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Abstract 

Modern organizations can significantly benefit from the use of Artificial Intelligence (AI), and 

more specifically Machine Learning (ML), to tackle the growing number and increasing 

sophistication of cyber-attacks targeting their business processes. However, there are several 

technological and ethical challenges that undermine the trustworthiness of AI. 

One of the main challenges is the lack of robustness, which is an essential property to ensure 

that ML is used in a secure way. Improving robustness is no easy task because ML is inherently 

susceptible to adversarial examples: data samples with subtle perturbations that cause 

unexpected behaviors in ML models. ML engineers and security practitioners still lack the 

knowledge and tools to prevent such disruptions, so adversarial examples pose a major threat 

to ML and to the intelligent Network Intrusion Detection (NID) systems that rely on it. 

This thesis presents a methodology for a trustworthy adversarial robustness analysis of multiple 

ML models, and an intelligent method for the generation of realistic adversarial examples in 

complex tabular data domains like the NID domain: Adaptative Perturbation Pattern Method 

(A2PM). It is demonstrated that a successful adversarial attack is not guaranteed to be a 

successful cyber-attack, and that adversarial data perturbations can only be realistic if they are 

simultaneously valid and coherent, complying with the domain constraints of a real 

communication network and the class-specific constraints of a certain cyber-attack class. 

A2PM can be used for adversarial attacks, to iteratively cause misclassifications, and adversarial 

training, to perform data augmentation with slightly perturbed data samples. Two case studies 

were conducted to evaluate its suitability for the NID domain. The first verified that the 

generated perturbations preserved both validity and coherence in Enterprise and Internet-of-

Things (IoT) network scenarios, achieving realism. The second verified that adversarial training 

with simple perturbations enables the models to retain a good generalization to regular IoT 

network traffic flows, in addition to being more robust to adversarial examples. 

The key takeaway of this thesis is: ML models can be incredibly valuable to improve a 

cybersecurity system, but their own vulnerabilities must not be disregarded. It is essential to 

continue the research efforts to improve the security and trustworthiness of ML and of the 

intelligent systems that rely on it. 

Keywords: Realistic adversarial examples, Adversarial robustness, Tabular data, 

Machine learning, Cybersecurity 
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Resumo 

Organizações modernas podem beneficiar significativamente do uso de Inteligência Artificial 

(AI), e mais especificamente Aprendizagem Automática (ML), para enfrentar a crescente 

quantidade e sofisticação de ciberataques direcionados aos seus processos de negócio. No 

entanto, há vários desafios tecnológicos e éticos que comprometem a confiabilidade da AI. 

Um dos maiores desafios é a falta de robustez, que é uma propriedade essencial para garantir 

que se usa ML de forma segura. Melhorar a robustez não é uma tarefa fácil porque ML é 

inerentemente suscetível a exemplos adversos: amostras de dados com perturbações subtis 

que causam comportamentos inesperados em modelos ML. Engenheiros de ML e profissionais 

de segurança ainda não têm o conhecimento nem as ferramentas necessárias para prevenir tais 

disrupções, por isso os exemplos adversos representam uma grande ameaça a ML e aos 

sistemas de Deteção de Intrusões de Rede (NID) que dependem de ML. 

Esta tese apresenta uma metodologia para uma análise da robustez de múltiplos modelos ML, 

e um método inteligente para a geração de exemplos adversos realistas em domínios de dados 

tabulares complexos como o domínio NID: Método de Perturbação com Padrões Adaptativos 

(A2PM). É demonstrado que um ataque adverso bem-sucedido não é garantidamente um 

ciberataque bem-sucedido, e que as perturbações adversas só são realistas se forem 

simultaneamente válidas e coerentes, cumprindo as restrições de domínio de uma rede de 

computadores real e as restrições específicas de uma certa classe de ciberataque. 

A2PM pode ser usado para ataques adversos, para iterativamente causar erros de classificação, 

e para treino adverso, para realizar aumento de dados com amostras ligeiramente perturbadas. 

Foram efetuados dois casos de estudo para avaliar a sua adequação ao domínio NID. O primeiro 

verificou que as perturbações preservaram tanto a validade como a coerência em cenários de 

redes Empresariais e Internet-das-Coisas (IoT), alcançando o realismo. O segundo verificou que 

o treino adverso com perturbações simples permitiu aos modelos reter uma boa generalização 

a fluxos de tráfego de rede IoT, para além de serem mais robustos contra exemplos adversos. 

A principal conclusão desta tese é: os modelos ML podem ser incrivelmente valiosos para 

melhorar um sistema de cibersegurança, mas as suas próprias vulnerabilidades não devem ser 

negligenciadas. É essencial continuar os esforços de investigação para melhorar a segurança e 

a confiabilidade de ML e dos sistemas inteligentes que dependem de ML. 

Palavras-chave: Exemplos adversos realistas, Robustez adversa, Dados tabulares, 

Aprendizagem automática, Cibersegurança 
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1 Introduction 

This chapter contextualizes the work described in this thesis and presents the problem 

statement, the established objectives, and the formulated research questions. The main 

scientific contributions and the structure of this document are also described. 

1.1 Context and Motivation 

The digital transformation is a paradigm change for both the private and public sectors. 

Throughout the 21st century, and especially since the COVID-19 pandemic, there has been an 

accelerated adoption of digital systems to meet the ever-increasing demand for interconnected 

services, electronic commerce, remote working, and more resilient supply chains. The European 

Commission considers this as one of the top priorities for the coming years, as presented in its 

targets for 2030 in the “A Path to the Digital Decade” policy program [1]. 

Modern organizations can benefit from the technological advances associated with this 

transformation to re-engineer their business processes, integrating their control and 

information systems and automating their decision-making procedures. Nonetheless, as 

organizations become more and more dependent on digital systems, the threat posed by cyber-

attacks skyrockets [2]. Every novel technology adds new vulnerabilities that can be exploited in 

multiple attack vectors to disrupt the normal operation of a system. This is particularly 

concerning for organizations that deal with confidential information and sensitive personal data, 

or manage critical infrastructure, such as the healthcare and energy sectors [3]. 

The disruptions caused by a successful cyber-attack can be extremely costly for an organization. 

In 2022, the average cost of a data breach was reported to be 4.35 million United States dollars, 

an increase of 12.7% since 2020 [4]. This continued growth of both the number of successful 

cyber-attacks and their associated costs in various sectors and industries denotes that modern 

organizations face tremendous security challenges. Furthermore, since attack mitigation is not 

a trivial process and small enterprises commonly fall short of security best practices, most go 

out of business within 6 months of suffering a breach [5]. 
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With financial security and business continuity on the line, it is essential for enterprises of all 

sizes to adequately monitor their systems, detect suspicious activity, and mitigate possible 

threats. This is where Artificial Intelligence (AI), and more specifically Machine Learning (ML), 

can be incredibly valuable [6]. ML models can originate from numerous algorithms, including 

tree-based algorithms and deep learning algorithms based on Artificial Neural Networks (ANNs), 

and can be trained to automate several tasks, ranging from the recognition of patterns and 

anomalies in benign network traffic to the classification of complex cyber-attack classes. 

The adoption of intelligent cybersecurity solutions can shorten the time required to detect an 

intrusion by up to 76 days, leading to cost savings of up to 3 million United States dollars [4]. 

However, despite the benefits of ML to tackle the growing number and increasing sophistication 

of cyber-attacks, it is not flawless. There are several technological and ethical challenges that 

undermine its trustworthiness and hinder a large-scale adoption of intelligent systems, 

including the lack of explainability, interpretability, fairness, and robustness [7]. 

Robustness is a highly desirable property because it is essential to ensure that ML is used in a 

secure way. Nonetheless, improving robustness is no easy task because ML is inherently 

susceptible to adversarial examples: data samples with subtle perturbations that cause 

unexpected behaviors in ML models [8]. For instance, a sample that originates from a faulty 

data recording of benign network traffic may cause a misclassification in an intelligent NID 

system that relies on ML, leading to false alarms. Furthermore, even though the malicious 

purpose of a cyber-attack causes it to have distinct characteristics that could be recognized in 

a thorough analysis by security practitioners, an attacker may craft an adversarial cyber-attack 

example with specialized inputs capable of evading detection. 

ML engineers and security practitioners still lack the knowledge and tools to prevent such 

disruptions, so adversarial examples pose a major threat to ML and to the intelligent systems 

that rely on it [9], [10]. To improve the security of ML, reliable defense strategies must be 

adopted during the training and deployment of a model [11]. Nonetheless, efforts to increase 

a model’s robustness against all perturbed data samples that might occur must not disregard 

the importance of the model’s generalization to regular data samples that it will certainly 

encounter when it is deployed. Therefore, the lack of robustness of current ML models is a 

pertinent challenge that requires further research efforts [7]. 

This thesis details the research and development work performed to address ML robustness, 

with a focus on the NID domain. It was done in the scope of the ongoing work of the intelligent 

systems laboratory of the Research Group on Intelligent Engineering and Computing for 

Advanced Innovation and Development (GECAD) [12]. GECAD is a research unit within the 

School of Engineering, Polytechnic of Porto, with the mission of developing scientific research 

and innovation for the incorporation of intelligence in engineering and decision sciences. 

The developed work was aligned with the participation of GECAD in two international projects 

of the European Union’s Horizon 2020 research and innovation program: Secure Collaborative 

Intelligent Industrial Assets (SeCoIIA) [13] and Verification and Validation of Automated 
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Systems' Safety and Security (VALU3S) [14]. The former aimed at securing the digital transition 

of the manufacturing industry, addressing industrial Internet-of-Things (IoT) communication 

networks in aerospace, automotive, and naval construction use cases. The latter aimed at 

improving the verification and validation processes of automated systems to ensure their safety 

and robustness in various complex domains. 

1.2 Problem Statement 

In the Network Intrusion Detection (NID) domain, cyber-attacks can be identified by analyzing 

the characteristics of network traffic flows, which are represented in a tabular data format. The 

features of a flow may be required to follow specific data distributions, according to the 

specificities of a communication network and of the utilized protocols. Furthermore, due to 

their distinct malicious purposes, different cyber-attacks may exhibit entirely different feature 

correlations. Since a data sample must represent a real network flow, either benign activity or 

a cyber-attack class, it must fulfill all the constraints of this complex tabular data domain. 

An ML model trained for a classification task in a domain like NID would learn to distinguish 

between two or more classes based on the characteristics of its training data. Considering that 

the provided training set correctly represented the target domain, the model would be able to 

generalize well to new data that is In-Distribution (IDT) within that specific domain, so it would 

correctly classify previously unseen samples that fulfill all the required constraints. Therefore, 

in a proper deployment, a model must only be provided IDT data and it must be safeguarded 

from Out-Of-Distribution (OOD) data because it does not represent real network traffic. 

However, adversarial attack methods commonly generate random data perturbations [15], 

which can lead to OOD adversarial examples in tabular data domains. Throughout the current 

scientific literature, various studies apply adversarial attacks to complex domains like NID and 

provide the examples as direct input to a model without questioning if they are viable for a real 

deployment scenario [16]. This may result in misleading robustness evaluations where a model 

seems to be robust because it was tested against unrealistic attacks with OOD examples that it 

will not encounter in a real scenario in the target domain. 

Moreover, augmenting a model’s training set with the examples created by adversarial attack 

methods, a defense designated as adversarial training [17], may not be as beneficial as it seems. 

Even though it is meant to improve robustness, training with OOD samples will make a model 

learn distorted characteristics that will not be exhibited by IDT samples [18]. This raises a major 

security concern because including unrealistic data in a training set can not only be detrimental 

to a model’s generalization, but also lead to accidental data poisoning and to the introduction 

of hidden backdoors that leave a model even more vulnerable [19]. 

In short, the lack of constrained data generation approaches is a major obstacle to ML 

robustness because realistic adversarial examples can only be crafted if the constraints of the 

NID domain are fulfilled during the generation of adversarial data perturbations. 
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1.3 Objectives and Research Questions 

The main goal of this thesis was developing a solution to improve the security of ML in complex 

tabular data domains, with a focus on the NID domain, tackling the lack of robustness through 

an adversarial training approach with realistic adversarial examples. With that broader goal in 

mind, four more specific objectives were established: 

• OB1: Investigate the state-of-the-art adversarial ML methods, constrained data 

generation approaches, and their applications. 

• OB2: Formulate an approach to perform a trustworthy analysis of a model’s adversarial 

robustness in a realistic NID scenario. 

• OB3: Develop a method capable of crafting realistic adversarial examples for 

adversarial attacks and training in the NID domain. 

• OB4: Validate and test the developed method in NID case studies adequate for the 

SeCoIIA and VALU3S projects. 

To guide the research performed in the scope of this thesis and successfully accomplish the 

established objectives, the main research question to be investigated was carefully formulated: 

“How can specific constraints be fulfilled during data generation to create realistic adversarial 

examples for NID?”. The main question was divided into three narrower sub-questions: 

• RQ1: “What are the state-of-the-art methods used to create adversarial examples for 

adversarial attacks and defense strategies?”. 

• RQ2: “What are the current approaches to generate data for adversarial ML according 

to specific constraints?”. 

• RQ3: “What are the most reliable NID datasets for the creation of realistic adversarial 

examples of network traffic flows?”. 

1.4 Scientific Contributions 

Throughout the development of this thesis, significant research was performed, various 

concepts were introduced, and several experimental evaluations were conducted at GECAD. 

The main scientific contributions of the performed research and development work can be 

summarized in four key points: 

• A literature review of the recent advances in adversarial ML method and strategies, 

constrained data generation approaches, and public NID datasets. 
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• A methodology for an adversarial robustness analysis, with a realistic evasion attack 

vector and a comparison of multiple ML models. 

• An intelligent method for the generation of realistic adversarial examples for 

adversarial attacks and training in complex tabular data domains. 

• Two case studies of the realism of the examples crafted by the developed method and 

of the generalization of adversarially trained ML models in NID scenarios. 

At the time of submission of this document, the developed work has resulted in a total of five 

peer-reviewed scientific publications. The publications included parts of the performed 

literature review, descriptions of the introduced concepts and methods, and experiments with 

several datasets and models. Nonetheless, two additional articles have been submitted and are 

currently under revision, and an additional manuscript is being prepared with further 

experiments for posterior submission. 

Regarding scientific journals, two open access articles were published in impactful Q1 and Q2 

journals of internationally recognized publishers, in the first and second quartiles, and another 

two articles are currently in a final revision stage before publication: 

• João Vitorino, Nuno Oliveira, and Isabel Praça, “Adaptative Perturbation Patterns: 

Realistic Adversarial Learning for Robust Intrusion Detection”, Future Internet, volume 

14, issue 4, 2022, doi: 10.3390/fi14040108 [20]. 

• João Vitorino, Isabel Praça, and Eva Maia, “Towards Adversarial Realism and Robust 

Learning for IoT Intrusion Detection and Classification”, Annals of Telecomunications, 

2023, doi: 10.1007/s12243-023-00953-y [21]. 

• João Vitorino, Tiago Dias, Tiago Fonseca, Isabel Praça, and Eva Maia, “Constrained 

Adversarial Learning and its applicability to Automated Software Testing: a systematic 

review”, to appear in Information and Software Technology (under revision), 2023. 

• João Vitorino, Isabel Praça, and Eva Maia, “SoK: Realistic Adversarial Attacks and 

Defenses for Intelligent Network Intrusion Detection”, to appear in Computers & 

Security (under revision), 2023. 

Regarding scientific conferences, three papers were presented and published in the 

proceedings of several well-established conferences and symposiums, with experiments with 

several datasets and models in different domains: 

• João Vitorino, Rui Andrade, Isabel Praça, Orlando Sousa, and Eva Maia, “A Comparative 

Analysis of Machine Learning Techniques for IoT Intrusion Detection”, presented in 

14th International Symposium on Foundations and Practice of Security (FPS), 2022, 

pages 191–207, doi: 10.1007/978-3-031-08147-7_13 [22]. 
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• Rui Andrade, João Vitorino, Sinan Wannous, Eva Maia, and Isabel Praça, “LEMMAS: a 

secured and trusted Local Energy Market simulation system”, presented in 18th 

International Conference on the European Energy Market (EEM), 2022, pages 1–5, doi: 

10.1109/EEM54602.2022.9921159 [23]. 

• João Vitorino, Lourenço Rodrigues, Eva Maia, Isabel Praça, and André Lourenço, 

“Adversarial Robustness and Feature Impact Analysis for Driver Drowsiness Detection”, 

presented in 21st International Conference on Artificial Intelligence in Medicine (AIME), 

2023, pages 108–113, doi: 10.1007/978-3-031-34344-5_13 [24]. 

In addition to the publications and to the direct contributions to the SeCoIIA and VALU3S 

projects, this thesis also contributed to the formulation of a new research and development 

project submission to the Horizon Europe funding program. The proposed project aims to 

demonstrate tools and techniques that enable enhanced collaboration, reduced response cost, 

and improved resilience of strategic European supply chains. It will address anomaly and attack 

detection, response optimization, and collective recovery capabilities. 

1.5 Document Structure 

This document is divided into multiple chapters that were organized to facilitate the reading of 

the thesis as a whole or of each chapter separately. 

The current chapter, Chapter 1, contextualized the challenge addressed by this thesis and 

presented the objectives, the research questions, and the main scientific contributions. 

Chapter 2 presents the performed literature review. It is divided into four sections: one for each 

research question, where the adopted research methodology is described and the findings are 

presented and discussed, and an additional one for the concluding remarks of the review. 

Chapter 3 describes the types of constraints required for an adversarial cyber-attack example 

to be realistic, defines a methodology for a trustworthy adversarial robustness analysis, and 

details the design and implementation of the developed adversarial method. 

Chapters 4 and 5 present the two case studies, divided into three sections each: the study 

configuration, the results and discussion, and the concluding remarks. The first study analyzed 

the realism of the examples created by the developed method. The second analyzed the 

generalization of adversarially trained ML models for binary and multi-class classification. 

Finally, Chapter 6 provides the main conclusions of this thesis, highlighting the completion rate 

of each objective. The key benefits and limitations of the proposed solution are described, 

indicating possible improvements and research topics to be explored in the future. 
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2 State-of-the-art 

This chapter presents the literature review that was performed to thoroughly investigate the 

formulated research questions. In the following sections, the research methodology adopted 

for each question is described, and the findings are presented and discussed. 

2.1 Adversarial Machine Learning 

The concept of an adversarial example was formalized in 2014. Szegedy et al. [8] demonstrated 

a phenomenon where subtle data perturbations in the input of an ML model caused a 

misclassification, even though the differences between the original and perturbed data samples 

were almost imperceptible to humans. This discovery that ML models had previously 

unsuspected vulnerabilities sparked a wave of research that led to the creation of the 

adversarial ML area of research within the broader ML field [11]. 

Over the years, researchers have developed a wide range of adversarial attacks and have 

worked on various defenses to safeguard ML models from these attacks. Therefore, this section 

intends to answer RQ1: “What are the state-of-the-art methods used to create adversarial 

examples for adversarial attacks and defense strategies?”. 

2.1.1 Research Methodology 

The research performed to investigate RQ1 was based on the Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses (PRISMA) [25], which is a standard reporting guideline 

that aims to improve the transparency of literature reviews. Search terms were used in 

reputable bibliographic databases, and several inclusion and exclusion criteria were defined to 

screen the found publications. Nonetheless, since screening the titles and abstracts of the 

publications was sufficient to assess their eligibility, their full texts were directly reviewed 

without systematic exclusion rounds being necessary. 
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After a careful initial analysis of the literature, several search terms were chosen. The 

adversarial keyword was combined with other suitable terms like example and perturbation to 

ensure a comprehensive coverage of relevant publications. The search query also included 

concepts related to NID, such as anomaly detection and cyber-attack classification, as well as 

wireless and IoT communication networks. Table 1 provides an overview of the utilized terms 

for each scope. The different scopes were combined in a search query with AND operators. 

Table 1. Search terms for RQ1. 

Scope Terms 

Adversarial adversarial 

Learning (learning OR example OR perturbation OR attack OR defense) 

Network (network OR wireless OR IoT) 

Intrusion (intrusion OR anomaly OR cyber-attack) 

Detection (detection OR classification) 

The primary search source was Science Direct [26], which is a large bibliographic database of 

scientific journals and conference proceedings provided by the internationally recognized 

publisher Elsevier. Due to their acknowledged relevance for scientific literature of ML, 

computing, software engineering, and information technology, the search also included the 

digital libraries of the Association for Computing Machinery (ACM) [27], the Institute of 

Electrical and Electronics Engineers (IEEE) [28], and the Multidisciplinary Digital Publishing 

Institute (MDPI) [29]. It is important to note that the PRISMA backward snowballing process of 

checking the references of the findings also led to additional publications that were not directly 

obtained from querying these databases. 

Since adversarial ML is an active area of research, the search was limited to peer-reviewed 

publications from 2017 onwards, in the English language. It included surveys and reviews that 

addressed key developments, as well as more recent works introducing innovative methods. 

The publications that did not have a full-text available or were duplicated in multiple databases 

were excluded. Table 2 provides an overview of the defined inclusion and exclusion criteria that 

were applied to screen the found publications. 

Table 2. Inclusion and exclusion criteria for RQ1. 

Inclusion Criteria Exclusion Criteria 

IC1: Peer-reviewed journal article or conference paper 

IC2: Available in the English language 

IC3: Published from 2017 onwards 

IC4: Addressed key developments or innovative 

methods for adversarial machine learning 

EC1: Duplicated publication 

EC2: Full text not available 
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2.1.2 Findings and Discussion 

The information present in the obtained RQ1 findings was consolidated and combined into 

three subsections: the main adversarial data perturbation crafting processes, the most relevant 

attack methods, and the most effective defense strategies. 

2.1.2.1 Data Perturbations 

ML has been increasingly used to make digital systems more intelligent, but it is not flawless. 

For instance, if an ML model is trained with non-representative data that has missing or biased 

information, it may become underfit, performing poorly on both its training data and new data, 

or even overfit, performing very well on its training data but still poorly on previously unseen 

testing data [30]. These generalization errors can be quickly noticed during the development of 

an intelligent system, and better results can be achieved by improving data quality and fine-

tuning the utilized models [31]. However, even if a model generalizes well to the testing data, 

it is not guaranteed to always have a stable performance. During the inference phase, when it 

is deployed to make predictions on live data, it may sometimes behave unexpectedly with 

seemingly ordinary data samples [32], [33]. 

In a set of very similar IDT samples of the same class, a model may correctly classify all but one. 

That specific sample may be assigned to a completely different class with a high confidence 

score because the model wrongly considers that it is different from the others. Ultimately, this 

unexpected behavior is caused by unnoticed generalization errors during a model’s training 

phase [18]. Since a training set does not cover all the IDT samples that a model will encounter 

in its inference phase when deployed in a real system, the model will inevitably learn some 

simplifications that lead to incorrections in its internal reasoning [34], [35]. These incorrections 

can be hard to notice because the intricate mechanics of ML models cause the misclassifications 

to only occur in very specific samples, which are designated as adversarial examples [8]. 

An adversarial example may have very subtle perturbations that are almost imperceptible to 

humans but make it significantly different from regular samples to an ML model. Such 

perturbations can occur naturally in faulty data recordings with incorrect readings, but they can 

also be specifically crafted with specialized inputs to exploit the generalization errors [17], [36]. 

Even though all ML models are inherently susceptible to adversarial examples, different models 

will learn distinct simplifications of the target domain and create distinct decision boundaries. 

Hence, some models may be more vulnerable to perturbations in a certain feature than others, 

presenting model-specific edge cases that are hard to detect and address [37], [38]. 

Due to the advances in computer vision technologies and their increasing use in various sectors 

and industries, the major developments in adversarial ML have been focused on the image 

classification domain [39], [40]. In adversarial images, the perturbed features are pixels with a 

value freely assigned from 0 to 255, but it is pertinent to understand how these research efforts 

can be applied in cybersecurity solutions and if the concepts are transferable to a NID system 

in a real communication network. In the current scientific literature, the perturbations that turn 
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a regular sample into an adversarial example can be crafted using two main concepts: an 

adversarial patch that heavily modifies a few features, and an adversarial mask that slightly 

modifies many or all features [41]. 

Adversarial patches are the most straightforward way to disrupt a cyber-physical system. Since 

live data from a physical environment is not easily controllable, there is a greater risk for 

perturbed samples to affect an ML model [42]. For instance, for a model trained to classify 

street signs, a perturbed sample of a stop sign with small black and white patches can be 

misclassified as a completely unrelated sign, such as a speed limit sign (Figure 1) [43]. These 

patches are devised to cause the model to make a mistake when it encounters the sign at a 

certain angle, although a human would still easily recognize a stop sign [44]. 

 

Figure 1. Adversarial perturbation via a patch, based on [43]. 

Despite being harder to apply adversarial masks in physical environments, they are very well-

suited for digital systems. For instance, for a model that performs handwritten digit recognition, 

a picture of a digit with a subtle change to several pixels can be misclassified as another digit 

(Figure 2) [45]. Such model can have a wide range of applications, from certified documents and 

bank check processing to authentication via a picture of an identification document. If a person 

applies a filter that has a built-in adversarial mask before submitting the requested picture, the 

automated verification systems that rely on this model can be deceived [46]. Furthermore, 

there are even some adversarial masks that exploit the intrinsic vulnerabilities of ML and turn 

every image of well-established datasets into an adversarial image, which denotes that 

adversarial examples may not be as difficult to create as previously thought [47]. 

 

Figure 2. Adversarial perturbation via a mask, based on [45]. 
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Even though most developments in the adversarial ML area of research have addressed image 

classificstion, the susceptibility of ML models to these examples has also been noticed in other 

domains with different data types, such as audio, text, tabular data, and time series [15], [37]. 

For the NID domain, adversarial perturbations must follow a tabular data format, where each 

feature is a categorical or numerical variable representing a characteristic of a network traffic 

flow [48], [49]. The tabular format requires more complex perturbations, but they can also be 

based on the concepts utilized for images. For a tabular classification model, a patch-like 

perturbation could fully replace the values of categorical variables, which may include the 

communication protocol or the endpoint port number, and a mask-like perturbation could 

slightly increase or decrease the values of numerical variables, such as the amount of sent 

packets or the download-to-upload ratio (Figure 3) [50], [51]. Nonetheless, not all perturbations 

are suitable for NID because there are specific constraints that must be complied with. 

 

Figure 3. Adversarial perturbation on tabular data, based on [50]. 

In contrast with the pixels of an image, each tabular feature may have a different range of 

possible values, according to the characteristic it represents. Furthermore, a feature may also 

be highly correlated to several other features, being required to exhibit specific values 

depending on the other characteristics of a sample [50]. Therefore, to ensure that an example 

represents a real network traffic flow that can be transmitted through a real communication 

network, the constraints of the utilized protocols and the malicious purpose and functionality 

of a cyber-attack must be taken into account when generating the perturbations [52], [53]. 

Despite the current difficulty in creating realistic adversarial cyber-attack examples, the growing 

popularity of adversarial ML is leading to the development of novel methods to attack various 

types of algorithms, which is very concerning for the security of ML and of the intelligent 

cybersecurity solutions that rely on it [10], [16], [48]. 

2.1.2.2 Attack Methods 

The susceptibility of ML to adversarial examples can be exploited for diverse malicious purposes 

with methods that automatically generate the intended adversarial perturbations. An attacker 

may use multiple methods to perform a wide range of attacks, which can be divided into two 

primary categories: poisoning attacks during a model’s training phase, and evasion attacks 

during the inference phase [54]. 

Poisoning attacks inject adversarial examples in a model’s training data to compromise its 

internal reasoning. These attacks can perform model corruption that make it completely 

unusable, or even introduce hidden backdoors that make it exhibit a biased behavior in specific 

samples, which is difficult to detect and explain because the model only deviates from its 

expected behavior when triggered by very specific data perturbations [19], [55]. This is a serious 
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security risk for organizations that rely on third-party datasets or outsource their intelligent 

cybersecurity solutions, such as the development of facial recognition models for biometric 

authentication systems [56], [57]. Nonetheless, since NID systems are commonly developed in 

secure environments with thoroughly verified network traffic data, an external attacker does 

not usually have access to a model to compromise it during its training phase [53], [58]. 

On the other hand, evasion attacks use adversarial examples to deceive a vulnerable model 

after it has been deployed. The misclassifications caused by these attacks can be directly used 

to evade detection from an intelligent system, or for more complex goals, such as membership 

inference and attribute inference to check if a model was trained with a certain sample and 

certain features, model inversion to reconstruct a training set, and model extraction to steal 

its functionality and replicate it in a substitute model [59]–[61]. If confidential or proprietary 

information is used to train a model, an attacker can cause significant damage to an 

organization by gathering that information during the inference phase [62], [63]. Even though 

a model must be queried many times to obtain the information, advances in wireless 

communications and IoT technologies are making NID systems process larger and larger 

amounts of network traffic, which substantially increases query opportunities and therefore the 

feasibility of evasion attacks [64]–[66]. 

In recent years, numerous methods have been developed to automate the misclassification 

attempts for evasion attacks. A method may require access to a model in one of three settings: 

black-box, gray-box, and white-box. The first is model-agnostic and solely queries a model’s 

predictions, whereas the second may also require knowledge of its architecture or the utilized 

features, and the third needs full access to its internal parameters [42], [67]. Additionally, a 

black-box or gray-box method may solely use class predictions, a decision-based approach, or 

require a model to output the confidence scores of the predictions, a score-based approach 

[58], [68]. These characteristics affect the choice of an adversarial method because it must be 

able to attack the targeted model and system, while also being useful to the fulfillment of the 

end goals of the attacker. 

Since the focus of adversarial ML has been image classification, the common attack approach is 

to freely exploit the internal gradients of an ANN in a white-box setting [15], [54]. Consequently, 

most state-of-the-art methods do not support other settings nor other models, which severely 

limits their applicability to other domains. Considering that a deployed NID system is securely 

isolated, having full access to a model and its feedback is highly unlikely, and an attacker will 

only know if a certain example evades detection if the entire cyber-attack is successfully 

completed. This will be a decision-based interaction in black-box or gray-box settings, 

depending on the available system information about the model and feature set [46], [53]. 

Furthermore, various other types of ML models can be used for classification tasks with tabular 

data. For instance, tree-based algorithms and ensembles like Random Forest (RF) are 

remarkably well-established for NID, but are also susceptible to adversarial attacks [30], [69], 

[70]. Therefore, an attacker will need to resort to methods that support these models and all 

the specificities of a communication network. 
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Various adversarial evasion attack methods have been made open-source software and have 

started being used to target the ML models of intelligent NID systems. Table 3 summarizes the 

characteristics of the most relevant methods of the current literature that have been used in 

NID, noting if they could potentially fulfill the constraints of complex communication networks. 

Even though some methods were introduced as black-box, they require knowledge of the 

utilized features to determine how which feature will be perturbed, so they were categorized 

as gray-box. The Scores keyword corresponds to models that can output confidence scores for 

a score-based approach. In turn, the Gradients keyword corresponds to models that provide 

full access to their internal loss gradients, which includes ANNs. 

Table 3. Characteristics of relevant adversarial evasion attack methods. 

Method 
Attack 

Setting 

Supported 

Models 

Could Fulfill 

Constraints 
Reference 

BIM White-box Gradients  [36] 

C&W White-box Gradients  [71] 

DeepFool White-box Gradients  [72] 

FGSM White-box Gradients  [17] 

Hierarchical White-box Gradients  [73] 

Houdini White-box Gradients  [74] 

JSMA White-box Gradients ✓ [75] 

PGD White-box Gradients  [76] 

Structured White-box Gradients  [77] 

DoSBoundary  Gray-box Scores ✓ [51] 

GSA-GAN Gray-box Scores  [78] 

IDS-GAN Gray-box Scores  [79] 

Polymorphic Gray-box Scores ✓ [80] 

BFAM Black-box Scores  [81] 

BMI-FGSM Black-box Scores  [82] 

OnePixel Black-box Scores ✓ [83] 

RL-S2V Black-box Scores  [84] 

WGAN Black-box Scores  [85] 

ZOO Black-box Scores  [86] 

Boundary Black-box Any  [87] 

CGAN Black-box Any  [88] 

CVAE Black-box Any  [89] 

GADGET Black-box Any  [90] 

HopSkipJump Black-box Any  [91] 

Optimization Black-box Any  [92] 
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Several methods initially developed for the generation of adversarial images have been adapted 

to generate adversarial examples of network traffic flows. However, most do not account for 

the constraints of the utilized communication protocols nor the functionalities of the cyber-

attacks, so only a few could potentially generate realistic examples [58], [70]. The potentially 

suitable methods are described below. 

The Polymorphic attack [80] was developed for NID, so it attempts to address the preservation 

of original class characteristics to create examples compatible with a cyber-attack’s purpose. A 

feature selection algorithm is applied in a gray-box setting to obtain the most relevant features 

for the distinction between benign and cyber-attack classes. Then, the remaining features, 

which are considered non-relevant for the functionality of a cyber-attack, are perturbed by a 

version of a Generative Adversarial Network (GAN) [93]: a Wasserstein GAN (WGAN) [85]. By 

not modifying the most important features of each class, the characteristics required for a 

successful cyber-attack can be preserved. Nonetheless, the perturbations generated by WGAN 

in the remaining features disregard the constraints on the structure of a network traffic flow, 

which mostly leads to OOD examples with incompatible values for a real scenario. 

The distinction between benign activity and cyber-attack classes was further explored in the 

DoSBoundary attack [51], which iteratively optimizes the perturbations that are performed on 

each feature of a Denial-of-Service (DoS) flow according to the specified constraints of a 

communication network. However, it requires expert knowledge to manually configure the 

specific values of each feature and all the possible perturbations, which corresponds to a gray-

box setting where a security practitioner must thoroughly analyze the characteristics of each 

class. Even though the method could potentially preserve the correlations between the features 

of a network flow and generate IDT examples, the required expert analysis does not scale well 

to scenarios with multiple cyber-attack classes in complex communication networks. 

Despite being originally developed to attack image classification models, the perturbation 

crafting processes of the Jacobian-based Saliency Map Attack (JSMA) [75] and the OnePixel 

attack [83] could potentially preserve the structure of a network flow. The former attempts to 

minimize the number of modified pixels in an adversarial image, requiring full access to the 

internal gradients of an ANN in a white-box setting, whereas the latter only modifies a single 

pixel, based on the confidence scores of a model in a black-box setting. These methods could 

be suitable for NID because they only perturb the most appropriate features without affecting 

the remaining ones, although their lack of constraints could lead to incompatible values, 

resulting in a mix of OOD examples and IDT examples created by chance. 

Due to the different characteristics of existing methods and diverse goals of attackers, efforts 

are being made to systematize the possible adversarial attack vectors in the Adversarial Threat 

Landscape for Artificial-Intelligence Systems [94] knowledge base, and to complement it with 

case studies and demonstrations based on real-world observations. As novel adversarial 

methods continue to be developed, it is becoming essential to raise awareness of the diverse 

strategies that attackers can use to exploit the vulnerabilities of ML models and the security 

risks they pose to modern organizations. 
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2.1.2.3 Defense Strategies 

The growing ML attack surface led to a never-ending arms race where attackers continuously 

exploit newly discovered vulnerabilities and defenders develop countermeasures against each 

novel threat. However, the defenders are always a step behind because it can take a long time 

until the effects of an attack are detected, and then it is difficult to retrace it and develop a 

countermeasure for it [9]. To get ahead of attackers, organizations should follow a security-by-

design development approach and proactively search for vulnerabilities themselves. By 

simulating adversarial attacks in realistic scenarios and analyzing entire attack vectors, ML 

engineers and security practitioners can anticipate possible threats and use that knowledge to 

preemptively revise and improve their defense strategy (Figure 4) [95]. 

 

Figure 4. Adversarial arms race (left) and security-by-design (right), based on [95]. 

A defense strategy can combine multiple techniques to address different security concerns. Due 

to their proven value against several adversarial attacks, some defenses have been 

standardized across the literature, divided into two primary categories: proactive defenses 

during the training phase, and reactive defenses during the inference phase [15]. 

Regarding reactive defenses, they attempt to mitigate the effects of corrupted data on a 

model’s predictions by safely processing its input and output. These defenses can rely on 

several preprocessing techniques, such as data denoising and feature squeezing to reduce the 

search space for an attack, and postprocessing techniques, such as mechanisms that deal with 

model uncertainty and require predictions with high confidence scores [61], [67], [96]. Even 

though reactive defenses can be valuable against both erroneous data and adversarial attacks 

purposely exploiting a model, they represent an additional software layer that attempts to 

encapsulate a vulnerable model. This layer is always needed for a NID system to convert the 

recorded network activity into the utilized feature set and then convert the predictions of a 

model into relevant alerts, but it does not fully protect that model [33], [53]. 

On the other hand, proactive defenses tackle the susceptibility of ML to adversarial examples, 

aiming to reduce the vulnerabilities and intrinsically improve a model’s robustness against 

adversarial examples during its training phase. These defenses include several techniques, such 

as adversarial training with perturbed samples in a training set, regularization to better 

calibrate the learning process, and defensive distillation to create smaller models less sensitive 

to data variations [16], [40], [97]. It is not yet clear how to completely resolve this susceptibility 
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and achieve an adversarially robust generalization in a classification task, but progress is being 

made in robustness research with regularization and optimization techniques [98]–[100]. These 

scientific advances are starting to give ML engineers and security practitioners better tools to 

address ML security during the entire lifecycle of an intelligent system, including its 

development, testing, deployment, and maintenance phases. 

Most proactive defenses are focused on improving the robustness of deep learning algorithms 

based on ANNs against evasion attacks in the image classification domain [101]–[104], although 

some also take measures against backdoors [19], [56]. Despite ANN defenses being difficult to 

apply to other models and domains, the protection of tree-based algorithms has been drawing 

attention for cybersecurity systems [105], [106]. Some defenses have been developed to 

improve the robustness of entire tree ensembles at once [107], [108], whereas others address 

each individual decision tree at a time [109], [110]. Still, proactive defenses often trade-off 

some performance on regular IDT samples to improve performance on OOD adversarial 

examples. This trade-off affects the choice of a defense strategy because there is a need to 

balance the robustness against occasional adversarial examples and the generalization to 

regular data that a model will commonly encounter. 

Defense strategies continue to be enhanced with better techniques, but the most effective and 

widespread defense is still adversarial training because it anticipates the data variations that an 

ML model may encounter [111]–[113]. Performing data augmentation with examples created 

by an adversarial attack method enables a model to learn additional characteristics that the 

samples of each class can exhibit, so it becomes harder to deceive it. This augmented training 

data with more data variations can improve a model’s robustness not only against attack 

methods similar to the utilized one, but also against a wide range of different attacks with 

distinct data perturbations [99], [114], [115]. Nonetheless, to improve a model’s robustness to 

adversarial data without deteriorating its generalization to regular network traffic, it is essential 

to ensure that adversarial training is performed with realistic examples that are IDT within the 

NID domain and preserve the malicious purpose of a cyber-attack [18], [46]. 

2.2 Constrained Data Generation 

High-quality data is essential for all organizations that integrate AI solutions in their critical 

business processes [116], but it is especially needed in adversarial ML approaches to ensure 

their reliability. Due to the difficulty of obtaining real data to train, validate, and test an 

intelligent solution, synthetic data may be generated. Likewise, due to the difficulty of obtaining 

real faulty input data to evaluate the robustness of an ML model, adversarial examples may be 

generated instead. In the case of the NID domain, all data samples must represent real network 

traffic flows and actual cyber-attacks, so the generated data must comply with the constraints 

of a communication network, the utilized communication protocols, and the functionalities and 

malicious purposes of the cyber-attack classes [53]. 
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Due to the lack of constrained data generation approaches observed in the findings of the 

previous research question, this research topic was further investigated in a systematic manner. 

This section intends to answer RQ2: “What are the current approaches to generate data for 

adversarial ML according to specific constraints?”. 

2.2.1 Research Methodology 

To achieve a transparent, replicable, and complete systematic review, the full PRISMA reporting 

guideline was followed for RQ2. Therefore, the titles and abstracts of the found publications 

were assessed in a screening phase, then their full texts were carefully analyzed in an eligibility 

assessment phase, and only then the remaining publications were included in the review. 

Since constrained data generation is a less studied research topic without standardized 

keywords, the search had to cover broader terms to prevent narrowing it down too much and 

obtain relevant publications that would otherwise be disregarded. In addition to including the 

adversarial keyword to obtain approaches related to adversarial data perturbations, some word 

variations were also considered. This widened the search to more common concepts like 

number generators and conditional generators, as well as approaches that address constraints 

and restrictions. Table 4 provides an overview of the utilized terms for each scope, which were 

combined in a search query with AND operators. 

Table 4. Search terms for RQ2. 

Scope Terms 

Constrained (constrained OR conditional OR restricted OR constraint 

OR condition OR restriction) 

Adversarial adversarial 

Data (data OR sample OR example OR number) 

Generation (generation OR generator) 

As in the previous research question, the search was conducted using the Science Direct 

bibliographic database as the primary source, together with the digital libraries of the ACM, 

IEEE, and MDPI sources. The review intended to analyze the yearly advances of peer-reviewed 

publications introducing or applying constrained generation approaches. Considering that there 

have been relevant technological advances and scientific developments in recent years, the 

selected time frame was 2017 to 2022, the latest 6 whole years. 

The widened search query led to more relevant publications within the intended time frame, 

but also to many publications that were not aligned with the purpose of the review. To screen 

them, several exclusion criteria were defined to remove general surveys and reviews that did 

not specify concrete approaches, publications that mentioned constraints but not during their 

data generation processes, and publications that did not detail how the utilized constraints 

were applied nor how they affected the data generation. Additionally, to limit the findings to 
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publications stored in the selected databases and time frame, snowballing was not performed 

for RQ2. Table 5 provides an overview of the defined criteria. 

Table 5. Inclusion and exclusion criteria for RQ2. 

Inclusion Criteria Exclusion Criteria 

IC1: Peer-reviewed journal article or conference paper 

IC2: Available in the English language 

IC3: Published from 2017 to 2022 

IC4: Introduced or applied an approach for 

constrained data generation 

EC1: Duplicated publication 

EC2: Survey or review 

EC3: Constraints not in generation 

EC4: Constraints not detailed 

EC5: Full text not available 

2.2.2 Findings and Discussion 

A total of 1756 records were initially obtained for RQ2 by applying the query to the contents of 

the publications stored in the selected databases. After removing duplicates and performing 

the screening phase, the full texts of 247 records were carefully assessed to check if they 

contained the required details. Finally, 93 publications were included in the review, to be 

consolidated and systematized (Figure 5). 

 

Figure 5. PRISMA search process for RQ2. 
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The approaches detailed in the included records were systematized to identify the current 

applications of constrained data generation and the methods they are based on. Since some 

records addressed multiple tasks, a total of 97 applications were identified across 11 sectors 

and industries, although a few were more general and not specific to a single industry. 

In recent years, constrained data generation has started drawing more attention. The number 

of applications grew from 2 in 2017 to 33 in 2022, with the cybersecurity and healthcare sectors 

being the most prominent and having more diverse applications. There were also several 

approaches developed for the aerospace and energy sectors, possibly due to their growing 

importance for modern organizations. Furthermore, mechanical applications to improve the 

resilience of industrial machinery have spiked in 2022, which may be a result of the additional 

research efforts of the two previous years to tackle the disruptions in manufacturing and supply 

chains caused by the COVID-19 pandemic (Figure 6). 

  

Figure 6. Industry applications of constrained data generation per year. 

The increasing use of constraints across various sectors and industries highlights that better 

data can be generated when the specificities of the task at hand are considered. Nonetheless, 

since most publications handle image classification datasets, they employ methods with 

relatively simple constraints to generate synthetic images according to the classes of a dataset. 

Most are based on conditional versions of GAN [93] and Variational Autoencoder (VAE) [117]: 

a Conditional GAN (CGAN) [88] and a Conditional VAE (CVAE) [89]. Even though these methods 

spread across the literature because they learn to generate different data for different classes, 

the samples of each class are freely generated without addressing any complex constraint. 

For more complex tasks in sectors that require other data types like tabular data and time series, 

some approaches are starting to rely on methods that support more rigorous configurations 

and more complex constraints. For instance, some researchers use evolutionary computation 

with swarm intelligence and genetic algorithms [118], and others apply fuzzy logic to deal with 
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the uncertainty of the information [119]. Table 6 summarizes the reviewed constrained data 

generation applications and indicates the methods they were based on. The base methods were 

either explicitly built upon or their concepts were implicitly used in new implementations. 

Table 6. Applications of constrained data generation methods. 

Sector / 
Industry 

Found 

Applications 

Base 

Methods 

Aerospace 

Synthetic-Aperture Radar (SAR) image reconstruction, 
and hyperspectral classification [120]–[123] 

CGAN, CVAE 

Satellite mapping of surface water, road surface area, 
reflectance, and radiance [124]–[127] 

CGAN 

Precipitation estimation, aircraft detection, and 
remote sensing image segmentation [128]–[130] 

CGAN 

Object detection in drone inspection with 
Unmanned Aerial Vehicles (UAVs) [131], [132] 

CGAN 

Automotive 

Urban traffic trajectory and parking 
occupancy estimation [133], [134] 

CGAN, CVAE 

Inertial Measurement Unit (IMU) and vehicle 
transmission gear reliability analysis [135], [136] 

CGAN 

Ultrasonic signal sensors for autonomous 
driving systems [137] 

CGAN 

Vehicular and transportation network 
simulation [138], [139] 

CGAN 

Chemical 

Chemical production process fault 
diagnosis [140], [141] 

CGAN, WGAN 

Soft sensors for chemical compound analysis [142] CGAN, WGAN 

Extraction of environmental features from 
aerosol optical depth sensors [143] 

CGAN 

Cybersecurity 

Network intrusion and anomaly detection, and 
cyber-attack classification [118], [144]–[146] 

CGAN, evolutionary 
algorithms 

Illegal webpage and malicious domain name 
detection [144], [147], [148] 

CGAN, evolutionary 
algorithms 

Software testing and malware detection in 
code blocks [119], [149], [150] 

CGAN, fuzzy 
algorithms 

Fake user detection and user behavior generation 
for recommendation systems [151], [152] 

CGAN 

Speech recognition and denoising, and voice 
spoofing detection [153]–[156] 

CGAN 

Data masking, obfuscation, anonymization, 
and compression [157]–[159] 

CGAN 

Economy 
Monte Carlo simulation design for economic 
and financial studies [160] 

CGAN, WGAN, 
econometric 
algorithms 
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Sector / 
Industry 

Found 

Applications 

Base 

Methods 

Energy 

Power distribution and economic load dispatch 
simulation for electrical grids [139], [161], [162] 

CGAN, graph 
algorithms 

Anomalous energy consumption and 
electricity theft detection [163], [164] 

CVAE, WGAN 

Charging behavior and electric load 
forecasting [165]–[168] 

CGAN 

Geological 
Seismic data interpolation [169] CGAN 

Virtual landscape and terrain authoring [170], [171] CGAN 

Healthcare 

Magnetic Resonance Imaging (MRI) and Positron 
Emission Tomography (PET) analysis [172]–[176] 

CGAN, WGAN 

Electrocardiogram (ECG) and Electroencephalogram 
(EEG) signal analysis [177]–[179] 

CGAN, WGAN 

Electrodermal Activity (EDA) generation for 
stress detection [180] 

CGAN 

Mammographic density segmentation and 
breast cancer diagnosis [181]–[183] 

CGAN 

Lung and skin lesions detection [184] CGAN 

Microscopic blood smear test [185] CGAN 

Vocal cord and voice disorder detection [186] CGAN 

Connectomes segmentation for reconstruction 
of neural circuits [187] 

CGAN 

Mechanical 

Rotating machinery and rolling bearing fault 
diagnosis [188]–[193] 

CGAN, CVAE, 
WGAN 

Industrial equipment failure and conveyor belt 
damage detection [194]–[196] 

CGAN, CVAE, 
WGAN 

Wind turbine gearbox fault diagnosis [197]–[199] CGAN, CVAE 

Music 

Variable-length music and audio 
generation [200], [201] 

CGAN, CVAE 

Cross-modal musical performance generation [202] CGAN 

Water 
Water flow simulation for water supply and 
distribution systems [139], [162] 

CGAN, graph 
algorithms 

General 

Object stretches, compressions, and motion 
simulation [203], [204] 

CGAN, WGAN, 
skinning algorithms 

Picture generation according to age and 
facial attributes [205]–[207] 

CGAN 

Wireless indoor positioning and tracking [208] CGAN 

Handwritten text and digit recognition [209], [210] CGAN 

Despite the wide range of applications of constrained data generation, the few approaches that 

could potentially be transferable to the NID domain were mainly developed for cyber-physical 

applications in energy and water networks. Due to the low-quality and OOD data that 
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conventional methods would generate in these domains, some researchers encapsulated the 

data generation processes in mechanisms that enforce task-specific constraints and attempt to 

be as realistic as possible. The potentially transferable approaches are summarized below. 

In [162], the authors intended to simulate electrical grids and water supply and distribution 

systems. Each action or event in one part of these cyber-physical systems would affect the 

entire energy and water networks, so the presence of a given value at a given feature would 

restrict the values that other features could have. Linear equality constraints were defined to 

fulfill the physical capacity requirements of each network and multiple simulations were 

performed. This optimization approach could be useful to model the benign network traffic 

flows and the expected behavior of devices in a communication network, but the constraints 

would need to be carefully redesigned for each minor change in the infrastructure. 

To provide a structure that could be adapted to changes, in [139], energy and water networks 

were addressed through graph theory. The graph structure provided a more rigorous 

representation of the electric and water flow physics between different nodes in a network, 

enabling the simulation of cyclic trends and acyclic congestions, as well as their effects in other 

nodes. Nodes and their connections could be added or removed to adapt the structure to 

different flow networks, although it was tailored to the specific physical constraints of those 

domains. Additionally, it is also relevant to highlight the energy function approximation 

introduced in [203] to perform physically accurate simulations of the phases of object stretches 

and compressions. Despite not being as rigorous as flow graphs, this function could be 

redesigned to represent the phases of a network connection, enforcing the correct order of 

network packets for the setup, data transfer, and closing of a connection. 

Regarding biomedical images, in [184], the authors addressed the insufficient label granularity 

of most classification datasets. Since multiple sub-types of a disease can be aggregated into a 

single broader label, the samples of a class can exhibit entirely different characteristics. Even if 

a CGAN is used to distinguish between different classes, the generated samples may mix the 

characteristics of multiple sub-types and therefore may not correspond to an actual disease. 

Conditioning vectors were used to restrict the modification of relevant disease features 

according to the values exhibited by other similar samples that were presumed to be of the 

same sub-type. Despite this mechanism still being based on a CGAN with relatively simple 

constraints, the underlying concept of configuring different constraints for each class could also 

benefit tabular data generation methods. 

Even though the reviewed approaches present valuable insights for the generation of network 

traffic data, they are tailored to the intricate requirements of their very specific domains. To 

support the significantly different constraints of a standard communication network, they 

would need to be completely redesigned with cybersecurity expert knowledge. Nonetheless, it 

could be beneficial to develop a way of enforcing specific constraints for each cyber-attack class 

and ensure that the generated network traffic is still an actual cyber-attack. Improving tabular 

data quality is essential to enhance the robustness and resilience of intelligent cybersecurity 

solutions, so further research efforts are required to better address NID constraints. 
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2.3 Network Intrusion Detection 

Intrusion detection has played a crucial role since the early days of computer systems. By 

analyzing the files and audit data of local machines, a security application could detect evidence 

of an intrusion and mitigation measures could be applied. As communication networks became 

larger and more complex, NID systems were developed to analyze the network traffic patterns 

of multiple machines and perform real-time detection of ongoing cyber-attacks. Even though 

these systems commonly perform a signature-based detection with a set of rules recognizing 

known threats, novel approaches are starting to employ ML for anomaly-based detection, 

identifying changes in behavior that indicate the occurrence of an intrusion. 

To securely use ML models for NID, their training sets must have reliable and up-to-date data 

about the target domain. Otherwise, if they were trained with non-representative data that had 

biased information or missing values, their predictions would be untrustworthy and the NID 

system might not be able to detect intrusions when deployed in the intended network. 

Therefore, this section intends to answer RQ3: “What are the most reliable NID datasets for the 

creation of realistic adversarial examples of network traffic flows?”. 

2.3.1 Research Methodology 

The adopted research methodology for RQ3 was also based on the PRISMA methodology, but 

it included a straightforward process to screen dataset descriptions and abstracts, and then 

assess the eligibility of the utilized features and classes. 

To ensure a comprehensive coverage of relevant datasets, the search query was created with 

the same terms related to NID that were used in RQ1. Table 7 provides an overview of the 

utilized terms for each scope, which were combined with AND operators. 

Table 7. Search terms for RQ3. 

Scope Terms 

Network (network OR wireless OR IoT) 

Intrusion (intrusion OR anomaly OR cyber-attack) 

Detection (detection OR classification) 

Unlike in the previous research questions, the search was conducted using IEEE DataPort [211], 

Zenodo [212], and Kaggle [213] as sources because they are well-established platforms for the 

storage and sharing of datasets across the scientific community and industry practitioners. 

Public datasets of relatively recent network activity were included, but those without any class 

labels to distinguish between benign traffic and cyber-attacks were disregarded. Table 8 

provides an overview of the defined inclusion and exclusion criteria. 
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Table 8. Inclusion and exclusion criteria for RQ3. 

Inclusion Criteria Exclusion Criteria 

IC1: Publicly available dataset 

IC2: Created from 2017 onwards 

IC3: Contained communication network activity 

with both benign traffic and cyber-attacks 

EC1: Duplicated dataset 

EC2: Class labels not available 

2.3.2 Findings and Discussion 

The obtained RQ3 findings were several publicly available datasets containing labeled 

recordings of network flows, which represented either benign traffic that was part of the regular 

network activity or malicious traffic that was part of a cyber-attack. The found datasets were 

compared considering the common cyber-attack groups. 

Cyber-attacks can be grouped considering the confidentiality, integrity, and availability triad, 

which form the basic principles for network security [214]. Different groups present different 

functionalities to cause disruptions in distinct security principles, according to the end goals of 

an attacker. Reconnaissance (RCN) attacks commonly consist of eavesdropping and probing of 

the machines in a communication network, affecting the confidentiality of the business 

processes of an organization. After an initial reconnaissance stage, attackers usually attempt to 

perform Access and Misuse (A&M) or Denial-of-Service (DoS) attacks. The former attempt to 

gain access to a vulnerable device and use it for malicious purposes, affecting the integrity of 

the data, whereas the latter attempt to make a machine or a server inaccessible to its intended 

users, disrupting the availability of a system [215], [216]. Table 9 provides an overview of the 

main cyber-attack groups, including their common subgroups. 

Table 9. Cyber-attack groups and disrupted security principles. 

Group Designation Subgroup Disrupted Principle 

RCN Reconnaissance 
Eavesdropping 

Probing 
Confidentiality 

A&M Access and Misuse 

Brute-Force 

Injection 

Spoofing 

Integrity 

DoS Denial-of-Service 
Amplification 

Flooding 
Availability 

The cyber-attacks within each group can be directly performed but can also be used in more 

complex attacks with multiple steps. A pertinent example of a complex attack is a botnet 

created from self-replicating malware. Due to the increasing use of IoT devices with unresolved 

vulnerabilities, botnets can cause significant disruptions in the digital systems of a modern 

organization [217]. After a malware is injected into a device, it stealthily replicates to other 
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vulnerable devices, and then starts to control them to perform unintended actions as part of 

A&M or DoS attacks. The latter are especially dangerous because when a botnet controls many 

devices, they can be commanded to perform a Distributed DoS (DDoS) [218] and quickly bring 

down a communication network, making it completely inaccessible. 

Each of the found datasets was analyzed to identify the cyber-attack groups they included, 

considering the labels and descriptions of their network traffic flows. Table 10 summarizes the 

characteristics of the most relevant datasets, ordered by the publication year, and provides a 

concise highlight of their differentiating characteristics. 

Table 10. Main characteristics of relevant NID datasets. 

Dataset RCN A&M DoS Highlight Year Reference 

CIC-
IDS2017  

✓ ✓ ✓ Enterprise computer networks 2017 [219] 

N-BaIoT ✓  ✓ Mirai and BASHLITE malwares 2018 [220] 

Bot-IoT ✓ ✓ ✓ Information theft in IoT networks 2019 [221] 

MQTT-IoT-
IDS2020 

✓ ✓  MQTT communication protocol 2020 [222] 

IoT-23 ✓ ✓ ✓ 
Mirai, Torii, Gafgyt, Kenjiru, 
Okiru, and other malwares 

2020 [223] 

HIKARI-
2021 

✓ ✓  HTTPS encryption protocol 2021 [224] 

5G-NIDD ✓  ✓ 5G wireless networks 2022 [225] 

There is a scarcity of publicly available datasets, and the existing ones are mostly imbalanced 

towards benign activity because of the low rate of recorded cyber-attacks. Nonetheless, some 

datasets are well-established across the scientific community and are commonly used to 

benchmark ML models for NID. The most complete datasets are described below. 

CIC-IDS2017 [219] was made public by the Canadian Institute for Cybersecurity and consists of 

7 labeled captures of common cyber-attacks performed on a standard enterprise computer 

network. It includes benign activity and several classes of RCN, A&M, and DoS attacks, which 

were recorded in July 2017 in an heterogenous testbed environment with 12 interacting 

machines (Figure 7). The complete attack interactions were recorded and converted to a tabular 

data format with more than 80 features using the CICFlowMeter [226] analysis tool. Despite 

some flaws having been noticed on a portion of the resulting network flows [227], this dataset 

continues to be used as a standard benchmark dataset to compare the performance of novel 

ML models with baseline models from previous studies. 
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Figure 7. Enterprise network testbed environment. 

In contrast, IoT-23 [223] and Bot-IoT [221] address the wireless communications between the 

interconnected devices of the emerging IoT networks. These are public datasets containing 

labeled captures of benign activity and malicious traffic caused by malware. The former was 

created by the Stratosphere Research Laboratory and contains 23 captures of the network 

activity of a real IoT network, using IoT services and devices with unrestrained access to an 

internet connection. The latter resulted from a realistic IoT testbed environment developed at 

the University of New South Wales, with simulated IoT devices being controlled by botnets 

(Figure 8). Both datasets are extremely valuable because the recorded data manifests real IoT 

network traffic patterns and includes various classes of common malware attacks. 

 

Figure 8. IoT network testbed environment. 

Despite the valuable information of existing datasets, devices are starting to generate larger 

and larger amounts of network traffic. An attacker may exploit different device vulnerabilities 

with novel attack vectors, rendering the ML models that were created with old datasets 
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ineffective. This is a major obstacle to the adoption of ML for NID systems, but a promising 

strategy to overcome it is benefiting from adversarial examples to perform training data 

augmentation. By providing more cyber-attack variations to a model during its training phase, 

its detection performance may be substantially increased. 

2.4 Chapter Remarks 

In this chapter, the formulated research questions were answered by investigating the scientific 

literature in a methodical manner. Considering that adversarial ML is an active area of research, 

RQ1 was addressed by exploring the findings of the surveys and reviews already present in the 

current literature, as well as more recent publications introducing innovative methods. Since 

constrained data generation is a less studied research topic, a systematic review was performed 

for RQ2 to thoroughly investigate the recent developments. Regarding RQ3, well-established 

platforms were explored to find and select publicly available NID datasets with labeled network 

traffic flows that could be used for the intended case studies. 

The key developments in adversarial ML were divided into several types of attack methods and 

defense strategies. A wide range of attack methods have been created, but most were not 

intended for the specific constraints of a communication network and of the utilized protocols, 

so they may lead to OOD data perturbations and unrealistic examples in the NID domain. Even 

though some methods could possibly be used to create IDT samples in tabular data, they either 

require an entirely manual configuration based on expert knowledge or are only able to 

generate IDT samples by chance because they do not account for any constraint. Research 

efforts continue to be made to better protect various types of algorithms with reactive and 

proactive defenses, and a security-by-design approach throughout the entire lifecycle of an 

intelligent system is becoming essential to tackle the growing ML attack surface. 

Despite the increasing use of constrained data generation approaches in various sectors and 

industries, most applications only differentiate between classes without enforcing any specific 

constraint, which can still lead to OOD samples. A few recent publications started to notice this 

obstacle and attempt to address it, but their approaches are tailored to very specific tasks and 

cannot be adapted to generate data for other complex domains with different constraints. 

Overall, the approaches present in the current literature were not designed to support the 

constraints of a complex tabular data domain like NID, which hinders the development of 

realistic adversarial attack and defense strategies for the creation of robust ML models. This is 

the gap in the current literature addressed in this thesis. 
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3 Proposed Solution 

This chapter describes the types of constraints required for an adversarial cyber-attack example 

to be realistic, defines a methodology for a trustworthy adversarial robustness analysis with an 

adversarial evasion attack vector, and details the design and implementation of the developed 

method and its adaptative patterns. 

3.1 Robustness Analysis 

The NID domain is a complex tabular data domain where adversarial cyber-attack examples 

must resemble real network traffic flows that could evade detection in a real communication 

network. These flows should be able to deceive an ML model into classifying them as benign 

activity while continuing to be a part of a cyber-attack. Otherwise, the examples would not be 

useful for an attacker and could even be counterproductive for a defense strategy like 

adversarial training because a model would learn incorrect representations that would 

compromise its internal reasoning. 

For an adversarial robustness analysis to be trustworthy and provide relevant results, multiple 

ML models should be evaluated and compared in a methodical manner. It must use realistic 

adversarial examples in a realistic adversarial attack vector that could be applicable to a real 

scenario in a real communication network. Therefore, it is pertinent to establish a methodology 

suitable for a robustness analysis in complex domains like the NID domain.  

3.1.1 Data Constraints 

To generate realistic adversarial examples for a robustness analysis in the NID domain, it is 

necessary to carefully examine the complex constraints of different communication networks, 

of the utilized communication protocols, and of the cyber-attacks they face. 
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The features of a network traffic flow may be required to follow specific data distributions, 

according to the specificities of a communication network and of the utilized protocols. 

Furthermore, due to their distinct malicious purposes, different cyber-attacks may exhibit 

entirely different feature correlations. Since the tabular features of a flow may be correlated, 

the presence of a given value at a given feature may restrict the values that other features can 

have. Conceptually, this leads to two main types of constraints: 

• Intra-feature constraints: Restrict the value of a single feature. 

• Inter-feature constraints: Restrict the values of one or more features depending on the 

values present in one of more other features. 

Both types of constraints can be observed in the packet Inter-Arrival Time (IAT), which is one of 

the most pertinent characteristics of network traffic. IAT represents the elapsed time between 

the arrival of two subsequent packets of a flow and can be represented as two tabular features: 

the Minimum IAT (MinIAT) and the Maximum IAT (MaxIAT). These features are very valuable 

for the detection of various DoS attack classes. A low MinIAT can indicate a short DoS attack 

that quickly overloads a server with many requests, whereas a high MaxIAT can indicate a 

lengthy DoS attack that overwhelms a server by maintaining several long connections open. 

These two features, MinIAT and MaxIAT, present a straightforward infra-feature constraint: 

both must only have positive values because there is always some elapsed time between two 

packets. Nonetheless, they also have other more complex intra and inter-feature constraints 

that vary according to the specificities of a communication network and to the intended 

functionality of a cyber-attack class. 

Some more complex constraints can be observed in a Slowloris attack, which is a lengthy DoS 

attack that attempts to overwhelm a web server by opening multiple connections and 

maintaining them as long as possible. A network flow utilized in this cyber-attack must use the 

Transmission Control Protocol (TCP) and the Push (PSH) flag to keep the connection open on 

the port number 80, its endpoint [228]. The flow may have a varying IAT between 20 and 30 

seconds to appear as arbitrary traffic instead of scheduled packets just to keep the connection 

open. In this scenario, a longer IAT cannot be utilized because this web server is configured with 

a timeout to close connections after 30 seconds of inactivity, which is a common web 

application security measure [229]. 

Due to the lack of constraints of the perturbation crafting processes of the image classification 

domain, it is very difficult to transfer them to the NID domain. A patch-like crafting process 

could be performed, changing the flow from a TCP connection to another protocol, or from port 

number 80 to another port, but these modifications would not be useful for a lengthy DoS. The 

communication protocol, the connection flag, and the port must remain the same, otherwise 

the crafted example will no longer be a Slowloris flow. Likewise, a mask-like crafting process 

may change the values of MinIAT and MaxIAT, increasing or decreasing them, but not all 

perturbations will be suitable for a real communication network. 
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From the original values of MinIAT and MaxIAT, 20 and 30 seconds, three different examples 

may be generated for the considered flow: the first with a MinIAT of 22 and a MaxIAT of 28, the 

second with 18 and 32, and the third with 26 and 24. Even though all three may deceive an ML 

model and be misclassified as benign, only the first is a harmful Slowloris flow. The second 

example is harmless because the considered web server will terminate the connection at the 

31st second of inactivity before a packet is received at the 32nd second, preventing the 

functionality of this cyber-attack. In turn, the third example would not even be possible in a real 

communication network because a flow with packets at least every 26 seconds cannot also have 

packets at most every 24 seconds (Figure 9). 

 

Figure 9. Adversarial perturbation on a Slowloris network traffic flow. 

Despite all examples following similar mask-like perturbations of increasing and decreasing 

some numerical variables, they would lead to very different outcomes in a communication 

network and only one example could be used against a real NID system. Therefore, a successful 

adversarial attack is not guaranteed to be a successful cyber-attack. 

By inspecting the third example, it can be observed that the reason it is impossible is because it 

does not comply with the inherent data structure of a network traffic flow. On the other hand, 

the reason that the second example is harmless is because it does not comply with the intended 

functionality of the Slowloris class. Hence, it is possible to define two fundamental properties 

that are required for an adversarial example to resemble a real data sample: 

• Validity: Compliance with the constraints of a domain, following its data structure. 

• Coherence: Compliance with the constraints of a specific class, following the 

characteristics that distinguish it from other classes. 

Adversarial realism becomes a unifying concept that combines these two properties. A 

generated adversarial example can only be fully realistic if it is simultaneously valid within the 

inherent data structure of its domain and coherent with the characteristics of its class, by 

fulfilling all domain and class-specific constraints. An exemplification of these properties and of 
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some of the required constraints is provided below, considering MinIAT, MaxIAT, and another 

DoS attack class: a short DoS attack. 

During a perturbation crafting process, if MinIAT was increased to a value higher than MaxIAT, 

a network flow could become an adversarial example that a model would misclassify as benign. 

However, that would be an invalid flow that a model would never encounter in a real 

deployment scenario because it could not be transmitted through a communication network. 

Therefore, to preserve validity within the network traffic data structure, an inter-feature 

domain constraint must be enforced: the perturbed MinIAT must not be higher than the 

perturbed MaxIAT. These types of constraints, including value ranges and multiple category 

membership, have started being investigated in [50], [51]. Enforcing constraints improve the 

feasibility of adversarial attacks for NID, sometimes even mistakenly calling validity as realism. 

Nonetheless, validity is not enough for an adversarial attack to be a successful cyber-attack. 

Even if the previous domain constraint was fulfilled, valid flows with moderately increased 

MinIATs could be misclassified as benign but not be quick enough to overload a real web server. 

Consequently, those supposed adversarial examples would not actually be short DoS flows. 

Instead, they would represent just regular traffic that would not be useful for a cyber-attack, so 

an ML model would be correct to label them as benign. Therefore, to preserve coherence, it is 

necessary to also enforce an intra-feature class-specific constraint: the perturbed MinIAT must 

not be higher than the highest original value of MinIAT for the short DoS class. This is a 

significantly more complex constraint, but a crafting process must take it into account to ensure 

that an adversarial attack is feasible against a real NID system. 

Even though validity has previously been investigated, it is imperative to address it together 

with coherence to fully achieve adversarial realism. Hence, an adversarial cyber-attack example 

must represent valid network traffic capable of being transmitted through a real 

communication network, as well as a coherent cyber-attack flow capable of fulfilling its 

intended functionality and the malicious purposes of an attacker. 

3.1.2 Analysis Methodology 

In addition to using realistic adversarial examples, a robustness analysis must also provide them 

to an ML model in an adversarial attack vector that could be used in a real scenario against a 

real NID system. To establish an attack vector, it is important to consider how ML models are 

created and how NID systems are developed. 

A standard practice when creating ML models for NID and cyber-attack classification tasks is to 

combine the holdout method with cross-validation. A NID dataset can be randomly split into 

training and holdout sets with 70% and 30% of the samples, with stratification to ensure that 

the original class proportions are preserved. Then, a 5-fold cross-validation can be performed, 

creating five stratified subsets, each with 20% of the training set, which corresponds to 14% of 

the total dataset. In this validation process, five distinct iterations are performed, each training 

a model with four subsets and validating it with the remaining one. This enables a 
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hyperparameter optimization to be performed by training and validating a model with 70% of 

the data, and then an independent performance evaluation with the remaining 30% that the 

model has not yet seen, to assess its generalization (Figure 10). 

 

Figure 10. Holdout method combined with 5-fold cross-validation. 

To also evaluate a model’s robustness, an additional performance evaluation can be done with 

an adversarial set created by an adversarial attack method. However, the way that an 

adversarial set is created will heavily influence the results. Considering that NID systems are 

developed in a secure environment with thoroughly verified data, an attacker will not likely 

have access to a model’s training set, and will have to perform an adversarial evasion attack 

relying on network traffic recorded during the initial reconnaissance stage of a cyber-attack. 

Likewise, considering that NID systems are deployed with security measures to encapsulate the 

utilized models, an attacker will not likely have access to internal parameters nor to confidence 

scores, and the only feedback will be if the cyber-attack is successful or not. 

This evasion attack vector can be simulated by solely giving an adversarial method access to the 

holdout set and to a model’s class predictions, enabling it to create an adversarial holdout set 

to cause misclassifications in that specific model without introducing any bias in the results. 

Therefore, a robustness analysis for a single ML model can be performed in 4 steps: 

1. Preprocess a dataset, splitting it into training and holdout sets. 

2. Train and validate an ML model, using the training set. 

3. Perform an adversarial evasion attack to create a model-specific adversarial holdout set, 

using the regular holdout set and the model’s class predictions. 

4. Evaluate the model’s performance on the regular and adversarial holdout sets, 

analyzing its generalization to regular data and its robustness to adversarial data. 
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In addition to a regularly trained model, an adversarial training approach can be included to 

create a second model and evaluate how training with slightly perturbed samples affects its 

performance. These two models originate from the same algorithm, so the trade-off of 

performance on regular data required to improve the performance on adversarial data can be 

analyzed for that specific algorithm. By creating this pair of models for multiple different 

algorithms, from tree-based algorithms and ensembles to deep learning algorithms based on 

ANNs, it is possible to perform a trustworthy comparison of multiple ML models. Therefore, the 

complete adversarial robustness analysis methodology consists of 5 steps, in which steps 3 and 

4 are to be replicated for each algorithm: 

1. Preprocess a dataset, splitting it into training and holdout sets. 

2. Perform a simple data perturbation in a copy of each sample of the regular training set, 

creating an augmented adversarial training set with more data variations. 

3. Train and validate two ML models, the first using the regular training set and the second 

using the adversarial training set. 

4. Perform two adversarial evasion attacks to create two model-specific adversarial 

holdout sets, using the regular holdout set and each model’s class predictions. 

5. Evaluate each model’s performance on the regular and adversarial holdout sets, 

comparing their generalization to regular data and their robustness to adversarial data. 

As more regular network traffic flows are misclassified, a model’s performance will worsen on 

the regular holdout set. Likewise, as more adversarial cyber-attack examples are misclassified, 

a model’s performance will worsen on the adversarial holdout set. Therefore, a model should 

achieve a good balance between the independent evaluation results of the regular and 

adversarial holdout sets. From the multiple ML models under evaluation, the one that presents 

the best balance can be considered to have the best adversarially robust generalization. In the 

NID domain, this model will be the most capable of detecting cyber-attack variations, so it will 

be the most reliable for an intelligent cybersecurity system. 

The proposed methodology aims to enable a security-by-design approach during the 

development of ML models and during the lifecycle of an intelligent system. From the 

comparison performed in the last step, the best model can be selected for deployment, but if 

new data is recorded, the analysis should be repeated to ensure that the model continues to 

be robust. This methodology is meant to be regularly replicated with up-to-date data recordings 

to anticipate possible threats to the utilized models and use that knowledge to improve the 

adversarial defense strategy of the system (Figure 11). 
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Figure 11. Adversarial robustness analysis methodology. 

3.1.3 Model Evaluation 

To compare multiple ML models and select the one with the best adversarially robust 

generalization, all models must be evaluated in a consistent and standardized manner. This 

evaluation must use metrics that correctly reflect the impact of adversarial examples on a 

model’s performance. The considered evaluation metrics and their interpretation are briefly 

described below [230]–[232]. 

The basis for evaluating a model’s performance in a classification task in a domain like NID is 

the confusion matrix. It reports the number of True Positives (TP), True Negatives (TN), False 

Positives (FP) and False Negatives (FN) by checking the model’s class predictions and comparing 

them with the true class of each sample. In a multi-class classification task, the values of a 

confusion matrix can be calculated for each class (Figure 12). 
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Figure 12. Multi-class confusion matrix. 

The standard classification metric across the literature is accuracy, which measures the 

proportion of correctly classified samples. However, its bias towards the majority classes must 

not be disregarded when there is class imbalance and the minority classes are particularly 

relevant, which is the case of the NID domain. Since the adversarial evasion attack of step 4 will 

generate examples solely for cyber-attack flows, an accuracy as high as the proportion of benign 

flows could still be achieved even if all examples evaded detection. Therefore, to correctly 

exhibit the misclassifications caused by an adversarial attack, the accuracy score of a model 

should be calculated using the samples of all classes except the target class. This metric can be 

mathematically expressed as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1) 

Despite the reliability of accuracy, there are other suitable metrics to measure the impact of an 

attack across all the different classes. To account for class imbalance during model validation, 

metrics that can be macro-averaged should be preferred because they give all classes the same 

relevance, which causes significantly lower scores when there are generalization errors and 

performance declines in minority classes. 

Recall, which corresponds to the true positive rate and is also referred to as sensitivity, is a very 

valuable evaluation metric. It measures the proportion of samples of class 𝑖 that were correctly 

predicted as class 𝑖, which reflects a model’s ability to identify that class. The macro-averaged 

recall is defined as: 

𝑀𝑎𝑐𝑟𝑜-𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑑 𝑅𝑒𝑐𝑎𝑙𝑙 =  
1

𝐶
∗ ∑  

𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑁𝑖

𝐶

𝑖=1

 (2) 

where 𝑇𝑃𝑖 and 𝐹𝑁𝑖  are the TP and FN of class 𝑖, and 𝐶 is the total number of classes. 
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Precision is also a valuable metric because it measures the proportion of samples predicted as 

class 𝑖  that actually belonged to class 𝑖 , which indicates the relevancy of a model’s class 

predictions. The macro-averaged precision is defined as: 

𝑀𝑎𝑐𝑟𝑜-𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑑 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
1

𝐶
∗ ∑  

𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑃𝑖

𝐶

𝑖=1

 (3) 

where 𝑇𝑃𝑖 and 𝐹𝑃𝑖 are the TP and FP of class 𝑖, and 𝐶 is the total number of classes. 

These metrics are consolidated in the F1-Score, which calculates the harmonic mean of 

precision and recall, considering both FP and FN. The macro-averaged F1-Score is a reliable 

metric for NID because a high score indicates that the different cyber-attack classes are being 

correctly identified and there are few false alarms, which is important for security practitioners. 

Therefore, the macro-averaged F1-Score was the selected metric for the model validation of 

step 3 of the robustness analysis. It can be expressed as: 

𝑀𝑎𝑐𝑟𝑜-𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑑 𝐹1-𝑆𝑐𝑜𝑟𝑒 =  
1

𝐶
∗  ∑  

2 ∗ 𝑃𝑖 ∗ 𝑅𝑖

𝑃𝑖 + 𝑅𝑖

𝐶

𝑖=1

 (4) 

where 𝑃𝑖 and 𝑅𝑖 are the precision and recall of class 𝑖, and 𝐶 is the number of classes. 

3.2 Adversarial Method 

An adversarial method is only suitable for adversarial attacks and training in the NID domain if 

it accounts for its complex constraints. Considering the two properties that are required for an 

adversarial example to be realistic, validity and coherence, it is pertinent to use a perturbation 

crafting process capable of complying with the domain constraints of a real communication 

network and the class-specific constraints of a certain cyber-attack class. 

The Adaptative Perturbation Pattern Method (A2PM) was specifically developed to address the 

constraints of complex tabular data domains like the NID domain. By analyzing the 

characteristics of each class, the method can generate constrained data perturbations that 

result in realistic adversarial examples (Figure 13). It was implemented in the Python 3 

programming language and the numpy library was employed to optimize several mathematical 

operations, using vectorized data structures to consume less memory and provide faster 

execution speed. The source code repository is available at GitHub1 and the documentation is 

available at Read the Docs2, with the details of each function and a simple how-to guide. 

 
1 A2PM source code: https://github.com/vitorinojoao/a2pm 

2 A2PM documentation: https://a2pm.readthedocs.io/en/latest 
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Figure 13. Adaptative perturbation pattern method. 

3.2.1 Method Workflow 

A2PM was designed with a modular architecture where an independent sequence of adaptative 

perturbation patterns is assigned to each class. These sequences analyze specific feature 

subsets to learn the characteristics of original data samples and generate valid and coherent 

data perturbations. To adjust it to a specific domain, A2PM only requires a simple base 

configuration for the creation of a pattern sequence. Afterwards, simple data perturbations can 

be added to original data samples to perform adversarial training, augmenting a training set 

with more data variations, or realistic adversarial examples can be iteratively created in an 

adversarial evasion attack against a classification model (Figure 14). 

 

Figure 14. Base method workflow. 

To use A2PM for adversarial training, it can be adapted to the characteristics of a regular 

training set. The method provides a function to add simple adversarial data perturbations to a 
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copy of each original sample within a regular training set, transforming it into an adversarial 

training set with perturbed samples. In the NID domain, this enables a model to learn not only 

from a recorded cyber-attack, but also from a simple variation of it. These perturbations could 

be performed manually by analyzing the entire dataset and adding modified samples according 

to the characteristics of each class. Nonetheless, to automate the process and prevent any bias, 

the randomness in feature choice and reliability of A2PM are preferred. 

To use A2PM for adversarial attacks, it can be adapted to the characteristics of a regular holdout 

set. The method provides a function to perform full evasion attacks, generating as many 

perturbations as necessary in a copy of the regular holdout set until every data sample is 

misclassified or a specified maximum number of iterations is reached. This results in a model-

specific adversarial holdout set containing the required perturbations to cause the most 

misclassifications in the attacked ML model. It is pertinent to highlight that even though A2PM 

can be used for both attack and defense strategies, it exhibits distinct behaviors in the simple 

perturbation function adapted to a training set and the full attack adapted to a holdout set, so 

it can be reliably used in a robustness analysis. 

The performed attacks can be untargeted, to cause any misclassification, or targeted, seeking 

to reach a specific class. In the case of the NID domain, the untargeted attacks cause any 

misclassification of malicious flows to the benign or other cyber-attack classes, whereas the 

targeted attacks attempt to cause misclassifications of malicious flows solely into the benign 

class. An attack could generate data perturbations indefinitely, but it would be computationally 

expensive. Hence, early stopping is employed to end an attack when the latest iterations could 

not cause any further misclassifications. 

In addition to static scenarios where the full data is available, the method is also suitable for 

scenarios where it is provided over time, accounting for changes in the data distributions. After 

the pattern sequences are created for an initial batch of data, these can be incrementally 

adapted to the characteristics of subsequent batches. Additionally, if novel classes are provided, 

the base configuration is used to automatically create their respective pattern sequences. 

Even though A2PM could be applied in a black-box setting, it can only generate fully realistic 

examples in gray-box, with knowledge of the utilized features. This setting restriction is inherent 

to the feature analysis that is performed to setup and update the pattern sequences, but it also 

works as a safeguard against illegitimate use by actual attackers that do not have access to 

confidential system information about the utilized model and feature set. 

3.2.2 Interval Pattern 

One of the main concepts of the performed feature analysis is the interval of values that each 

numerical variable can have across different classes. To perturb uncorrelated numerical 

variables, an intra-feature constraint must be fulfilled by enforcing minimum and maximum 

values to a perturbed feature, according to its interval for a certain class. 
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The Interval pattern is built upon this concept and encapsulates a mechanism that records the 

valid intervals to create perturbations tailored to the characteristics of each feature (Figure 15). 

It has a configurable ‘probability to be applied’, in the (0, 1] interval, which is used to randomly 

determine if an individual feature will be perturbed or not. For specific features that should only 

have whole numbers, it is also possible to specify enforce integer perturbations. 

 

Figure 15. Interval pattern workflow. 

Instead of a static interval, moving intervals can be utilized after the first batch to enable an 

incremental adaptation to new data, according to a configured momentum. For a given feature 

and a momentum 𝑘 ∈ [0, 1] , the updated minimum 𝑚𝑖  and maximum 𝑀𝑖  of a batch 𝑖  are 

mathematically defined as: 

𝑚𝑖 = 𝑚𝑖−1 ∗ 𝑘 + min(𝑥𝑖) ∗ (1 − 𝑘) (5) 

𝑀𝑖 = 𝑀𝑖−1 ∗ 𝑘 + max(𝑥𝑖) ∗ (1 − 𝑘) (6) 

where min(𝑥𝑖) and max(𝑥𝑖) are the actual minimum and maximum values of the samples 𝑥𝑖 

of batch 𝑖. 

Each perturbation is computed according to a randomly generated number and is affected by 

the current interval, which can be either static or moving. The random number 𝜀 ∈ (0, 1] acts 

as a ratio to scale the interval. To restrict its possible values, it is generated within the standard 

range of [0.1, 0.3], although other ranges can be configured. For a given feature, a perturbation 

𝑃𝑖 of a batch 𝑖 can be represented as: 

𝑃𝑖 = (𝑀𝑖 − 𝑚𝑖) ∗ 𝜀 (7) 

After a perturbation is created, it is randomly added or subtracted to the original value. 

Exceptionally, if the original value is less or equal to the current minimum, it is always increased, 

and vice-versa. The resulting value is capped at the current interval to ensure it remains within 

the valid minimum and maximum values of that feature. 
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3.2.3 Combination Pattern 

Regarding uncorrelated categorical variables, enforcing their limited set of qualitative values is 

the main intra-feature constraint. Therefore, the interval approach cannot be replicated even 

if they are encoded in a binary or numerical form, and a straightforward solution could be 

recording each value that can be present in a certain feature of a certain class. 

Nonetheless, the most pertinent aspect of perturbing tabular data is the correlation between 

multiple variables. Since the value present in a variable may influence the values used for other 

variables, there can be several inter-feature constraints in both correlated numerical variables 

and correlated categorical variables. To improve beyond the previous solution and fulfill both 

types of constraints, several features can be combined into a single common record. 

The Combination pattern records the valid value combinations to perform a simultaneous and 

coherent perturbation of multiple features (Figure 16). It can be configured with locked features, 

whose values are used to find combinations for other features without being modified 

themselves. Due to the consideration of multiple features, its ‘probability to be applied’, in the 

(0, 1] interval, will affect several features. 

 

Figure 16. Combination pattern workflow. 

Besides the initially recorded combinations, new data can provide additional possibilities. These 

can be merged with the previous or used as gradual updates. For a given feature and a 

momentum 𝑘 ∈ [0, 1], the number of updated combinations 𝐶𝑖 of a batch 𝑖 is expressed as: 

𝐶𝑖 = 𝐶𝑖−1 ∗ 𝑘 + unique(𝑥𝑖) (8) 

where unique(𝑥𝑖) is the number of unique combinations of the samples 𝑥𝑖 of batch 𝑖. 

Each perturbation created by this pattern consists of a combination randomly selected from the 

current possibilities, considering the locked features. It directly replaces the original values, 

ensuring that the features remain coherent. 
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3.2.4 Pattern Sequences 

A pattern sequence is an aggregation of several Interval and Combination patterns in a 

sequential order. The main advantage of applying the consecutive perturbations of a pattern 

sequence is that they enable the fulfillment of inter-feature constraints of greater complexity, 

which is required for complex domains that have diverse constraints that cannot be fulfilled by 

a single pattern. It is pertinent to note that all patterns in a sequence are independently adapted 

to the original data, to prevent any bias when recording its characteristics. Afterwards, the 

sequential order of patterns is enforced to create cumulative perturbations on that data. 

An exemplification of the benefits of using these sequences is provided below, considering a 

small but relatively complex domain. The domain contains three nominal features, F0, F1 and 

F2, and two integer features, F3 and F4. For an adversarial example to be realistic within this 

domain, it must comply with the following constraints: 

• F0 must always keep its original value. 

• F1 and F4 can be modified but must have class-specific values. 

• F2 and F3 can be modified but must have class-specific values, which are influenced by 

F0 and F1. 

The base configuration corresponding to these constraints specifies the feature subsets that 

each pattern will analyze and perturb: 

• Combination pattern – Modify {F1}. 

• Combination pattern – Modify {F2, F3}, Lock {F0, F1}. 

• Interval pattern – Modify {F3, F4}, Integer {F3, F4}. 

A2PM will then assign each class to its own pattern sequence. For this example, the ‘probability 

to be applied’ will be 1.0 for all patterns, to demonstrate all three cumulative perturbations 

(Figure 17). The first perturbation created for each class is replacing F1 with another valid 

qualitative value, from ‘B’ to ‘C’. Then, without modifying the original F0 nor the new F1, a valid 

combination is found for F0, F1, F2 and F3. Since the original F2 and F3 were only suitable for 

‘A’ and ‘B’, new values are found to match ‘A’ and ‘C’. Finally, the integer features F3 and F4 are 

perturbed according to their valid intervals. Regarding F3, to ensure it remains coherent with 

F0 and F1, the perturbation is created on the value of the new combination. 
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Figure 17. Consecutive perturbations of a pattern sequence. 

3.3 Chapter Remarks 

In this chapter, a methodology for an adversarial robustness analysis was defined, and an 

intelligent method for the generation of realistic adversarial examples was detailed. These two 

contributions are the proposed solution to tackle the lack of ML robustness in the NID domain, 

and were designed to be transferable to other complex tabular data domains. 

The proposed methodology uses a realistic adversarial evasion attack vector and standardizes 

the evaluation and comparison of the generalization and robustness of multiple ML models. It 

was demonstrated that a successful adversarial attack is not guaranteed to be a successful 

cyber-attack, and that adversarial data perturbations can only be realistic if they are 

simultaneously valid and coherent, complying with the domain constraints of a real 

communication network and the class-specific constraints of a certain cyber-attack class. 

The developed adversarial method, A2PM, relies on pattern sequences that are independently 

adapted to the characteristics of each class to generate constrained data perturbations and 

constrained adversarial examples that preserve both validity and coherence. It has a modular 

architecture and can be used for adversarial attacks in a gray-box setting, to iteratively cause 

misclassifications, and adversarial training, to augment a training set with more data variations. 

In addition to the source code, the documentation was also made publicly available. 
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4 Realism Case Study 

This chapter presents the case study that analyzed the realism of the adversarial examples 

created by the targeted and untargeted attacks of the developed method. The study assessed 

if the generated perturbations complied with the constraints of Enterprise and IoT networks, 

preserving both validity and coherence, and if the method could be used for adversarial attacks 

and training with a low time consumption. The following sections describe the configuration of 

the study and present an analysis of the obtained results. 

4.1 Study Configuration 

Two scenarios were considered for the case study: Enterprise networks and IoT networks. For 

these scenarios, adversarial cyber-attack examples were created by A2PM using the original 

flows of the CIC-IDS2017 and the IoT-23 datasets, respectively. Assessments of adversarial 

realism and time consumption were performed by comparing the examples with the original 

flows and recording the time required for each iteration. To thoroughly analyze realism, the 

potential alternatives of the current literature were included: JSMA and OnePixel. 

Since the internal reasoning of a deep learning algorithm based on an ANN and a tree-based 

ensemble are noticeably different, the susceptibility of both types of models to A2PM was 

analyzed by performing targeted and untargeted evasion attacks against Multilayer Percepton 

(MLP) and RF. The attacks attempted to cause misclassifications for a maximum of 50 iterations, 

assessing the perturbations created by full adversarial attacks. In addition to evaluating the 

robustness of models created with regular training, models created with adversarial training 

with simple perturbations were also evaluated. 

The study was conducted on common hardware: a machine with 16 gigabytes of random-access 

memory, an 8-core central processing unit, and a 6-gigabyte graphics processing unit. The 

implementation relied on the Python 3 programming language and several libraries: numpy and 

pandas for data preparation and manipulation, tensorflow for the MLP models, scikit-learn for 

the RF models, and adversarial-robustness-toolbox for the alternative methods. 
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4.1.1 Data Preprocessing 

Multiple captures of the CIC-IDS2017 and IoT-23 datasets were selected to be used for their 

corresponding scenario. For CIC-IDS2017, the captures corresponding to Tuesday and 

Wednesday were merged, resulting in more than a million samples. For IoT-23, Capture-1-1 and 

Capture-34-1 were merged, also leading to a little over one million samples. Table 11 provides 

an overview of their characteristics, including the class proportions and the label of each class, 

either benign or a specific type of cyber-attack. 

Table 11. Class proportions of realism case study datasets. 

Scenario 
Dataset 

(Captures) 

Total 

Samples 

Class 

Samples 

Class 

Label 

Enterprise 

computer 

network 

CIC-IDS2017 

(Tuesday and 

Wednesday) 

1,138,612 

873,066 Benign 

230,124 Hulk 

10,293 GoldenEye 

7,926 FTP-Patator 

5,897 SSH-Patator 

5,796 Slowloris 

5,499 Slowhttptest 

11 Heartbleed 

IoT 

device 

network 

IoT-23 

(Capture-1-1 and 

Capture-34-1) 

1,031,893 

539,587 PortScan 

471,198 Benign 

14,394 DDoS 

6,714 C&C 

Before their data was usable, both datasets required several data preprocessing steps. First, the 

features that did not provide any valuable information about a flow’s benign or malicious 

purpose, such as timestamps and destination addresses, were discarded. Then, the categorical 

features were converted to numeric values by performing one-hot encoding. Due to the high 

cardinality of the categorical features, the very low frequency categories were aggregated into 

a single category designated as ‘other’, to avoid encoding qualitative values that were present 

in almost no samples and therefore had a small relevance. 

Following the proposed analysis methodology, the holdout method was applied to randomly 

split the data into training and holdout sets with 70% and 30% of the samples, with stratification 

to perverse the original class proportions. The distinct characteristics of the resulting subsets 

were analyzed to identify the types of constraints required for each scenario and establish the 

base configurations for A2PM. 

Regarding CIC-IDS2017, the sets were comprised of 8 imbalanced classes and 83 features, 58 

numerical and 25 categorical. Most numerical features were continuous, but some had discrete 
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values that could only have integer perturbations. Due to the correlation between the encoded 

categorical features, they required combined perturbations to be compatible with a valid flow. 

Additionally, to guarantee the coherence of a generated flow with its cyber-attack class, the 

encoded features representing the utilized communication protocol and endpoint, designated 

as port, could not be modified. Hence, the following configuration was used for the Enterprise 

network scenario, after it was converted to the respective feature indices: 

1. Interval pattern: Modify {numerical features}, Integer {discrete features}. 

2. Combination pattern: Modify {categorical features}, Lock {port, protocol}. 

Regarding IoT-23, the sets contained 4 imbalanced classes and approximately half the structural 

size of CIC-IDS2017, with 42 features, 8 numerical and 34 categorical. Despite the different 

features of IoT-23, it presented similar constraints. The main difference was that, in addition to 

the communication protocol, a generated flow also had to be coherent with the encoded 

features representing the application protocol, which was designated as service. The base 

configuration utilized for the IoT network scenario was: 

1. Interval pattern: Modify {numerical features}, Integer {discrete features}. 

2. Combination pattern: Modify {categorical features}, Lock {port, protocol, service}. 

It is pertinent to note that, for the benign class, A2PM would only generate benign network 

traffic that could be misclassified as a cyber-attack. Therefore, the configurations were only 

applied to the cyber-attack classes, to generate examples compatible with their malicious 

purposes. Furthermore, since the examples should resemble the original flows as much as 

possible, the ‘probability to be applied’ was 0.6 and 0.4 for the interval and combination 

patterns, respectively. These values were established to slightly prioritize the small-scale 

modifications of individual numerical features over the more significant modifications of 

combined categorical features. 

4.1.2 Model Fine-tuning 

A total of 4 MLP and 4 RF models were created, one per scenario and per training approach: 

regular or adversarial training. The first approach used the original training sets, whereas the 

latter augmented the data with one adversarial example per malicious flow. The main 

characteristics of the models and their fine-tuning process are described below. 

An MLP [233] is a feedforward ANN consisting of an input layer, an output layer and one or 

more hidden layers in between. Each layer can contain multiple nodes with forward 

connections to the nodes of the next layer. When utilized as a classifier, the number of input 

and output nodes correspond to the number of features and classes, respectively, and a 

prediction is performed according to the activations of the output nodes. 
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Due to the high computational cost of training an MLP, it was fine-tuned using a Bayesian 

optimization technique [234]. A validation set was created with 20% of a training set, which 

corresponded to 14% of the original samples. Since an MLP accounts for the loss of the training 

data, the optimization sought to minimize the loss of the validation data. To prevent overfitting, 

early stopping was employed to end the training when this loss stabilized. Additionally, due to 

the class imbalance present in both datasets, the assigned class weights were inversely 

proportional to their frequency. 

The fine-tuning led to a four-layered architecture with a decreasing number of nodes for both 

training approaches. The hidden layers relied on the computationally efficient Rectified Linear 

Unit (ReLU) activation function and the dropout technique, which inherently helps prevent 

overfitting by randomly ignoring a certain percentage of the nodes of a layer during the model’s 

training process. To address multi-class classification, the Softmax activation function was used 

to normalize the outputs to a class probability distribution. The MLP architecture for the 

Enterprise network scenario was: 

1. Input layer: 83 nodes, 512 batch size. 

2. Hidden layer: 64 nodes, ReLU activation, 10% dropout. 

3. Hidden layer: 32 nodes, ReLU activation, 10% dropout. 

4. Output layer: 8 nodes, Softmax activation. 

A similar four-layered architecture was utilized for the IoT network scenario, with the ReLU 

activation function and a decreasing number of nodes, although it presented a decreased batch 

size and a higher dropout percentage: 

1. Input layer: 42 nodes, 128 batch size; 

2. Hidden layer: 32 nodes, ReLU activation, 20% dropout; 

3. Hidden layer: 16 nodes, ReLU activation, 20% dropout; 

4. Output layer: 4 nodes, Softmax activation. 

The remaining MLP configuration was common to both scenarios because they represented 

similar multi-class cyber-attack classification tasks. Table 12 summarizes the utilized MLP 

configuration, obtained through the performed fine-tuning process. 
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Table 12. Multilayer Percepton configuration for realism study. 

Parameter Value 

Objective Loss Categorical Cross-Entropy 

Optimizer Adam Algorithm 

Learning Rate 0.001 

Early Stopping Enabled 

Maximum Epochs 50 

Class Weights Balanced 

On the other hand, an RF [235] is an ensemble of decision trees, which are decision support 

tools that use a tree-like structure. Each individual tree performs a prediction according to a 

different feature subset, and the most voted class across the ensemble is chosen to be the final 

prediction. It is based on the wisdom of the crowd, the concept that the collective decisions of 

multiple classifiers will be better than the decisions of just one. 

Since training an RF has a substantially lower computational cost, a 5-fold cross-validated grid 

search was performed with well-established hyperparameter combinations for cyber-attack 

classification, following the proposed analysis methodology. Five stratified subsets were 

created, each with 20% of a training set. Then, five distinct iterations were performed, each 

training a model with four subsets and validating it with the remaining one. Hence, the MLP 

validation approach was replicated five times per combination. Table 13 summarizes the fine-

tuned RF configuration, common to both scenarios and training approaches. 

Table 13. Random Forest configuration for realism study. 

Parameter Value 

Splitting Criterion Gini Impurity 

Number of Trees 100 

Maximum Depth of a Tree 32 

Minimum Samples in a Leaf 2 

Maximum Features √Number of Features 

4.2 Results and Discussion 

This section presents the results obtained by the MLP and RF models in the considered scenarios, 

as well as a comparative analysis of the realism of the examples, of the time consumption, and 

of the models’ robustness against adversarial cyber-attack examples. 
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4.2.1 Enterprise Network Scenario 

In the Enterprise network scenario, adversarial cyber-attack examples were generated using 

the original flows of the CIC-IDS2017 dataset. The results obtained for the targeted and 

untargeted attacks were analyzed, and assessments of adversarial realism and time 

consumption were performed. To assess the realism of the created examples, these were 

analyzed and compared with the corresponding original flows, considering the functionalities 

and malicious purposes of the cyber-attacks. In addition to A2PM, the assessment included its 

potential alternatives: JSMA and OnePixel. To prevent any bias, a randomly generated number 

was used to select one example, detailed below. 

The selected flow had the Slowloris class label, corresponding to a Denial-of-Service attack that 

attempts to overwhelm a web server by opening multiple connections and maintaining them 

as long as possible [228]. The data perturbations created by A2PM increased the total flow 

duration and the packet IAT, while reducing the number of packets transmitted per second and 

their size. It was observed that these modifications were mostly focused on enhancing time-

related aspects of the cyber-attack to prevent its detection. Hence, in addition to being valid 

network traffic that can be transmitted through a computer network, the adversarial example 

also remained coherent with its class and IDT within the NID domain. 

On the other hand, JSMA could not generate a realistic example for the selected flow. It created 

a major inconsistency in the encoded categorical features by assigning a single network flow to 

two distinct communication endpoints: destination ports number 80 and 88. Due to the 

unconstrained perturbations, the value of the feature representing port 88 was increased 

without accounting for its correlation with port 80, which led to an OOD example. In addition 

to the original Push flag (PSH) to keep the connection open, the method also assigned the flow 

to the Finished flag (FIN), which signals for connection termination and therefore contradicts 

the cyber-attack’s malicious purpose. Even though two numerical features were also slightly 

modified, the adversarial example could only evade detection by using categorical features 

incompatible with real network traffic. 

Likewise, OnePixel also generated an example that contradicted the Slowloris class. The feature 

selected to be perturbed represented the Reset flag (RST), which also causes termination. Since 

the method intended to perform solely one modification, it increased the value of a feature 

that no model learnt to detect because it is OOD, being incoherent with that cyber-attack’s 

intended functionality. Consequently, neither JSMA nor OnePixel are adequate alternatives to 

A2PM for tabular data. Table 14 provides an overview of the modified features. The ‘--’ 

character indicates that the original value was not perturbed. 
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Table 14. Modified features of an adversarial Slowloris example. 

Feature 
Original 

Value 

A2PM 

Value 

JSMA 

Value 

OnePixel 

Value 

Flow duration 109,034,141 119,046,064 109,034,140 -- 

Mean flow IAT 13,600,000 19,374,259 -- -- 

Flow packets per second 0.0825 0.0429 0.0824 -- 

Mean forward packet length 49.4 48.1 -- -- 

Min forward segment size 40 36 -- -- 

Connection flags ‘PSH’ -- ‘PSH’ + ‘FIN’ ‘PSH’ + ‘RST’ 

Destination port ‘80’ -- ‘80’ + ‘88’ -- 

Regarding the targeted attacks performed by A2PM, the models created with regular training 

exhibited significant performance declines. Even though both MLP and RF achieved over 99% 

accuracy on the original holdout set, a single iteration lowered their scores by approximately 

15% and 33%. In the subsequent iterations, more malicious flows gradually evaded MLP 

detection, whereas RF was quickly exploited. After 50 iterations, their very low accuracy 

evidenced their inherent susceptibility to adversarial examples. In contrast, the models created 

with adversarial training kept significantly higher scores, with fewer flows being misclassified as 

benign. By training with one perturbed sample per malicious flow, both classifiers successfully 

learned to detect most cyber-attack variations. RF stood out for preserving the 99.91% it 

obtained on the original holdout set throughout the entire attack, which highlighted its 

excellent generalization (Figure 18). 

 

Figure 18. Targeted attack accuracy of Enterprise network scenario. 
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The untargeted attacks significantly lowered both evaluation metrics. The accuracy and macro-

averaged F1-Score declines of the regularly trained models were approximately 99% and 79%, 

although RF was more affected in the initial iterations. The inability of both classifiers to 

distinguish between the different classes corroborated their high susceptibility to adversarial 

examples. Nonetheless, when adversarial training was performed, the models preserved 

considerably higher scores, with a gradual decrease of less than 2% per iteration. Despite some 

examples still deceiving them into predicting incorrect classes, both models were able to better 

distinguish each type of cyber-attack, which mitigated the impact of the generated 

perturbations. The adversarially trained RF consistently reached higher scores than MLP in both 

targeted and untargeted attacks, indicating a better robustness (Figures 19 and 20). 

 

Figure 19. Untargeted attack accuracy of Enterprise network scenario. 

 

Figure 20. Untargeted attack F1-Score of Enterprise network scenario. 
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To analyze the time consumption of A2PM, the number of milliseconds required for each 

iteration was recorded and averaged, accounting for the decreasing quantity of new examples 

generated as an adversarial evasion attack progressed. The generation was performed at rate 

of 10 examples per 1.7 milliseconds on the utilized hardware, which evidenced the fast 

execution and scalability of the developed method when applied to adversarial evasion attacks 

and training in Enterprise computer networks. 

4.2.2 IoT Network Scenario 

In the IoT network scenario, the adversarial cyber-attack examples were generated using the 

original flows of the IoT-23 dataset. The analysis performed for the previous scenario was 

replicated to provide similar assessments, including the potential alternatives of the current 

literature: JSMA and OnePixel. To prevent any bias, a randomly generated number was also 

used to select one example, detailed below. 

The selected flow for the realism assessment had the DDoS class label, which corresponds to a 

Distributed Denial-of-Service attack performed by the malware recorded in the IoT-23 dataset. 

A2PM replaced the encoded categorical features of the connection state and history with 

another valid combination, already used by other original flows of the DDoS class. Instead of an 

incomplete connection (OTH) with a bad packet checksum (BC), it became a connection attempt 

(S0) with a Synchronization flag (SYN). The crafted example was IDT within the NID domain 

because it remained valid and compatible with the DDoS class. 

As in the previous scenario, both JSMA and OnePixel generated unrealistic examples. Besides 

the original OTH, both methods also increased the value of the feature representing an 

established connection with a termination attempt (S3). Since a flow with simultaneous OTH 

and S3 states is neither valid nor coherent with the cyber-attack’s purpose, the methods still 

created OOD examples, remaining inadequate alternatives to A2PM for complex tabular data 

domains. In addition to the states, JSMA also assigned a single flow to two distinct 

communication protocols, TCP and Internet Control Message Protocol (ICMP), which further 

evidenced the inconsistency of the created data perturbations. Table 15 provides an overview 

of the modified features, with ‘--’ indicating an unperturbed value. 

Table 15. Modified features of an adversarial DDoS example. 

Feature 
Original 

Value 

A2PM 

Value 

JSMA 

Value 

OnePixel 

Value 

Connection state ‘OTH’ ‘S0’ ‘OTH’ + ‘S3’ ‘OTH’ + ‘S3’ 

Connection history ‘BC’ ‘SYN’ -- -- 

Communication protocol ‘TCP’ -- ‘TCP’ + ‘ICMP’ -- 
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Regarding the targeted attacks, A2PM caused much slower declines than in the previous 

scenario. The accuracy of the regularly trained MLP only started being lower than 50% at 

iteration 43, and RF stabilized with approximately 86%. These scores evidenced the decreased 

susceptibility of both classifiers, especially RF, to adversarial examples targeting the benign class. 

Furthermore, with adversarial training with simple perturbations, the models were able to 

preserve even higher scores during an attack. Even though many examples still evaded MLP 

detection, the number of malicious flows predicted to be benign by RF was significantly lowered, 

which enabled it to keep its accuracy above 99%. Hence, the latter successfully detected most 

cyber-attack variations (Figure 21). 

 

Figure 21. Targeted attack accuracy of IoT network scenario. 

The untargeted attacks iteratively caused small decreases of both metrics. Despite RF starting 

to stabilize from the fifth iteration forward, MLP continued its decline for an additional 48% of 

accuracy and 17% of macro-averaged F1-Score. This difference in both targeted and untargeted 

attacks suggests that RF, and possibly tree-based algorithms in general, have a greater intrinsic 

robustness to adversarial examples of IoT network traffic. Unlike in the previous scenario, 

adversarial training did not provide considerable improvements. Nonetheless, the augmented 

training data still contributed to the creation of more adversarially robust models because they 

exhibited fewer incorrect class predictions throughout the attack (Figures 22 and 23). 

A time consumption analysis was also performed, to further analyze the scalability of A2PM on 

common hardware like the one utilized in this study. The number of milliseconds required for 

each iteration was recorded and averaged, resulting in a rate of 10 examples per 2.4 

milliseconds. By comparing the rates obtained in the two scenarios, it can be observed that it 

was 41% higher for IoT-23 than for CIC-IDS2017. Even though the former dataset had 

approximately half the structural size, with almost half the features, a greater number of locked 

categorical features were provided to the Combination pattern. Therefore, the increased time 

consumption suggests that the more complex inter-feature constraints are specified, the more 
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time will be required to apply A2PM and perform each iteration. Nonetheless, the time 

consumption was still reasonably low, which further evidenced the fast execution and 

scalability of the developed adversarial method. 

 

Figure 22. Untargeted attack accuracy of IoT network scenario. 

 

Figure 23. Untargeted attack F1-Score of IoT network scenario. 
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4.3 Chapter Remarks 

In this chapter, the realism of the adversarial examples created by the developed method was 

assessed in Enterprise and IoT network scenarios. A total of 4 MLP and 4 RF models were 

created using the network traffic flows of the CIC-IDS2017 and IoT-23 datasets, and targeted 

and untargeted evasion attacks were performed against them. For each scenario, assessments 

of adversarial realism and time consumption were performed, and the impact of the impact of 

the attacks on the models’ robustness was analyzed. 

The modular architecture of A2PM enabled the creation of pattern sequences adapted to each 

type of cyber-attack, according to the constraints of the utilized datasets. Both targeted and 

untargeted attacks successfully decreased the performance of all MLP and RF models, with 

significantly higher declines exhibited in the Enterprise network scenario. Nonetheless, the 

inherent susceptibility of these models to adversarial examples was mitigated by augmenting 

their training data with one crafted example with simple perturbations per malicious flow. 

Overall, the obtained results demonstrate that A2PM provides a scalable generation of valid 

and coherent examples for the NID domain. 
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5 Generalization Case Study 

This chapter presents the case study that analyzed the generalization of adversarially trained 

ML models for binary and multi-class classification. The study assessed if performing adversarial 

training with simple data perturbations generated by the developed method enabled tree-

based ensembles to retain a good generalization to regular IoT network traffic, in addition to 

being more robust to adversarial examples. The following sections describe the configuration 

of the study and present an analysis of the obtained results. 

5.1 Study Configuration 

Two scenarios were considered for the case study: IoT service networks and IoT device 

networks. For these scenarios, adversarial cyber-attack examples were created by A2PM using 

the original flows of the IoT-23 and the Bot-IoT datasets, respectively. The robustness and 

generalization of models created with regular training and with adversarial training were 

analyzed, to assess the effects of training with simple perturbations performed by A2PM. 

Since tree-based algorithms and ensembles are well-established for classification tasks in the 

NID domain, targeted and untargeted evasion attacks were performed against RF, Extreme 

Gradient Boosting (XGB), Light Gradient Boosting Machine (LGBM), and Isolation Forest (IFOR). 

The attacks attempted to cause misclassifications for a maximum of 30 iterations, assessing 

relatively fast attacks. In binary classification, the aim of a model was to detect that a network 

traffic flow was malicious, whereas in multi-class classification, a model had to correctly identify 

each cyber-attack class and distinguish between them. Even though IFOR can only perform 

anomaly detection, it was compared to the remaining models in binary classification. 

The study was conducted on common hardware: a machine with 16 gigabytes of random-access 

memory, an 8-core central processing unit, and a 6-gigabyte graphics processing unit. The 

implementation relied on the Python 3 programming language and several libraries: numpy and 

pandas for data preparation and manipulation, scikit-learn for the implementation of RF and 

IFOR, xgboost for XGB, and lightgbm for LGBM. 
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5.1.1 Data Preprocessing 

Multiple captures of the IoT-23 and Bot-IoT datasets were selected to be used for their 

corresponding scenario. For IoT-23, Capture-1-1 and Capture-34-1 were merged, whereas for 

Bot-IoT, the utilized capture was Full5pc-4. Table 16 provides an overview of their 

characteristics, including the class proportions and the label of each class, either benign or a 

specific type of cyber-attack. 

Table 16. Class proportions of generalization case study datasets. 

Scenario 
Dataset 

(Captures) 

Total 

Samples 

Class 

Samples 

Class 

Label 

IoT 

service 

network 

IoT-23 

(Capture-1-1 and 

Capture-34-1) 

1,031,893 

539,587 PortScan 

471,198 Benign 

14,394 DDoS 

6,714 C&C 

IoT 

device 

network 

Bot-IoT 

(Full5pc-4) 
668,522 

576,884 DDoS 

91,082 Recon 

477 Benign 

79 Theft 

Several data preprocessing steps were applied to both datasets. First, the features that did not 

provide valuable information about a flow’s benign or malicious purpose, such as origin and 

destination addresses, were discarded. Then, one-hot encoding was employed to convert the 

categorical features to numeric values. Due to their high cardinality, low frequency categories 

were aggregated into a single category designated as ‘other’ to avoid encoding qualitative 

values that had a small relevance for the classification. 

The data was randomly split into training and holdout sets with 70% and 30% of the samples, 

with stratification, according to the proposed analysis methodology. The types of constraints 

required for each scenario were identified and the base configurations for A2PM were 

established by analyzing the resulting subsets. 

Regarding IoT-23, the sets were comprised of 4 imbalanced classes and 42 features, 8 numerical 

and 34 categorical, as in the previous case study. An equivalent configuration was used for the 

IoT service network scenario, after it was converted to the respective feature indices: 

1. Interval pattern: Modify {numerical features}, Integer {discrete features}. 

2. Combination pattern: Modify {categorical features}, Lock {port, protocol, service}. 

Regarding Bot-IoT, the sets contained 4 imbalanced classes and 35 features, 15 numerical and 

20 categorical. It required combined perturbations for the encoded categorical features and 
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presented some numerical features with discrete values for packet counts. Even though the 

sets did not contain services, the encoded features representing the utilized communication 

protocol and port could not be modified to guarantee the coherence of a generated flow with 

its cyber-attack class. The base configuration utilized for the IoT device network scenario was: 

1. Interval pattern: Modify {numerical features}, Integer {discrete features}. 

2. Combination pattern: Modify {categorical features}, Lock {port, protocol}. 

As in the previous case study, it is pertinent to note that, for the benign class, A2PM would only 

generate benign network traffic that could be misclassified as a cyber-attack. Therefore, the 

configurations were only applied to the cyber-attack classes. The ‘probability to be applied’ was 

0.6 and 0.4 for the interval and combination patterns, respectively, to slightly prioritize the 

small-scale modifications of individual numerical features over the more significant 

modifications of combined categorical features. 

5.1.2 Model Fine-tuning 

A total of 8 RF, 8 XGB, 8 LGBM, and 4 IFOR models were created, one per scenario, per regular 

or adversarial training approach, and per binary or multi-class classification task. The first 

approach created models with the original training sets, whereas the latter augmented the 

training set with one adversarial example per malicious flow. The main characteristics of the 

models and their fine-tuning process are described below. 

The proposed analysis methodology was followed for all tree-based ensembles. Therefore, a 

grid search was performed with well-established hyperparameter combinations for NID and 

cyber-attack classification, and the optimal configuration for each model was determined 

through a 5-fold cross-validation. Five stratified subsets were created, each with 20% of a 

training set. Then, five distinct iterations were performed, each training a model with four 

subsets and validating it with the remaining one. After being fine-tuned, each model was 

retrained with its complete training set, so it was ready for the independent performance 

evaluations with the original holdout set and the adversarial holdout set. 

For RF [235], which was described in the previous case study, the Gini Impurity criterion was 

used to measure the quality of the possible node splits, and the maximum number of features 

selected to build a tree was the square root of the total number of features of each dataset. 

The optimized value for the maximum depth of a tree was 32 and 16 for IoT-23 and Bot-IoT, 

respectively, and the minimum number of samples required to create a leaf node was 2 and 4. 

Table 17 summarizes the fine-tuned configuration. 
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Table 17. Random Forest configuration for generalization study. 

Parameter Value 

Splitting Criterion Gini Impurity 

Number of Trees 100 

Maximum Depth of a Tree 16 to 32 

Minimum Samples in a Leaf 2 to 4 

Maximum Features √Number of Features 

XGB [236] performs gradient boosting using a supervised ensemble of decision trees. A level-

wise growth strategy is employed to split nodes level by level, seeking to minimize a loss 

function during its training. The acknowledged Cross-Entropy loss was used for both binary and 

multi-class classification, and the Histogram method was selected because it computes fast 

histogram-based approximations to choose the best splits. The key parameter of this model is 

the learning rate, which controls how quickly the model adapts its weights to the training data. 

It was optimized to relatively small values for each training set and scenario, ranging from 0.01 

to 0.2. Table 18 summarizes the configuration. 

Table 18. Extreme Gradient Boosting configuration for generalization study. 

Parameter Value 

Method Histogram 

Objective Loss Cross-Entropy 

Learning Rate 0.01 to 0.2 

Number of Trees 80 to 120 

Maximum Depth of a Tree 8 

Minimum Loss Reduction 0.01 

Feature Subsample 0.7 to 0.8 

LGBM [237] also utilizes a supervised ensemble of decision trees to perform gradient boosting. 

Unlike XGB, a leaf-wise strategy is employed, following a best-first approach. Hence, the leaf 

with the maximum loss reduction is directly split in any level. The key advantage of this model 

is its ability to use Gradient-based One-Side Sampling (GOSS) to build the decision trees, which 

is computationally lighter and therefore provides a faster training process. The Cross-Entropy 

loss was also used, and the minimum samples required to create a leaf was optimized to 16. To 

avoid fast convergences to suboptimal solutions, the learning rate was also kept at small values 

for the distinct datasets and scenarios. Table 19 summarizes the configuration. 

  



 

61 
 

Table 19. Light Gradient Boosting Machine configuration for generalization study. 

Parameter Value 

Method GOSS 

Objective Loss Cross-Entropy 

Learning Rate 0.01 to 0.2 

Number of Trees 80 to 120 

Maximum Depth of a Tree 16 

Maximum Leaves in a Tree 32 

Minimum Loss Reduction 0.01 

Minimum Samples in a Leaf 16 

Feature Subsample 0.7 to 0.8 

IFOR [238] isolates anomalies through an unsupervised ensemble of decision trees. The samples 

are repeatedly split by random values of random features until outliers are segregated from 

normal observations. Unlike the previous models, IFOR can only perform anomaly detection 

with unlabeled data. Nonetheless, it can be compared to the remaining models in binary 

classification, so cross-validation was also used to fine-tune it. 

This model relies on the contamination ratio of a training set, which must not exceed 50%. 

Hence, the number of samples intended to be anomalies must be lower than the number of 

remaining samples, otherwise outliers cannot be detected. To reduce the contamination of the 

training data, each cyber-attack class was randomly subsampled with stratification. The 

optimized ratios of the total proportion of anomalies were 0.4 and 0.5 for IoT-23 and Bot-IoT, 

respectively. Therefore, the subsampled training data contained 40% and 50% of malicious 

samples. Table 20 summarizes the configuration. 

Table 20. Isolation Forest configuration for generalization study. 

Parameter Value 

Number of Trees 100 

Contamination 0.4 to 0.5 

Maximum Features 0.9 

Maximum Samples 256 

5.2 Results and Discussion 

This section presents the results obtained by the four tree-based ensembles in binary and multi-

class classification in the considered scenarios, as well as a comparative analysis of their 

generalization and robustness against adversarial cyber-attack examples. 
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5.2.1 IoT Service Network Scenario 

In the IoT service network scenario, the models created with regular training exhibited 

reasonable performance declines in binary classification on the IoT-23 dataset. Even though all 

four models achieved over 99% accuracy on the original holdout set, numerous 

misclassifications were caused by the adversarial attacks. The lowest score on an adversarial 

holdout set, 68.35%, was obtained by XGB. In contrast, the models created with adversarial 

training kept significantly higher scores. By training with one realistically crafted example per 

malicious flow, all models successfully learnt to detect most cyber-attack variations. IFOR stood 

out for preserving the 99.98% accuracy it obtained on the original holdout set throughout the 

entire attack, which highlighted its excellent generalization (Figure 24). 

 

Figure 24. Attack accuracy of binary IoT service network scenario. 

Regarding multi-class classification, the targeted and untargeted attacks had different impacts 

on a model’s performance. The former caused malicious flows to be solely predicted as the 

benign class, whereas the latter caused malicious flows to be predicted as different classes, 

including other cyber-attack classes. Both attacks decreased the accuracy of the three 

supervised models on IoT-23, with LGBM being significantly more affected. Nonetheless, it can 

be observed that its targeted accuracy, 57.78%, was significantly higher than the untargeted, 

32.11%, with more misclassifications occurring between different cyber-attack classes. 

Therefore, despite LGBM being susceptible, the benign class was more difficult to reach in 

multi-class cyber-attack classification. Even though performing adversarial training further 

increased the high scores of XGB, it was surpassed by RF on the targeted attack, which achieved 

99.97% (Figures 25 and 26). 
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Figure 25. Untargeted attack accuracy of multi-class IoT service network scenario. 

 

Figure 26. Targeted attack accuracy of multi-class IoT service network scenario. 

5.2.2 IoT Device Network Scenario 

In the IoT device network scenario with the Bot-IoT dataset, the declines were significantly 

higher. The inability of these tree-based algorithms to distinguish between the different classes 

evidenced their high susceptibility to adversarial examples. The score of LGBM dropped to 

26.04%, followed by IFOR, with 34.31%. Regarding the latter, it could not reach 85% in the 

original holdout set, possibly due to the occurrence of overfitting. Despite some examples still 

deceiving them, the models created with adversarial training were able to learn the subtle 

nuances between each cyber-attack class, which mitigated the impact of the examples of the 

adversarial holdout set. Apart from IFOR, the remaining models consistently achieved scores 

over 97%, which indicated a good robustness (Figure 27). 
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Figure 27. Attack accuracy of binary IoT device network scenario. 

Higher declines were also exhibited in the multi-class classification task. The untargeted attacks 

performed by A2PM dropped the accuracy of RF and XGB to near 65%, although the targeted 

attacks only decreased it to 87.50% and 97.14%. Adversarial training contributed to the creation 

of more robust models, leading to fewer incorrect class predictions. Regarding RF, it could even 

preserve the 99.98% score it obtained on the original holdout set throughout the entire attack. 

Even though some malicious flows still evaded detection, the robustness of both XGB and LGBM 

was also successfully improved. Overall, the adversarial robustness of the analyzed tree-based 

algorithms was significantly improved by augmenting their training data with a simple variation 

of each cyber-attack (Figures 28 and 29). 

 

Figure 28. Untargeted attack accuracy of multi-class IoT device network scenario. 
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Figure 29. Targeted attack accuracy of multi-class IoT device network scenario. 

5.3 Chapter Remarks 

In this chapter, the generalization and robustness of tree-based ensembles with an adversarial 

training approach was assessed in IoT service and IoT device network scenarios. A total of 8 RF, 

8 XGB, 8 LGBM, and 4 IFOR models were created using the network traffic flows of the IoT-23 

and Bot-IoT datasets, and targeted and untargeted evasion attacks were performed against 

them. For each scenario, both regular and adversarial training approaches were evaluated in 

binary and multi-class classification tasks. 

The models created with regular training exhibited significant performance declines, which 

were more prominent in the IoT device scenario. Even though RF was the least affected in the 

binary classification, XGB consistently achieved the highest accuracy in multi-class. Furthermore, 

when adversarial training was performed, all models successfully learnt to distinguish between 

most cyber-attack variations and kept significantly higher scores when attacked. The 

adversarially trained IFOR and RF stood out for preserving the highest accuracy throughout 

entire attacks, on binary IoT-23 and multi-class Bot-IoT, respectively. Regarding LGBM, the 

results suggest that it is highly susceptible to adversarial examples, especially on imbalanced 

multi-class classification. Nonetheless, this vulnerability can be tackled by augmenting its 

training data with one realistic adversarial example per malicious flow. 
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6 Conclusions 

This chapter provides the main conclusions of this thesis, highlighting the accomplished 

objectives. The limitations of the proposed solution and possible improvements are also 

described, indicating research topics to be explored in the future. 

6.1 Accomplished Objectives 

This thesis addressed the lack of robustness of ML models and explored the realism of 

adversarial cyber-attack examples in the NID domain. All the initially established objectives 

were successfully accomplished, with a completion rate of 100%. A solution was developed to 

improve the security of ML in complex tabular data domains, which resulted in several scientific 

contributions. The main results for each objective were: 

• OB1: A literature review of the state-of-the-art adversarial ML methods, constrained 

data generation approaches, and publicly available NID datasets. It was observed that 

most solutions were not designed to support the constraints of a communication 

network and of the utilized protocols, so they mostly lead to OOD data perturbations 

and unrealistic network traffic flow examples in the NID domain. 

• OB2: A methodology for a trustworthy adversarial robustness analysis, with a realistic 

adversarial evasion attack vector and a comparison of multiple ML models. It was 

demonstrated that a successful adversarial attack is not guaranteed to be a successful 

cyber-attack, and that a robustness analysis must be performed with realistic attack 

vectors that account for the characteristics of the cyber-attack classes. 

• OB3: An intelligent method for the generation of realistic adversarial examples in 

complex domains like NID. The developed method, A2PM, has a modular architecture 

and can be used for adversarial attacks, to iteratively cause misclassifications, and 

adversarial training, to augment a training set with more data variations. The source 

code and documentation are available at GitHub1 and at Read the Docs2. 
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• OB4: Two case studies that evaluated the suitability of A2PM for the NID domain. The 

first assessed the realism of the crafted examples, verifying that the perturbations 

preserved both validity and coherence and that the method could be used for 

adversarial attacks and training with a low time consumption. The second assessed the 

generalization of ML models, verifying that adversarial training with simple data 

perturbations enables tree-based ensembles to retain a good generalization to regular 

IoT network traffic, in addition to having a better robustness. 

The obtained results evidence the inherent susceptibility of deep learning algorithms based on 

ANNs and of tree-based algorithms and ensembles to adversarial examples, and demonstrate 

that they can significantly benefit from adversarial training with simple data perturbations. The 

literature review, the proposed solution, and the use cases described in this thesis can help ML 

engineers and security practitioners improve both the robustness and the generalization of 

their ML models with realistically crafted adversarial examples. 

6.2 Limitations and Future Work 

Despite the benefits of the developed method to generate realistic examples according to a 

simple base configuration, it still requires previous knowledge about the utilized features, their 

data type, and which features are correlated. It is important to replicate the proposed analysis 

methodology in more case studies with other NID datasets and even live experiments in 

different types of communication networks, to start categorizing the constraints of different 

networks and help reduce the knowledge required to configure the developed method. 

To further simplify the configuration of complex intra and inter-feature constraints, it would be 

very valuable to improve A2PM so it could automatically analyze all features and detect their 

correlations, creating the required interval and combination pattern sequences without the 

need for a base configuration. Additionally, due to its modular architecture, novel patterns may 

be added to account for any novel constraint that is required for a specific domain. 

Regarding the method’s ability to be incrementally adapted to new data, it is only possible after 

learning the characteristics of an initial dataset. If the initial dataset contains non-

representative data with biased information or missing values, the method will not be able to 

generate realistic examples. Therefore, it is necessary to further enhance the adaptability of 

A2PM and improve the transferability of the crafted examples to different networks. 

In the future, a major enhancement could be to use the characteristics recorded by the 

adaptative patterns of A2PM to check for concept drift and perform OOD detection. A new 

version of the method could be designed to address anomalous samples within each class and 

to detect changes in the initial data distributions. It could be beneficial to regularly perform 

OOD detection in deployed ML models, making modern organizations more aware of when 

their models stop being reliable and need to be retrained. 
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Another major enhancement could be to also use the adaptative patterns to create an 

explainable version of A2PM. In addition to robustness, explainability is also a highly desirable 

property because understanding the behavior of an ML model is essential for an organization 

to build confidence in it, especially if it is used in a cybersecurity solution. Since the method 

generates perturbations according to the characteristics of each class, the misclassifications 

caused by different perturbations could be used to provide insights of the internal reasoning of 

a model and of the decision boundaries between cyber-attack classes. 

It is also pertinent to further contribute to robustness research and to ML security by exploring 

novel defense strategies throughout different stages of the lifecycle of an intelligent system, to 

provide a more reliable and robust NID and cyber-attack classification. 

6.3 Final Remarks 

This thesis presented the research and development work that led to the proposal of a 

methodology for an adversarial robustness analysis and to the creation of an intelligent method 

for the generation of realistic adversarial examples in complex tabular data domains like NID. It 

was aligned with the participation of GECAD in the SeCoIIA and VALU3S projects, and the 

developed method is starting to be used not only in the NID domain, but across several ongoing 

projects that tackle the lack of ML robustness in other complex domains. 

Overall, this was a very interesting challenge. It provided me the opportunity to acquire a vast 

amount of knowledge and technical skills related to the AI field, while improving my problem-

solving and organizational skills. Furthermore, it enabled me to put my prior knowledge of 

computer networking and software engineering into practice to develop an innovative solution 

to help other researchers analyze and improve the robustness of their models. 

The key takeaway of this thesis is: ML models can be incredibly valuable to improve a 

cybersecurity system, but their own vulnerabilities must not be disregarded. It is essential to 

continue the research efforts to improve the security and trustworthiness of ML and of the 

intelligent systems that rely on it. 
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