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Abstract. The intensive and continuous use of high-performance com-
puters for executing computationally intensive applications, coupled with
the large number of elements that make them up, dramatically increase
the likelihood of failures during their operation.

The interconnection network is a critical part of such systems, therefore,
network faults have an extremely high impact because most routing al-
gorithms are not designed to tolerate faults. In such algorithms, just a
single fault may stall messages in the network, preventing the finalization
of applications, or may lead to deadlocked configurations.

This work focuses on the problem of fault tolerance for high-speed in-
terconnection networks by designing a fault-tolerant routing method to
solve an unbounded number of dynamic faults (permanent and non-
permanent). To accomplish this task we take advantage of the commu-
nication path redundancy, by means of a multipath routing approach.
Experiments show that our method allows applications to finalize their
execution in the presence of several number of faults, with an average
performance value of 97% compared to the fault-free scenarios.

1 Introduction

High-performance computer systems have opened a trend in modeling the mod-
ern society daily behavior and life style by means of applications and services
such as molecular dynamics simulations, DNA sequencing, weather forecasting,
geological activity studies, etc. Even a simple Google search is based on high-
performance computer (HPC) systems [1].

The steady increase in complexity and number of components of HPC sys-
tems leads to significantly higher failure rates. Because of this, and due to the
long execution times of computationally intensive applications, various computer
systems show a Mean Time Between Failures (MTBF) smaller than the execu-
tion time of some of these applications [2]. This means that at least one failure
will probably occur during the execution of such applications.
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Questions arise from the analysis of these situations such as: how do the
failures (and their duration) affect these HPC systems? Are such systems able
to maintain their operation and performance standards in spite of failure occur-
rences? If they are not, what should the solution be? What are the best options
to achieve fault tolerance and system service continuity?

Undoubtedly, system performance is closely related to the robustness of the
fault tolerance mechanisms of the network. For this reason, high-speed inter-
connection networks (HSINs) must avoid significant performance degradations
and, above all, allow applications to finalize their executions while preventing
abnormal behaviors, even in the presence of multiple faults regardless of their
duration.

In this work, we focus on the fault tolerance problem for HSINs due to their
primary role as the linking element of HPC systems. There are three main ap-
proaches that could be chosen to achieve this goal: component redundancy, net-
work reconfiguration, and fault-tolerant routing algorithms [3]. The component
redundancy approach is often used in some systems but the high extra cost of the
redundant spare components is an important drawback. The second approach
stops the network and reconfigures the routing tables in case of a network fault
in order to adapt them to the new topology after the fault. This approach is very
flexible and powerful but at the expense of killing network performance. Rout-
ing algorithms designed for fault tolerance looks for alternative paths when a
fault disables the original path used to communicate a pair of source-destination
nodes. This last approach could be outlined as the most interesting and suitable
option but, at the same time, the design of fault-tolerant routing algorithms
implies great challenges.

The failure of a single network component disables resources for variable time
periods, generating congestion problems in their surroundings. Adaptive routing
is a natural solution to this problem and therefore adaptive routing algorithms
designed for fault tolerance could be outlined as a viable option.

For this reason, we focus our work in the problem of fault tolerance for
HSINs by means of the adaptive routing approach. In this paper we present
a method that exploits communication path redundancy through an adaptive
multipath routing policy with the aim of solve a certain number of permanent
and non-permanent link failures. The method is based on source-destination
communication path information and consists of three phases. The first phase is
responsible for on-line fault diagnosis and uses physical level monitoring at the
intermediate nodes along the source-destination path. If a message encounters a
faulty link as it progresses towards its destination, the second phase immediately
reroutes the message to the destination by an alternative path. In the third and
last phase, the source node is notified about the link failure in order to disable
the faulty path, and to establish new paths for the following messages to be sent
to that destination. At a first stage, failures are considered and treated as non-
permanent. If a failure persists over time, its status changes from non-permanent
to permanent.



In a previous work, we have introduced a method capable of supporting dy-
namic faults appearing at random during network operation [4]. The method
allows the system to remain operational while measures are taken to circum-
vent the faulty components, however, it was not intended to treat transient and
intermittent faults.

The main contribution of this work is the ability to treat permanent and non-
permanent dynamic faults while treating network congestion caused by faults.
Moreover, the method only notifies the event of a failure to the sources nodes that
try to send messages by faulty links, instead of distributing status-information
over the network, and therefore reducing traffic overhead.

Experimental results show an average performance higher than 97% for a set
of test scenarios with several faults in a 1024 nodes bidimensional torus network
for standard traffic patterns.

The rest of the paper is organized as follows. Section 2 introduces the related
work. Section 3 describes the multipath routing method for tolerating dynamic
faults, details its behavior and explains the treatment of non-permanent faults.
Evaluation environment, test scenarios and results are presented in Section 4.
Finally, some conclusions and future work are drawn in Section 5.

2 Related Work

Many research studies have been published in the field of fault tolerance for
interconnection networks throughout the past few decades. The vast majority
assumes the existence of diagnostic techniques, and focus on how the availability
of information obtained from these diagnoses can be used to develop robust and
reliable routing algorithms. This means that diagnoses problem is not addressed
by those methods; static fault models are used which means that all the infor-
mation about faults need to be known in advance; and they assume that there
are mechanisms to correctly distribute this information to network nodes.

In [5] it is presented some interesting research in the area of component
redundancy. On the side of the network reconfiguration approach, there are
works based on deterministic routing methodologies for tori and meshes [6], and
others that achieve error detection and recovery for k -ary n-cube topologies [7].
The latter proposal tolerates non-permanent faults but relies on table based
routing strategies and packet injection is required to be temporarily stopped
during a global reconfiguration phase.

In [8] the author proposes a widely used methodology for designing fault-
tolerant routing algorithms. Several works have achieved good performance re-
sults based on the aforenamed methodology, but almost all of them use a static
fault model.

Some routing strategies using static fault models have been proposed for
different network topologies like k -ary n-tree [9] and direct networks [10]. The
authors of the latter work suggest the use of intermediate nodes to circumvent
faults but fault detection, information distribution, and checkpointing are as-



sumed to be provided by the interconnection network. The use of intermediate
nodes was first proposed by Valiant for the purpose of traffic balancing [11].

One of the only proposals capable to deal with dynamic faults was proposed
in [12] as an evolution of [13]. The method is based on a turn-model variation,
needs five virtual channels to support fully adaptive routing, and packet drops
are allowed under certain situations. Moreover, status-information must be dis-
tributed through control messages then rerouting decisions must be taken based
on such information. All these actions have an extra cost.

In [14] the authors introduce a fault-tolerant routing methodology that sacri-
fices a certain number of healthy nodes in order to use no more than two virtual
channels, and to reduce the routing time.

3 Multipath Fault-Tolerant Routing

The multipath fault-tolerant routing method presented in this paper is largely
based on the Distributed Routing Balancing (DRB) concept introduced in [15].

This proposal differs from the work found in the literature through its com-
bined features. More precisely, it is able to combine support for a dynamic
fault model and multipath routing. Even more, the method introduces a novelty
approach, addressing system continuity functioning and network performance
degradation problems at the same time. To accomplish these tasks, we use a
non-global scheme to distribute real-time paths information in order to chose
the best source-destination paths. Furthermore, our method does not require
global reconfiguration or stopping packet injection at any time, using a limited
number of virtual channels.

Conceptually, our proposal consists of three steps. In the first step, the failure
in the original path is discovered when a message tries to use a faulty link, as
could be seen in Fig. 1(a). In the second step, shown in Fig. 1(b), the message is
rapidly rerouted to its destination through an alternative path to allow system
service continuity. This action is intended to be a fast and temporary response to
failures therefore may not be the optimal solution. For this reason, we include a
third step which seek to reconfigure new paths to improve performance and ease
routing paths. In this step, shown in Fig. 1(c), the source node is notified about
the discovery of a link failure in the path, in order to disable the faulty path and
reconfigure new paths for the following messages. Once those new paths have
been configured, their latency values are recorded and sent back to the source
node (from the destination), in order to calculate the number of alternative paths
that must be used according to the network traffic burden.

The configuration and use of simultaneous alternative paths between source
and destination nodes allow the method to deal with link failures. The use of
such simultaneous paths provides path redundancy and allows performance im-
provements by means of communication balancing and distribution.

The alternative paths are created using intermediates nodes which can be
used for two different purposes. One of these purposes is to allow the segmen-
tation of the original source-destination path when encountering faults on the
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fly (due to the dynamic fault model), in order to circumvent the faulty areas as
shown in Fig. 1(b). The second purpose of intermediate nodes is to be used as
scattering and gathering areas from source and destination nodes when knowing
the location of the faults, as shown in Fig. 1(c). From these scattering/gathering
areas, alternative paths are built based on intermediate nodes carefully cho-
sen to ensure that they are not in the original path, using the available links
in routers. The set of alternative paths between each source-destination pair is
called multipath or metapath [15].

The intermediate nodes are chosen according to their distance to the nodes
that have detected the faults or to the source and destination nodes, as appro-
priate. The nodes of 1-hop distance are considered first, then nodes of 2-hop
distance, etc. If necessary, e.g. if a link fails, the multipath could be expanded
in order to include additional alternative paths. This case is shown in Fig. 1(c),
where two alternative paths were included.

In this work, we consider only two intermediate nodes so that the path is
divided in three segments: the first ranges from the source (S ) to the first in-
termediate node (In1 ), the second between the two intermediate nodes, and the
third from the second intermediate node (In2 ) to the destination (D). This seg-
mented path is called a multistep path (MSP), and uses minimal static routing
in each segment. When using multistep paths deadlock freedom becomes a key
issue. In our proposal, deadlock freedom is ensured by having a separate virtual
channel for each step. As we are considering two intermediate nodes, one extra
virtual channel is used (if required) from S to In1, another from In1 to In2,
and a third one from In2 to D. This way, each step defines a virtual network,
and the packets change virtual network at each intermediate node. Although
each virtual network relies on a different virtual channel, they all share the same
adaptive channel(s). Therefore, a total of 4 virtual channels are need.

3.1 Method Behavior

The behavior of the method, including all its functionalities, could be seen in
Fig. 2. The behavior diagram shown in Fig. 2 consists of four main blocks: Source
endnode; Message routing ; ACK routing ; and Destination endnode. The source
and destination endnode blocks contain the actions implemented at the source
and destination nodes, respectively; while message and ACK routing blocks rep-
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resent actions carried out by the routers along the source-destination paths. Each
block is composed by several elements (stage boxes and decision elements), where
the colored elements represent the set of actions performed in the absence of fail-
ures and congestion, and the colorless correspond to the additional features for
fault tolerance and congestion control.

When a source node injects a message in the interconnection network, it
traverses a set of routers before reaching the destination node. Two monitoring
actions are conducted at each router along the source-destination path: link
state and traffic load monitoring. Link state monitoring is performed directly
over router physical channels, while traffic load monitoring is accomplished by
the router over the message. These actions are represented in Fig. 2 by the two
colored decision elements in the Message routing block.

If there are no faults in the source-destination path, each message registers
and transports the accumulated latency information about the path it traverses
(either the original or an alternative), by means of the Latency Accumulation
element in Message routing block. When the message reaches the destination
node, the accumulated latency value is obtained from the packet and, if the
path is fault-free, sent back to the source node by means of an ACK message
(ACK Injection (path latency) element in the Destination endnode block) in
order to notify the source node about the network traffic burden.

On the other hand, two actions are triggered if a message tries to use a
faulty link while it traverses the source-destination path. Firstly, the message
is rerouted to its destination through an escape path (Escape Path Selection
element in the Message routing block). At the same time, the ACK Injection
(faulty link) element sends back a special ACK message to the source node. This
ACK message –sent by means of the ACK routing block– carries information



about the fault location (e.g. node and port identifiers) to avoid the use of the
faulty path. Those triggered actions were previously illustrated in Fig. 1(b).

Those two kinds of ACK messages have higher priority in the routing unit,
and their size is less than 1% of the data messages because they only transport
control info: a latency value or failure information. Notice that only one of those
ACK messages is sent for each data message, as appropriate.

Using the link fault information together with the set of collected latencies,
the number of alternative paths needed for a specific source-destination pair is
determined. From this action, performed at the Multipath Configuration element
in the Source endnode block, the method avoids the use of faulty paths and fairly
distributes the communication load over the multipath. The communication load
distribution is accomplished by selecting the appropriate MSPs at the Multistep
Path Selection element.

The outcome of this phase is then used by the source node to distribute the
load among all the MSPs in base of their latency. The path with lower latency
is most frequently used, then messages are distributed over the MSPs according
to their relative latency values.

The set of actions at node level of our proposal have not a high overhead be-
cause they are simple (comparisons and accumulations), locally performed, and
do not delay send/receive primitives. As shown in Fig. 2, message is forwarded
without any overhead when the output link is non-faulty. The escape path mech-
anism is invoked only when faults are detected, and latency accumulations are
performed when messages are waiting in the queue. Hence, computing these
operations is performed concurrently with packet delivery. Furthermore, inter-
connection networks usually are not planned to continuously operate at their
saturation point, thus small overheads could be tolerated if necessary to avoid
faults.

Our method relies on physical level information about links state. This infor-
mation is already available on almost all modern network devices. Current de-
vices test and control their ports and links by means of physical parameters such
as potential difference, impedance, etc. For example, the InfiniBand architecture
offers four link states: LinkDown, LinkInitialize, LinkArm and LinkActive [16].
Even the simplest Ethernet router makes available the link state information.

3.2 Non-permanent Faults

Our method considers faults as non-permanent at a first stage, to prevent the
misuse of resources. If faults persist over time, their status is changed to perma-
nent.

In order to achieve this functionality, information about the location and
status of faults is stored in the Link Fault Information element (Source endnode
block). From this information, source nodes may be able to use fault-free paths
which otherwise would incorrectly appear as faulty (due to non-permanent faults).

The information about faults is obtained from the ACK messages sent back
to the source nodes from routers that have detected the faults. The node and



port identifiers obtained from these ACK message are used for storing and in-
dexing the fault information in the Link Fault Information element. Each entry
is composed by these two identifiers and two additional numbers used to manage
the fault status: the stage number and the attempt number.

The information in the Link Fault Information element is updated each time
a fault ACK message arrives to the source node. If the ACK carries information
about a new fault, a new entry is included. In turn, if there is already an entry for
the fault, the stage number is increased. A fault is only considered as permanent
if its stage number is greater than or equal to three. Notice that this means a
fault is considered to be permanent only after receiving at least three different
notifications about the fault.

On the other hand, the attempt number has been included to treat differences
in the duration of non-permanent faults. In fact, it is intended to be used as a
timer to delay the use of a path which has been notified as faulty. This seeks to
reduce the possibility of considering a non-permanent fault as a permanent one.

In our method, as stated above, the Multistep Path Selection element must
select the MSPs before the injection of each new message. There is where the
information stored in the Link Fault Information element is used.

When selecting the MSP, the Multistep Path Selection element looks for
entries corresponding to the links along the path between the source-destination
pair. Notice that a link can be identified by means of the identifiers of the router
and port to which it is connected.

The path is fault-free and can be selected if there are no entries for all the
links along the path. On the other hand, if there are faults along the path, it
may or may not be used depending on faults status. If at least one of the entries
corresponds to a permanent fault, the path cannot be used and an alternative
path should be selected. If none of the entries correspond to permanent faults, the
attempt number must be considered for the selection. The path can be selected
only if attempt number of all the links along the path are lower ten. Otherwise,
the attempt number is increased for all the links along the path, but the path
cannot be used. By means of this action, the attempt number eventually will
reach ten and the path would be selected.

If a path containing a non-permanent fault is selected and used, two situations
may arise. In the best case, the fault will have disappeared and a latency value
will be received from the destination node. In this case, all the entries of this
path will be removed from the Link Fault Information element, and the resources
utilization would be improved. In the worst case, the message will be rerouted
to its destination and a new fault notification will be received.

4 Performance Evaluation

This section describes the test scenarios used to evaluate our proposal and pro-
vides the explanation of experimental results.

The simulation environment is provided by the commercial modeling and
simulation tool OPNET Modeler [17]. This tool gives support for modeling com-



munication networks, and allows the injection of faults in model components.
The whole actions and functionalities of our proposal have been modeled using
this tool.

Experimentation is based on two-dimensional torus chosen mainly due to its
current popularity and multiple alternative paths between nodes. The network
was modeled based on interconnection elements, connected among them through
links; and endnodes that provide the interface to connect processing nodes to
the network.

The simulations were conducted for a 1024 nodes network arranged in a 32x32
torus topology. We have assumed Virtual Cut-Through flow control and several
standard package sizes with a constant packet injection rate. Link bandwith was
set to 1 Gbps, and the size of routers buffers to 2 MB.

In order to evaluate the behavior and measure performance, experiments were
conducted using standard communication patterns with up to 60 simultaneous
link failures randomly injected. Permanents faults were used in order to validate
the method in the worst-case scenarios. Standard communication patterns were
used due to their application in computational intensive scientific applications
[18]. These patterns are: Bit Reversal (BR), Perfect Shuffle (PS), Butterfly (BF),
Matrix Transpose (MT), and Complement (CM).

In order to evaluate our proposal, as a first step, a set of fault-free scenarios
were simulated several times to get average latency values in the absence of
failures. Later, faults were injected in the scenarios used in the first step to
measure the average latency values of each approach. Up to 60 network links were
simultaneously failed during the evaluation of test scenarios. Then, performance
degradation was measured as the difference between latency values of faulty and
fault-free scenarios.

The vast majority of previous work in literature use static models, therefore,
it is not possible to make direct performance comparisons against them. One
of the only proposals dealing with dynamic faults ([12]) achieves a throughput
performance average of 85.5% using a Uniform traffic pattern and 88.8% using
Permutation traffic, both in the presence of 7 random link failures and allowing
packet drops.

The performance results for the standard traffic patterns in the 60-failures
test scenario are shown in Fig. 3(a). In order to compare the ratio between
the number of failures and the performance of our proposal, the results of the
6-failures test scenario are also included and shown in Fig. 3(b).

As shown in Figs. 3(a) and 3(b), our method obtains very high performance
values. An important point to emphasize is the fact that with a linear increase
of 10 times the number of faults, the average performance degradation value is
just about 3%. In the worst case the performance is about 88% for the Perfect
shuffle pattern with 60 simultaneous faults, and 100% in the best case for Matrix
transpose pattern with 6 simultaneous faults. Performance values are even better
if we consider the average values, obtaining a 97% performance value in the worst
case (60 faults).
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Fig. 3. Results of test scenarios.

5 Conclusions

In this paper, we have proposed multipath fault-tolerant routing method de-
signed to deal with the fault tolerance problem for high-speed interconnection
networks. This method is able to support a dynamic fault model, while at the
same time not requiring network reconfigurations or stopping packet injection
at any time, using a limited number of virtual channels. Our proposal needs few
additional hardware resources and is able to treat the intermittent and tran-
sient faults as well as the permanent ones, maximizing the resources utilization.
Unlike other fault-tolerant approaches, our method does not degrade at all the
system performance in the absence of faults.

Evaluation results show an average performance value higher than 97% for
several test scenarios ranging from 1 up to 60 number of faults, using the stan-
dard communication patterns. From these results we conclude that our method
is capable of reroute messages to their destinations through fault-free paths with
a negligible performance degradation even in the presence of a high number of
faults.

We are currently working on improving the method to tolerate an unbounded
number of failures. In addition, future work includes the enlargement of the cur-
rent fault models to address information losses and stuck caused by the failures
of network devices.
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9. Gómez, C., Gómez, M.E., López, P., Duato, J.: An efficient fault-tolerant rout-
ing methodology for fat-tree interconnection networks. In: ISPA. Volume 4742 of
Lecture Notes in Computer Science., Springer (2007) 509–522
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