
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Man-Machine Symbiosis - EEG and
other biosignal man-machine

interaction

Vitor Daniel Veigas Minhoto

Mestrado Integrado em Bioengenharia

Supervisor: João Paulo Trigueiros da Silva Cunha

July 22, 2019



c© Vitor Daniel Veigas Minhoto, 2019



Man-Machine Symbiosis - EEG and other biosignal
man-machine interaction

Vitor Daniel Veigas Minhoto

Mestrado Integrado em Bioengenharia

July 22, 2019





Resumo

Ao longo das últimas décadas, veículos aéreos não tripulados (VAT), drones, têm crescido bas-
tante em popularidade. Estas máquinas são versáteis o suficiente para, num momento, serem
usados como assistentes em missão de busca e salvamento, e no outro serem apenas veículos
recreacionais. No entanto, normalmente, estas máquinas operam por controlo remoto de maneira
autónoma, não havendo uma interação natural entre o drone e o humano. O principal objetivo deste
trabalho era, então, desenvolver um módulo de inteligência que permita ao VAT ter a habilidade
de sentir o humano e comunicar com ele tanto explícita como implicitamente através de biosinais,
alcançando, então, o patamar de simbiose.

Para o módulo de comunicação explícita, o humano tem a habilidade de mandar comandos
para o drone servindo-se uma Interface Cérebro Maquina usando um Wearable EEG. O drone
pode implicitamente aperceber-se da presença do seu humano e do seu estado fisiológico através
de um fluxo de dados ECG vindos do humano. No entanto esta comunicação deve funcionar de
maneira bidireccional. O drone pode comunicar com o humano através de som ou fazendo formas
no ar enquanto voo.

Durante a realização deste trabalho, para além da implementação destes módulos, um simu-
lador foto-realista foi construído, permitindo tanto o humano como o drone treinar e desenvolver
este sistema de interação dentro da simulação e depois trazer este conhecimento para o mundo
real.

Uma prova de conceito do sistema foi desenvolvida e testada no evento "Joint Interagency
Field Experimentation" promovido pelo Departamento da defesa e Departamento da marinha
americana. A prova foi um sucesso tendo ganho um prémio de "Develop now".
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Abstract

Over the past few decades, Unmanned Aerial Vehicle has risen both in popularity and in use. These
machines are versatile enough to, in one moment, be used as an assistant in search and rescue
missions, and the other be merely recreational. However, usually, these drones operate either by
the use of remote control or autonomously, lacking a more natural interaction with the human.

The main goal of this dissertation was to add an augmented intelligent component to the drone,
giving it the ability to sense a human user and interact with him both explicitly or implicitly, using
biosignals, therefore achieving Symbiosis.

For the explicit communication part, the human can issue commands to a drone with a Brain
Computer Interface by using an EEG wearable. The drone can also implicitly perceive who is its
human by making use of a streaming ECG data from its human. However, communication should
work both ways! The drone can also communicate with its human by sound or follow paths in the
sky while flying.

Throughout this work, these modules were implemented as well as a photo-realistic simulation
framework where both humans and drones can further develop these Interactions without the fear
of crashing, and then transfer all learning developed to the real world.

A proof of concept was developed and tested at the US Department of Defence (DoD) & De-
partment of Navy “Joint Interagency Field Experimentation” event, hosted by the Naval Postgrad-
uate School in Camp Roberts, California, amusing the other participants and earning a Develop
Now token.
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Chapter 1

Introduction

1.1 Man-Machine Symbiosis

The concept of "Man-Machine Symbiosis" was introduced in 1960 by J.C.R. Licklider [1], at a

paper with the same title in IRE Transactions on Human Factors in Electronics, now IEEE Transac-

tions on Human-Machine Systems and IEEE Transactions on Systems, Man and Cybernetics. The

core idea was that intelligent technology should augment the human factor instead of replacing it.

This idea pursues the concept of "Symbiosis", that is defined as "Interaction between two different

organisms living in a close physical association, typically to the advantage of both" by the Oxford

dictionary1. However, this idea did not have many followers as user interfaces raised in popularity

and the technology at the time did not have the capacity to perform the needed computations.

This dissertation aims to explore this concept and develop it in an already existing partnership

with CMU-SV (Carnegie Mellon University Silicon Valley). Due to the extensive work in UAVs

(Unmanned Aerial Vehicles) by this institution, the target machines were drones (more exactly

quadcopters), although almost all results obtained in this work can be replicated with almost any

Machine.

1.2 UAVs: a Brief History

UAVs already exist since the 1950s for military purposes, but it was not until 2006 that the FAA

(Federal Aviation Administration) started issuing commercial drone licenses [2].

European market research from 2018 [3], made by Drone Industry Insights, evaluated the cur-

rent industrial application of drones and its potential for growth. The data shows that almost 8 in

10 drones are being used for surveying activities and 33% for surveillance and monitoring. Ac-

cording to hardware and software manufacturers, police and emergency services has the potential

for 26% of growth rate.

Due to the low price of this kind of vehicles in the last decade, several studies have been de-

veloped in order to make these machines as autonomous as possible with systems using computer

1https://www.lexico.com/en/definition/symbiosis

1
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vision [4, 5, 6], environmental sensors [7, 8] or behaving as a swarm [9, 10] in applications like

surveillance, landing on a target, environmental monitoring, disaster management and mission

planning.

1.3 Motivation

1.3.1 UAVs in Search and Rescue Scenarios

There are many types of natural and human-made disasters such as earthquakes, floods, wildfires,

hurricanes, radiological emergencies, explosions, among others that cause different disaster ar-

eas like collapsed buildings, landslide or crater. In these situations, search and rescue operations

are often characterized by a similar set of constraints: time is critical, and any delay can result

in dramatic consequences – potentially human losses; severe injuries requiring extensive treat-

ments, increased risk of communicable diseases, damage to the health facilities, damage to the

water systems, food shortage, population movements [11]. A recent report from the World Health

Organization [12] states that during the decade 2001–2010, an average of 700 disasters (floods,

earthquakes and others) were reported on an annual basis. These disasters affected around 270

million people. Deaths reported exceeded 130,000 (13,000 per year).

Adding UAVs to help officers on these scenarios, and some cases have already been used and

documented in the literature. In [13] this vehicles are used to locate victims. In [11] they use

infrared cameras to locate humans in the water. In [14], they help officials with path planning and

scouting. In these studies, UAVs have a major import role as they can reduce time by locating key

targets or finding routes, therefore improving the success rate of this kind of missions.

1.3.2 Innovation

The common characteristic in the examples shown in the previous section is that although UAVs

do possess some intelligent aspect, they do not interact directly with the users on the field. Usually,

there is one user that can control the drone and assess the information given using a GUI (Graphical

User Interface).

This "human in the middle’ making the bridge between the vehicle and the first responders

on the field creates a bottleneck of information that can lead to delays, loss of information and

generates a dependency on the judging of an external agent. By adding to the drone an augmented

intelligence component, generating a passive (or implicit) communication, using biosignals, in

addition to having a method for explicitly communicating with the drone a more natural interaction

between both can be developed. This idea goes back to the thesis of J.C.R. Licklider [1] as both

actors can learn how to cooperate in different situations of the target scenarios resulting in the

fulfilment of the concept of "Man-Machine Symbiosis". A quick search on this term in Google

Academics search and on IEEE eXplore shows little or none activity in this theme, confirming its

novelty.
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1.4 Objectives

The main objective of this dissertation is to design, implement and study the impact of a system

that is capable to have a symbiotic interaction between a human user and a machine using biosig-

nals captured from wearable devices. This main goal was to divide it into smaller milestones listed

below:

1. Design a Conceptual System Architecture for the problem at hands.

2. Implement a bio-identification system in order for the user to authenticate and be identified

by the machine (based on previous papers and patents of the group).

3. Compare several EEG wearable devices in order to select the best for real-world use.

4. Develop a brain-computer interface to send commands to the machine explicitly.

5. Implement a proof of concept (with a UAV) to be tested in the JIFX field trial in conjunction

with Carnegie Mellon University - Silicon Valley, held between the 29th of April and the

3rd of May in Camp Roberts, California, USA.

1.5 Achievements

The achievements completed during this dissertation are as follows:

1. Designed a flexible System Architecture that can be built upon adding modules that were

not approached during this work (more information on Chapter 2).

2. Re-implemented a previously developed ECG based bio-identification module [15], present-

ing a proof of concept demonstration.

3. Performed a comparison between four wearable EEG systems.

4. Created a protocol and dataset on EEG from motor movement and imagery captured from

wearable devices.

5. Developed a brain-computer interface using motor movement.

6. Traveled to Camp Roberts, California, USA to attend JIFX event and present a proof of

concept of a Human-UAV symbiotic system receiving a Develop now token from the event

organization (Naval Postgraduate School).

7. Developed a photo-realistic environment where a real-world scenario can be simulated for

virtual learning environment. In this simulator, one can build a level where a real-world

location can be replicated, any number of actors (humans or UAVs) can be simulated and

inter-interact with each other. The goal of the system is to develop, train and test the drone

augmented intelligence component and then transfer this knowledge to the real world, saving

both time and resources.
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8. Assisted INESC-TEC’s BRAINLab in writing a CMU-Portugal proposal named Man-UAV
Symbiosis – New Models of Man-Autonomous Vehicle Implicit Interaction for Search &

Rescue Scenarios. The other consortium partners are Connect Robotics Sistemas Autónomos

LDA, Instituto de telecomunicações and CMU-SV

9. Developed a multi-platform real-time web-based data visualization tool for data streams

sent by Bluetooth Low Energy (BLE) devices using the Web Bluetooth API.

1.6 Structure

Besides the Introduction, this document has seven more chapters.

Chapter 2 presents the conceptual Architecture of the proposed symbiotic system with a de-

tailed description of each subpart that composes it.

Chapter 3 is a review of State of the Art on techniques that perform biometry using ECG,

brain-computer interfaces using EEG, ECG as a biometry system and simulation environments for

UAV.

Chapter 4 exposes some machine learning and data handling methods used in biosignals clas-

sification.

Chapter 5 presents the algorithm used, and results on an EEG Brain-computer interface for

explicit interaction.

Chapter 6 shows the algorithm used and the results of an ECG bio-identification module for

implicit interaction.

Chapter 7 is a description of the proof of concept developed for the JFIX event and a report of

the event itself.

Chapter 8 describes the simulator, presenting its architecture and uses with real events recre-

ation examples.

Chapter 9 presents the conclusion and future work.



Chapter 2

Man-UAV Symbiosis Conceptual
System Architecture

This chapter aims to give a birds-eye view of the Man-UAV Symbiosis Conceptual System Archi-

tecture. It will follow a top-down approach where the overall system is presented, and then each

sub-part is described in more detail.

2.1 System Requirements

In order to develop the overall system, the first step was to identify its requirements. In order to do

this, an Agile approach was employed.

Agile software development is a group of software development methodologies based on it-

erative development. Agile methods or processes do promote a disciplined project management

process that encourages regular inspection and adaptation, being a philosophy that encourages

teamwork, self-organization and accountability [16].

Although there are several agile methodologies used nowadays, e.g. Agile Scrum Methodol-

ogy, Lean Software Development, Kanban, Extreme Programming (XP),Crystal, Dynamic Sys-

tems Development Method, Feature Driven Development, all of them start with the same step: the

definition of the requirements and features to implement by developing user stories. During this

work none specific methodologies used was employed, but this first step was adopted as it helps

to shift the focus from writing about requirements to talking about them. These user stories are

short, simple descriptions of a feature told from the perspective of the person who desires the new

capability: As a < type of user >, I want < some goal > so that < some reason >.) [17].

A user is an actor in our system. Each can collect different types of information using their

sensing capabilities and transmit only relevant pieces to its pair. In our architecture, we aim to

have two types of actors: a Human and a Drone. The human user can be generalized to any person,

from an everyday user that has a "pet drone" to a search and rescue officer performing a mission,

however, in this work, we will focus mainly on search and rescue scenarios due to being a goal for

the JFIX field test.

5
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User Story 1 As a Human user, I want to explicitly communicate with the drone so that I can

issue him commands.

User Story 2 As a Human user, I want to be as mobile as possible so that I can freely perform my

mission.

User Story 3 As a Human user, I want the drone to transmit me useful information so that I can

better perform my mission.

User Story 4 As a Drone, I want to patrol the field so that I can inform my Human of what to

expect.

User Story 5 As a Drone, I want to have information on my human condition so that I can help

him if needed.

User Story 6 As a Drone, I want to quickly and easily communicate with my Human so that I can

inform him if something catches my attention.

User Story 7 As a Drone, I want to be in contact with other humans so that if something goes

wrong with my Human I can call for help.

User Story 1 states that the Human must be able to communicate with the drone and User
Story 3 imposes that the user wants to retrieve information from the drone. From this, it can

already be issued that two major components need to be further analyzed:

1. The actors: What roles do they have in the system and what data can they collect?

2. Interaction: How can the two actors interact and transmit information?

2.2 Actors

2.2.1 Human User

In search and rescue missions, the main role of the human user is to help people that might be

trapped or injured: mainly in obstructed, damaged and hard to access areas. These are not only

a danger to the victims but also agents on the field. With this in mind, continuously monitoring

vitals and position would be beneficial and could prevent losing officers on the field. However, as

required by User Story 2, these measurements should be the less intrusive way possible in order

for this actor to maintain its mobility and effectiveness.

With this in mind, we must consider that our system must be ready to support any number

of time-series data that translates any information related to the Human (ECG, EEG, GPS, or

others) measured with non-intrusive wearable devices. However, this data should not be sent as it

is collected to the UAV, so the Human should carry a module that aggregates the data and computes

essential metrics from low-level features like Heart Rate to higher level features like commands

from a Brain Computer Interface.
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2.2.2 UAV

UAVs role in classic search and rescue scenario is to patrol between key points (User Story 4) and

offer support to agents on the field by scouting terrain or finding victims. To do this, the drone

is usually equipped with one or more sensing units, mainly cameras such as RGB or infrared in

addition to the standard incorporated telemetry information. Moreover, our system should be ready

to incorporate any other sensors to be placed on the drone.

Similar to the Human element, a unit that joins all sensor data (such as environment sensing),

transform it into meaningful features and transmits it to the other agent when relevant is essential.

2.3 Interactions

2.3.1 Explicit Interaction

Explicit Interaction is when an consciously sends a command or information to the other element.

Examples on Human to drone interaction might be through gestures, movement, sound, GUIs,

BCIs (Brain-computer Interfaces) or any other human-machine interface.

2.3.2 Implicit Interaction

Implicit Interaction is a key part of the symbiosis and where the true novelty of the work is.

This concept resumes to an actor perceiving another actor intention or estate without the least

performing a direct communication.

An example of this kind of interaction (on the human side) would be the human perceiving that

the drone found something of interest because it lowered its altitude and started to rotate around

the object of interest.

As for the drone, the most prominent example is User Story 5, where the UAV is continuously

monitoring the Human’s vitals and checking for any anomaly.

Achieving this back and forth interactions (both Explicit and Implicit) raises Human-machine

interaction to a level never before seen where both parts can genuinely interact and learn from

each other for the benefit of both, assuming a real symbiosis.

2.4 System Components and Information Flows

Figure 2.1 shows the proposed system architecture for the requirements identified. A Human user

must carry a processing module that can aggregate and process any number of time-series data

acquired by the sensing units (wearable devices). On this module, relevant features are computed

using signal processing and/or machine learning. These results are then sent to the communications

module to be transmitted to the drone wirelessly. The processing and communication unit can be on
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the same device, for example, integrated into a smartphone or a microcomputer, such as raspberry

pie1.

On the drone side, the information is received by the communications module and passed to a

processing unit responsible for decoding and deciding what to do with that information (Implicit

communication). This unit should have the capacity to learn in order for the drone to adapt to its

Human. These two units can also be integrated on the same device and will form the augmented

intelligent module described in prior sections. These devices should have sufficient computation

power to perform all needed computations, for example, a board with integrated GPU like the

Nvidia Jetson2. Note that the drone can and should have more than one processing unit in order to

isolate the software that handles the drones internal mechanics such as stabilization and movement

from this augmented intelligent system. The UAV also has several integrated sensors streaming

data that might need processing. These data streams should be addressed by the Jetson as it might

be useful for the decisions to take by the Augmented intelligence module.

In this dissertation, a particular case of this architecture is proposed, involving two sensing

systems for the human (EEG and ECG wearable systems) and none for the drone. The EEG signal

will allow explicit communication to the drone as a Brain Computer Interface. The ECG signal will

serve as a way for the drone to evaluate the condition of its Human, react to specific conditions,

e.g. stress or fall detection, as well as continually identifying the user (implicit communication).

1https://www.raspberrypi.org/
2https://developer.nvidia.com/buy-jetson

https://www.raspberrypi.org/
https://developer.nvidia.com/buy-jetson
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Chapter 3

State of The Art

3.1 EEG and Brain-Computer Interfaces

This section focuses on EEG signal and its use in BCI. It describes its characteristics, acquisi-

tion method, paradigms, available datasets, main computed features and results reported in the

literature.

3.1.1 EEG Signal: Characteristics

Surface EEG is a fast and easy way to acquire and record the electrical activity of the brain with

easy to use, non-intrusive electrodes. The captured signal is the resultant electrical current of the

joint polarization and depolarization of million of the underlying neurons in the several layers of

the brain [19].

A typical healthy clinical acquired EEG can be seen in Figure 3.1. The amplitude range for

this signal is usually between 5-300 µV and the useful information is on the 0 to 150 Hz frequency

range.[19]

It can be decomposed in several frequency bands, Figure 3.2, being each one usually measured

in a specific brain area and produced by or resulting from different psycho-physiological states,

allowing an expert to take some conclusions or perform a diagnostic on a subject cognitive state

by observing these specific characteristics on the signal. [20].

The five frequency bands are:

1. Delta Waves (1 – 4 Hz): Mainly studied in sleep laboratories, delta waves are analyzed to

evaluate the depth of sleep. The stronger the wave rhythm, the deeper the sleep. An increase

in delta power is also associated with increased concentration.[21]

2. Theta Waves(4 – 7 Hz) – Theta is associated with a wide range of cognitive processing from

memory encoding and retrieval to cognitive workload [21]. Whenever a patient is confronted

with a difficult task, these waves become more prominent. They are also associated with

increased fatigue levels.[22].

11
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Figure 3.1: Clinical EEG Signal.[18]

3. Alpha Waves(7 – 12 Hz) – Alpha levels are the highest when in a state of relaxed wakeful-

ness, being frequently used to monitor relaxation in Biofeedback training and also linked to

inhibition and attention. They usually appear when the subject closes its eyes [23].

4. Beta Waves(12 – 30 Hz)- Normally observed on motor regions, beta frequencies become

stronger as planning or executing movements with any body part. [24].

5. Gamma Waves(>30 Hz, typically 40 Hz) – Researchers are yet to reach an agreement on

Gamma frequencies. Some argue that they reflect attentive focusing and serves as carrier fre-

quency facilitating data exchange between brain regions[25], while others associate gamma

with rapid eye movements, necessary for sensory processing and information uptake. [26].

3.1.2 Electrode location system

EEG acquisition, for clinical use, does have a pre-set of electrode placement rules in order for it

to be invariant from center to center.

The first system proposed was the 10-20 system by Jasper in 1958 [28], Figure 3.3. This system

was the first to set a standard location and nomenclature for each of the 21 electrodes placed on

the scalp. Using reference points such as the nasion, preauricular keypoints and inion, the head is
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Figure 3.2: EEG frequency bands.[27]

divided into proportional positions to provide adequate coverage of all the brain regions. The name

of each electrode consists of a letter and a number. The letter refers to the region of the brain where

the electrode is positioned (F: frontal, C: central, T: temporal, P: posterior, and O: occipital), and

the number is related to the cerebral hemisphere with even numbers in the right hemisphere, and

odd numbers in the left as seen in Figure 3.3.

Figure 3.3: 10-20 System. [29]

In 1985, an extension to the original 10-20 system was proposed involving an increase in the
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number of electrodes from 21 to 74 [30, 31, 29]. The 10-20 EEG electrode placement system is

mostly used in clinical application, while the 10-10 system, represented by Figure 3.4 is mostly

used in research.

Figure 3.4: The 10-10 International system of EEG electrode placement. Blue circles represents
the location of 10-20 EEG electrodes. Nodes T8, T7, P8, and P7 from 10-10 EEG placement are
equivalent to nodes T4, T3, T6, T5 from 10-20 EEG placement. [29]

3.1.3 EEG paradigms

3.1.3.1 Evoked potentials

Evoked potentials are electrical potentials caused in response to some stimulation [32]. In most

cases, these events must be compiled through several trials, amplified and averaged in order to

ease its visualization and measurement.

There are two types of evoked potentials: [33, 34]:

• Sensory evoked Potentials: These potentials appear when the subject is stimulated by sight,

sound, or touch. This stimulus is converted to signals that travel along the nerves to the

brain, producing a peak on the resulting EEG. [33]

• Motor evoked Potentials: This term refers to the action potential elicited by non-invasive

stimulation of the motor cortex. [35]

Sensory evoked Potential can also be further divided in:

• Visual evoked potentials (VEP). These are obtained in reaction to flashes or visual patterned

stimulus.

• Auditory evoked potentials (AEP) are similar to VEP, but with an auditory stimulus

• Somatosensory evoked potentials are obtained by electrically stimulating the peripheral

nerves.
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(a) Single-stimulus

(b) Oddball

(c) Three-stimulus

Figure 3.5: Evoked potentials on three different paradigms. [36]

In Figure 3.5, three paradigms of evoked potentials with the corresponding alteration on EEG

are shown.

1. A single-stimulus paradigm, Figure 3.5a, is performed by irregularly presenting one type of

stimuli to the subject. It results in a positive potential appearing 300 milliseconds after the

stimuli, P300.

2. An oddball paradigm, Figure 3.5b, has two classes of simulation, displayed in sequence. The

probability for each class to appear is not the same having one stimulus presented frequently,

and the other rarely (oddball). Only the irregular event embosses the P300 peaks. [37]

3. The three-stimulus paradigm, Figure 3.5c, is a modified version of the oddball task where a

non-target rare distractor stimulus is added to the standard and oddball class. In this case, a

decomposition of the P300 into P3a and P3b can be observed. The distractor elicits a large

P3a over the central area. In contrast, the oddball produces a P3b over the parietal area. [38]

3.1.3.2 Motor-imagery and Sensorimotor Rhythms

Primary sensory or motor cortical areas typically exhibit rhythmic activity at a frequency of ap-

proximately 8-12 Hz when they are not processing sensory information or producing motor out-

put, called Mu rhythms. Computer-based analyses have demonstrated that this activity consists
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(a)

(b)

Figure 3.6: Event Related DeSynchronization and Event Related Synchronization [39]

of a variety of different 8-12 Hz rhythms that are distinguished from each other by precise loca-

tion, frequency, and/or typical relationship to concurrent sensory input or motor output, therefore

performing a movements affects these rhythms.

Figure 3.6 shows the signal and band power signals during the execution of a right index finger

lifting movement. The upper graph is the superimposition of band power time courses computed

for three different frequency bands (10–12 Hz, 14–18 Hz, and 36–40 Hz) from EEG trials recorded

from electrode C3. The vertical line corresponds to the start of the movement.

It can be noticed that about 3 seconds before the movement, there is a De-Synchronization of

the Mu wave being associated with the brain preparing the movement.

Also immediately prior to the offset, there is a maximum of gamma ERS (Event Related Syn-

chronization) and immediately after a maximum beta ERD (Event Related De-Synchronization).

On the lower graph, it can notice an EEG De-Synchronization at the central electrode locations

prior to movement-onset and the enhanced alpha band activity over the posterior region (ERS)

during movement.

This wave ERS and ERS can be ’learnt’ by a model and applied in a BCI as they are different

according to each movement due to the spatially of the brain, Figure 3.7.

3.1.4 Available Datasets

For explicit communication, this work will focus on motor imagery. There are several Datasets

available for training this type of BCI and all have protocols with different types of movement per

session. The most important ones are presented below.
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Figure 3.7: Body maps in the primary motor cortex and somatosensory cortex of the cerebrum.
The relative amount and location of cortical tissue devoted to each function is proportional to the
distorted body diagrams (homunculi). [40]

3.1.4.1 BCI Competition IV

This dataset is subdiveded in 3 different sub-dataset [41, 42, 43]

1. Data set 1 - Motor imagery, uncued classifier application: 2 classes of left hand, right hand,

foot. 64 EEG channels (0.05-200Hz), 1000Hz sampling rate, 2 classes (+ idle state), 7 sub-

jects;

2. Data set 2a - 4 class Motor Imagery: Left hand, right hand, feet, tongue. 22 EEG channels

(0.5-100Hz; Notch filtered), 3 EOG channels, 250Hz sampling rate, 4 classes, 9 subjects;

3. Data sets 2b - Motor imagery: Left hand, right hand, feet, tongue. 3 bipolar EEG channels

(0.5-100Hz; notch filtered), 3 EOG channels, 250Hz sampling rate, 2 classes, 9 subjects.

3.1.4.2 BCI 2000 EEG Motor Movement/Imagery Dataset

Available in Physionet this dataset contains recordings from 109 subjects of both hands and feet

motor imagery data. Each person was subjected to 14 runs with two one-minute baseline runs

and three two-minute runs of the tasks corresponding to each class. 64 EEG channels (unfiltered),

160Hz.
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3.1.5 Main Features used in Motor Imagery BCI

3.1.5.1 Time-Domain Features

Several statistical features can be computed from Time-domain signal used by some authors.

1. Mean (µx);

2. Standard Deviation (σx);

3. Mean of the absolute values of the first differences (δx):

δx =
1

N−1

N−1

∑
n=1
|x[n+1]− x[n]| (3.1)

4. Mean of the normalized absolute values of the first differences (δx):

δx =
δx

σx
(3.2)

5. Mean of the absolute values of the second differences (γx):

δx =
1

N−2

N−2

∑
n=1
|x[n+2]− x[n]| (3.3)

6. Mean of the normalized absolute values of the second differences (γx):

γ =
γx

σx
(3.4)

7. Fractal Dimension: Fractals are sequences that have details at tiny scales [44]. This feature

gives information about space filling and self-similarity of a time series such as the EEG

and can be computed using the Higuchi’s algorithm [45]

8. High Order Crossings (HOC): A finite time series oscillating about zero level, such as EEG,

will have a Number of Zero Crossings (NZC). When applying some filter to the signal, the

oscillatory behaviour can change, therefore, also changing the NZC. If a sequence of pr-

determined filters are applied to the time series, one can obtain a new sequence of NZCs,

creating the HOC sequence. [46]

3.1.5.2 Frequency-Domain Features

Power Features can be calculated from several biosignals and in a EEG can be relevant for the

classification of several characteristics [47]. The Digital Fourier Transform (DFT), Equation 3.5,

can be used to compute the frequency components of the signal.

Xk =
N−1

∑
n=0

xne
−i2kn

N (3.5)
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Due to the computation cost of the DFT, usually, a faster algorithm is applied: the Fast Fourier

Transform (FFT). This quickness of the FFT allows computations in the frequency domain to be

as feasible as those in the time domain. [48]

The Discrete Wavelet Transform (DWT) can also be used to compute Frequency Domain

Features. This operation decomposes the signal into different approximation levels corresponding

to different frequency ranges [49].

From both techniques, the standard statistical features, such as mean and standard deviation,

can be computed and used as features [50].

3.1.5.3 FBCSP

FBCSP consists in a variation of another classical algorithm, Common Spatial Patterns (CSP). In

CSP spatial filters are created that maximize the variance between two different motor images – it

is, as so, adequate for binary classification. One of the biggest challenges in CSP is the selection of

the frequency band to take into consideration – normally, a band between 8 and 30 Hz is selected,

however, it has already been proven that results are improved when the selection of the frequency

band is personalized to the user, which was what motivated the development of FBCSP [51]. The

implementation process of the FBCSP can be seen in Figure 3.8.

Figure 3.8: Stages implemented by the FBSCP algorithm.

In a few words, in FBCSP, a single trial EEG is classified using features extracted by spatial-

temporal filters, personalized to the patient [52]. Similarly to what was mentioned to CSP, only

binary classification is supported, so several multi-class extensions have been developed. The

FBCSP algorithm [53] comprises the following stages:

1. Filtering stage: First, the EEG signal is filtered with a nine band-pass zero phase Chebyshev

type II filters, with frequencies between 4 and 40 Hz;

2. CSP algorithm: applied individually to each one of the signal bands provided by the pre-

vious stage. It consists of the computation of spatial filters to detect Event-Related Desyn-

chronization (ERD) or Event-Related Synchronization (ERS). By applying Equation 3.7,
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features with an optimal variance to distinguish between two classes are obtained. In Equa-

tion 3.6, E is the raw EEG (NxT, being N the number of channels and T the number of

samples per channel), W the projection matrix of CSP (the rows of W are stationary spatial

filters and the columns of W-1are the common spatial patterns) and Z is the matrix that con-

tains the computed features. Only the first and last m lines of Z are passed to the classifier.

Each pair of bandpass and spatial filter yields CSP features that are specific to the frequency

range of the bandpass filter, making this a patient-specific algorithm;

Z =WE (3.6)

3. Feature selection: in this stage, the features that most discriminate two classes are selected.

The selection of features occurs disregarding the classifier chosen and obliges a a priori

selection of the number of features. The algorithm applied is the Mutual Information Best

Individual Features (MIBIF), in which the k features that maximize the mutual information

are selected. Several subsets of features are tested. In order to select the best subset, Equation

3.7 is applied, in which ω is the class, X is the input features, obtained in the previous stage,

H(Ω) represents the entropy of said class and H(Ω|X) represents the conditional entropy.

I(X ;Ω) = H(Ω)−H(Ω|X) (3.7)

The final classification phase is not included as one can easily change it to the desired classifier.

As already mentioned, both CSP and FBCSP were designed for binary classification. As so,

when the number of classes exceeds two, one of the following classification strategies is applied:

1. One versus Rest (OVR): Train a classifier for each class training it versus the rest. The result

is the classification result with the highest score.

2. One vs One: Train each class against another class, yielding, in the end, N(N−1)
2 classifiers,

where N is the number of classes. Each binary classification result adds a vote to the class

identified. In the end, the class with more votes is the output.

3. Divide and Conquer: This is similar to OVR but uses a tree, and successive classifications

are done until converging to the result.

3.1.6 Performance of State of the Art examples

A search for the term "BCI motor imagery" yields a result of 11 300 papers, being impossible to

review them all. This way for this section a search for BCI motor imagery review was developed

and filtered to show only documents from 2015 or newer, reducing the number to 5 650. The most

relevant review articles were then picked.

From this works a table with the best results, was compiled: Table 3.1
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Table 3.1: Summary of most relevant literature reviewed for motor imagery classification.

Used Features Number of subjects Classifier Accuracy Reference

Fractal Dimension 3 Adaptative LDA 80.2% [54]

Band Power 6 Adaptative LDA 70.0% [55]

CSP 10 Probablistic NN 83.8% [56]

CSP 9 SVM 70.2% [57]

Band Power 6 Gaussian Classifier 70.0% [58]

3.2 ECG and Bio-identification

In this section, a short introduction of the ECG signal and some state of the art will be introduced.

In this dissertation, the ECG module was implemented using an algorithm patented by the host

group at INESC TEC.

3.2.1 ECG Signal Characteristics

ECG, represented in Figure 3.9, is the graphical recording of the electrical activity of the heart.

Figure 3.9: Classical ECG curve with its common waveforms, intervals and points. From Clinical
ECG Interpretation

The electrical signal has its origin in the polarization and depolarization of cardiac cells. The

P wave results from the atrial contraction and marks the beginning of the cardiac cycle. Shortly

after, it follows the QRS complex due to the ventricle contraction. After depolarization the vehicle

re-polarizes, resulting in a T wave [59].

3.2.2 State of the Art examples

ECG has been used for bio-identification in several literature works and submitted patents. Until

2014 there is already a comprehensive list presented at Paiva et al. [15], Table 3.2. However, a

research on Google Patents on "ECG Biometric" 1 and filtering by data, from 2015 until today,

1

https://ecgwaves.com/wp-content/uploads/2017/05/ekg-ecg-interpretation-p-qrs-st-t-wave.jpg
https://ecgwaves.com/wp-content/uploads/2017/05/ekg-ecg-interpretation-p-qrs-st-t-wave.jpg
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yields more recent results, showing the interest and potential of this type of technology. On table

3.3 the four most relevant ones, including the one patented by the group, are shown.
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3.2.3 Available datasets

There are several available datasets for developing and validating algorithms on ECG.

3.2.3.1 PTDB: Physikalisch-Technische Bundesanstalt database

Characterized by the following ECG Characteristics:

• 16 input channels, (14 for ECGs, 1 for respiration, 1 for line voltage)

• Input voltage: ±16 mV, compensated offset voltage up to ± 300 mV

• Input resistance: 100 Ω (DC)

• Resolution: 16 bit with 0.5µV/LSB (2000 A/D units per mV)

• Bandwidth: 0 - 1 kHz (synchronous sampling of all channels)

• Noise voltage: max. 10 µV (pp), respectively 3 µV (RMS) with input short circuit

• Online recording of skin resistance

• Noise level recording during signal collection

• Sampling Frequency: 1000Hz

It is composed of 549 records from 290 subjects (aged 17 to 87, with average of 57.2 years; 209

are men with an average age of age 55.5 years, and 81 women, with an average age 61.6 years; ages

were not recorded for 1 female and 14 male subjects) with 15 simultaneously measured signals:

the conventional 12 leads (i, ii, iii, avr, avl, avf, v1, v2, v3, v4, v5, v6) together with the 3 Frank

lead ECGs (vx, vy, vz)[68, 69].

3.2.3.2 MIT-BIH Arrhythmia Database

This database has 48 half-hour excerpts of two-channel ambulatory ECG recordings, obtained

from 47 subjects. It serves as certification for validation of automatic QRS detection algorithms.

ECG Charateristics

• Sampling frequency: 360 samples per second

• Resolution11-bit resolution over a ten mV range

• two or more cardiologists independently annotated each record

3.3 Realistic UAV Simulators

In order to prevent wasting time and resource in field trials, a real-world simulation can help

develop the proposed system in an accelerated way. On this section, two real-world simulators are

presented.
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3.3.1 VIPER: Virtual Image Processing Environment for Research

Viper is a project developed by the CMU team that aims to address the problem exposed at the

beginning of the section. They defend that simulation can speed up learning methodologies that

require repeated failure and success in the teaching process, such as deep learning if the simulation

is close enough to reality.

The innovation in this work is to focus on the graphics in the, unlike classic robotic simulators

that focuses on the accurate simulation of physics and sensors, making it a novelty for computer

vision applications. Another innovative aspect of VIPER is the support for hardware, i.e. Embed-

ded boards, on which the algorithms would run while on the UAV. The final objective would be

a "truly unplug-and-go usability, with models trained in VIPER immediately usable in the real

world."2

Figure 3.10: VIPER Environment

Meanwhile, the VIPER project was abandoned by the CMU-SV team.

3.3.2 AutoQuad quadcopter simulator

AutoQuad project was born at Berkeley University of California by group of students that needed

a training environment for UAV autonomous navigation while running on low power machines

[70].

This simulator was developed using the Unity editor 3 and is flexible enough for each user to

build its own environment while maintain all UAV logic intact, allowing the vehicle to be testes in

infinite scenarios.

However by building it in a way that runs in (almost) any machine, a disadvantage of this

system is that it does not allow to have realistic simulations, Figure 3.11, and its not ready to have

another controllable object other then an UAV, making it non ideal for the application where the

human in the loop is required [71].

2Text based on and image taken from http://ccsg.ece.cmu.edu/wp/index.php/home/viper/
3https://unity.com/

http://ccsg.ece.cmu.edu/wp/index.php/home/viper/
https://unity.com/
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Figure 3.11: AutoQuad environment.
[70]

3.3.3 AirSim: High-Fidelity Visual and Physical Simulation for Autonomous Vehi-
cles

Airsim, by Microsoft, follows the same ideals as VIPER. It is open source4 simulator for drones,

cars and more, built on Unreal Engine.

Running on an excellence Engine like Unreal 5 allows the simulation to be photo-realistic,

as seen in Figure 3.12. All vehicles have an exposed API and can be controlled outside of the

simulation environment, therefore having also support for external hardware to communicate with

the vehicle.

Figure 3.12: AirSim environment

4Available on https://github.com/Microsoft/AirSim
5https://www.unrealengine.com/en-US/

https://github.com/Microsoft/AirSim
https://www.unrealengine.com/en-US/


28 State of The Art

From the three exposed simulators, this was the one chosen. Contrary to VIPER, it is still be-

ing supported and continuously upgraded due to the wonderful community around it. In compari-

son with AutoQuad it has the advantage of supporting real photo-realistic environments, multiple

UAV’s and, one of the most essential aspects of the project, the introduction of the "Human in

the loop" within the level environment. Another reason to use airsim is that CMU-SV partners

also do use it and in order to synchronize work and port any software developed it is better to

have the same system running underneath. The negative aspect of it is that it requires a lot of

computing power to run smoothly. For the simulation and physics engine itself is recommended to

have a quad-core CPU and for a realistic environment an external graphics card is mandatory [72].

This requirements were not a blocker to the development of this system because BRAIN Lab did

provide a machine capable of running it!



Chapter 4

Methodology used in biosignals
classification

4.1 Machine Learning

Machine Learning (ML) is a sub-area of Artificial Intelligence (AI) that can identify patterns

from given data. Generally speaking, it is a function that gives a discrete output by imputing

features taken from data. This function, usually named classifier, must be tuned and adapted to

each problem.

One of the significant challenges in this field is to have a generalist classifier that is not only

able to correctly classify data already seen but also data not seen that has the same patterns as the

training set.

4.2 Division in training and test Data

A good practice is, when training, to divide the Data available in the train set and test set. The

training is fed to the classifier, and the test set is used to compute performance. This ensures the

testing is performed in never before seen data, guaranteeing non-biased testing results.[73]

4.2.1 K-Fold Cross-Validation

A common technique used for hyper-parameters training is K-fold cross-validation. In this tech-

nique, the data (raw or transformed in feature vectors) is divided into several folds. One of the

folds is then put aside for testing, and the remainders are used for training. On the next iterations,

another fold is picked for testing, and the others are used for training. This process is repeated

until all folds are used as a test set, as seen in Figure 4.1. In the end, the overall performance is the

average of the performance of each iteration [73].

29
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Figure 4.1: k-fold [74]

4.2.2 Monte-Carlo Cross-Validation

Another technique used training the classifier is Monte-Carlo Cross-Validation. It is performed by

random selection (without replacement) some fraction of the data to form the training set, and then

assigning the rest of the points to the test set, repeating this process multiple times. This way a

new random training and test set partitions are generated each time. Since these partitions are done

independently for each run, the same point can appear in the test or the training set multiple times

4.2.

The difference between these two techniques is that under k-fold cross validation, each point

gets tested exactly once, which at a first glance seems fair. However, cross-validation only ex-

plores a few of the possible ways that the data could have been partitioned. Monte Carlo explores

somewhat more possible partitions [75].

(a) K-Fold Cross Validation (b) Monte Carlo Cross Validation

Figure 4.2: Monte Carlo vs K-Fold Cross Validation
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4.3 Classifiers used in Biosignals

These are the actual functions used to predict an output given an input.

4.3.1 K-Nearest Neighbours

K-Nearest Neighbours, KNN, is told to be non-parametric. This is due to not be a ’true function’,

but a model structure defined from data. It does not make a generalization of the data but uses all

the ’training data’ to output a classification. The KNN algorithm is pretty simple. When new data

reaches the classifier, it is compared to all the data used in training and classified according to the

closest, as seen in Figure 4.3. Using one neighbour, the new data is identified as Class 1, but using

three neighbours is identified as Class 2 [76].

Figure 4.3: K-Nearest Neighbours [76]

4.3.2 Support Vector Machine

Support Vector Machine, SVM, uses a separating hyperplane to distinguish between classes [77].

The algorithm optimizes a plane to fit the given training data. In 2 Dimensions this hyperplane is

a simple line, but in 3 Dimensions it might be a plane. This algorithm can expand dimensions to

adapt to data that in a first look might not look correlated as seen in 4.4.

This classifier has three parameters that can be tuned: the Kernel, the Regularization parameter

(C) and Gamma [77].

The Kernel is related to the expression of the hyperplane.

C defines how the boundary allows for misclassification. The bigger the C, the smaller the

margins the hyperplane will have therefore better adapting the training that. Lower C will have a
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Figure 4.4: Support Vector Machine [78]

hyperplane with more significant margins even if it misclassifies some points. The problem with

using large C is overfitting.

Gamma defines how fair a training point can influence the hyperparameter [77]. With low

gamma points far away from the separating plane are to be considered. In the other hand, with

high Gamma, only closer points to the boundary are used to compute the classifier expression.

4.3.3 Naive Bayes

Naive Bayes is a classifier that, in motor imagery BCI, usually assumes that the data follows a

Gaussian distribution [79]. One can calculate the class posterior probability using equation 4.1

and then using the decision function 4.2 to calculate the predicted class.

P(ωi|x) =
P(x|ωi)P(ωi)

P(x)
(4.1)

 if P(ω1|x)> P(ω2|x) if x = class 1

if P(ω1|x)< P(ω2|x) if x = class 2
(4.2)

4.3.4 Linear Discriminate Analysis

Linear Discriminate Analysis (LDA) is a classifier that assumes that both classes follow a normal

distribution, with the same covariance matrix [80]. The hyperplane separating both classes is given

by the projection, which maximizes the distance between the mean value of both classes and

minimizes the interclass variance [80]. An example of LDA for a 2D classification problem is

shown on 4.5.
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Figure 4.5: Linear Discriminate Analysis [81]

Due to its simplicity and fast training speed, LDA can easily be used in online classifications.

It is suitable for tasks such as motor image classification [82], but it has the drawback of being

linear, which can result in a lousy classification when the problem is not linearly separable.

4.4 Evaluation Metrics

In this section several metrics used over the next chapters are defined. Accuracy is both used in

the identification module and in the BCI module.

Sensitivity, Specificity, Positive Prediction and Detection Error rate are metrics used the fea-

ture extraction component of the implicit ECG communication. They are used to measure the

performance of the algorithm.

4.4.1 Concepts

For performance evaluation in ECG fiducials assessment, one of four cases can occur : True
positive - TP: Point correctly detected.

False positive - FP: Point wrongly identified as a fiducial.

True negative - TN: Point correctly identified as a non-fiducial.

False negative - FN: Fiducial point not identified as one.

4.4.2 Accuracy

Accuracy, Equation 4.3, is the fraction of predictions the model gets right, both positives and

negatives.

Acc =
T P+T N

T P+T N +FP+FN
(4.3)
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4.4.3 Sensitivity

Sensitivity, Equation 4.4 (only defined for binary cases), Equation 4.3, is the ability that the model

has to identify a positive case correctly. In the ECG module case it is the ability that the model has

to identify a true fiducial.

Se =
T P

T P+FN
×100% (4.4)

4.4.4 Positive prediction

Positive prediction,Equation 4.5, is the proportion of positive results that are true positive results.

In the fiducial detector module, it is the proportion of points identified as fidutials that are true

fiducials.

+P =
T P

T P+FP
×100% (4.5)

4.4.5 Detection Error Rate

This metric outputs the ratio between classes wrongly labeled and classes correctly classified.

Der =
FP+FN
T P+T N

×100% (4.6)

4.4.6 Information Transfer Rate

Information Transfer Rate is a metric proposed by [83] and measures the information transfer rate

in a BCI.

B = log(N)+P log(P)+(1−P) log[(1−P)/(N−1)] (4.7)

B is Bit rate (bits/symbol), N is the number of possible class and P is the accuracy of the classifi-

cation.



Chapter 5

EEG signal in Human-Drone Symbiosis

As stated on Chapter1 EEG signal can be used to interact with the drone both in an explicit or

implicit way. Over the next sections, all work developed to establish this interaction is described.

5.1 Wearable EEG System

As a requirement of the project, all vital signals should be collected using wearable devices on

the less intrusive way possible. This study was done between three different systems, sharing the

same acquisition board but changing the electrode types.

The system used for EEG acquisition was the cyton board from openBCI shown in Figure

5.1. This board can be used to sample several physiological signals such as brain activity (EEG),

muscle activity (EMG), and heart activity (ECG), however, during this dissertation, it was used in

conjunction with an electrode system to capture just the brain signal. The main characteristics of

the board are presented in Table 7.1 1

Figure 5.1: Cyton Board

1Taken from https://docs.openbci.com/Hardware/02-Cyton

35
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Table 5.1: OpenCBI Characteristics [84]

Specifications/Systems OpenBCI

EEG sensors
8 channels that
can be placed

by the user at will

Connectivity Bluetooth Low Energy

Sampling method Eight High-Resolution
Simultaneous-Sampling ADC

Sampling rate 250 Samples per Second

Resolution 24-bit channel data

Bandwidth 1 Hz - 50 Hz

Coupling mode DC

Power Source 4 AA Batteries

The sampling rate is enough for us to use frequencies up to 125Hz(Accordingly to Nyquist

theorem), being superior to the frequencies of EEG approached in BCI, as discussed in Chapter

3. It is powered by 4 AA Batteries and is small enough(6.1cm to 6.1cm in octagonal shape) to be

portable.

The different electrodes used are Ultracortex "Mark IV" EEG Headset with dry EEG comb

electrodes, a EEG cap or Standard Gold Cup Electrodes and compared using the same protocol.

Each one was evaluated according to signal quality, electrode impedance, comfort to the user and

set up duration on two different users.

(a) Ultracortex ”Mark IV”[85]
(b) EEG cap by Besdatatech
[86] (c) Gold Cup Electrodes[85]

Figure 5.2: EEG Electrodes Systems

5.1.1 Ultracortex "Mark IV" EEG Headset

Although the electrodes do not need any gel to capture signal, the setup of this system is not very

user-friendly. The electrodes are held into the helmet structure by a screw-like piece that has to
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be adjusted to the user head shape. This has to be done before placing it in the head, or else the

coating of the electrode might wear off due to friction with the scalp. This falls into an iterative

process of placing the helmet and checking if the electrodes are in contact with the skin. If not,

take the helmet off, adjust and try again. Besides, the electrodes are pressured against the head by

a spring mechanism that often causes pain to the user.

The average electrode impedance measured was 20 KΩ, and might be the reason for a noisy

signal. This wearable was already used in literature in BCI applications [87, 88, 50, 89, 90].

5.1.2 EEG cap

This setup is achieved by connecting the output pins from the EEG cap cord to the cyton board

using the adaptor seen in Figure 5.3. The protocol to correctly place it on the user is as follows:

1. Use a Skin Prep Gel, such as the one from Nuprep, to strip away the top layer of skin and

moisten the underlying layer.

2. Place the cap in the user’s head by aligning key reference points like Fp1, Fp2, Cz, O1 and

O2, making sure to places the odd channels symmetrical to the respective even ones.

3. Fill each electrode with electroconductive gel, e.g. Electro-Gel for Electro-Caps from Bio-

Medical Instruments with a blunt tip syringe. The most appropriate technique is to perform

circular motions while dispensing the gel until the electrode cup is full.

4. Repeat step 3 for each of the electrodes to be used.

Figure 5.3: Cyton - EEG electrode adapter [85]

Similar setups are used in [49, 91].

Although it takes more time to set up the system then the Ultracortex Headset, approximately

20 minutes, the electrode impedance are much better, average 4 KΩ, translating into a better signal

quality. A disadvantage of this system is that the electrode locations are limited to its position on

the cap. Also, if the size of the wearable is not right, it will result in a too tight or too loose fit,

resulting in poor electrode contact.
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5.1.3 Standard Gold Cup Electrodes

Using the same adapter shown in the last section, Figure 5.3, each electrode was connected to the

acquisition board. The setup protocol is different from the EEG Cap and goes as follows:

1. Use a marker such as a Sharpie pen or a crayon to mark the electrode location. This is a

delicate step, and these marks should be made with the assistance of a measuring tape.

2. Use a Skin Prep Gel, such as the one from Nuprep, to strip away the top layer of skin and

moisten the underlying layer.

3. Fill the cup of the electrode with an electroconductive paste substance containing Collodion.

This paste will be responsible not only for the scalp to electrode conductivity but also for

glueing it to the skin.

4. Place the electrode on the spot marked on Step One applying some pressure.

5. Place a piece of gauze on top of the electrode.

6. Repeat step 3, 4 and 5 for each of the remaining electrodes.

Protocols identical to the described were used in the following works: [52, 32].

This is the system that takes the most time to set up. It needs two persons to follow the protocol,

and if both are inexperienced, it might take longer then an hour to finish. However, it is the more

versatile one as the electrodes can be placed on any chosen location along the scalp. The average

electrode impedance is 4KΩ resulting in a good quality signal.

Evaluating the pros and cons shown in this section, the Ultracortex "Mark IV" EEG Headset

was immediately discarded due to being uncomfortable to the user and the resulting signal not

having the best quality. Although the Standard Gold Cup Electrodes yield an excellent signal

quality with low impedance, it needs too much effort and time to properly set it up, therefore

for this particular application the EEG cap + the cyton board system was chosen as the optimal

solution.

5.2 EEG Sub module Software Architecture

In this section, it is explained how the data is read from the device, how it is pre-processed, how

the features are extracted, and how the classification process is handled, Figure 5.4.

All software in this module was developed in Python3.

5.2.1 Receiving and Conversion Module

The receiving module receives the data from the cyton board by Bluetooth using used the pybluez

library to handle the communication and return a stream of 33 bytes arrays. The structure of this

message, according to the openBCI official website 2 is as follows:
2https://docs.openbci.com/Hardware/03-Cyton_Data_Format

https://docs.openbci.com/Hardware/03-Cyton_Data_Format
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Figure 5.4: Data flow between the different software modules for a general wearable processing
pipeline

• Header

Byte 1 0xA0

Byte 2 Sample Number

• EEG Data

Byte 3-5 Data value for EEG channel 1

Byte 6-8 Data value for EEG channel 2

Byte 9-11 Data value for EEG channel 3

Byte 12-14 Data value for EEG channel 4

Byte 15-17 Data value for EEG channel 5

Byte 18-20 Data value for EEG channel 6

Byte 21-23 Data value for EEG channel 7

Byte 24-26 Data value for EEG channel 8

• Aux Data

Bytes 27-32 This bytes code data from the accelerometer and board internals that was not

used in this work.

• Footer

Byte 33 0xCX where X is 0-F in hex

The conversion module transforms this ’meaningless’ stream of bytes into EEG values that

can be used by the next pipeline elements. It first converts the 24 bits to a decimal integer and then

to measure EEG value using the scaling factor formula given by the datasheet:

ScaleFactor(Volts/count) = 4.5Volts/gain/(223−1); (5.1)

In our application, the gain used was 24x, so our scaling factor was 0.02235 µVolts per count.
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5.2.2 Pre-Processing, Feature Extraction and Classification Modules

The Pre-processing module is responsible for all signal modification needed for the computation

of relevant features. In our work, it had two goals: Filter the data in order to eliminate external arte-

facts or components with no interest and divide the signal into epochs for the Feature Extraction

Module to process.

A review of possible features to be used in motor movement/imagery BCI was already pre-

sented in Chapter 3. Based on literature the simplest method with best results was the Common

Space Filters, being chosen and implemented using the MEG+EEG Analysis and Visualization

Toolbox (MNE).

For the Classification Module, the chosen classifier was the Linear Discriminant Analysis,

according to literature performs well when used together with the CSF, and implemented using

the Scikit-learn Python Library.

5.3 Results in Public Datasets

In order to validate the algorithm before using acquired data, the BCI2000 dataset [92] available

on PhysioNet [69] was used. Three patients were chosen randomly and the proposed BCI pipeline

was tested in each one.

5.3.1 Pre-processing Results

In this section, an FIR (Finite Impulse Response) bandpass filter was designed using the pysignal

firwin method. This function computes the coefficients of a finite impulse response filter using the

window method (Hamming Window) yielding the results shown in Table 5.2

Table 5.2: FIR Filter Characteristics

Parameter Value

Window Hamming window with 0.0194 passband ripple
and 53 dB stopband attenuation

Lower passband edge 7.00 Hz
Lower transition bandwidth 2.00 Hz (-6 dB cutoff frequency: 6.00 Hz)

Upper passband edge 30.00 Hz
Upper transition bandwidth 7.50 Hz (-6 dB cutoff frequency: 33.75 Hz)

Filter length 265 samples (1.656 sec)

The filter output is shown in Figure 5.6 and can be concluded that this procedure correctly

filters some non-physiological artefacts like baseline wandering and the 60 Hz power line interfer-

ence while also limiting the information to the frequency band of interest for this application. On

Figure 5.6, the Power Spectral Densities of the original and filtered signal are calculated. It can be

seen that for frequencies between 7 Hz to 30 Hz the signal maintains its power while in lower and

higher frequencies it falls for -20 and -40 db respectively.
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(a) Unfiltered EEG signal
a

(b) Unfiltered EEG

Figure 5.5: Filtered vs Unfiltered EEG Signal. Each colors corresponds to an event. T0 (Green) -
Rest; T1 (Orange) - Imagined Right Hand Movement; T2 (Blue) - Imagined Left Hand Movement;
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(a) Power Spectral density estimation for the fil-
ter and unfiltered signal

(b) Power Spectral density estimation for the fil-
ter and filtered signal

Figure 5.6: Power Spectral Density comparison; Raw vs Filtered

Before advancing to Feature Extraction, the data also needs some preparation. The signal was

divided into each event (T0, T1 and T3) and then divided into 1-second epochs with a 0.1 seconds

step size.

That data was then split into training and testing set, in a ratio of 0.8 and 0.2 respectively, ten

times randomly, therefore, creating ten folds for future cross-validation. This division is made on

the overall event blocks and not in the global pool of epochs. This means that if a specific event,

for example, the first time the user executes the ’close hand’ task, is chosen as test data, no epoch

from that event will go to the train data pool. However, data from the second time the user execute

the ’close hand’ task can go to the training data.

5.3.2 Feature Extraction and Classification Results

For each fold in cross-validation, a set of common space filters were generated using training data.

This translates into a transformation matrix that transforms the pre-processed data into a more

discriminate space: In a 4 filter transformation, the 64 channel × 160 samples data, Figure 5.7a is

transformed into a 4 channel × 160 samples matrix, Figure 5.7b.

(a) Pre-Processed EEG epoch (b) EEG epoch in CSP space

Figure 5.7: Transformation to CSP Space
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In order to predict the correct class on unseen data an LDA, using Singular Value Decomposi-

tion, was trained on each training set of the fold and tested in the respective test set. The features

fed into the classifier corresponding to the average power of the output of each filter.

The results for each person are displayed in table 5.3 in terms of accuracy and Information

Transfer Rate.

Table 5.3: Classification Results using BCI2000 Dataseet

Subject Accuracy Information Transfer Rate
(Bits per Trial)

S1 0.75+-0.10 0.19
S2 0.93+-0.07 0.63
S3 0.71+-0.08 0.13

From this results, it can be noted that this setup performed well for one subject, subject 2, well

beyond State of Art results, but the accuracy falls to 0.72 for S1 and 0.71 for S3. This decrease in

accuracy significantly affects the Information Transfer Rate of the BCI and can induce errors in

real time BCIs.

5.4 Acquired Data

For data acquired using the openBCI board, only one user, the author of the document, was consid-

ered. To train the pipeline described and used in Section 5.3, a protocol was developed to generate

a dataset in order to have data together with the synchronized labels available. Two different types

of sessions were performed in this step: one with motor imagery and the other with motor move-

ment. Each session type was completed three times.

5.4.1 Dataset Generation

5.4.1.1 Aquisition Protocol

The acquisition Protocol developed based on literature is summarized in Figure 5.8. Each session

starts with a 1 min Eyes Open Block and a 1 min Eyes Closed Block in order to capture a signal

baseline and to check the presence of Alpha waves.

After two blocks of 1 minute, intending to capture possible noise that can contaminate the

EEG, Jaw Clenching and Eye Movement, are performed.

The protocol then enters a loop that runs five times consisting in a Run and a 1-minute short

break. Each run is composed of 10 trials of a random class. The random algorithm is implemented

in such a way as that having two classes each class is performed five times, preventing class

imbalance.

Each trial is composed of the following sequence:

1. Cross: A cross appears on the screen for two seconds.



44 EEG signal in Human-Drone Symbiosis

2. Cue: A text box prompting the user to perform a due task is displayed for 1 second.

3. Task: The user performs the given task for 5 seconds.

4. Rest: The trial ends with a 2 second resting moment.

Figure 5.8: Acquisition Protocol

The classes chosen for both sessions was left hand and right-hand motor imagery/movement.

The channels used were FP1, FP2, C3, Cz, C4, Pz, O1 and O2. O1 and O2 were chosen to check

for alpha waves, C3, Cz and C4 are on top of the pre-motor cortex, being the most relevant in

motor imagery. At last Fp1 and Fp2 goal is to capture eye blinks.
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5.4.1.2 Data synchronization

The visual part of the protocol was implemented using the Psycopy Library. Each time new block

was started in the protocol an event was recorded with the respective timestamp, being then pos-

sible to synchronize with the data acquired with the module described in Section 5.2.1 using both

timestamps.

A network streaming module was also developed to be used in case of the protocol visualiza-

tion tool and EEG acquisition software can’t run on the same machine. Using the lab streaming

layer (lsl) protocol, developed by Swartz Center for Computational Neuroscience, one can have

several time series data streaming from different devices and as long as they are on the same net-

work, this data can be sent to the lsl, synchronized using the network clock and can be pulled to

any other devices being the contemporary data paired with sub-millisecond precision. Using this

both the events and EEG data are pushed to the lsl and as long as both machines running the mod-

ules are on the same network, both or any other device in the same network can pull the already

synchronized time series data.

5.4.2 Results in Acquired Data

The results for both sessions, motor imagery vs motor movement, are shown in Table 5.4 using

the same methodology as the one used in BCI 2000 dataset.

Table 5.4: Aquired Data Results

Session Type Accuracy Information Transfer Rate
(Bits per Trial)

Session 1 Motor Imagery 0.52+-0.20 0.00
Session 2 Motor Imagery 0.63+-0.15 0.04
Session 3 Motor Imagery 0.60+-0.14 0.02
Session 4 Motor Movement 0.70+-0.10 0.11
Session 5 Motor Movement 0.73+-0.11 0.15
Session 6 Motor Movement 0.75+-0.11 0.18

From the accuracy metric, it is trivial to observe that the pipeline is performing poorly. Session

1 with .52 accuracy is just little over chance level classification(0.5). The result of this first session

is quite reasonable as the subject is still new to the protocol and trying for the first time to ’perform’

motor imagery. In Session 2, the accuracy did increase, 52 to 59%, but with an ITR of 0.04, this

trained classifier will not be reliable enough to be able to develop a stable BCI. Session 3 yield

similar results to session 2.

The performance was expected to decrease, due to factors like the reduced number of elec-

trodes and the signal being captured by a wearable device, but the result was worse than expected,

and it proved impossible to develop a BCI with motor imagery.

According to a study developed by Pfurtscheller [39], in a population of 324 subjects, during

a field trip, participated in BCI studies where a similar BCI setup was used. Only about 12% of

the population, the two brain states proposed were distinguishable with an accuracy of 80% or
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higher. 78 % achieved an accuracy between 60%-80% and the last 10% no discrimination could

be achieved. This shows that this type of interfaces are highly variable from subject to subject and

in some cases, might be even impossible to perform. Other literature examples [39, 93, 94] show

that motor imagery BCI performance does improve with months of training using neurofeedback

technologies.

In the sessions with movement during the protocol, the method did perform better, being the

lowest accuracy 70% and the highest 75%. This improvement was expected as the signal that

originates actual motor movement is more prominently expressed in the EEG signal, and the be-

haviour of the subject during the protocol is not as subjective or dubious as imagining a movement.

However, it still performs worse than the best case using a public dataset.

(a) Close left hand (b) Feedback

(c) Close right hand (d) Feedback

Figure 5.9: Neurofeedback Application

In order to try to tackle the problem and improve the accuracy of the BCI, a neurofeedback ap-

plication was developed with the goal of the human adapting to the classifier and not the opposite.

This application, Figure 5.9, runs in real time, and the user is prompted with a message (arrow)

asking to perform a movement (close left or close right). The live signal is then inputted into the

same pre-processing and feature extraction pipeline described in past sections, and the resulting

features are seen to the classifier trained on Session 6. The results of the classification are shown

to the user with a bar, Figure 5.9, whose size is directly related to how confident the classifier is

of the resulting class. After five neurofeedback sessions the classification results raised from 75



5.4 Acquired Data 47

to 80% showing that this kind of systems can improve the performance of an offline trained BCI

classifier.

Trying even further to improve the accuracy metric, a post-processing module was also imple-

mented. This module takes five classifications from the system and returns the class that appears

the most (max). Even though it adds some latency to the BCI, it improved the accuracy from 80 to

82%.

Figure 5.10: Feed back when the user holds the same state through time

With the help of this neurofeedback tool, an intriguing event was also observed. Each time the

user switched states, that is whenever the subject was prompted to perform some action, the BCI

had an excellent performance with the bar being almost always at his maxed size. However, as the

user holds the same state through time, by performing the same movement, the BCI starts to output

random results. A possible explanation for this event might be that the brain starts to automate the

movement resulting in its execution without ’thinking it’, being other structures recruited to be

responsible for this movement.
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Chapter 6

ECG signal in Human-Drone Symbiosis

In the developed system, ECG was used to develop an implicit communication between the UAV

and human, more precisely a bio-identification mechanism. This module recovers developed work

by the group reported in [15] and with a registered patent [67]. In the following sections, all work

developed in order to implement this module is described.

6.1 Wearable ECG system

As stated in the last chapter, a requirement for our system is that the biosignals should be collected

using wearable devices. The ECG system used in this work was the VitalSticker, a patch developed

in BRAIN LAB/INESC-TEC Figure 6.1 . The major characteristics for this board are presented in

Table 6.1.

Figure 6.1: VitalSticker

Table 6.1: VitalSticker Specifications

Specifications/Systems VitalSticker

Sampling Frequency 500 Hz

Resolution 8 bits

Connectivity Bluetooth 2.0

Autonomy 3 Days of use

49



50 ECG signal in Human-Drone Symbiosis

6.2 ECG Sub module Software Architecture

This section modules follows an architecture similar to the on presented in Section 5.2, Figure 5.4.

All software was developed in Python3.

6.2.1 Receiving and Conversion Module

Unlike the EEG processing module, the Vital Sticker already provides a receiving and conversion

library for their data. The new part developed was a bridge between the biodevices software and

the python3 module using named pipes.

6.2.2 Pre-processing, Feature Extraction and Classification Modules

The Pre-processing module is responsible for all signal modifications needed for the computation

of relevant features, mainly noise filtering.

For fiducial points computation, the algorithm used for R point computing is the one reported

by Pan & Thompkins [95].

Q, R, S and T points are identified using the first derived of the signal and must be located

inside a defined window of physiologically possible size.

Q points were identified by finding the last temporal mark (and the closest one relative to each

R complex) at which the derivative signal crossed zero in a time windows of 0.100 seconds before

the identified R point.

A similar method was used for the computation of the S point. The first derivative changing

signals in a window of 0.050 seconds after the calculated R point is pointed as S.

T wave was computed by finding the last derivative 0 crossings from positive to negative

between 0.050 and 0.400 seconds after the computed R index.

All this physiological windows are reported on Paiva et al. [15] and taken from [96].

After these steps, the distance between fiducials was calculated, and ’bad heartbeats’ were

rejected if failed the next two rules:

QR≤ 0.075s (6.1)

0.200s <
QT√

RR
< 0.360s (6.2)

The feature vector to be passed to the classifier is the distance between S and T, ST, the distance

between R and T, RT and the distance between Q and T, QT, normalized by the average RR

distance across the training pool of users.

A 5 fold cross-validation split was then performed in order to train a classifier. The clas-

sifier used was a multiclass SVM, Radial Basis Function kernel, together with a One vs One



6.3 Results in Public Datasets 51

Figure 6.2: Fiducials in Dataset ECG

strategy. The other parameters were interated during the train phase on the following values:

C = 0.01,0.1,1,10,50,100,150,200 and θ = 0.01,0.1,1,10,50,100,150,200

6.3 Results in Public Datasets

To validate the feature extraction algorithm, a test on the PTDB dataset in a pool of 10 healthy

subjects was first performed. These subjects were the same as the ones evaluated by Paiva et al.

[15] in order to be possible to compare both implementations.

6.3.1 Pre-processing Results

The filter used in this step was simple bandpass FIR filter with cut frequencies of 3 and 45 Hz.

6.3.2 Feature Extraction and Classification Results

For each subject, the pool, a 120-second signal was extracted and the fiducials calculated. Figure

6.2 shows the result of the computation of fiducial points.
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A comparison between a list of fiducials computed by Paiva et al. [15] and the points obtained

by the developed algorithm was made and results are presented at table 6.2.

Table 6.2: Feature extraction results in comparison with Paiva et al. [15]

Subject N Se% +P% DER% TB FN FP
1 100.0 100.0 0.0 1141 0 0
2 100.0 100.0 0.0 1136 0 0
3 100.0 100.0 0.0 1143 0 0
4 100.0 100.0 0.0 1139 0 0
5 100.0 100.0 0.0 1141 0 0
6 100.0 100.0 0.0 1143 0 0
7 100.0 100.0 0.0 1136 0 0
8 100.0 100.0 0.0 1131 0 0
9 100.0 100.0 0.0 1142 0 0
10 100.0 100.0 0.0 1132 0 0

These metrics were found by comparing the points calculated by each algorithm. A match is

counted if the absolute value of the time difference between the detected R point and the reference

is less than 150 ms.

TP is the number of True Positive beats (correctly detected), FN is the number of False Neg-

ative beats (erroneously missed), and FP is the number of False Positive beats (erroneously de-

tected).

Comparing the results, it can be concluded that all R points identified by Paiva et al. [15] are

also identified by the implemented algorithm as expected.

The same process was repeated to the other fiducials yielding the same result.

As for classification results, for this ten subjects, the results from the five cross-validation

process yielded an accuracy of 0.97±0.04. These are similar results to the ones shown by Paiva et

al. [15]. Therefore it can be concluded that the process was replicated successfully.

6.4 Results on Acquired Data

After validating the algorithm on the public dataset, a real-time demonstration, presented publicly,

was developed using acquired data on five volunteers (4 Male and 1 Female), all members of the

host laboratory.

Figure 6.8 shows the difference between the Raw and the Filtered signal.

At first glance, the signal greatly improves. The baseline is corrected and power-line artefacts

and high-frequency noise are removed.

On figure 6.4, the result of the fiducial extraction algorithm is also shown.

It can be seen that points of interest are assessed correctly and are ready for computing the

feature distances to input into the classifier.

The feature pool was then split into the train, and test data and the SVM classifier was trained

using a five-fold cross-validation process.
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(a) Raw Data (b) Filtered Data.

Figure 6.3: Raw vs Filtered Data

Figure 6.4: ECG Signal from Sticker (6 seconds)
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The classification for the pool of 5 people is presented in 6.5, having a 0.83 (± 0.08).

Figure 6.5: Confusion matrix for the best fold on a 5 person pool

Comparing with the data set results, this had a significant drop on accuracy, however, it is vital

to notice that this signal was taken by a wearable device and by placing the fingers on the pads

while the data acquired from the last section was taken by a clinical ECG acquisition system.

In order to assess the relation between users on the pool and classification accuracy, two people

were removed from the pool and the resulting confusion matrix can be seen in: 6.6

Figure 6.6: Confusion matrix for the best fold on a 3 person pool
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This results had an accuracy of 0.95+-0.04. From this, it can be concluded that the classifica-

tion improved its performance when lowering the size of the pool. However, these results can be

misleading because it might be one the person of the pool destabilizing the classification. Further

testing involving each combination possible of persons should be done to assess this possibility.

6.4.1 Live-Demo

Although the algorithm needs only one heartbeat to compute the fiducials and feature vector, 5

seconds blocks of the signal were used for each classification to ensure that there are at least 4

QRS complexes classifications. Each classification is associated with a class if the certainty of that

classification is greater then .80. The final criteria for outputting the correct subject is the max of

the classification array, as seen in Figure 6.7.

Figure 6.7: Live-Demo Classification Process

Despite this technique allowing the system to be more precise in identifying a user, it also

introduces a delay, corresponding to the window length, in this case, 5 seconds.

A simple web app was also developed in order to show the results in a Demonstration to be

used by the BRAIN group. Each time the system was sure about the identity of the subject, a page,

Figure 6.8a, corresponding to that user would pop up, and when not sure a no user page would

appear Figure 6.8b. On the user authenticated the heartbeats used for the identification are also

show.
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(a) User Authenticated: Vitor Minhoto.

(b) User Non Recognized.

Figure 6.8: Demo Web Interface



Chapter 7

System integration: The JIFX field trial

One of the goals for this work was to test the symbiosis at a field trial event that happened from the

29th of April to the 3rd of May on Camp Roberts, California. This event, Join Interagency Field

Experimentation, happens several times a year and is a great opportunity to test project related with

UAVs because it is hosted in an isolated military environment where participants have clearance

to fly experimental devices.

Figure 7.1: Author on Mcmillan Airfield, Camp Roberts, entrance

The goal for these three and a half day event was to implement the explicit communication

module described in Chapter 5 and the implicit communication module discussed in Chapter 7 on

an intelligent software module that would control a drone (3DR SOLO), figure 7.2, supplied by

the CMU-Silicon Valley Partners.

Even though the event was planned as a multi-day endeavour, the test phase ended up having

the duration of only one morning. The next sections present the reasons of this change of plans

and how they were solved
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Figure 7.2: 3rd Solo drone from CMU partners

7.1 Information Flow

As stated, all modules were written in python3. However the communication library, that sends

commands to the drone, DroneKit, runs on python2. It took two full days to solve this problem

and the fix is shown in Figure 7.3

Figure 7.3: Information flow Classifier-drone

The shaded element is the module already described in Chapter 5 or Chapter 6 as it can be

abstracted to any classification output object. A blocking TCP/IP socket was then implemented

to transfer information from a python3 kernel to the Drone Control Loop running on python2.

The Drone Control Loop is the module that handles the intelligence of the drone. It is the mod-

ule that changes the drone mode or issues a command accordingly to information not only from

the classifier but from the drone itself. If the control loop receives a classification, it then sends a
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command to the drone using the dronekit Mavelink interface. Mavelink is a communication pro-

tocol between software/hardware and the drone where commands can be sent or information can

be received. It works as a broadcast mechanism, where the drone broadcasts information and the

controller’s broadcast commands. The command used in this experience was "move to a certain

location" where the location was defined with GPS. Each class corresponded to a location so the

drone would go from point A if the Classification Module yielded class A, or to point B if the

outputs class B, in a protocol denominated by First Base Second Base. This mavelink command

is broadcast to the RC remote controller private wi-fi connection, and if the drone successfully

receives it, it will go to point A or point B.

7.2 Signal Quality

Being in the middle of a communication center serving the UAVs in the area affected the signal

quality. The fix for this was to go to an isolated room where the signal captured by the openBCI

board + eeg cap, Figure 7.4 had no interference. However, being isolated had the problem that

the user could not be near the drone, therefore making it a difficult task to drive it without seeing

where it was and where to go.

Figure 7.4: Author wearing the eeg cap in the control room in Camp Roberts.
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7.3 A new Human-Computer Interface

Due to the problem presented in Section 7.1, the system could only be tested during a 1-hour

window on the last day morning. It had to be decided that a new explicit communication module

that was easier to set up, straightforward and easy to use should be implemented overnight to test

on the following morning. The wearable used was MuseEEG 1, figure 7.5

Figure 7.5: Muse Band (and author) in Camp Roberts

The muse band is a four channel (+1 auxiliar channel) EEG wearable device. It uses dry contact

electrodes and it is mains characteristics presented on the following table.

Table 7.1: Muse Band Characteristics [97]

Specifications/Systems Muse 2016

EEG sensors 4 channels TP9, AF7, AF8, TP10 (dry)

Connectivity Bluetooth Low Energy

Sampling rate 256Hz Samples per Second

Resolution 12 bits / sample

Power Source Rechargeable Li-Ion battery (Maximum 10 hours)

This wearable is more comfortable than the ones referred previously but has fewer channels.

This band was used to develop an interface with the drone using eye blinks.

The eyeball acts as a dipole having a positive pole (cornea) and a negative pole (retina). When

it rotates about its axis, it generates an electrical signal with a large amplitude that can be detected

by the frontal electrodes (Fp1 and Fp2).

1https://choosemuse.com/

https://choosemuse.com/
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When the eye rotates upwards, the positive pole is closer to the frontal electrodes producing a

positive spike on the EEG signal. When it rotates downwards the opposite happens, the negative

pole rotates away from Fp electrodes and a negative spike is produced, Figure 7.6.

This process is very similar to what happens in eye blinks. When the eye closes the cornea

become closer to the frontal electrodes and a positive deflection is produced. When the eye closes,

the cornea rotates away from the FPs, resulting in a negative deflection.

Figure 7.6: Effects of eye blinks in EEG channel[27]

This process is very similar to what happens in eye blinks. When the eye closes the cornea

become closer to the frontal electrodes and a positive deflection is produced. When the eye closes

the cornea rotates away from the FPs resulting in a negative deflection, Figure 7.7

The algorithm developed in order to identify blink or double blink is described below.
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Figure 7.7: Raw signal: Blink and Double Blink

Algorithm 1: Blink Detector Algorithm
Result: Assess if user is blinking or double blinking.

while Signal is Streaming do
Signal = Signal2( Figure 7.8);

if signal > th then
Wait for 1 second signal;

if Signal passes th 2 times then
Return double blink;

else
Return blink;

end
else

Do nothing;

end
end

Although this is a very simple method to assess blinks in the EEG, it served the requirements

of being independent of the user and easy to set up on the next morning flight. Despite performing

well and identifying all the blinks while the user is still when there are brute head movements, this

are also identified as blinks or double blinks.

The classification result from this module was then connected to the First Base Second Base
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Figure 7.8: Squared signal: Blink and Double Blink

Protocol in a way that if the subject did blink once the drone would go to point A and if the user

would blink twice, the drone would go to point B.

7.4 JIFX Results Discussion

The main goal of this participation in JIFX event was to integrate the modules explained on Chap-

ter 5 and Chapter 6 and test a symbiosis between a UAV and a human.

The event did not go as expected, and several difficulties made it impossible to achieve the

planned symbiotic interaction such as bad signal quality and computer-drone communication prob-

lems.

Despite all these setbacks, small objectives were still achieved. The communication pipeline,

following the architecture proposed in 2, between wearable-computer and computer-drone was

developed and documented for future use.

A new human-computer interface, with eye blinks, using more straightforward features and

easier to detect features was created and easily integrated into the system, proving its flexibility

and modularity.

Joining these two achievements together, a real-world test was performed on the last morning

of the event where the user did fly a drone with the "First base, second base protocol", Figure 7.9.

This experience consisted in the user blinking once for the drone to go to point A and blinking

twice for the drone to go to point B, Figure. Although this was not the planned two-way interaction

set as the goal, it still was an overall positive event alloying to understand how this symbiosis can

truly be built.
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Figure 7.9: Drone following user commands.

The experience did raise interest on the other agencies participating in the event and the project

was rewarded with a Develop Now Coin. This event also improved the relationship between the

host group and the CMU-Silicon Valley team, both teams are willing to continue to further develop

the project.



Chapter 8

Simulated environment

During this work, there was a need to test and see how does the UAV behave. In this chapter, the

integration of our system within the AirSim Environment is described.

8.1 System Architecture

AirSim, as stated in Chapter 3, is a openSource vehicle simulation platform running on top of

Unreal Engine. It adds support for drones, cars and environment sensors while maintaining the

base photo-realistic environment and base classes of the Unreal Engine itself.

AirSim was developed as a platform for deep learning, computer vision and reinforcement

learning algorithms for autonomous vehicles, explaining the need to have a photo-realistic envi-

ronment, but as it is openSource and well documented it is possible to expand behind its core and

bend it to fit our system.

There are three system components that are essential to simulate:

1. Environment

2. UAV

3. Human

Each of these simulations are detailed further over the next sections.

8.1.1 Environment

In order for the simulation to be as accurate as possible, the environment where the actors are

included should be as close as possible to the real environment where they will be performing

its goal action. On Chapter 3, it was already discussed the impressive power of photo-realistic

scenarios. However, the ability to rebuild a real-world location is a must have in this scenario.

To test the abilities of this engine, a scene replication of the environment at Camp Roberts

where the JIFX event took place was developed by the CMU partners.
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Figure 8.1 shows a comparison between a real world photo, Figure 8.1a, and a top view of the

simulation level, Figure 8.1b.

It can be observed that the simulated level is identical to the real world environment.

(a) Google Earth Photo of Camp Roberts CACTF (b) Simulator Screenshot of Camp Roberts CACTF

Figure 8.1: Comparison between real world environment and simulation.

8.1.2 UAV

The UAV simulation is handled by the AirSim plugin. It changes the gameMode of the base Unreal

transforming the base Pawn class into a FlyingPawn and exposes an API to control the UAV.

This API can then be accessed using a software module, like our Intelligence Module, supporting

Python 3, C++ and Java or though Hardware like an RC or X-box Controller.

The simulated drone can be seen in Figure 8.2.

Figure 8.2: Human and Drone in Simulation

8.1.3 Human

This was the hardest User to implement into the simulation because AirSim game mode kept trying

to transform the Human Pawn (Base Unreal Engine human class) into a FlyingPawn.

In order to solve this a new object was created, called humanAI, and an exception was added

to the airSim source code in order for the gameMode to not populate this class.
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This humanAI class was also created with the ability to have any biosignal streaming from it

and an API exposing it to both classes inside Unreal or devices exterior to the simulation. For the

asset a general puppet mesh, available in the standard Unreal content and seen on Figure 8.2, was

used, but can be easily replaced by a real human-like skin developed in a software like Maya.

Three behaviours were also designed for this class:

1. Roam: The character walks randomly on a given area of the map.

2. Chase: The character chases another pawn that can be another humanAI or FlyingPawn.

3. Patrol: Given an array of points the humanAI will follow those points in a given speed.

With these three components, environment, UAV and Human simulated it is possible to test

our architecture in simulation saving time and resources that are spent in field trials.

In order to assess the reliability of this simulated environment 2 test cases were developed and

are presented over the next two sections.

8.2 Recreation example: JFIX event

In this test the goal was to recreate the results presented in Chapter 7. For this simulation the

following objects were needed:

1. JIFX environment

2. Human simulation streaming EEG data

3. UAV simulation

For the environment the level described in Section 8.1.1 is used.

In this level the human did not have to perform any action, its only function was to stream

EEG data previously recorded with the MuseEEG band.

For the drone the airsim FlyingPawn was used.

It can be observed that the initial architecture is still valid and easily adaptable to work with

the simulator.

The intelligence module, in this case, receives the recorded EEG signal from the simulated

human, identifies blinks and commands the drone accordingly following the first base, second

base protocol, Figure 8.3.

The recreation was successfully built proving that this environment can be used to test and train

the human-UAV interaction. In this case, as pre-recorded data was used, mainly the interaction on

the drone part can be developed, but the system is easily adaptable to have live data streaming

from a subject to the simulated human. This functionality was not tested during the duration of

this work due to time constraints and the fact that the computer used to run this simulation did not

have a BLE module to receive data from the wearable.
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(a) Drone on Point A (b) Drone on point B

Figure 8.3: First Base, Second Base protocol

8.3 Recreation Example: JIFX November 2016

Another recreation example was developed with that collected by Dr. João Paulo Cunha in a JIFX

event that he took part in November 2016.

This experiment had several officers, also on CACTF, with two collecting systems and a smart-

phone collecting the data listed in Table 8.1.

Although all of this data was available, in this recreation only two data streams were used:

GPS and ECG. In the recreation scenario the human simulation should follow the path that the

officer did and stream his ECG data for the drone to take actions accordingly.

The GPS data was successfully loaded to the simulation and marked as waypoints, as seen in

Figure 8.4a.

In the experiment the officer would go down into a group of houses, check for a ’strange

object’, then had to run to the starting point. Figure 8.4 shows several snapshots of the ’Return to

base’ action from different views. Image 8.4b shows the path the ’human’ is taking, Figure 8.4c

shows an air view and figure 8.4d shows a ground view. The simulated human works exactly as

intended following the given path.

As for the drone, the programmed behaviour was to follow the human.

Table 8.1: Data Collected in JIFX 2016

Device Data

Vital signals
Monitor (VSM)

Medical-grade ECG
Body temperature
Body actigraphy

Ambiance Sensing
Device (ASD)

Ambiance temperature
Humidity

Luminosity
Athmospheric pressure

Two hazardous gases: CO and NO2
Videos/photos

Smartphone Time-tags
GPS coordinates
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(a) Waypoints marked in Simulation. (b) Recreation: Cinematic View

(c) Recreation: Top View (d) Recreation: Bottom View

Figure 8.4: Recreation Scenario.

Similar to the case shown in Section 8.2, this recreation can only be used for drone behaviour

training. However it could also be coupled with a VR headset a VR omnidirectional treadmill and

a real user with the same wearable systems attached. This would allow the simulator to receive

human data, move the simulated human accordingly, and stream the received sensing data from

the wearable all in an immersive world. In this case the human could adapt to the drone behaviour

testes previously. With enough iterations, every time the Human or the UAV took action or change

behaviour, the other part would immediately perceive it, achieving a real symbiosis.
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Chapter 9

Conclusion

This work covers the vast field of Human-Machine Interactions by proposing a new concept:

Human-Machine Symbiosis. A conceptual abstract architecture of this symbiotic system was de-

signed and a specific case using EEG as explicit interaction and ECG as implicit interaction was

proposed to be implemented.

For Explicit communication, a Brain-Computer Interface using motor imagery was tested

yielding results similar to the ones presented in State of the Art on public datasets. However,

when using acquired data from the wearable system, this Interface was impossible to achieve due

due to differences between the data itself (64 clinical vs 8 wearable data channels) and the user

not beeing familiar to the concept of motor imagery. A new BCI using motor movement was then

developed, having good enough results to implement a real-time Interface. During this process

was also concluded that neurofeedback does improve the BCI performance as the human adapts

to the classifier. Another important observation was that the trained model drops accuracy as the

movement is maintained and it was postulated that it might be because after the preparation and

initial execution of movement, other brain structures are then recruited to continue it. This way the

structures that we are evaluating are no longer responsible for the action the user is performing

For the Implicit Communication past work from the host laboratory on ECG bio-identification

was re-implemented and implemented thinking in this particular scenario. The results yielded were

similar to the ones obtained previously by a group member and a demonstration was successfully

developed showing a wonrking real-time version of the algorithm.

During the JIFX event, the implementation of the two already described models were tried, but

problems with communications with drone did not allow to perform this integration. However, the

development of a new Human-UAV interaction using blinks and the quick integration of this sys-

tem with the drone did prove that the architecture proposed is abstract enough to support different

types of streaming data and algorithms to perform any kind of Human-drone communication.

Finally the work on simulation leads to the conclusion that it is possible to recreate (or newly

create) near infinite scenarios where both humans and drones can quickly adapt and learn from

each other. The augmented intelligence module can be quickly trained saving time and resources

wasted in a normal field trial.
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9.1 Future Work

Due to the magnitude of the Human-UAV symbiosis concept, there is a vast number of details that

can be further explored. Over the following sections, the main objectives that could be improved

on the current system, as well as new development ideas, are presented.

9.1.1 Integration of the development modules

Although the Explicit Communication module using motor movement and the Implicit Communi-

cation module using ECG are ready, it was not possible to implement them on the attended JIFX.

The next interaction of this event could prove an excellent opportunity for another group member

to do so. These could also be integrated into the simulation.

9.1.2 Simulation Test Cases

Two recreations were implemented during the span of this dissertation, but there is a lot more data

available within the group to develop more scenarios. Unreal Engine is a really powerful tool that

will is essential to the train and prepares both the human User and the UAV augmented intelligence

module for the symbiosis.

9.1.3 Augmented Intelligence System module

Due to unexpected results, the communication modules took most of the time of this work and it

was not possible to focus on the development of the augmented Intelligence System module. This

block is an essential part of the symbiosis as it is what allows the UAV to evolve from being a tool

to being a right partner and a ’Humans best friend’.

9.1.4 Transfer learning

Another interesting point to further explore is if all learning developed in simulation is transferable

to the real world. The next iteration of the JIFX event can help to validate this idea.

9.1.5 CMU-Portugal Project

As stated in the Introduction, the group prepared and submitted a proposal to a CMU-Portugal

call.

This proposal focuses on this same Human-Symbiosis concept and aims to develop further

all work done within this dissertation. If this project is funded, this dissertation could serve as a

starting point and most software developed can be used or adapted to build this symbiotic system.
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