39,287 research outputs found

    A model-based approach to service creation

    Get PDF
    This paper presents a model-based approach to support service creation. In this approach, services are assumed to be created from (available) software components. The creation process may involve multiple design steps in which the requested service is repeatedly decomposed into more detailed functional parts, until these parts can be mapped onto software components. A modelling language is used to express and enable analysis of the resulting designs, in particular the behaviour aspects. Methods are needed to verify the correctness of each design step. A technique called behaviour refinement is introduced to assess the conformance relation between an abstract behaviour and a more concrete (detailed) behaviour. This technique is based on the application of abstraction rules to determine the abstraction of the concrete behaviour such that the obtained abstraction can be compared to the original abstract behaviour. The application of this refinement technique throughout the creation process enforces the correctness of the created servic

    Using formal methods to develop WS-BPEL applications

    Get PDF
    In recent years, WS-BPEL has become a de facto standard language for orchestration of Web Services. However, there are still some well-known difficulties that make programming in WS-BPEL a tricky task. In this paper, we firstly point out major loose points of the WS-BPEL specification by means of many examples, some of which are also exploited to test and compare the behaviour of three of the most known freely available WS-BPEL engines. We show that, as a matter of fact, these engines implement different semantics, which undermines portability of WS-BPEL programs over different platforms. Then we introduce Blite, a prototypical orchestration language equipped with a formal operational semantics, which is closely inspired by, but simpler than, WS-BPEL. Indeed, Blite is designed around some of WS-BPEL distinctive features like partner links, process termination, message correlation, long-running business transactions and compensation handlers. Finally, we present BliteC, a software tool supporting a rapid and easy development of WS-BPEL applications via translation of service orchestrations written in Blite into executable WS-BPEL programs. We illustrate our approach by means of a running example borrowed from the official specification of WS-BPEL

    Higher-Order Process Modeling: Product-Lining, Variability Modeling and Beyond

    Full text link
    We present a graphical and dynamic framework for binding and execution of business) process models. It is tailored to integrate 1) ad hoc processes modeled graphically, 2) third party services discovered in the (Inter)net, and 3) (dynamically) synthesized process chains that solve situation-specific tasks, with the synthesis taking place not only at design time, but also at runtime. Key to our approach is the introduction of type-safe stacked second-order execution contexts that allow for higher-order process modeling. Tamed by our underlying strict service-oriented notion of abstraction, this approach is tailored also to be used by application experts with little technical knowledge: users can select, modify, construct and then pass (component) processes during process execution as if they were data. We illustrate the impact and essence of our framework along a concrete, realistic (business) process modeling scenario: the development of Springer's browser-based Online Conference Service (OCS). The most advanced feature of our new framework allows one to combine online synthesis with the integration of the synthesized process into the running application. This ability leads to a particularly flexible way of implementing self-adaption, and to a particularly concise and powerful way of achieving variability not only at design time, but also at runtime.Comment: In Proceedings Festschrift for Dave Schmidt, arXiv:1309.455

    Block-Based Development of Mobile Learning Experiences for the Internet of Things

    Get PDF
    The Internet of Things enables experts of given domains to create smart user experiences for interacting with the environment. However, development of such experiences requires strong programming skills, which are challenging to develop for non-technical users. This paper presents several extensions to the block-based programming language used in App Inventor to make the creation of mobile apps for smart learning experiences less challenging. Such apps are used to process and graphically represent data streams from sensors by applying map-reduce operations. A workshop with students without previous experience with Internet of Things (IoT) and mobile app programming was conducted to evaluate the propositions. As a result, students were able to create small IoT apps that ingest, process and visually represent data in a simpler form as using App Inventor's standard features. Besides, an experimental study was carried out in a mobile app development course with academics of diverse disciplines. Results showed it was faster and easier for novice programmers to develop the proposed app using new stream processing blocks.Spanish National Research Agency (AEI) - ERDF fund

    Project based learning on industrial informatics: applying IoT to urban garden

    Get PDF
    Copyright (c) 2018 IEEEThe fast evolution of technologies forces teachers to trade content off for self-learning. PBL is one of the best ways to promote self-learning and simultaneously boost motivation. In this paper, we present our experience introducing project-based learning in the last year subject. New Internet of Things (IoT) topic allows us to carry out complete projects, integrating different technologies and tools. Moreover, the selection of open-source and standard free technologies makes easy and cheap the access to hardware and software platforms used. We carefully have picked communication, data management, and programming tools that we think would be attractive to our students. They can start making fast prototyping with little initial skills and, at the same time, these are serious and popular tools widely used in the industry. In this paper, we report on the design of a project-based learning for our course and the impact this has on the student satisfaction and motivation. Surveys taught us that tuning the courses towards developing real projects on the field, has a large impact on acceptance, learning objectives achievements and motivation towards the course content.”I Plan Propio Integral de Docencia de la Universidad de Málaga” y Proyecto de Innovación Educativa PIE17/085, de la Universidad de Málaga. Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    The NASA integrated test facility and its impact on flight research

    Get PDF
    The Integrated Test Facility (ITF), being built at NASA Ames-Dryden Flight Research Facility, will provide new test capabilities for emerging research aircraft. An overview of the ITF and the challenges being addressed by this unique facility are outlined. The current ITF capabilities, being developed with the X-29 Forward Swept Wing Program, are discussed along with future ITF activities

    A Process Modelling Framework Based on Point Interval Temporal Logic with an Application to Modelling Patient Flows

    Get PDF
    This thesis considers an application of a temporal theory to describe and model the patient journey in the hospital accident and emergency (A&E) department. The aim is to introduce a generic but dynamic method applied to any setting, including healthcare. Constructing a consistent process model can be instrumental in streamlining healthcare issues. Current process modelling techniques used in healthcare such as flowcharts, unified modelling language activity diagram (UML AD), and business process modelling notation (BPMN) are intuitive and imprecise. They cannot fully capture the complexities of the types of activities and the full extent of temporal constraints to an extent where one could reason about the flows. Formal approaches such as Petri have also been reviewed to investigate their applicability to the healthcare domain to model processes. Additionally, to schedule patient flows, current modelling standards do not offer any formal mechanism, so healthcare relies on critical path method (CPM) and program evaluation review technique (PERT), that also have limitations, i.e. finish-start barrier. It is imperative to specify the temporal constraints between the start and/or end of a process, e.g., the beginning of a process A precedes the start (or end) of a process B. However, these approaches failed to provide us with a mechanism for handling these temporal situations. If provided, a formal representation can assist in effective knowledge representation and quality enhancement concerning a process. Also, it would help in uncovering complexities of a system and assist in modelling it in a consistent way which is not possible with the existing modelling techniques. The above issues are addressed in this thesis by proposing a framework that would provide a knowledge base to model patient flows for accurate representation based on point interval temporal logic (PITL) that treats point and interval as primitives. These objects would constitute the knowledge base for the formal description of a system. With the aid of the inference mechanism of the temporal theory presented here, exhaustive temporal constraints derived from the proposed axiomatic system’ components serves as a knowledge base. The proposed methodological framework would adopt a model-theoretic approach in which a theory is developed and considered as a model while the corresponding instance is considered as its application. Using this approach would assist in identifying core components of the system and their precise operation representing a real-life domain deemed suitable to the process modelling issues specified in this thesis. Thus, I have evaluated the modelling standards for their most-used terminologies and constructs to identify their key components. It will also assist in the generalisation of the critical terms (of process modelling standards) based on their ontology. A set of generalised terms proposed would serve as an enumeration of the theory and subsume the core modelling elements of the process modelling standards. The catalogue presents a knowledge base for the business and healthcare domains, and its components are formally defined (semantics). Furthermore, a resolution theorem-proof is used to show the structural features of the theory (model) to establish it is sound and complete. After establishing that the theory is sound and complete, the next step is to provide the instantiation of the theory. This is achieved by mapping the core components of the theory to their corresponding instances. Additionally, a formal graphical tool termed as point graph (PG) is used to visualise the cases of the proposed axiomatic system. PG facilitates in modelling, and scheduling patient flows and enables analysing existing models for possible inaccuracies and inconsistencies supported by a reasoning mechanism based on PITL. Following that, a transformation is developed to map the core modelling components of the standards into the extended PG (PG*) based on the semantics presented by the axiomatic system. A real-life case (from the King’s College hospital accident and emergency (A&E) department’s trauma patient pathway) is considered to validate the framework. It is divided into three patient flows to depict the journey of a patient with significant trauma, arriving at A&E, undergoing a procedure and subsequently discharged. Their staff relied upon the UML-AD and BPMN to model the patient flows. An evaluation of their representation is presented to show the shortfalls of the modelling standards to model patient flows. The last step is to model these patient flows using the developed approach, which is supported by enhanced reasoning and scheduling

    Evaluating XMPP Communication in IEC 61499-based Distributed Energy Applications

    Full text link
    The IEC 61499 reference model provides an international standard developed specifically for supporting the creation of distributed event-based automation systems. Functionality is abstracted into function blocks which can be coded graphically as well as via a text-based method. As one of the design goals was the ability to support distributed control applications, communication plays a central role in the IEC 61499 specification. In order to enable the deployment of functionality to distributed platforms, these platforms need to exchange data in a variety of protocols. IEC 61499 realizes the support of these protocols via "Service Interface Function Blocks" (SIFBs). In the context of smart grids and energy applications, IEC 61499 could play an important role, as these applications require coordinating several distributed control logics. Yet, the support of grid-related protocols is a pre-condition for a wide-spread utilization of IEC 61499. The eXtensible Messaging and Presence Protocol (XMPP) on the other hand is a well-established protocol for messaging, which has recently been adopted for smart grid communication. Thus, SIFBs for XMPP facilitate distributed control applications, which use XMPP for exchanging all control relevant data, being realized with the help of IEC 61499. This paper introduces the idea of integrating XMPP into SIFBs, demonstrates the prototypical implementation in an open source IEC 61499 platform and provides an evaluation of the feasibility of the result.Comment: 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA

    Property-Based Testing - The ProTest Project

    Get PDF
    The ProTest project is an FP7 STREP on property based testing. The purpose of the project is to develop software engineering approaches to improve reliability of service-oriented networks; support fault-finding and diagnosis based on specified properties of the system. And to do so we will build automated tools that will generate and run tests, monitor execution at run-time, and log events for analysis. The Erlang / Open Telecom Platform has been chosen as our initial implementation vehicle due to its robustness and reliability within the telecoms sector. It is noted for its success in the ATM telecoms switches by Ericsson, one of the project partners, as well as for multiple other uses such as in facebook, yahoo etc. In this paper we provide an overview of the project goals, as well as detailing initial progress in developing property based testing techniques and tools for the concurrent functional programming language Erlang
    corecore