43 research outputs found

    Null Convention Logic applications of asynchronous design in nanotechnology and cryptographic security

    Get PDF
    This dissertation presents two Null Convention Logic (NCL) applications of asynchronous logic circuit design in nanotechnology and cryptographic security. The first application is the Asynchronous Nanowire Reconfigurable Crossbar Architecture (ANRCA); the second one is an asynchronous S-Box design for cryptographic system against Side-Channel Attacks (SCA). The following are the contributions of the first application: 1) Proposed a diode- and resistor-based ANRCA (DR-ANRCA). Three configurable logic block (CLB) structures were designed to efficiently reconfigure a given DR-PGMB as one of the 27 arbitrary NCL threshold gates. A hierarchical architecture was also proposed to implement the higher level logic that requires a large number of DR-PGMBs, such as multiple-bit NCL registers. 2) Proposed a memristor look-up-table based ANRCA (MLUT-ANRCA). An equivalent circuit simulation model has been presented in VHDL and simulated in Quartus II. Meanwhile, the comparison between these two ANRCAs have been analyzed numerically. 3) Presented the defect-tolerance and repair strategies for both DR-ANRCA and MLUT-ANRCA. The following are the contributions of the second application: 1) Designed an NCL based S-Box for Advanced Encryption Standard (AES). Functional verification has been done using Modelsim and Field-Programmable Gate Array (FPGA). 2) Implemented two different power analysis attacks on both NCL S-Box and conventional synchronous S-Box. 3) Developed a novel approach based on stochastic logics to enhance the resistance against DPA and CPA attacks. The functionality of the proposed design has been verified using an 8-bit AES S-box design. The effects of decision weight, bitstream length, and input repetition times on error rates have been also studied. Experimental results shows that the proposed approach enhances the resistance to against the CPA attack by successfully protecting the hidden key --Abstract, page iii

    Fault and Defect Tolerant Computer Architectures: Reliable Computing With Unreliable Devices

    Get PDF
    This research addresses design of a reliable computer from unreliable device technologies. A system architecture is developed for a fault and defect tolerant (FDT) computer. Trade-offs between different techniques are studied and yield and hardware cost models are developed. Fault and defect tolerant designs are created for the processor and the cache memory. Simulation results for the content-addressable memory (CAM)-based cache show 90% yield with device failure probabilities of 3 x 10(-6), three orders of magnitude better than non fault tolerant caches of the same size. The entire processor achieves 70% yield with device failure probabilities exceeding 10(-6). The required hardware redundancy is approximately 15 times that of a non-fault tolerant design. While larger than current FT designs, this architecture allows the use of devices much more likely to fail than silicon CMOS. As part of model development, an improved model is derived for NAND Multiplexing. The model is the first accurate model for small and medium amounts of redundancy. Previous models are extended to account for dependence between the inputs and produce more accurate results

    Using Fine Grain Approaches for highly reliable Design of FPGA-based Systems in Space

    Get PDF
    Nowadays using SRAM based FPGAs in space missions is increasingly considered due to their flexibility and reprogrammability. A challenge is the devices sensitivity to radiation effects that increased with modern architectures due to smaller CMOS structures. This work proposes fault tolerance methodologies, that are based on a fine grain view to modern reconfigurable architectures. The focus is on SEU mitigation challenges in SRAM based FPGAs which can result in crucial situations

    2022 roadmap on neuromorphic computing and engineering

    Full text link
    Modern computation based on von Neumann architecture is now a mature cutting-edge science. In the von Neumann architecture, processing and memory units are implemented as separate blocks interchanging data intensively and continuously. This data transfer is responsible for a large part of the power consumption. The next generation computer technology is expected to solve problems at the exascale with 1018^{18} calculations each second. Even though these future computers will be incredibly powerful, if they are based on von Neumann type architectures, they will consume between 20 and 30 megawatts of power and will not have intrinsic physically built-in capabilities to learn or deal with complex data as our brain does. These needs can be addressed by neuromorphic computing systems which are inspired by the biological concepts of the human brain. This new generation of computers has the potential to be used for the storage and processing of large amounts of digital information with much lower power consumption than conventional processors. Among their potential future applications, an important niche is moving the control from data centers to edge devices. The aim of this roadmap is to present a snapshot of the present state of neuromorphic technology and provide an opinion on the challenges and opportunities that the future holds in the major areas of neuromorphic technology, namely materials, devices, neuromorphic circuits, neuromorphic algorithms, applications, and ethics. The roadmap is a collection of perspectives where leading researchers in the neuromorphic community provide their own view about the current state and the future challenges for each research area. We hope that this roadmap will be a useful resource by providing a concise yet comprehensive introduction to readers outside this field, for those who are just entering the field, as well as providing future perspectives for those who are well established in the neuromorphic computing community

    DESIGN OF EFFICIENT NANOELECTRONIC MEMORY AND CRYPTOGRAPHIC CIRCUITS

    Get PDF
    This thesis presents the design of Nanoelectronic Memory cell and arrays compatible with molecular switch (nanodevice) electrical characteristics. The proposed transmission gate based CMOL (hybrid CMOS / Molecular) memory cell surmounts the operational difficulties facing previous design. The Control circuitry with improved multiplexer design is introduced in this dissertation. Yield improvement through replacing the defective cell with a free cell can be achieved using a proposed algorithm. Moreover, the proposed memory cell has the same area as the existing CMOL inverter cells allowing easier implementation of both logic and memory circuits on the same chip. An efficient hardware implementation of the SBox from the Advanced Encryption Standard (AES) is presented in this dissertation. Modification of the design was achieved by adding Tri­ state Inverter followed by an Inverter (TII). Simulation results show a reduction in the average power dissipation as well as the time delays. Reduction of supply voltage and using low Vdd in non critical path improved the performance by reducing the energy delay product. Different transistors models with dual threshold voltage (Vt) based on 65nm CMOS technology were applied to the design to achieve further improvement. Keywords: CMOL, CMOL circuits, Nanoscale memory, Control Circuit, AES, SBox, Deep sub-micron CMOS technology, Tri-state Inverter, Low Power SBo

    Predicting power scalability in a reconfigurable platform

    Get PDF
    This thesis focuses on the evolution of digital hardware systems. A reconfigurable platform is proposed and analysed based on thin-body, fully-depleted silicon-on-insulator Schottky-barrier transistors with metal gates and silicide source/drain (TBFDSBSOI). These offer the potential for simplified processing that will allow them to reach ultimate nanoscale gate dimensions. Technology CAD was used to show that the threshold voltage in TBFDSBSOI devices will be controllable by gate potentials that scale down with the channel dimensions while remaining within appropriate gate reliability limits. SPICE simulations determined that the magnitude of the threshold shift predicted by TCAD software would be sufficient to control the logic configuration of a simple, regular array of these TBFDSBSOI transistors as well as to constrain its overall subthreshold power growth. Using these devices, a reconfigurable platform is proposed based on a regular 6-input, 6-output NOR LUT block in which the logic and configuration functions of the array are mapped onto separate gates of the double-gate device. A new analytic model of the relationship between power (P), area (A) and performance (T) has been developed based on a simple VLSI complexity metric of the form ATσ = constant. As σ defines the performance “return” gained as a result of an increase in area, it also represents a bound on the architectural options available in power-scalable digital systems. This analytic model was used to determine that simple computing functions mapped to the reconfigurable platform will exhibit continuous power-area-performance scaling behavior. A number of simple arithmetic circuits were mapped to the array and their delay and subthreshold leakage analysed over a representative range of supply and threshold voltages, thus determining a worse-case range for the device/circuit-level parameters of the model. Finally, an architectural simulation was built in VHDL-AMS. The frequency scaling described by σ, combined with the device/circuit-level parameters predicts the overall power and performance scaling of parallel architectures mapped to the array

    Bio-inspired cellular machines:towards a new electronic paper architecture

    Get PDF
    Information technology has only been around for about fifty years. Although the beginnings of automatic calculation date from as early as the 17th century (W. Schickard built the first mechanical calculator in 1623), it took the invention of the transistor by W. Shockley, J. Bardeen and W. Brattain in 1947 to catapult calculators out of the laboratory and produce the omnipresence of information and communication systems in today's world. Computers not only boast very high performance, capable of carrying out billions of operations per second, they are taking over our world, working their way into every last corner of our environment. Microprocessors are in everything, from the quartz watch to the PC via the mobile phone, the television and the credit card. Their continuing spread is very probable, and they will even be able to get into our clothes and newspapers. The incessant search for increasingly powerful, robust and intelligent systems is not only based on the improvement of technologies for the manufacture of electronic chips, but also on finding new computer architectures. One important source of inspiration for the research of new architectures is the biological world. Nature is fascinating for an engineer: what could be more robust, intelligent and able to adapt and evolve than a living organism? Out of a simple cell, equipped with its own blueprint in the form of DNA, develops a complete multi-cellular organism. The characteristics of the natural world have often been studied and imitated in the design of adaptive, robust and fault-tolerant artificial systems. The POE model resumes the three major sources of bio-inspiration: the evolution of species (P: phylogeny), the development of a multi-cellular organism by division and differentiation (O: ontogeny) and learning by interaction with the environment (E: epigenesis). This thesis aims to contribute to the ontogenetic branch of the POE model, through the study of three completely original cellular machines for which the basic element respects the six following characteristics: it is (1) reconfigurable, (2) of minimal complexity, (3) present in large numbers, (4) interconnected locally with its neighboring elements, (5) equipped with a display capacity and (6) with sensor allowing minimal interaction. Our first realization, the BioWall, is made up of a surface of 4,000 basic elements or molecules, capable of creating all cellular systems with a maximum of 160 × 25 elements. The second realization, the BioCube, transposes the two-dimensional architecture of the BioWall into a two-dimensional space, limited to 4 × 4 × 4 = 64 basic elements or spheres. It prefigures a three-dimensional computer built using nanotechnologies. The third machine, named BioTissue, uses the same hypothesis as the BioWall while pushing its performance to the limits of current technical possibilities and offering the benefits of an autonomous system. The convergence of these three realizations, studied in the context of emerging technologies, has allowed us to propose and define the computer architecture of the future: the electronic paper

    NASA Tech Briefs, February 2010

    Get PDF
    Topics covered include: Insulation-Testing Cryostat With Lifting Mechanism; Optical Testing of Retroreflectors for Cryogenic Applications; Measuring Cyclic Error in Laser Heterodyne Interferometers; Self-Referencing Hartmann Test for Large-Aperture Telescopes; Measuring a Fiber-Optic Delay Line Using a Mode-Locked Laser; Reconfigurable Hardware for Compressing Hyperspectral Image Data; Spatio-Temporal Equalizer for a Receiving-Antenna Feed Array; High-Speed Ring Bus; Nanoionics-Based Switches for Radio-Frequency Applications; Lunar Dust-Tolerant Electrical Connector; Compact, Reliable EEPROM Controller; Quad-Chip Double-Balanced Frequency Tripler; Ka-Band Waveguide Two-Way Hybrid Combiner for MMIC Amplifiers; Radiation-Hardened Solid-State Drive; Use of Nanofibers to Strengthen Hydrogels of Silica, Other Oxides, and Aerogels; Two Concepts for Deployable Trusses; Concentric Nested Toroidal Inflatable Structures; Investigating Dynamics of Eccentricity in Turbomachines; Improved Low-Temperature Performance of Li-Ion Cells Using New Electrolytes; Integrity Monitoring of Mercury Discharge Lamps; White-Light Phase-Conjugate Mirrors as Distortion Correctors; Biasable, Balanced, Fundamental Submillimeter Monolithic Membrane Mixer; ICER-3D Hyperspectral Image Compression Software; and Context Modeler for Wavelet Compression of Spectral Hyperspectral Images
    corecore