119 research outputs found

    Malicious Digital Penetration of United States Weaponized Military Unmanned Aerial Vehicle Systems: A National Security Perspective Concerning the Complexity of Military UAVs and Hacking

    Get PDF
    The United States’ (US) military unmanned aerial vehicle (UAV) has seen increased usage under the post 9/11 military engagements in the Middle East, Afghanistan, and within American borders. However, the very digital networks controlling these aircrafts are now enduring malicious intrusions (hacking) by America’s enemies. . The digital intrusions serve as a presage over the very digital networks the US relies upon to safeguard its national security and interests and domestic territory. The complexity surrounding the hacking of US military UAVs appears to be increasing, given the advancements in digital networks and the seemingly inauspicious nature of artificial intelligence and autonomous systems. Being most victimized by malicious digital intrusions, the US continues its military components towards growing dependence upon digital networks in advancing warfare and national security and interests. Thus, America’s netcentric warfare perspectives may perpetuate a chaotic environment where the use of military force is the sole means of safeguarding its digital networks

    Adaptive path planning for fusing rapidly exploring random trees and deep reinforcement learning in an agriculture dynamic environment UAVs

    Get PDF
    Unmanned aerial vehicles (UAV) are a suitable solution for monitoring growing cultures due to the possibility of covering a large area and the necessity of periodic monitoring. In inspection and monitoring tasks, the UAV must find an optimal or near-optimal collision-free route given initial and target positions. In this sense, path-planning strategies are crucial, especially online path planning that can represent the robot’s operational environment or for control purposes. Therefore, this paper proposes an online adaptive path-planning solution based on the fusion of rapidly exploring random trees (RRT) and deep reinforcement learning (DRL) algorithms applied to the generation and control of the UAV autonomous trajectory during an olive-growing fly traps inspection task. The main objective of this proposal is to provide a reliable route for the UAV to reach the inspection points in the tree space to capture an image of the trap autonomously, avoiding possible obstacles present in the environment. The proposed framework was tested in a simulated environment using Gazebo and ROS. The results showed that the proposed solution accomplished the trial for environments up to 300 m3 and with 10 dynamic objects.The authors would like to thank the following Brazilian Agencies CEFET-RJ, CAPES, CNPq, and FAPERJ. The authors also want to thank the Research Centre in Digitalization and Intelligent Robotics (CeDRI), Instituto Politécnico de Bragança–IPB (UIDB/05757/2020 and UIDP/05757/2020), the Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/MCTES (PIDDAC) to CeDRI, and Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC) and IPB, Portugal. This work was carried out under the Project “OleaChain: Competências para a sustentabilidade e inovação da cadeia de valor do olival tradicional no Norte Interior de Portugal” (NORTE-06-3559-FSE-000188), an operation to hire highly qualified human resources, funded by NORTE 2020 through the European Social Fund (ESF).info:eu-repo/semantics/publishedVersio

    Realistic adversarial machine learning to improve network intrusion detection

    Get PDF
    Modern organizations can significantly benefit from the use of Artificial Intelligence (AI), and more specifically Machine Learning (ML), to tackle the growing number and increasing sophistication of cyber-attacks targeting their business processes. However, there are several technological and ethical challenges that undermine the trustworthiness of AI. One of the main challenges is the lack of robustness, which is an essential property to ensure that ML is used in a secure way. Improving robustness is no easy task because ML is inherently susceptible to adversarial examples: data samples with subtle perturbations that cause unexpected behaviors in ML models. ML engineers and security practitioners still lack the knowledge and tools to prevent such disruptions, so adversarial examples pose a major threat to ML and to the intelligent Network Intrusion Detection (NID) systems that rely on it. This thesis presents a methodology for a trustworthy adversarial robustness analysis of multiple ML models, and an intelligent method for the generation of realistic adversarial examples in complex tabular data domains like the NID domain: Adaptative Perturbation Pattern Method (A2PM). It is demonstrated that a successful adversarial attack is not guaranteed to be a successful cyber-attack, and that adversarial data perturbations can only be realistic if they are simultaneously valid and coherent, complying with the domain constraints of a real communication network and the class-specific constraints of a certain cyber-attack class. A2PM can be used for adversarial attacks, to iteratively cause misclassifications, and adversarial training, to perform data augmentation with slightly perturbed data samples. Two case studies were conducted to evaluate its suitability for the NID domain. The first verified that the generated perturbations preserved both validity and coherence in Enterprise and Internet-of Things (IoT) network scenarios, achieving realism. The second verified that adversarial training with simple perturbations enables the models to retain a good generalization to regular IoT network traffic flows, in addition to being more robust to adversarial examples. The key takeaway of this thesis is: ML models can be incredibly valuable to improve a cybersecurity system, but their own vulnerabilities must not be disregarded. It is essential to continue the research efforts to improve the security and trustworthiness of ML and of the intelligent systems that rely on it.Organizações modernas podem beneficiar significativamente do uso de Inteligência Artificial (AI), e mais especificamente Aprendizagem Automática (ML), para enfrentar a crescente quantidade e sofisticação de ciberataques direcionados aos seus processos de negócio. No entanto, há vários desafios tecnológicos e éticos que comprometem a confiabilidade da AI. Um dos maiores desafios é a falta de robustez, que é uma propriedade essencial para garantir que se usa ML de forma segura. Melhorar a robustez não é uma tarefa fácil porque ML é inerentemente suscetível a exemplos adversos: amostras de dados com perturbações subtis que causam comportamentos inesperados em modelos ML. Engenheiros de ML e profissionais de segurança ainda não têm o conhecimento nem asferramentas necessárias para prevenir tais disrupções, por isso os exemplos adversos representam uma grande ameaça a ML e aos sistemas de Deteção de Intrusões de Rede (NID) que dependem de ML. Esta tese apresenta uma metodologia para uma análise da robustez de múltiplos modelos ML, e um método inteligente para a geração de exemplos adversos realistas em domínios de dados tabulares complexos como o domínio NID: Método de Perturbação com Padrões Adaptativos (A2PM). É demonstrado que um ataque adverso bem-sucedido não é garantidamente um ciberataque bem-sucedido, e que as perturbações adversas só são realistas se forem simultaneamente válidas e coerentes, cumprindo as restrições de domínio de uma rede de computadores real e as restrições específicas de uma certa classe de ciberataque. A2PM pode ser usado para ataques adversos, para iterativamente causar erros de classificação, e para treino adverso, para realizar aumento de dados com amostras ligeiramente perturbadas. Foram efetuados dois casos de estudo para avaliar a sua adequação ao domínio NID. O primeiro verificou que as perturbações preservaram tanto a validade como a coerência em cenários de redes Empresariais e Internet-das-Coisas (IoT), alcançando o realismo. O segundo verificou que o treino adverso com perturbações simples permitiu aos modelos reter uma boa generalização a fluxos de tráfego de rede IoT, para além de serem mais robustos contra exemplos adversos. A principal conclusão desta tese é: os modelos ML podem ser incrivelmente valiosos para melhorar um sistema de cibersegurança, mas as suas próprias vulnerabilidades não devem ser negligenciadas. É essencial continuar os esforços de investigação para melhorar a segurança e a confiabilidade de ML e dos sistemas inteligentes que dependem de ML

    Real-time extensive livestock monitoring using lpwan smart wearable and infrastructure

    Get PDF
    Extensive unsupervised livestock farming is a habitual technique in many places around the globe. Animal release can be done for months, in large areas and with different species packing and behaving very differently. Nevertheless, the farmer’s needs are similar: where livestock is (and where has been) and how healthy they are. The geographical areas involved usually have difficult access with harsh orography and lack of communications infrastructure. This paper presents the design of a solution for extensive livestock monitoring in these areas. Our proposal is based in a wearable equipped with inertial sensors, global positioning system and wireless communications; and a Low-Power Wide Area Network infrastructure that can run with and without internet connection. Using adaptive analysis and data compression, we provide real-time monitoring and logging of cattle’s position and activities. Hardware and firmware design achieve very low energy consumption allowing months of battery life. We have thoroughly tested the devices in different laboratory setups and evaluated the system performance in real scenarios in the mountains and in the forest

    Assessing Wind Impact on Semi-Autonomous Drone Landings for In-Contact Power Line Inspection

    Full text link
    In recent years, the use of inspection drones has become increasingly popular for high-voltage electric cable inspections due to their efficiency, cost-effectiveness, and ability to access hard-to-reach areas. However, safely landing drones on power lines, especially under windy conditions, remains a significant challenge. This study introduces a semi-autonomous control scheme for landing on an electrical line with the NADILE drone (an experimental drone based on original LineDrone key features for inspection of power lines) and assesses the operating envelope under various wind conditions. A Monte Carlo method is employed to analyze the success probability of landing given initial drone states. The performance of the system is evaluated for two landing strategies, variously controllers parameters and four level of wind intensities. The results show that a two-stage landing strategies offers higher probabilities of landing success and give insight regarding the best controller parameters and the maximum wind level for which the system is robust. Lastly, an experimental demonstration of the system landing autonomously on a power line is presented

    Deployment of DeepTech AI Models in Engineering Solutions

    Get PDF
    Ponencia presentada en ICRAMAE-2k21, International Conference on Recent Advances in Mechanical and Automation Engineering, Vivekananda Global University, Jaipur, India, 29-30th November 2021[EN]Industrial Engineering is a branch of engineering that focuses on the design and operation of industrial processes. It involves the application of science to the construction of production systems. This field has undergone significant advancements over the last decades. In the last centuries, the emergence of different technologies has led to breakthroughs in engineering, making it possible to automate processes in industries. Steam, electricity, the internet, and now Artificial Intelligence technologies have all brought with them greater levels of automation to machinery, gradually decreasing human involvement in processes such as procurement, raw material handling, manufacturing and quality control

    A Routine and Post-disaster Road Corridor Monitoring Framework for the Increased Resilience of Road Infrastructures

    Get PDF
    corecore