et de sortie des routeurs qui représentent environ 90% de leur surface.  Pour 

une stratégie de codage avec plusieurs groupes, la taille des flits augmente et donc la taille des routeurs 

augment aussi.  Une stratégie de codage plus complexe est nécessaire dans les réseaux où la probabilité 

d’avoir des fautes multiples est non négligeable. Pour les routeurs à 64 bits, les coûts relatifs sont moins 

importants car le nombre relatif de bits de parité est inférieur. 

Dans la stratégie multi niveau pour les fautes transitoires, des étages de corrections sont rajoutés au niveau 

des interfaces routeurs-liens. Pour le routeur 3D mesh, ces étages de correction sont implémentés pour jusqu’à 

six ports. Pour les routeurs avec 32 et 64 bits, les coûts relatifs sont présentés dans TABLE VII pour la 

technologie de 65 nm. 

TABLE VII COÛTS RELATIFS EN SURFACE ET PUISSANCE POUR LE ROUTEUR AVEC LA STRATEGIE MULTICOUCHE  

32-bits 64-bits 
Error correction scheme 

Surf (%) Power (%) Area (%) Power (%) 

SEC avec 1 port 27.64 23.19 26.75 17.83 

SEC avec 2 ports 32.43 29.01 31.83 23.81 

SEC avec 3 ports 34.54 30.25 37.77 29.57 

SEC avec 4 ports 40.15 39.79 43.02 35.28 

SEC avec 5 ports 45.65 46.3 50.86 42.12 

SEC avec 6 ports 48.02 48.84 53.97 45.55 

 

Les résultats montrent que les coûts augmentent  avec le nombre d’étages de correction implémentée.  Ces 

coûts sont dus à la taille des flits et aussi aux modules de correction d’erreurs qui augmentent aussi le nombre 

de flits contenus dans les buffers d’entrée. Pour les NoCs 3D mesh, les étages de correction sont rajoutés pour 

les deux liens verticaux. Donc, par rapport aux stratégies NL-FEC avec les codes de correction multiples, on a 

un petit avantage au niveau de la surface et la puissance des routeurs. Un autre avantage est le nombre réduit 

des TSVs nécessaires pour envoyer les flits codés. 

8.4.2 Fautes permanentes 
Au niveau data link les stratégies de réparation avec les TSV redondants et la sérialisation sont 

implémentées pour les deux liens verticaux du routuer à sept ports. Cette stratégie à des avantages ainsi que 

des limitations, et dans la suite une comparaison de ces stratégies est présentée pour les différentes 

technologies. 

Pour le routeur avec 32 data bits, les stratégies SnR and CSL sont configurées pour un rendement objectif 

YT=99.95%. Pour analyser l’impact des technologies TSV, on diminue la distance minimale des TSVs de 

15µm à 10 µm. Donc, le nombre des TSVs est doublé et le nombre ainsi que la taille des liens augmentent. 
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Pour ces configurations, la surface relative est représentée dans Figure V-5 pour les différents taux de 

défaillance. 
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Figure VIII-18 Coûts rélatifs en sourface pour le routeur avec TSV-SnR et CSL 

Les résultats montrent que la solution TSV-SnR est plus efficace que la sérialisation en termes de surface. 

Les coûts sont donnes par la surface des circuits de réparation et TSV. Donc, pour la technologie de 65nm, les 

différences entre les deux solutions ne sont pas constantes. Pour les TSVs avec un pitch de 15µm, les 

différences diminuent avec le taux de défaillance. Donc, on peut extrapoler ces résultats et dire que dans les 

technologies avec des grands taux de défaillance, la sérialisation est plus efficace, car le nombre des 

ressources redondantes est trop élevé. 

Au niveau réseau, la réparation des TSV fautés est faite par l’algorithme de routage tolérant aux fautes. Les 

fautes sont réparées si on trouve les noeuds master pour chaque noeud avec des liens inter-die fautés. Pour le 

routeur 3D mesh qui implémente le routage ZYX, deux registres sont rajoutés pour mémoriser les 

coordonnées des nœuds master et deux possibles implémentations de l’algorithme de routage sont proposées 

dans Figure V-6 (a) et (b). 
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(a) 

(b) 

 
Figure VIII-19 Impémentations du  module de routage ZYX pour TSV-FTR 

Dans l’implémentation low-area, le coût est inférieur à 0.5% dans la technologies de 65 nm. Par contre, il y 

a un impact sur le timing du routeur et la fréquence maximale est ~900MHz. Dans l’implémentation haute 

performance l’impact sur le timing est négligeable, mais le coût relatif en surface et en puissance est 

~7.7%/5.4% pour 32 bits et 6.18%/4.9% pour 64 bits. 

Dans la stratégie multi niveau toutes les stratégies data link et network sont utilisées ensemble. Pour le 

routeur 3D mesh plusieurs stratégies multi niveau sont implémentées : FRT avec un ou deux TSVs 

redondants, FTR avec sérialisation et FTR avec sérialisation et un TSV redondant. Les coûts relatifs en 

surface sont donnés dans la TABLE VIII pour les 32 et 64 bits data et un TSV pitch à 15µm et 10µm. 

TABLE VIII COÛTS RELATIFS EN SOURFACE POUR LE ROUTEUR AVEC DIFFERENTS STRATÉGIES 

Data Size 

(bits) 
pTSV (µm) 

FTR+ 

1 Spare 

FTR+ 

2 Spares 
FTR+CSL 

FTR+ CSL+ 

1 Spare 

10µm 11.89% 13.82% 16.53% 18.65% 

32 

15µm 12.01% 14.95% 16.53% 19.25% 

10µm 9.62% 11.76% 16.08% 19.95% 
64 

15µm 9.98% 12.33% 16.08% 20.1% 

 

Les stratégies multi niveau sont plus chères que les solutions data link ou network au taux de défaillance 

très petits. Par contre, la complexité de TSV-SnR en CSL augmente avec dTSV et on trouve des configurations 

où ces solutions sont plus chères. Même si la solution au niveau réseau est la moins chère, ces résultats ne 

montrent pas l’impact sur la performance du réseau. L’avantage des solutions multi niveau est une possible 

amélioration de ces performances avec un petit coût matériel. 

Pour le NoC 5×5×4, on analyse la latence pour plusieurs configurations résistantes aux fautes permanentes: 

routage tolérant aux fautes, sérialisation, sérialisation avec TSV-SnR, routage tolérant aux fautes avec TSVs 
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redondants et sérialisation verticale. Les résultats sont représentés dans Figure V-7 pour plusieurs taux de 

défaillance.  
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Figure VIII-20 Latence rélative pour un mesh 5x5x4 protégée avec differentes solutions 

Pour un taux de défaillance bas, l’impact sur la performance des stratégies utilisant les TSVs redondants 

est négligeable. Dans ces configurations, la plupart des fautes sont réparées par TSV-SnR. Parmi ces 

configurations, on trouve que le routage tolérant aux fautes avec un TSV redondant est le meilleur. Bien sûr, si 

on ne peut pas inclure les TSVs redondants pour chaque lien, nos résultats montrent que l’impact de la 

sérialisation est moins important que celui du routage tolérant aux fautes. 

Dans cette section, on a évalué différentes stratégies de tolérance aux fautes transitoires et permanentes des 

TSVs. On a montré que, dans certains cas, une solution à plusieurs niveaux est plus efficace. Par contre, c’est 

très difficile d’indiquer la meilleure solution pour un environnent donnée. Donc, une stratégie d’exploration 

des solutions est présentée dans la section suivante. 

8.5 Flot d’injection de tolérance aux fautes 

Dans cette section on présente une stratégie qui permet d’identifier les configurations tolérantes aux fautes 

pour les NoCs 3D qui atteint les objectifs de fiabilité et de rendement imposés par le designer. Pour une 

topologie 3D mesh donnée, les informations sur la fiabilité des composants (défaillance des TSVs, bit-error-

rate) sont à utiliser pour trouver la configuration avec un coût et un impact sur la performance inférieur à une 

limite imposée. Le schéma du processus d’exploration des solutions tolérantes aux fautes pour le NoC 3D 

mesh est présenté dans Figure VI-1. 
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Figure VIII-21 Le processus d’éxploration pous les 3D NoCs 

Le processus d’exploration est automatisé et intégré dans un flot de conception des NoCs 3D mesh. Les 

composantes tolérantes aux fautes sont implémentées dans une bibliothèque générique et configurable: la 

Error-Resilience Library. Cette bibliothèque est compatible avec le flot de conception des NoCs, c’est à dire 

qu’elle implémente les mêmes protocoles de communication au niveau lien et réseau. 

Le processus d’exploration commence par les solutions pour les fautes transitoires. Donc, les 

configurations pour les solutions data link, network et multi niveau sont élaborées et seulement celles qui 

tiennent les objectifs de fiabilité avec un nombre de TSVs par lien inférieur à la limite imposée sont gardées. 

Pour chaque configuration, on essaye de trouver une ou plusieurs solutions pour les fautes permanentes en 

utilisant les mêmes contraintes au niveau fiabilité, rendement et nombre des TSVs par lien. Le résultat de ce 

processus est une liste des solutions possibles. En utilisant un flot ASIC, on peut déterminer les coûts pour 

chaque configuration possible. L’impact sur la performance du NoC est évalué par des méthodes analytiques 

ou par des simulations, si le flot de conception est prévu à cet effet. 

Une fois que toutes ces solutions sont évaluées, c‘est le concepteur du système qui va choisir la solution 

qui lui convient le plus. Pour montrer le fonctionnement du ERX, on utilise un système 3D modélisé en 

SystemC avec la bibliothèque Soclib. Le system contient 64 clusters et dans le cache cluster il y a jusqu’au 

quatre microprocesseurs. Les clusters sont connectés par un 3D mesh 4×4×4 avec deux réseaux : une pour les 

requêtes avec un flit de 37 bits et une pour les réponses avec un flit de 33 bits. Pour ce système, on utilise ERX 

sur les deux réseaux pour identifier les configurations qui peuvent atteindre les objectifs de rendement 

YT=99.99% et fiabilité RT=99.9999%. Pour les évaluations des coûts, on utilise Synopsys Design Compiler® 

avec la technologie 65 nm pour un horloge à 1GHz. 

Dans la configuration du système, les fautes transitoires intra-die ne sont pas prise en compte (εrouter=0, 

εwire=10
-9 et εTSV=10

-6), et le taux de défaillance des TSV est de dTSV=0.01%. Dans ce cas, les flits arrivent 

correctement à destination avec une probabilité de 99.988% pour le réseau des requêtes et de 99.989% pour le 

réseau des réponses. Le rendement des TSVs pour ce système est de seulement 49%. Pour chaque lien vertical 
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on peut rajouter jusqu’au 10 TSVs. Par contre, 4 TSVs sont utilisés pour la protection TMR des lignes de 

contrôle write et write_ok du lien. Les configurations proposées par ERX sont les suivantes. 

Dans le premier cas, la protection contre les fautes transitoires sur les liens verticaux est assurée par ARQ 

avec deux bits de parité. Pour les fautes permanentes, deux TSVs redondants sont suffisants. Les coûts relatifs 

en surface et en puissance de cette solution sont 14% et 10% respectivement pour le réseau de requêtes et 12% 

et 9.5% respectivement pour le réseau de réponses. En utilisant la méthode analytique, la latence des réseaux 

augmente par 2.5% pour le réseau des requêtes et par 2.49% pour le réseau des réponses. 

Dans la deuxième configuration, les liens verticaux sont protégés par une stratégie FEC avec un code de 

Hamming. Pour les défauts de fabrication des TSVs, l’algorithme de routage tolérant aux fautes est utilisé. 

Donc, les coûts relatifs sont estimés à 19% et à 12% pour les routeurs dans le réseau des requêtes et à 18.85% 

et à 11.55% pour les routeurs dans le réseau des réponses. La latence augmente par 2.2% et 2.17% pour les 

deux réseaux. 

Dans la dernière configuration, un FEC avec un codage de Hamming est utilisé pour les fautes transitoires 

sur les liens verticaux et la sérialisation pour les fautes permanentes. Les coûts relatifs en surface et en 

puissance de cette configuration sont de 19.5% et 12.3% pour les routeurs 37 bits et 18.985% et 11.65% pour 

les routeurs à 33 bits. La latence moyenne des réseaux des requêtes et des  réponses augmente par ~2% et 

2.1%. 

Toutes les configurations ont un impact négligeable sur la latence du NoC. Donc, la décision peut être 

prise par rapport aux coûts en surface et en puissance. Parmi les configurations proposées, c’est la première 

qui est la meilleure. Dans une implémentation au niveau système, les simulations ont montré que l’impact du 

cette solution sur les performances du système sont négligeables. 

8.6 Conclusions 

Dans les technologies CMOS avancées, les problèmes de puissance et de délais des interconnections 

peuvent être résolus par l’intégration 3D. Au niveau système, les puces 3D délivrent plus de puissance de 

calcul et sont moins gourmands en énergie. Par contre, connecter des centaines de cours d’une façon efficace 

nécessite une nouvelle architecture de communication évolutive: le Réseau-sur-Puce 3D (Network-on-Chip 

NoC).  

Malgré les avantages des technologies 3D à base de TSVs, ces technologies ne sont pas assez fiables pour 

une production industrielle. Le test, le coût de fabrication, la fiabilité, le rendement, le management thermique 

et la dissipation de la chaleur restent les défis majeurs. Dans les 3D MPSoCs avec des connections NoC, 

l’intégrité de la communication inter-die est vitale. Une seule faute peut causer la panne du système. Donc, il 

faut impérativement implémenter des stratégies efficaces de test de la tolérance aux fautes. Dans cette thèse 

des solutions pour ces défis ont été proposées. 

Le test des TSVs est très difficile surtout quand la puce contient un nombre élevé (centaines ou milliers) 

des connections verticales. La stratégie d’autotest Interconnect Built-In Self-Test (IBIST) a été propose dans 

cette thèse pour les liens verticaux des NoCs 3D. Pour cette architecture, une nouvelle stratégie de test est 
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également présentée. Parmi les avantages de cet algorithme, la capacité de détecter des fautes structurales, 

mais aussi les fautes de délai et de diaphonie. En utilisant le modèle agresseur – victime, la stratégie K
th
 

Aggressor Fault (KAF) est proposée. Les avantages de cette méthodologie sont des tests plus courts et des 

coûts matériels qui sont jusqu’à trois fois moins importants par rapport aux stratégies existantes. Une 

implémentation configurable permet d’effectuer les tests avec différents ordres agresseurs K est aussi 

présentée. La configurabilité du IBIST permet une réduction des temps de test in-field et permet une 

calibration du modèle KAF pour une technologie TSV. 

Des stratégies, uni et multi niveaux, sont utilisées pour résoudre les problèmes de fiabilité et de rendement 

des TSVs. Dans les NoC 3D, ces solutions sont implémentées au niveau data-link et  network. Au niveau 

data-link, les fautes permanentes dues aux défauts de fabrication sont réparées par TSVs redondants (TSV 

Spare-and-Replace) et via une stratégie de sérialisation configurable (CSL). Ces stratégies sont aussi adaptées 

pour les fautes de vieillissement des TSVs dans une méthodologie complexe de réparation et de sérialisation : 

Interconnect Built-In Self-Repair and Adaptive Serialization (IBIRAS). Au niveau réseau, les liens qui 

contiennent des TSVs fautés ne sont pas utilisés et un algorithme de routage tolérant aux fautes qui évite ces 

composantes a été proposé. Dans la stratégie multi niveau, les solutions data-link sont utilisées pour réduire 

l’impact du routage tolérant aux fautes  sur les performances du réseau. Des méthodes de contrôle d’erreurs au 

niveau data link sont proposées pour les fautes transitoires sur les TSVs. Ces solutions utilisent des codes pour 

la détection et la correction d’erreurs et des mécanismes de retransmission. Au niveau réseau, une solution 

pour corriger les fautes end-to-end est proposée. Pour améliorer les capacités de correction de cette stratégie, 

des étages de correction au niveau data-link sont aussi utilisés. 

Pour évaluer les coûts de ces stratégies, un flot de conception pour des NoCs 3D synchrones avec une 

topologie régulière mesh a été développée. Les évaluations montrent que les stratégies traditionnelles, dont 

notamment la retransmission ou les TSV redondants, sont toujours les meilleurs, surtout pour un taux de 

défaillance élevé. Donc, des stratégies qui utilisent des codes correcteurs sont plus efficaces pour les fautes 

transitoires. En ce qui concerne les fautes permanentes dues aux défauts de fabrication, on a montré que, dans 

le cas où il n’y a pas de TSVs redondants, la sérialisation est plus efficace que le routage tolérant aux fautes. 

Par contre, une stratégie multi niveau avec routage tolérant aux fautes et TSVs redondants est plus efficace en 

terme de coûts et d’impact sur la performance. 

Malgré le nombre de solutions proposées, il est difficile de trouver la solution optimale pour une 

configuration donnée. A cet effet, un outil d’exploration des solutions de tolérance aux fautes (ERX) est 

intégré dans le flot de conception des NoCs 3D. L’outil prend en entrée, la configuration du NoC 3D 

(topologie et taille du flit), les objectifs de fiabilité et rendement, et les taux de défaillance des composants. 

Cet outil donne en sortie une liste des solutions possibles pouvant être utilisée pour instancier les NoC 3D 

tolérants aux fautes et les analyser avec des flots de conception ASIC existantes. Après les évaluations, c’est 

au concepteur du système de choisir et d’implémenter la meilleure solution. 

Dans une étude pour un système massivement parallèle, ERX a été utilisé pour identifier la solution 

optimale. Le système est modélisé par des composants de la bibliothèque SocLib qui est implémenté en cycle-
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accurate SystemC. Pour un système à 64 clusters interconnectés par un mesh 4 × 4 × 4, les solutions 

optimales ont été trouvées pour deux configurations. Au niveau système, les simulations ont montré que 

l’impact des ces solutions sur les performances sont négligeables. 

Les travaux présentés dans cette thèse ne sont pas complets et plusieurs directions de recherche sont 

envisageables. Il est toujours possible d’implémenter d’autres solutions de tolérance aux fautes au niveau data 

et network, mais aussi aux autres niveaux d’abstraction. Un autre possible direction de développement 

concerne le flot de conception du NoC 3D. Dans cette thèse, les évaluations des coûts sont faites avec un flot 

ASIC pour les technologies 2D. Il est possible d’inclure dans ce flot les technologies 3D et les TSVs. Les 

mesures de performances des NoCs ont été faites avec des formules analytiques ou par simulations en utilisant 

le modèle de trafic uniforme aléatoire. Pour des évaluations plus précises, il est possible d’introduire des 

modules d’injection du trafic plus complexes ou même du trafic réel. 
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9 APPENDIX 

The error resilience protection strategies presented in Chapter 4 have been implemented for the seven-port 

router used in 3D mesh topologies. In this appendix, the router and 3D mesh NoC architectures are presented 

in detail. Moreover, a simple design flow for 3D mesh network is presented along with its support for error 

resilient strategies. 

A. Fully synchronous 3D mesh NoC 

In 3D MP2SoCs (Massively-Parallel Multi-Processor Systems-on-Chip), 3D mesh NoC can be used as the 

global interconnect fabric. In the 3D mesh topology, all nodes and horizontal links are intra-die components 

and the vertical connections correspond to TSV-based inter-die links. The seven-port router with its interfaces 

is the main component. In this appendix, a 3D mesh NoC implementation and design flow is presented. 

A.1 Packet format 

In the 3D mesh NoCs, packets are router from source to destination along the Z, Y and X dimensions. For 

each load / store transaction, the network interface NI translates the transaction message destination address 

into the destination coordinates XDEST, YDEST, ZDEST. The packet is then built and transmitted through the 

network flit-by-flit. The header flit is created by the NI and it contains the destination node coordinates 

(XDEST,YDEST,ZDEST). These coordinates, along with the local coordinates, are used by routing nodes to forward 

packets through the network. Each n-bits flit has n-1 data flits and an End-of-Packet (EoP) marker, which is 

active for the last flit of the packet. In Figure A-1, the 3D mesh NoC topology and the packet structure are 

represented. 
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Figure A-1 3D 3×4×3 mesh topology (a) and the packet format for the 3D fully-synchronous 3D NoC (b) 

The network processes packets and routes them from source to destination using the ZYX routing 

algorithm. Each router reads the destination coordinates from the header flit and forwards the packet the 

direction indicated for by the routing algorithm. Once the router output port is allocated to a packet, it cannot 

be de-allocated until the EoP marker is valid. Details about the router architecture are presented in the 

following. 
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A.2 Router architecture
2
 

The 3D NoC is fully-synchronous, as all NoC components (i.e. links and routers) are in the same clock 

domain. In a 3D mesh, packets are routed along the X, Y and Z directions. Each router has up to seven ports: 

one for communication with the local IP (i.e. LOCAL), four (i.e. NORTH, SOUTH, EAST, and WEST) for 

intra-die communications, and two (i.e. UP, DOWN) for inter-die communication. Each of the input / output 

ports is buffered, in order to maximize network performance.  In Figure A-2, the router architecture is given. 
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Figure A-2 Seven-port router micro-architecture 

Routers exchange data using the XON/XOFF flow control. Data is sent from the upstream router to the 

downstream router input FIFO when there are enough available positions in the downstream FIFO. Since the 

link delay is one clock cycle, downstream FIFOs accept data when there is at least one available position. This 

flow control mechanism is implemented using two control signals: the upstream-to-downstream write signal 

and the downstream-to-upstream ready signal. 

Incoming flits are stored in input FIFOs, which are handled by FSMs. The input FSM has two states: idle 

and flush. In the idle state the input FIFO read signal is ‘0’. The FSM makes the transitions to flush when the 

input buffer is not empty (i.e. readok=’1’) and the first flit in the FIFO is not a tail flit (i.e. EoP=’0’). In the 

flush state flits are read input FIFO and written in the output FIFO designated by the routing module. The 

routing logic interprets the destination address and indicates on which output port the packet must be 

forwarded.  
                                                           

 
 

2 The router architecture is based on the synchronous five-port DSPIN router used in SoCLib 
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Output buffers are also managed by FSMs. For each output port there is an arbiter that manages requests 

from input ports. If input I requests output O and this request is granted then, while the output FIFO O is not 

full, data is transferred from the input FIFO to the output FIFO. After the last flit is transferred, the arbiter will 

grant a new request using the Round-Robin algorithm. Let’s consider a four-flit packet that traverses the router 

from input I to output O. The output FSM has 12 states that correspond to the cases when the output is granted 

to one of the six input ports.  

To illustrate the router functionality, les us consider a packet with four flits A, B, C, and D. The header flit 

A contains the destination coordinates, flits B and C are payload flits, and flit D is the tail flit. In Figure A-3, 

the time diagram of router traversal is represented for the four-flit packet. 
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Figure A-3 Time diagram of contention-free router traversal from input I to output O 

In the first cycle the header flit A is written in port I’s input FIFO FI. Then, since data exists in the FIFO 

the routing algorithm function determines the output port O on which the packet must be forwarded and 

activates the request signal REQ(O). The arbitration logic of output O grants this request (i.e. GRANT(I)) in 

the third cycle. Note that if there are more packets competing for the same output O then the grant signal 

comes later. Once this grant is received data is transferred from the input to the output FIFO. This transfer is 

stalled if the output FIFO is full, but it is resumed when there are available positions. In the fourth cycle the 

header flit is read from the output FIFO by the downstream router. After the tail flit is written in the output 

FIFO the grant signal is deactivated and a new arbitration process starts. Because routing and arbitration is 

done in a single cycle, data waits at the input FIFO for only one cycle. 

The seven-port router is the main component of the 3D mesh NoC, which consists of many interconnected 

routers. The router can be implemented as a RTL module with generic local coordinates XLOCAL, YLOCAL, and 

ZLOCAL, data size, and buffer size. For this router, a 3D NoC instantiation tools has been developed. This 

design flow is presented in the following section. 

A.3 3D NoC Design Flow 

The seven-port router presented above can be integrated in an automatic 3D NoC design flow. The NoC 

designer sets the network parameters (i.e. 3D mesh X, Y, Z sizes, flit size, and minimum buffer size) and the 

RTL code of the 3D NoC is automatically generated. For the 4×4×4 3D mesh, the tool generates the 

noc_4x4x4 component, which has 64 input / output communication interfaces and 64 instantiations of the 
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fsr_router component. In the section, details about the 3D NoC simulation platform and the support for error 

resilience interfaces are presented. 

A.4 Simulation platform 

The design tool also has the capability to generate simulation platforms for the instantiated NoC. Thus, 

traffic injection and analysis models have been implemented. In the current version of the tool only random 

uniform traffic is supported. In the simulation platform, a traffic input/output module is connected to each 

NoC port. In Figure A-4, an example of a simulation platform for the noc_xyz module is presented. 
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Figure A-4 Simulation platform for noc_xyz module 

In the random uniform traffic model, packets are transmitted between random pair of nodes. The packet 

size can be fixed (i.e. the same packet length for all traffic modules) or random (i.e. the packet lengths may 

vary within a predetermined range lmin and lmax), but the payload contents is randomly generated. The header 

flit contains the X,Y,Z coordinates of the destination node an a timestamp that corresponds to the moment 

when the packet was created. During simulation, packets are analyzed by the traffic modules and the latency 

of each packet is printed on the output. The latency is determined from the timestamp field in the header flit 

and the current time when the tail flit is processed the ANA traffic sub-module. 

The latencies of all packets can then be collected and different metrics such as average latency, latency 

distributions and throughput can be determined. 

A.5 Support for error resilience 

In order to support the error resilience schemes presented in Chapter 4, the 3D design flow must be 

extended in a number of ways. The interfaces for intra-die (i.e. NORTH, SOUTH, EAST, and WEST) and inter-

die (i.e. UP and DOWN) communication are part of link modules, which are used for router-to-router 

connections, while the LOCAL interfaces are instantiated in the top module. For area / power assessments, the 

ERX uses an instantiation of the seven-port router with error resilient interfaces. In Figure A-5, an example of 

error resilient router is shown.  
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Figure A-5 Instantiated seven-port router with error resilience interfaces 

In the modified flow, the upstream / downstream interfaces form link modules. The noc_xyz module, 

which is the instantiated 3D NoC, consists of routers and links. In Figure A-6, an example of two connected 

routers is shown. 
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Figure A-6 Link instantiation beween two connected router ports using two link modules 

In the error resilient framework, each router is modified such that the master-up / master-down coordinates 

are given as inputs. The signals that carry these values are determined by ERX and they are fixed during 

simulation. Each link that connects two routers consists of two interfaces: upstream and downstream. When 

the link does not implement any error resilience scheme, the interfaces simply forward the signals coming 

from routers. 

The data link error resilience schemes are implemented at these interfaces. Extra wires are required for the 

error control bits of the coding scheme and the data/code wire spares. In some cases the communication 

between the upstream and downstream interfaces is more complex. Thus, additional us-to-ds and ds-to-us 

control signals (e.g. retransmission request for ARQ, DTRANS for IBISnR/IBIRAS) must be added. The 

interfaces for the six inter-router ports implement the data link error resilience schemes. These modules are 

generic, allowing different configurations. In Figure A-7, the upstream and downstream interfaces with the 

optional retiming stages are shown. 
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Figure A-7 Upstream (a) and downstream (b) interfaces with optional modules and register stages 

Retiming stages are inserted in order to improve circuit timing. In the ERX area / power evaluation phase, 

these retiming stages are added such that the circuit meets the timing requirements. Initially, only the first 

retiming stages of the downstream interface is considered, as it is considered that encoding, PHY traversal, 

and decoding cannot be performed in a single clock cycle. If timing is not met, the retiming stage between the 

detection / correction modules is added. The stages between the ENCODE / TSV-Repair and TSV-Repair / 

Detection modules are added last. The upstream output registers are added if transmission on PHY is assumed 

to be exactly one cycle, while the us input and ds output are merged with the router FIFOs.  

The LOCAL downstream interface (LOCALDS) of the router is connected to the local network interface 

(NI). In the NL-FEC error resilient configuration, the Hamming SEC encoding stage is implemented. At the 

LOCAL upstream interface error cumulated along the network are corrected. In the hardware implementation, 

this interface may have an optional bypass mechanism for the error correction module. 

A.6 Fault injection 

In order to perform simulations using the error resilient platform, errors must be injected in the NoC. The 

generated simulation platform enables more accurate measurements of network performance metric when 

error resilience schemes are implemented and errors are injected. In Figure A-8, the simulation platform for 

the error resilient NoC is presented. 
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Figure A-8 Simulation platform for error resilient noc_xyz module with error injection for intra-/inter-die wires 

For permanent TSV failures due to manufacturing defects, a fault indicator FI vector is generated for each 

inter-die link in the 3D NoC instantiation process. Using this vector, spare-/serialization-based repair is 
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performed. In the TSV-FTR algorithm the master UP and DOWN of each node are determined by the master 

node selection algorithm. Since the master nodes do not change during system lifetime, the signals that carry 

their values in the noc_xyz module are initialized in the instantiation process. In the current version of the tool, 

there is no support for simulations with in-field TSV failures. Thus, IBIRAS techniques are used in a similar 

way as CSL / TSV-SnR (i.e. the fault indication vector is set in the noc-xyz instatiation). 

The error resilient simulation platform has an extra module for injecting transient errors in the protected 

links of noc_xyz. Transients are injected intra-/inter-die links with a probability εlink, which is determined by 

ERX using the εTSV and εwire parameters. The current version of the tool allows only single transients injection. 

B. Spidergon-based 3D GRLIB MPSoC 

The Gaisler IP library (GRLIB) [GR] is a highly configurable open-source collection of RTL-level IPs 

developed around the LEON3 microprocessor. In order to simplify the integration process, all the IP blocks 

are AMBA AHB/APB-compliant. GRLIB comes with a series of template designs that can be easily 

implemented using FPGA or ASIC design flows. In a 3D integration setting, the template design GRLIB 

design is extended with two addressable components (i.e. on-chip memories), which are connected to the 

AHB-bus through the Spidergon STNoC [CGM09] AXI-based interconnect fabric. 

In this section, the impact of error resilience on the Spidergon STNoC-based system is assessed at system 

level. First, the Spidergon STNoC and the STNoC link, which ensures inter-die communication in the 3D 

SoC, are presented. The implementation of the extended GRLIB-based MPSoC is presented next, followed by 

the proposed error resilience strategy. Finally, the impact on system performance is assessed. 

B.1 Spidergon STNoC 

Spidergon STNoC is a high performance customizable on-chip communication platform that addresses 

heterogeneous, application specific requirements of multi-core SoCs (MPSoC). It allows fully customizable 

pseudo-regular or hierarchical topologies. As a programmable distributed hardware / software component, 

Spidergon STNoC offers a set of services to design advanced application features such as quality of service, 

security, exception handling. The building blocks of Spidergon STNoC are the network interfaces, routers and 

links. Each of these blocks implements specific levels in the ISO/OSI protocol layers. In stacked 3D 

integrated heterogeneous SoCs, the IP blocks of the system are distributed over several levels of the stack. The 

communication infrastructure (NoC) must connect such blocks and, the resulting communication structure 

contains both horizontal (intra-die) and vertical (inter-die) links (3D NoC). In Figure A-9, different 3D 

Spidergon STNoC topologies are represented. 

 
Figure A-9 Spidergon STNoC topologies 
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The Spidergon STNoC router implements both the network and the data link layers of the NoC protocol, 

offering Quality of Service (QoS) in terms of both latency and throughput. It is responsible for the flits 

transmission using wormhole routing protocols. The STNoC router is designed to support ST’s proprietary 

Spidergon topology and it has five input / output buffered ports to the network interface (NI), left (L), right 

(R), across (A) and hierarchical (H). Depending on the application traffic requirements, links can be removed, 

which gives STNoC the key benefit of being able to support with one homogeneous component a wide 

spectrum of MPSoC interconnect topologies. 

At the lowest level, the STNoC Physical link implements the physical layer of the NoC protocol. It is 

responsible for the connections between routers and between routers and network interfaces. In 3D MPSoCs, 

the STNoC link is used for inter-die communication. Details about the synchronous link are presented in the 

following. 

B.2 Synchronous Spidergon STNoC link 

There are several possible ways of implementing physical links: synchronous or asynchronous, with 

different flit sizes, etc. Of course, the choice of physical link technology involves trade-offs between many 

issues such as clock distribution over a wide silicon area, amount of on-chip wiring and the chip area required. 

In this respect, the decoupling of layers provided by the NoC paradigm is a major advantage, as changes to the 

physical layer can be subsequently made without affecting the packet transport and transaction layers. The 

Spidergon STNoC link represented in Figure A-10 implements the physical level of the communication 

structure using intra-die or inter-die interconnects. 

 
Figure A-10 Structure of the synchronous Spidergon STNoC Link. 

The Spidergon STNoC link is synchronous, parallel and unidirectional. The link consists of two logic 

interfaces (upstream and downstream) and two set of wires (data and control). The link uses the credit based 

flow control mechanism to transmit data (flits). Signals sent on the control wires specify various properties of 

the transmitted flit (side-band information) such as its relative position in the packet (i.e. header, payload or 

final). The control wires also carry the signals necessary for credit based flow control (i.e. valid and credit). 

The credit based flit control does not allow packet dropping or retransmission, so each received flit must be 

accepted. 

In 3D stacked MPSoCs, Spidergon STNoC can ensure intra-die and inter-die communication. In the next 

section, an MPSoC based on the Gaisler Aeroflex GRLIB IP library is extended with AMBA AXI support for 

Spidergon STNoC. 



Appendix                                                                                                                                                                         177 
 

B.3 MPSoC Architecture  

The MPSoC GRLIB template design comprises one or more LEON3 SPARC-V8 microprocessors, 

memory controllers, debug support unit, peripheral devices, and other IP blocks (e.g. cryptography, off-chip 

communication, etc). These system components are interconnected by a complex fabric that comprises an 

AMBA AHB multi-master bus, which connects CPUs, memory controllers, and an APB bus, which is 

accessed using an AHB / APB bus bridge and connects slow peripherals (e.g. UART, timers, etc). 

The 3D MPSoC is a shared-memory system and it is extended with addressable components that are 

connected using Spidergon STNoC. Spidergon STNoC is AXI-compliant and, in order to access these 

modules, AHB / AXI bridges are connected to the AHB bus. The NoC has a custom topology and packets are 

routed using source-routing (i.e. the network interface indicates the path packets must take). In the system 

memory map, these modules occupy the address spaces 0xC0000000-0xC000FFFF (MEM1) and 

0xC0010000-0xC001FFFF (MEM2), respectively. 

The MPSoC is implemented on two dies with one die comprising the AHB-subsystem and the MEM1 

module with its network interface, and the second die comprising the MEM2 module with its network interface 

and adjacent routers. The 3D Spidergon STNoC spans across two dies, ensuring intra-die access to MEM1 and 

inter-die access to MEM2. In Figure A-11, the 3D Spidergon STNoC-based MPSoC is represented.  
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Figure A-11 Spidergon STNoC-based 3D MPSoC architecture 

In order to avoid transaction deadlocks, there are two physically separated networks one for requests and 

one for responses. Each of the request / response networks has two routers (i.e. Req0 and Req1, Rsp0 and Rsp1) 

to which the NI of the MEM1 and MEM2 modules are connected. The lower-die components are connected to 

the rest of the system using two unidirectional synchronous Spidegon STNoC links. The request inter-die link 

has 92 data signals and 10 side-band information and control signals, while the response link has 64 data 

signals and 12 side-band information and control signals. 

This extended system is LEON3-compliant and it is capable of running any operating system supported by 

the GRLIB IP library (e.g. eCos, RTEMS, Linux, etc.). The objective of this chapter is not to show how to 

design MPSoC, but to assess the impact of error resilience on its performance. Therefore, in terms of software, 
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a series of simple applications that randomly access different memory locations (e.g. main memory, MEM1 

and MEM2) are considered. In the following section, the error resilience improvements of the Spidergon 

STNoC are discussed. 

B.4 Error Resilient 3D Spidergon STNoC Link 

In the 3D integration setting, inter-die wire permanent and transient faults are a major source of yield and 

reliability loss. It is assumed that no fault tolerance mechanisms are necessary to address faults on intra-die 

components. Moreover, in-field TSV failure rates are considered to be very small, compared to the system 

expected lifetime. Therefore, the error resilience solution must cope with TSV permanent faults due to 

manufacturing defects and transient faults. 

Once the target system and failure modes are specified, the ERX tool will assess the potential solutions. 

The NoC architecture is very simple (i.e. two routers for each sub-network) and only link-level solutions are 

considered. In Figure A-12, the selected error protection strategy is represented. 
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Figure A-12 Error resilience scheme for request and response links in the 3D MPSoC 

Due to the system size, adding TSVs is not a real issue. Hence, the Forward Error Correction scheme is 

selected, as it offers good reliability, with lower costs (i.e. area / power overheads) than retransmission-based 

schemes. Data signals are protected using Hamming SEC codes, while critical signals are protected using 

TMR. Because Hamming decoding can be performed in a single clock cycle, without affecting the NoC 

timing, the request and response link decoders are implemented without the correction bypass stage. It is 

assumed that the single TSV wire error rates up to εwire=10
-5. Hence, as shown in Figure IV-3, the 99.9999% 

the reliability target (i.e. εT=10
-7) can be achieved both for request and response inter-die links.  

Permanent TSV faults due to manufacturing defects are repaired using spare TSVs. Spares are allocated 

for each inter-die link such that regular TSVs (i.e. inter-die wires for data signals and error control bits) are 

repaired with a probability above the target yield YT=99.99%. Note that Hamming codes can mask TSV 

permanent failures due to manufacturing and during system lifetime. However, the correction capabilities are 
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limited to a single error and it is not possible to simultaneously have on a single link a transient and a 

permanent fault. Therefore, assuming a TSV defect rate of 0.01%, one spare TSV is allocated for each link. 

The area/power overheads of the error resilience strategy are less than 20%, but the number of TSVs 

necessary for inter-die communication increases from 182 to 220 TSVs. The error protection has an impact on 

the network and system performance. Because a retiming stage is inserted at the decoder inputs, the latency of 

each link increases by one clock cycle. In the following section, a system-level assessment of this performance 

penalty is presented. 

B.5 Performance Evaluation 

In the MPSoC platform, the LEON3 microprocessors access the MEM1 and MEM2 modules using 

load/store operations. In the AHB-subsystem, CPU transaction requests are addressed to the AHB/AXI 

protocol bridge. When the AHB arbiter grants the master’s request to the bridge, the AHB transaction is 

converted into an AXI transaction, which is packetized by the Spidergon STNoC network interfaces. These 

packets traverse the request network flit-by-flit and they are processed by the destination network interface, 

which sends the request to the MEM1 or MEM2 modules. 

In terms of transaction run-time, adding error resilience on each inter-die link will increase the request / 

response message latency. Since only the inter-die links are protected, any performance degradation is due to 

the execution time of a load / store transaction having MEM2 as target. When error resilience is added on the 

inter-die links, there is a penalty of two clock cycles. One cycle is due to the extra delay on the request inter-

die link and the other cycle is due to the delay on the response inter-die link. In both cases, the extra delay 

does not depend on the error rate. This penalty occurs even in the fault-free case, as data encoding, 

transmission on PHY, and error detection, cannot be performed in a single cycle. A protocol run usually takes 

from tens to hundreds of clock cycles. Therefore, the performance penalty due to the two extra cycles is 

negligible even for a single transaction. Overall, the performance penalty depends on the number of 

transactions having MEM2 as target. Hence, if fewer transactions have MEM2 as target then the application 

performance overhead is smaller. 

A series of applications that access different memory location have been considered. Experimental results 

have shown that the impact on the execution time is negligible. Therefore, it can be concluded that the major 

impact that the error resilience strategy has is not on the system performance, but on the number of TSVs. 



 

Abstract: 3D technology promises energy-efficient heterogeneous integrated systems, which may open the 

way to thousands cores chips. Silicon dies containing processing elements are stacked and connected by 

vertical wires called Through-Silicon-Vias. In 3D chips, interconnecting an increasing number of processing 

elements requires a scalable high-performance interconnect solution: the 3D Network-on-Chip. Despite the 

advantages of 3D integration, testing, reliability and yield remain the major challenges for 3D NoC-based 

systems. In this thesis, the TSV interconnect test issue is addressed by an off-line Interconnect Built-In Self-

Test (IBIST) strategy that detects both structural (i.e. opens, shorts) and parametric faults (i.e. delays and 

delay due to crosstalk). The IBIST circuitry implements a novel algorithm based on the aggressor-victim 

scenario and alleviates limitations of existing strategies. The proposed K
th

-aggressor fault (KAF) model 

assumes that the aggressors of a victim TSV are neighboring wires within a distance given by the aggressor 

order K. Using this model, TSV interconnect tests of inter-die 3D NoC links may be performed for different 

aggressor order, reducing test times and circuitry complexity. In 3D NoCs, TSV permanent and transient 

faults can be mitigated at different abstraction levels. In this thesis, several error resilience schemes are 

proposed at data link and network levels. For transient faults, 3D NoC links can be protected using error 

correction codes (ECC) and retransmission schemes using error detection (Automatic Retransmission 

Query) and correction codes (i.e. Hybrid error correction and retransmission).For transients along a 

source-destination path, ECC codes can be implemented at network level (i.e. Network-level Forward Error 

Correction). Data link solutions also include TSV repair schemes for faults due to fabrication processes (i.e. 

TSV-Spare-and-Replace and Configurable Serial Links) and aging (i.e. Interconnect Built-In Self-Repair and 

Adaptive Serialization) defects. At network-level, the faulty inter-die links of 3D mesh NoCs are repaired by 

implementing a TSV fault-tolerant routing algorithm. Although single-level solutions can achieve the desired 

yield / reliability targets, error mitigation can be realized by a combination of approaches at several 

abstraction levels. To this end, multi-level error resilience strategies have been proposed. Experimental 

results show that there are cases where this multi-layer strategy pays-off both in terms of cost and 

performance. Unfortunately, one-fits-all solution does not exist, as each strategy has its advantages and 

limitations. For system designers, it is very difficult to assess early in the design stages the costs and the 

impact on performance of error resilience. Therefore, an error resilience exploration (ERX) methodology is 

proposed for 3D NoCs. 
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Résumé : Malgré les avantages de l’intégration 3D, le test, le rendement et la fiabilité des Through-Silicon-

Vias (TSVs) restent parmi les plus grands défis pour les systèmes 3D à base de Réseaux-sur-Puce (Network-

on-Chip - NoC). Dans cette thèse, une stratégie de test hors-ligne a été proposé pour les interconnections 

TSV des liens inter-die des NoCs 3D. Pour le TSV Interconnect Built-In Self-Test (TSV-IBIST) on propose 

une nouvelle stratégie pour générer des vecteurs de test qui permet la détection des fautes structuraux (open 

et short) et paramétriques (fautes de délaye). Des stratégies de correction des fautes transitoires et 

permanents sur les TSV sont aussi proposées aux plusieurs niveaux d’abstraction: data link et network. Au 

niveau data link, des techniques qui utilisent des codes de correction (ECC) et retransmission sont utilisées 

pour protéger les liens verticaux. Des codes de correction sont aussi utilisés pour la protection au niveau 

network. Les défauts de fabrication ou vieillissement des TSVs sont réparé au niveau data link avec des 

stratégies à base de redondance et sérialisation. Dans le réseau, les liens inter-die défaillante ne sont pas 

utilisables et un algorithme de routage tolérant aux fautes est proposé. On peut implémenter des techniques 

de tolérance aux fautes sur plusieurs niveaux. Les résultats ont montré qu’une stratégie multi-level atteint 

des très hauts niveaux de fiabilité avec un cout plus bas. Malheureusement, il n’y as pas une solution unique 

et chaque stratégie a ses avantages et limitations. C’est très difficile d’évaluer tôt dans le design flow les 

couts et l’impact sur la performance. Donc, une méthodologie d’exploration de la résilience aux fautes est 

proposée pour les NoC 3D mesh. 

Mots-clef: Integration 3D, Through-Silicon-Vias, 3D Networks-on-Chip, Tolerance aux Fautes, Interconnect Built-In Self-

Test 

 


