Assessing Wind Impact on Semi-Autonomous Drone Landings for In-Contact Power Line Inspection

Abstract

In recent years, the use of inspection drones has become increasingly popular for high-voltage electric cable inspections due to their efficiency, cost-effectiveness, and ability to access hard-to-reach areas. However, safely landing drones on power lines, especially under windy conditions, remains a significant challenge. This study introduces a semi-autonomous control scheme for landing on an electrical line with the NADILE drone (an experimental drone based on original LineDrone key features for inspection of power lines) and assesses the operating envelope under various wind conditions. A Monte Carlo method is employed to analyze the success probability of landing given initial drone states. The performance of the system is evaluated for two landing strategies, variously controllers parameters and four level of wind intensities. The results show that a two-stage landing strategies offers higher probabilities of landing success and give insight regarding the best controller parameters and the maximum wind level for which the system is robust. Lastly, an experimental demonstration of the system landing autonomously on a power line is presented

    Similar works

    Full text

    thumbnail-image

    Available Versions