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Abstract
Nowadays using SRAM based FPGAs in space missions is increasingly consid-
ered due to their flexibility and reprogrammability. A challenge is the devices
sensitivity to radiation effects that increased with modern architectures due to
smaller CMOS structures. This work proposes fault tolerance methodologies,
that are based on a fine grain view to modern reconfigurable architectures. The
focus is on SEU mitigation challenges in SRAM based FPGAs which can re-
sult in crucial situations. The two major approaches are fine grain TMR and
Quadruple Force Decide Redundancy (QFDR). The classical concept of TMR and
Quadded Redundancy on Logic Gates is transformed to an general approach that
is based on FPGA structure primitives like LUTs. This work also shows, how
these methodologies can be integrated into common CAD tools and tool flows
in order to apply the techniques for different designs automatically. The results
of this work show, that changing the granularity level of redundancy on SRAM
based FPGAs brings benefits whenever high error rates are being considered.
Eventually this work demonstrates how quadded logic even can be applied to
future carbon nanotube based architectures beyond the CMOS roadmap.
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1 Introduction

For a long time, human has fixed his eyes on the twinkling stars of the night skies.
The mysterious darkness of the universe makes him think, what is out there? Is
someone there? Flying out there has been an amazing wish of humankind.

In the twentieth century as spaceflight became a possibility, doors to this old
wish have been opened. Many people are now considering the future of space
researches in order to find some answers for their questions.

This contribution, focuses on the challenge of radiation effects in space for Field
Programmable Gate Arrays (FPGAs). FPGAs are reconfigurable architectures
which are suitable in space application.

1.1 Problem Definition

The motivation that led to this work is the increasing consideration of FPGAs for
space environments [101] [24]. The decreasing cost and development time which
is needed to implement FPGAs as well as their flexibility in fulfilling modifica-
tion requirements and remote programmability are the key factors toward their
success in space and avionic applications.

Another factor that attracts even more attention to FPGAs in space is their sim-
plicity. When compared to Application Specific Integrated Circuits (ASICs), tool-
ing for FPGAs is less complex and also cheaper as the manufacturing steps can
be omitted. Especially in space environments which high volume is not an issue,
ASIC design may be very expensive.

Even for the applications which are run in space, FPGAs can play a stronger role
in comparison to ASICs. For example, in processes, like geography or weather
forecasting, image processing is an important processing step which can be done
in orbit. Due to their flexibility, hardware implemented image processing algo-
rithms can be exchanged on demand from the ground station. Due to this fact,
using FPGAs for these applications makes sense [72].

Therefore, the first part of motivation involves using FPGAs with their reconfig-
urability features in space applications and in the satellites which are in orbit or
in space. However FPGAs encounter challenges in space. Although FPGAs are

1



1 Introduction

Figure 1.1: (left) Coronal mass ejection and (right) multiple solar flares make so-
lar winds.[108]

highly flexible, they are sensitive to radiation effects which exist in space [78].
Overcoming this issue is the second motivational part of this work.

In our solar system, the major source of radiation effects is the sun. It emits parti-
cles continuously. It consists of gas and due to it is less cohesive [108]. However,
its rotation is not like a solid ball such as earth. It is a process of rotating the gas
mass which may result in coronal mass ejection or in solar flares(Figure 1.1).

Both of these events produce massive amounts of electrons, protons, and pho-
tons which have an impact on every thing they meet. They can generate solar
winds. These are the source of radiations which can effect integrated circuits
temporarily or permanently.

The effect of radiations on the chips can even be stronger these years as the
CMOS scaling has pushed the feature size smaller and smaller in nano scales.
Therefore, irradiation has a bigger effect on the nano scale chips [112] [43].

The goal of this work is to develop a methodology that allows for making de-
signs reliable for space applications automatically. Although several mitigation
techniques exist that target FPGAs reliability, there are some scenarios in mod-
ern designs, where upsets can propagate in design and make it fails in critical
space applications. Accordingly, new methodologies for mitigation techniques
are needed to cope with the radiation effects in nanoscale designs.

The result of these investigations led to the fine grain fault tolerance approach for
reliable design. This includes both using traditional approaches like redundancy
techniques but also novel ones where the characteristics of FPGAs including ho-
mogeneity is exploited.

With respect to Moore’s Law[110], which mentions the end of road map for
CMOS technology, nano architectures and their features are currently studied.

2



1.2 Objectives

FPGAs in space 
Applications

Radiation Effects 
in Space

Mitigation 
Techniques 

Future Nano 
Architectures

Figure 1.2: Main steps towards using FPGAs in Space

They are the strongest alternative to CMOS technologies in future [12][29][39].
These architectures are unreliable by nature. Their self assembly process of con-
struction results in a lot of defects [29]. In this work, nanoPLAs as an alternative
to FPGAs are studied in specific. As result fault tolerance methodologies for
FPGAs are modified, to be used for defect tolerance goals in nanoPLAs.

1.2 Objectives

As mentioned, successful usage of FPGAs in space depends on reliability and
hence the mitigation methodologies which are used in order to mask or correct
any kind of failure caused by a radiation effect. The main objective of the work
presented here is reliability improvement for FPGAs in space. Therefore, the
path toward FPGAs usage in space includes three major steps that are depicted
in Figure 1.2.

Future nano architectures cope with some challenges in order to be a suitable
alternative architecture to FPGAs. This work targets the defective nature of
nanoPLAs due to self assembly and modifies defect and fault tolerance tech-
niques for the sake of reliable design on nanoPLAs.

3



1 Introduction

1.3 Outline of this Work

The thesis is organized as follows:

Chapter 2 introduces FPGAs and their architecture including their history and
evolution. It describes different kind of FPGAs and their features. It explains the
advantages of FPGAs to ASICs in different applications including space applica-
tions.

Chapter 3 introduces radiation effects in space in detail. The resource of radia-
tions as well as the types of effects which can be harmful for semiconductors es-
pecially FPGAs are discussed there. It presents the major effect categories, which
upset can harm FPGAs, and discusses its ability for different kind of FPGAs.

Chapter 4 presents the state of the art of the current mitigation techniques. These
techniques basically are divided into two different categories: reconfiguration-
based and redundancy-based techniques. In this chapter, these two categories
are discussed in detail. The methodology of this work is based on redundancy-
based technique. This technique is studied in detail and its advantages and dis-
advantages which lead to new approach are described.

Chapter 5 targets the new redundancy-based technique which is called QFDR.
It introduces the history of the methodology for basic logic gates and the ideas
which modifies it for modern FPGA technology. However, its application on
FPGAs and the manner of realizing it on FPGAs is the topic of Chapter 6. Chap-
ter 6 also includes the results on area, fault tolerance and power usage of new
methodology on target FPGA.

Chapter 7 focuses on new architectures at the end of road map. While reason-
ing nanoPLAs as a good alternative to FPGAs in future architectures, the mod-
ified methodologies in chapter 5 for defect tolerance reasons on the designs in
nanoPLAs are applied.

Finally, Chapter 8 concludes the thesis and presents a few suggestions for future
work.

4



2 Modern FPGAs for Space
Applications

A Field Programmable Gate Array (FPGA) is a semiconductor logic device with
programmability. Programmability in FPGAs makes it possible to realize a logic
function after the manufacturing process. One can write the desired logic in
a high-level hardware language like VHDL or Verilog and finally program it
on FPGA after an automated process. FPGAs can be configured one time or
multiply. The SRAM-based ones can be reconfigured practically unlimited times.
In this chapter, a brief history of the FPGAs and the state of the art FPGAs is
summarized. It will provide the background for further discussions on their
usage in space applications.

2.1 Field Programmable Gate Array

FPGAs, as illustrated in Figure 2.2, consist of an array of reprogrammable logic
gates as well as distributed memory blocks, that all are connected through a
hierarchy of configurable interconnects.

Modern FPGAs also provide embedded IP cores, such as memories, DSP blocks
and processors in order to achieve the implementation of System On a Chip

Figure 2.1: a Xilinx FPGA chip

5



2 Modern FPGAs for Space Applications

I/O

I/OI/O

I/
O I/
O

I/O

Switch Block Logic Block

Figure 2.2: Logic Structure of an FPGA

(SoC) designs. A picture of a Xilinx FPGA chip is depicted in Figure 2.2. Its
simplified architecture is reflected in Figure 2.2. The chip is surrounded by in-
put/output blocks, which are briefly called I/Os. I/Os connect the FPGA to
other devices on the printed circuit board (PCB). The very first programming
technology used small fuses. As the FPGA architecture evolved and its complex-
ity increased, programming technologies has become more sophisticated.

The history of FPGA returns back to the history of developing the integrated
circuits in the middle of 20th century. The need for getting designs quickly done,
was a big motivation to evolute Field Programmable devices. The first senses of
programmability were the series of Read Only Memory (ROM). The basic ROM
is a single one time programmable logic Array. Other variations of the ROM
includes more flexibilities in programming. PROM is a version of ROM which
is one time programmable. The difference between it and the basic ROM is the
way of programmability. In the basic ROM, programming is done by masking in
IC manufacturing process. PROM allows one time programming by user[88].

EPROM is the erasable PROM which can be completely erased and reprogram-
med. However, writing on EPROM is generally slower than reading from it.
This is while not considering the time for reading the entire EPROM. EPROMs
(including ROMS and PROMs) use N address input to implement a function.
They are able to implement any logic function with N-input. However, by grow-
ing the N, the area usage increases exponentially and this is an issue for these
devices [88].

To cope with area overhead, the logic function can be restructured to levels of
AND/OR gates. In this way, which is significantly more area efficient, wired OR,
wired AND planes, and inverters are used to build logic terms (Figure 2.3(a)).

6



2.2 Evolution of FPGAs

Figure 2.3: PLA Structure[1]

2.2 Evolution of FPGAs

Programmable array Logic(PAL) devices use the programmable AND planes
which are followed by the OR planes. This is shown in Figure 2.3(b). This pro-
vide flexibility to program any combinational or even a kind of sequential logics
by programming D-type flipflops on planes.

Unlike the simple logic functions, in case of data paths and multi level logic cir-
cuits, interconnections can be a problem for PALs. Device inputs and intermedi-
ate combinational sums are fed into the array via a programmable interconnect.
It must be a typical full crossbar to program every level. This adds a significant
interconnection (area) cost to the circuit in case of data paths or multilevel logics
[77].

To achieve flexibility and area efficiency as well, Static Memory based FPGA
were proposed. This architecture uses bit streams to configure either logic or
interconnections. Logic cells are the elementary part of FPGAs. They are used
to implement logics and storage elements. Additionally, there are some inter-cell
connections which are flexible and can be changed by configuring the bit stream.
This enables the implementation of different kind of complex circuits including
complex SoCs.

7



2 Modern FPGAs for Space Applications

However, there is always a trade off between the area usage and the flexibility.
Static memory offers flexibility in programming and at the same time increases
area usage per programmable switches compared to ROMs. As also [77] men-
tioned, this was a key issue in delaying the introduction of commercial SRAM-
based devices till the cost per transistor was sufficiently lowered at the mid of
1980’s.

Xilinx was the first company which introduced the modern era FPGAs [77]. The
structure of modern FPGAs includes an array of Configurable Logic Blocks, that
initially go back to the first FPGAs. These contained 64 logic blocks and 58 inputs
and outputs [77][74].

After that, FPGAs have grown enormously in complexity with every generation.
Modern Xilinx FPGAs include more than millions of logic blocks, huge number
of inputs and outputs in addition to a large number of specified blocks which
makes SOC possible. This significant improvement in the capabilities of FPGAs
includes the massive architectural changes.

2.3 State of the Art FPGA technologies

Different programming technologies have been introduced for FPGAs. These
technologies primarily rely on controlling the programmable switches which are
used in FPGAs. Different approaches historically include EPROM [47], EEPROM
[51], flash [57], static RAM [44], and antifuses [25]. Among them, only the flash,
static RAM and antifuse approaches are still used in modern technologies [77].
Due to its features, this work focuses primarily on SRAM-based FPGAs. This
section considers current programming technologies in oder to provide a more
understanding of the advantages and disadvantages of SRAM-based program-
ming.

2.3.1 SRAM-based FPGAs

SRAM programming technology uses static memory cells or SRAM cells for pro-
gramming. This technology has been widely used in devices which are made by
Xilinx[9], Lattice [6], and Altera[4]. In SRAM-based devices, static memory cells,
such as the one shown in Figure 2.4, provide configurability for FPGAs. SRAM
cells are used in interconnection or implementing logic functions. In intercon-
nects, SRAM cells are used to select lines to multiplexers in order to connect
logic components in an appropriate way. In order to implement logic functions,
SRAM-based FPGAs use Look Up Tables(LUTs). Figure 2.6(a) and Figure 2.6(b)
illustrate the structure of SRAM cells in MUX.
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SRAM-based FPGAs are widely used in different applications due to their repro-
grammability. SRAM bits can be configured by user defined configurations on
power up. This can be done an indefinite number of times. Unlike other pro-
gramming technologies, SRAM-based cells use the standard CMOS processing
technology. As a result, the latest available CMOS technology can also be applied
to SRAM-based FPGAs and, therefore, benefit from the increased integration, the
higher speeds and the lower dynamic power consumption.

The configuration memory controls the logic implemented by the FPGA device
as well as the interconnect between logic functions in routing. Configuration is
done and defines arrangement of pre-existing logic, via programmable switches,
which includes the function of system in logic clusters, the connectivity as the
routing and placement of the design on FPGA. Configuration on FPGA can be
done either Antifuse, which is one time Programmable, Flash-based or SRAM-
based, which are re-programmable. Figure 2.5 shows structure of configuration
in FPGAs.
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However, there are some characteristics which are a challenge for SRAM-based
technologies. [77] mentions some of obstacles of SRAM-based FPGAs. One of
the most important drawbacks is the volatility. When an SRAM-based device
is powered down, it needs the use of external devices to store the configuration
permanently. Recently, flash memories in some devices are used to load SRAMs
upon power up. This means that there are a few devices that have solved this
problem, but the need for flash memory make them inefficient [77].

The other issue is the size of SRAM cells and interconnection signals respec-
tively. SRAM cells require 5-6 transistors and the programming elements which
are used for interconnecting signals need at least one transistor.

Configuration informations are loaded into the device at power up. Since the
configuration information is not encrypted (or secured) it can easily be used by
the other systems.

Finally, the use of pass transistors in implementing multiplexers can make some
problems due to the electrical properties of pass transistors. They have a sig-
nificant on-resistance and an appreciable capacitive load. Consequently, smaller
device geometries make this issue more critical.
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2.3.2 Antifuse-based FPGAs

Programmable switches in FPGAs can be implemented in Antifusebased man-
ner. As previously mentioned Antifusebased FPGAs are one time programmable.
This is depicted in Figure 2.7. There is a highly resistive amorphous semiconduc-
tive layer in Antifused-based switches which is irreversibly switchable to a low
resistive state. The programming method in antifuse is done by growing a link
to make a connection instead of passing current through a metal connection and
breaking it.

Dielectric antifuses are composed of an oxide nitride which is positioned be-
tween N+ diffusion and polysilicon. [77][58]. The application of high voltage
breaks down the dielectric and form a conductive link. This link has a resistance
between 100 and 600 ohms [77][34][56]. This dielectric approach has been largely
replaced by metal-to-metal-based antifuses. These antifuses are formed by sand-
wiching an insulating material such as amorphous silicon [54] or silicon oxide
[36] between two metal layers. Again, a high voltage breaks down the antifuse
and causes the fuse to conduct.

Consequently, antifuse technology is suitable to be used in creating programmable
interconnects. However, it require large programming transistors on the device.
Because this FPGAs can not be reprogrammed, design changes are not possi-
ble and, configuration retains after power off hence making their configuration
immune against single Event Effects [69][109][67].

One of the most significant advantages of anti fuse programming technology is
that it is not area hungry. One of the benefits of metal-to-metal antifuse is that
the on resistance can be between 20 and 100 ohms[111]. As a result, with metal
to metal antifused no silicon area is required for connection. This decreases the
area overhead of programmability. The metal-to-metal approach used recently
in FPGAs is from Actel[2] and Quick Logic[8].

Although the metal-to-metal approach decreases the area usage in antifused pro-
gramming, the need for large programming transistors, almost offsets it. Large
current needs to program antifuse and large transistor must be used to be able
to supply it. Since clever programming architectures are used for fuses, the total
area can be significantly decreased. Another advantage of antifused-based tech-
nologies is lower residence and parasitic capacitances in comparison to other
programming technologies like SRAM-baseds. Therefore, more switches can be
made in antifused devices.

Because of the one time programmability, the volatility is not a problem for an-
tifused technologies. Device operates immediately upon power up, and it does
not require an additional memory to store programming information or config-
uration time. This significantly decreases the overhead and especially the costs.
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Figure 2.7: Antifuse vs. SRAM-based FPGAs

With regard to security, antifused-based devices show an improvement. Because
they are one time programmable, transmitting the bitstream to the FPGA is done
only one time. This improves the security of the design on the FPGA while the
programming informations are not available for further uses. Current devices
use a security mode, wherein they disable any access to the programming inter-
face as soon as the device is programmed[77].

Almost all advantages of SRAM-based technologies are included in disadvan-
tages or inabilities of antifused-based ones. In particular, the antifused-based
FPGAs need nonstandard CMOS processes. It means that, they are unable to
use the latest technologies which are available for CMOS. Therefore, they need a
particular manufacturing process in comparison to SRAM-based FPGAs.

Furthermore, the mechanism of programming includes significant changes of
the material in the fuses. This means scaling in new IC fabrication processes is a
challenge and costable.

One of the biggest limitations in antifused-based technologies, which is also the
main property, is their one time programmability. This makes them inflexible
for any design change. For example, they are especially unsuitable for applica-
tions where configuration changes are required. Unlike alternative technologies,
in-system programming is not possible with these devices. Instead, special pro-
grammers must be used to program a device before it is mounted on a final
product.

Finally, the one-time programmability of antifuses makes it impossible for man-
ufacturing tests to detect all possible faults. Some faults will only be uncovered
after programming and, therefore, the yield after programming will be less than
the 100% yield of SRAM or floating-gate devices. Some current devices are only
expected to be programmed successfully with 90% confidence[77].
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Figure 2.8: A ProASIC3 from ACTEL family which is a flash-based FPGA.
Switches use floating gates [3].

2.3.3 Flash-based FPGAs

One alternative to SRAM-based technology, which eliminates some of their ob-
stacles, is the use of floating gate programming technologies that inject charge
onto a gate that floats above the transistor. This approach is used in flash or EEP-
ROM memory cells. These devices, as described, do not lose information when
they are powered down.

In spite of this ability, EEPROM memory cells commonly have been used to im-
plement wired-AND functions in PLDs instead of implementing switches in FP-
GAs. [104].

However, as also [77] mentions, except for very low-capacity devices [5], such
approaches are no longer commonly used. The most important reseal is the static
power dissipation. In addition to it, in modern IC fabrication processes, the use
of floating gate cells directly as switches has become possible.

Flash memory cells, in particular, are now used because of their improvements
in area efficiency. Figure 2.8 illustrates Actel’s ProAsic device which uses flash
based technology for programming. In this device, larger transistors are used
in programming switches and small transistors are used to program the floating
gates. When the device is powered off, the injection charge will remain. When
erasing the device, the switching transistors(larger one) are used [3].

Flash based programming technology offers several unique advantages. The
most important one is non-volatility. In addition, like antifused-based technolo-
gies, these devices are free from any kind of external memories to store the pro-
gramming information. This increases security, as well.

As mentioned, SRAM-based devices need to wait at power up for loading the
configuration data. In spite of it, the flash-based devices function immediately
after power up. In size issue, SRAM-baseds need six transistors to implement
the programming storages. However, programming circuitry, which is needed to
program the cell (for example high/low voltage buffers) is also included in area
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overhead. Flash-based technologies have less than SRAM-baseds area overhead
[77].

In comparison to antifuses, an alternative non-volatile programming technology,
flash-based FPGAs are reconfigurable and are able to be programmed more than
one time without being removed from a circuit board.

In order to control the switching transistors with floating gates, the source-drain
voltage must remain sufficiently low to prevent charge injection into the floating
gate [85]. This adds some design complexities to the system. However, this issue
may be solved in the near future by newer processes which require lower voltage
levels.

Flash-based devices cannot be reprogrammed an infinite number of times. This
seems to be a significant disadvantage. Charge buildup in the oxide eventu-
ally prevents a flash-based device from being properly erased and programmed.
Current devices such as the Actel ProASIC3 are only rated for 500 programming
cycles [77]. However for most uses of FPGAs, this programming count is suf-
ficient. In many cases, (but not our case in space applications) FPGAs are pro-
grammed for only one use.

Another significant disadvantage of flash devices, like antifused-based ones, is
their need for a non-standard CMOS process. This was described in detail for
antifused-baseds and can be applied also to flash-based technologies.

Also, like the static memory-based technology, because of using the transistor
based switches, this programming technology suffers from high resistance and
capacitance.

One trend, which is recently taken into account, is the use of flash storage in com-
bination with SRAM programming technology [79]. In these devices from Altera,
Xilinx and Lattice, on-chip flash memory is used to provide non-volatile storage
while SRAM cells are still used to control the programmable elements in the de-
sign. This addresses the problems associated with the volatility of pure-SRAM
approaches, such as the cost of additional storage devices or the possibility of
configuration data interception, while maintaining the infinite reconfigurability
of SRAM-based devices.

It is important to recognize that, since the programming technology is still based
on SRAM cells, the devices are no different from pure-SRAM-based devices from
an FPGA architecture standpoint. However, the incorporation of flash mem-
ory generally means that the processing technology will not be as advanced as
pure-SRAM devices. Additionally, the devices incur more area overhead than
pure-SRAM devices since both flash and SRAM bits are required for every pro-
grammable element. Figure 2.8 shows a Flash-Based FPGA(ProASIC3) [3] from
ACTEL family in simplified and detail form.
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Table 2.1: Summary of State of the Art Technologies

Technology Reprogrammable Volatile Technology
Antifuse-based no no non Standard CMOS Tech
SRAM-based yes (in circuit) yes CMOS Tech
Flash-based yes but finite no non Standard CMOS Tech

2.4 Field of Applications

In this section a non exhaustive list of fields where the use of FPGAs can be
a great interest is presented. Because FPGAs are still in growing edge, several
different fields are likely to be developed in the near future, which were not
conceivable in the past [26].

In comparison to the standard cell ASICs, FPGAs are more power, area, and
performance hungry. [77] mentions 20 to 35 times more area usage and 3 to
4 time slower in speed performance is compare to ASICs. These disadvantages
arise largely from FPGA’s programmable routing fabric which trades area, speed,
and power in return for instant fabrication.

Despite of these disadvantages, the trade off is getting flexibility. They are nat-
urally more flexible and can be used in a wide area of applications due to their
flexibility. FPGAs present a compelling alternative for digital system implemen-
tation as they have a low volume cost for small to mid volumes. Producing a
design on ASIC consists of several complex processes which means times and
money. FPGAs provide the only economical access to the scalability and perfor-
mance provided by Moore’s law.

Rapid Prototyping is certainly one of the most important fields of application of
FPGAs. The development of ASIC that can be seen as physical implementation
is a process consisting of several steps, from the specification down to the layout
of the chip and final production. FPGAs are useful here, because they can be
used several times to implement different versions of the final product checking
it to be in an error free state.

In addition, for complex applications, like security applications, FPGAs are use-
ful in developing a fast system. FPGAs also provide a good fundamental for the
realization of adaptive systems, because they allow the system to quickly react
to changes by adopting the optimal behavior for a given runtime scenario.

In-system customization can be used to upgrade systems that are deployed into
non-accessible or very difficult access locations. FPGAs are the most suitable
devices in the case, because they can be modified remotely. This in addition to
the above features makes FPGAs specially good for space kind applications.
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Figure 2.9: FPGAs are expected to be widely used in Space Applications.

2.4.1 FPGA technologies in Space

FPGA devices have been used in space applications for more than a decade. The
capacity and performance of FPGAs, in addition to their reprogramming flexi-
bility, increases use of them for space applications steadily. Figure 2.9 shows a
satellite in orbit which is covered by FPGAs from Xilinx.

In FPGAs, the capacity has grown up from tens of thousands to millions logic
gates. The usage of FPGAs has transfered from simple glue logic to complete
subsystem platforms that combine several real time system functions on a single
chip, even including microprocessors and memories [26].

Not only in space, but also, in any other type of critical applications, FPGAs
usage is steadily increasing and are replacing ASICs on a regular basis.

The potential of using reprogrammable FPGAs in space has been presented in
[47] and is repeated hereafter. FPGAs Reconfigurable computing technology is
still a new field of study for space applications.

Space environment is different from terrestrial systems. In terrestrial systems,
radiation can cause bit flips in memory elements and as a result ionization fail-
ure in semiconductors. This kind of hardware faults cannot be debugged and
repaired. This means that terrestrial systems need a high-reliability manufacture
in order to avoid such cases.

FPGAs on the other hand, eliminate this need by reconfigurability. The use of
run-time reconfiguration in space will allow to change on-board hardware by re-
placing faulty/outdated designs in a space mission. They can be used in tasks
that are formerly handled at the board levels by separated, dedicated parts. FP-
GAs are sufficient to implement a system on chip. This eliminates the need for
extra components phase lock loops, voltage translation buffers, and memory
when on-chip memory is sufficient. This high level of integration and flexibil-
ity extremely increases the cost and other system requirements in critical space
applications [55].
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Figure 2.10: Design Steps in FPGAs and ASIC. FPGAs allow late design changes.

2.4.2 ASICs vs. FPGAs

ASICs are customized integrated circuits designed to perform a dedicated func-
tion. They can be designed using three main techniques: Standard Cells, Gate
Arrays, and Full Custom. Standard Cell employs third party tools and utilizes
a library of prefabricated building blocks (the so called standard cells) to design
the integrated circuit. Once the physical placement of all standard cells is done,
the designer must perform the circuit routing therefore, electrically connecting
all the standard cells. At the end, lithographic layers are produced, which are
then used to fabricate the chip die.

Cost of ASIC design and developing is high [76]. Normally Space Applications
are single usage products. ASICs are targeting big volumes to make it lower
cost. By Unique application staffs this big volume in production is not possible.
Therefore the cost is even more in general. On the other hand by physical dam-
ages, they must be replaced with new ones. This means a big overhead on space
missions.

In contrast, Gate Array design does not employ individual cells. Instead of that,
several pre-designed lithographic layers are employed, each of them consisting
of transistors, gates and other devices. In this technique, all the appropriate el-
ements must be connected together to obtain the desired circuit functionality.
Alternatively, the Full Custom approach requires all elements of the entire litho-
graphic layers to be designed.

In case of FPGAs it is easier and more flexible to reprogram them in case of
failures in the system. When a damage occurred, the reconfiguration is done
by avoiding the damaged spaces on board or changing the reconfiguration in a
way that the system works properly. Also, usually in space application there is
an extremely vital need of data processing. By using FPGAs which are faster
in data processing, the cost of data transferring into and from space is saved.
Also, the capacity and performance of FPGAs suitable for space flight have been
increasing steadily for more than a decade. As a result FPGAs are a technology
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that will be used in space applications in the coming years. Therefore, FPGA
technologies continue to advance by NASA flight projects as either low-cost or
schedule-effective alternatives to ASICs[107].
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3 Space Applications and Soft
Errors in FPGAs

3.1 FPGAs usage in Space Applications

3.1.1 Radiation Challenge in Space

Radiation effects on semiconductor devices have always been a challenge since
upsets were first experienced and detected in space applications some decades
ago. Therefore, the interest on studying fault tolerance techniques in order to
protect integrated circuits in space environment has increased.

Integrated circuits have a variety of usage in space applications. They can be
a part of digital components, which are used in satellites or spacecraft system.
Digital components are potentially sensitive to radiation and must be protected
and kept operational in space operations. Single event effects, which are known
as soft error, are the main concern in space applications. Soft Errors induced by
radiation, are becoming a more significant challenge since the scales in modern
integrated circuits decreased to nanometers.

3.1.2 Mechanism of Radiation Effects

In order to become familiar with different radiation effects, some facts about the
solar system are needed. The sun in the center of the solar system is a star which
is a hot ball of glowing gases [10].

At the core, its temperature is about 15 milion degrees Celsius, which is sufficient
for sustaining nuclear fusions. Energy from the core takes about 179,000 years to
get from the core to the surface. The temperature drops below 2 milion degrees
Celsius in the surface [10]. It is still high enough. The particles gain sufficient
energy and are able to escape the gravity force of the sun. They travel to the
outer space and reach the Earth’s Magnetosphere. Solar winds are composed of
protons, electrons, alphas ions, and heavy ions.

19



3 Space Applications and Soft Errors in FPGAs

Figure 3.1: Van Allen Belt

The Earth’s magnetic field or geomagnetic field extends from Earth’s inner core
to the point that meets the solar wind. The Earth is largely protected from the
solar wind by its magnetic field which is always in interaction with the solar
wind. This region is not uniformly distributed. On the side, which is facing to
the Sun, it is compressed, while on the other side it is elongated as is shown in
Figure 3.1.

The Earth’s magnetic field is like a belt around the inner core. It was firstly
predicted by James Van Allen, American astrophysicist and is called Van Allen
Belt. The Van Allen Belt, as shown in Figure 3.1, consists of two regions, which
trap particles in advance. The inner belt contains protons while it is separated by
a region of reduced particle flux from the outer electron belt [46].

Outside the Earth’s atmosphere, objects are always threatened by energetic par-
ticles in the form of solar winds. On the ground, electronic systems are protected
from most of the particles by the atmosphere covered by the Van Allen belt [17].
However, particles can provoke serious damage to electronic crafts, which are
traversing orbit and outside of the belt.

3.2 The SEE Problem

Radiation effects on on-board electronics are roughly divided into two categories:
total ionizing dose (TID) and single event effects (SEEs).

Total ionizing dose (TID) is a long term damage effect on the device. It is cu-
mulative and starts effecting the device when it is exposed to ionizing radiation.
TIDs define the total sum of radiation hitting the target component in duration.
It results in threshold shifts, increased device leakages, timing changes, and de-
creased functionality.
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Gamma Rays primarily contribute to TID accumulated over months and years in
orbit. Accelerated TID testing can be done by using a Cobalt source. The cumu-
lative radiation effects from Cobalt are the most similar one to those experienced
in space [61].

Device shielding can reduce the TID, but several factors must be studied and
considered. Shielding is usually used to protect the device against TIDs. But pa-
rameters like shield geometry, material composition, and shield analyzing tech-
niques must be taken into account in predicting shield effectiveness. For exam-
ple, if aluminum shielding is used, electrons are effectively depressed even in
very high energies, but the same aluminum shielding can be ineffective for the
high energy protons.

Single event effects are radiation effects which occur when a single incident ion-
izing particle deposits energy and this energy is enough to affect a device [10].
Unlike TID degradation, SEEs are not a long term process and due to this the
rates are not evaluated in terms of a time or dose until failure.

SEEs can occur in many forms. They can occur either on ground level or in space.
The interaction of cosmic rays with Nitrogen and Oxygen in atmosphere can
produce neutrons and other kind of particles called secondary particles. These
particles, as well as the ground level generated particles may change the voltage
or current in part of a circuit while passing through it.

Depending on the amount of deposited energy different effects occur. The suc-
cess of any device in a critical space mission depends on the functional impact of
SEE in addition to the probability of the occurrence based on the system structure
and mission orbit. These issues are further used to equip a system [10].

3.2.1 Types of Single Event Effects

Single Event Upsets (SEUs) are soft errors, and non-destructive. They normally
appear as transient pulses in logic or support circuitry, or as bit flips in memory
cells or registers.

Several types of hard errors, potentially destructive, can appear: Single Event
Transient (SET) which are transient upsets in logic and potential SEUs, Single
Event Latchup (SEL), single event burnout (SEB), and single event gate rupture
(SEGR) result in a high operating current, above device specifications, and must
be cleared by a power reset.

Other hard errors include Burnout of power MOSFETS, Gate Rupture, frozen
bits, and noise in Charge Coupled Devices (CCDs) [99][10].

SEUs and SETs are the main concern on SRAM-based FPGAs [28] [99] [81]. In
the following, they are briefly described:
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1. Single Event Upsets: Single Event Upsets (SEUs) are a kind of soft errors
caused by the transient signal induced by a single energy particle strike.
When a particle causes a charge disturbance and it is large enough to re-
verse or flip the data state of a memory cell, register, latch, or flipflop, an
SEU occurs [106].

2. Single Event Transients: A Single Event Transient (SET) is a transient pulse
in the logic path of a device. Similar to SEU, it is induced by a charge
deposition of a single ionizing particle. An SET can potentially cause an
SEU as it can be propagated along the logical path. When a flipflop in
the path latches it, an SEU occurs. This makes them very important in
reliability evaluation approaches.

A single particle strike may also be an SEU which affects multiple memory cells
or results in multiple bit flipping. In this case it is called MBU. This work focuses
on SEUs, SETs, and MBUs on SRAM-based FPGAs.

3.3 SEE characterization

In order to express the SEU characterization some parameter definitions are needed.
In the following these definitions are gathered:

1. Linear Energy Transfer (LET) is a measure of the energy transferred to the
device per unit length as an ionizing particle travels through a material. In
general LET is defined as follow:

LET =
1
ρ

dE
dx

(3.1)

Which means, the Energy per dx unit of a material with density of ρ. The
unit of measurement arise from a combination of the energy lost by the
particle to the material per unit path length MeV/cm and the density of
material which is ρ = mg/cm2. LET unit is defined as division of these
units. Therefore, the common unit is MeV cm2

mg .

2. LET threshold (LETTH) is the minimum LET to cause an effect. The JEDEC
recommended definition is the first effect when the particle influence =
107ion/cm2 [45].
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Figure 3.2: LET vs. the cross section of SEU based on the Weibull formula mea-
sured in two frequency domains. LET Threshold, is the minimum
amount of deposited energy likely to induce an upset. Under 20 MeV,
components are generally not SEU sensitive to incident protons. Be-
yond 300 MeV, the cross-sections generally reach a saturation value.
[45]

3. Cross section (σ) characterizes the number of upsets, which occur based
on the number of particles the device is exposed to. It is the device SEE
response to ionizing radiation. For an experimental test for a specific LET,
σ = #errors/(ionin f luence). The units for cross section are cm2 per device
or per bit.

3.3.1 SEUs vs LETs

The influence of radiation is measured by cross section of every SEU on the de-
vice. Several analysis and experiments have been done in order to characterize
it. The results show that, the σSEU , has an exponential relation with LET. [125]
has done some experiments on Proton strikes on Xilinx FPGAs, and the bit cross
section versus the LET is as Figure 3.3.

[53], [84] and [97] used Weibull formula based on the Weibull Distribution [124]
and determined the length from heavy ion upset cross section versus LET in
general. A Weibull distribution is a mathematical description of the failure be-
havior in a population of identical components. This distribution can be used as
a reasonable model in order to describe device failures due to single events. The
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Figure 3.3: Static heavy ion bit upset cross-section vs. LET for Xilinx Virtex
XQVR300 [49]

Weibull distribution defines the cross section versus LET curve. It is a function
with four parameters (Equation 3.2).

σ (L) = σsat

[
1 − exp (− (L − L0) /W)S

]
(3.2)

In Equation 3.2, σsat is the Asymptotic Saturation Cross section, L0 is the absolute
LET Threshold, W is the statistical width, and s is the statistical shape. Figure 3.2
illustrates the relationship of energy transfer and the cross section. LET Thresh-
old mention the point where errors are first observed on set and LET saturation
is the point where errors stop statistically increasing with LET.

3.4 SEEs in FPGAs

Since the transistor feature sizes have scaled down, the critical charges for SEEs
in FPGAs scaled down as well. In order to analyze SEEs on FPGAs, it is necessary
to clarify where they can occur in the device first. Every device has different
error responses. In order to cope with the error, it is needed to understand the
differences and design appropriately.

The upsets experienced by FPGAs fall into three main categories based on the
effect of event in the system.
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Figure 3.4: A Bit Flip in LUT or in Switch Matrix configuration can change the
logic or the routing path and accordingly effect the whole design.

1. resulting in bit flipping in configuration bit stream.

2. affecting user logics.

3. affecting hidden logic or clock tree.

Knowing these categories, these can also be used for SEU characterization and
rate predictions. In the following each category of SEU susceptibilities is shortly
described.

3.4.1 Configuration bit stream

As described in the previous chapter, in SRAM-based FPGAs, the memory in
configured to control the logic implemented by the FPGA device and the routing.

Antifuse-based configurations are SEU immune and SRAM-based ones are SEU
susceptible and therefore in Antifuse-based configuration, the SEU error genera-
tion modeling is free of the first term (configuration memory bit flipping).

SRAM-based FPGAs, in contrary, use a large array of SRAM memory cells to
store the hardware configuration of the device. Typical SRAM cells, and thus the
configuration of the FPGA, are especially susceptible to SEUs. [99].
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Figure 3.5: User Logic Upset. Upsets can change the status of a transistor in ei-
ther LUT or Switch matrix and effect the whole design as a result.

Figure 3.4 depicts how an upset can flip a bit in a look up table(LUT) in the FPGA
and change the function which is implemented on it. Bit flipping can also cause
an upset in the routing matrix which controls the connection between the logic
blocks. Such upsets can result in disconnecting routes, creating new routes or
bridging two routes. In addition to these effects, upsets in clocking logic (clock
tree) can also result in drastic situations and effectively turn off the entire FPGA
design [99].

3.4.2 User logic

The user logic includes all user defined logics including flipfops, RAMs, func-
tional logics and the like. The user logic forms the design which is mapped on
an FPGA. Both sequential and combinational logic are likely to be affected by
SEUs and SETs.

SETs can affect the combinational logics and also squential logic if a glitch is
captured. This depends on the design frequency. SEUs change the state of the
sequential logic until next cycle of enabled input. Next state capture can be fre-
quency dependent.

In sequential logics, flipflops are connected through a clock tree. If the clock fre-
quency is defined as fs, then the clock period will be τclk. Flipflops are the major
points of synchronization in sequential circuits in a design. Combinational logics
are located between flipflops. Delays come from combinational logics between
flipflops (τdly). It is computed from start point flipflops to endpoint flipflops in
general.
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Figure 3.6: Delay on combinatorial logic is significant in propagating or not prop-
agating the SETs on the end point flipflops.

When τdly is less than τclk, the system works properly. When an SET occurs in
the logic between start and end point flipflops, it takes till τclk − τdly time to be
captured in the endpoint flipflops. Some of SETs are ignorable due to this delay
and will not result in an SEU in corresponding flipflop (Figure 3.6) [23].

SET generation occurs when an upset causes an OFF gate turning ON. There
is a push-pull between the ON gate and the OFF one which collects charge.
Pgen, which is the probability of SET generation, depends on amount of collected
charge, the strength of gate load, the strength of its complimentary ON gate and
the dissipation strength of the process.

In order for the data path SET to become an upset it must propagate and be
captured by its Endpoint flipflop. Pprop (the probability of SET propagation) only
pertains to capacitance of the path, like combinational logic and routing in the
path. Small SETs or the paths which have high capacitance have low Pprop. Pprop
contributes to the non linearity of P( f s)SET→SEU because of the variation in the
path capacitance [23].

Plogic is the probability that a SET can logically propagate through a cone of logic.
Based on the structure of the combinational logic gates and their potential mask-
ing. In Figure 3.7 for example, the AND gate reduces the probability that an SET
will logically propagate.
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Figure 3.7: Logic error masking can be done based on the behavior of logic gates.

In addition to the above probabilities, the transient width (τwidth) is a fraction of
clock period (τclk). Therefore, the probability of capturing an SET at endpoint
flipflop is proportional to the width of the transient width and clock width:

P( f s)SET→SEU ∝
τwidth
τclk

[10] (3.3)

The general data path model and combinational logic SETs can be shown as fol-
lows [10]:

#CombinationalCells

∑
i=1

P( f s)SET→SEU(i) ∝
#CombinationalCells

∑
i=1

Pgen(i)Pprop(i)Plogic(i)
τwidth
τclk

(3.4)

This means that, transient portion of σSEU has a direct relation to the number of
combinational logic gates and the operational frequency.

In addition to the SETs which affect combinational logic and may be propagated
to flipflops to generate SEUs, SEUs can also occur directly in flipflops and change
the state of the system. Therefore, for each flipflop, the probability of a failure
by SEUs is defined as a sum of the probability of SETs which are propagated and
make an SEU in a flipflop and the probability of SEUs which directly occur in a
flipflop. P(fs) f unctionallogic for each flipflop can be expressed as:

∃Flip f lop
(

∑
#StartpointFFs
j=1 P( f s)FFSEU→SEU(j) + ∑#CombinationalCells

i=1 P( f s)SET→SEU(i)

)

However, the SEUs as a result of SETs are more probable in a design based on
experiments in [48].
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Table 3.1: Orbit average static SEU rates in different durations [94].

3.4.3 SEE Rates in FPGA

Different particles in space have different speed and energy. The energy ranges
from 106 eV up to extreme 1020 eV. Therefore, real estimation of SEE rates at
ground level is impossible or very expensive. However, in smaller scales, some
experiment are done for Virtex family FPGAs in order to estimate the rate of
SEUs or MBUs [101][100]. Experiments show that, the more powerful the parti-
cle is, the more likely are Multiple Bit Upsets (MBUs). Such particles can even
cause 3 or 4 Bit Upsets in comparison to Single Bit Upsets depending on MeV of
particle.

Measurements are made to understand the frequency of effects of radiations.
However, it depends on the type and amount of energy of a particle and the
duration of its effect on FPGAs. As a result for proton radiations of 63.3 MeV
for four different Virtex FPGAs, more than 94 percents of the effects have been
single event upsets and less than 0.01 percents 3 or 4 multiple bit upsets.

[94] focuses on four harsh orbits: geosynchronous (GEO), global positioning sys-
tem (GPS), Molniya, and Polar. It includes a low Earth orbit (LEO) as its reference
point and uses a Xilinx Virtex-4 XQR4VSX55 FPGA to measure the SEU rates in
different situations. The average SEU rate for each orbit and solar conditions is
shown in Table 3.1.

It is important to keep in mind that the test radiation environments include par-
ticles with much less energy than what can be seen in orbit environments or in
space. Table 3.2 also shows the percentage of resources which are effected in the
existence of previous proton radiation. As can be seen, CLBs and IOBs are the
most effected ones.
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Table 3.2: Frequency of Upset Events and percent of total events induced by pro-
ton radiation by resource type for four Xilinx FPGAs [101].

Table 3.3: Frequency of Single Event Upsets and Multiple ones and percent of
total events induced by proton radiation for four Xilinx FPGAs [101]
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Current results indicate that the focus on SEUs mitigation, especially on logic,
user- and configuration-logic as well, seems to be the correct decision. However,
MBUs, are on the rise in newer Xilinx Virtex Family. They are expected to be
approximately 1%-3% of the upsets induced by 63.3 MeV proton radiations in
these series of experiments. Further study on MBUs will indicate whether these
results will have an impact on fault mitigation schemes. However, in order to
exactly measure the frequency of radiations on device it is needed to clarify, what
kind of particles are there, what strike angle they have and how much energy
every particle has.

Table 3.3 shows the frequency of upset events and percentage of total events
educed by Proton Radiation (63.3 MeV). It shows that the probability of single
event upset is always more than 96 percent in different Virtex FPGAs. As it is
shown, the probability of MBUs in 2 bit forms are much more than 4 bit forms in
different Virtex FPGA families.

In the next chapter, current mitigation techniques are introduced and their ad-
vantages and disadvantages in the existence of SETs and SEUs are presented.
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4 Reducing System Error - Common
Test and Mitigation Techniques

Hardening techniques must be employed to mitigate device radiation effects.
Ionizing radiations may result in SEEs in the configuration memory (SRAM cells)
that may alter the function carried out by the circuit that is implemented on the
FPGA. This includes both, configuration and user logic errors. Several researches
have been done in order to cope with single event effect in FPGAs.

4.1 Mitigation in FPGA

In order to figure out which mitigation strategy is suitable for a design, some
mitigation aspects and goals need to be distinguished.

First of all there is an important difference between error masking and error
correction. When an error is masked, it will not propagate through the design.
When an upset occurs in a part of the circuit, the effect of it remains in the design
and will not be corrected. Error masking can result in error accumulation and
cause the system to go down.

In contrast is error correction. Here, the error is corrected by using a feedback.
Error correction must determine what is right or the correct result to be restored.
For instance, if there is a voting system which decides about the correct value,
this result can be used as feedback and written back to the error. In this way, the
error will be corrected. However, if the voter is not used as feedback, it still elim-
inates error propagations through the circuit but does not correct it. Therefore it
has solely masked the error. To choose the best strategy, an analysis of the circuit
requirements is needed and then a decision about masking or correction has to
be made. Normally a combination of both is used in big designs.

Mitigation techniques can be embedded into the device but normally they are
user inserted. In this case, the user inserts a new mentor component to the sys-
tem to diagnose and mask(correct) the error. These techniques in FPGAs are
divided to two categories: Redundancy based techniques and reconfiguration
based techniques.
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Figure 4.1: Blind scrubbing, which includes periodically reconfiguring the FPGA

One of the most important reasons to use a mitigation technique is its simplicity.
Simple implementation is important because any incorrection in its implementa-
tion may help raising the errors in the design[23]. However, in order to consider
the mitigation strategy some major aspects such as the upset rate and the criti-
cality of the components which are implemented on FPGA must be taken into
accout.

4.2 Reconfiguration based techniques

A countermeasure, which is known as scrubbing, is to write the original config-
uration to the memory periodically hence correcting flipped bits. Scrubbing can
be described as the process of reloading the configuration bitstream, so upsets
in configuration are corrected [24]. Scrubbing restores the desired reconfigura-
tion periodically regardless of any SEU fault on device. It can be done in two
manners: blind and readback [31][68].

4.2.1 Blind Scrubbing

Blind scrubbing is simpler than readback. Here, the scrubbing is done periodi-
cally after a downtime. Due to degrading overall performance which is the result
of periodically stopping the system operation and reconfiguring it, some FPGAs
like Xilinx devices support a model which is called active reconfiguration. This
allows concurrent system operation and in parallel reading/writing of configu-
ration bits.

The frequency of such a process might be determined based on an expected up-
set rate (number of upsets per second) or simply based on the fastest possible
reconfiguration speed for the device (bits per second).
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Figure 4.2: Readback Scrubber checks CRCs and compare them to reconfigure
the FPGA when bitstream is errornous

Faster reconfiguration is desirable since it minimizes the time during which out-
put errors might persist, but continuous configuration scrubbing consumes ad-
ditional power. The minimum scrubbing cycle duration is determined by the
speed of reading/writing configuration bits and the size of bitstream (which de-
pends on the size of the circuit), to be scrubbed. In Figure 4.1, an abstraction of
blind scrubbing is shown.

4.2.2 Readback Scrubbing

In readback scrubbing, there is a detector which only refreshes the configura-
tion memory contents when either sensitive bit upsets or a certain number of
non sensitive upsets are detected. This involves both reading and reloading the
content. More sophisticated scrubbing techniques involve fault isolation to de-
termine which specific portions of the chip require repair. Scrubbing by reading
CRCs is shown in Figure 4.2.

A feature of modern SRAM-based FPGAs is dynamic partial reconfiguration.
Partial reconfiguration allows reconfiguration of a smaller portion of design. In
this way, when a misbehaviour is detected in the design, it is not needed to re-
configure the whole FPGA, but rather the defected part by using partial recon-
figuration [31]. The partial reconfiguration can especially optimize the scrubbing
because in this case scrubbing can be done online while the device is performing
its task[32].
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Figure 4.3: Probability of i upsets per scrub cycle for a Xilinx Virtex 4 FPGA in
solar max condition in GEO with 15 ms scrub period[94]

In general, the frequency of configuration is called scrub rate. It depends on
several issues such as the SEU rate and the other mitigation techniques which
are used.

4.2.3 Failures in Scrub Cycle

[94] computed the probability of i upsets during a single scrub cycle which is
P (Ai) and is modeled with a Poisson distribution as shown in Equation 4.1:

P (Ai) = e−v vi

i!
(4.1)

which v is the average number of SEUs per scrub period and is calculated by
multiplying the orbit average uspset rate, μ, by the scrub period, ts as follows:

v = μ × ts (4.2)

Using the information of Table 3.1, [94] analyzes the P (Ai) for a Xilinx Virtex-4
FPGA as shown in Figure 4.3.

As results show, for critical applications, scrubbing can not be the only method
which is used to cope with failures. Redundancy based techniques which detect,
mask, and correct errors, are also essential in order to cope with high single event
rates. However, a combination of scrubbing and redundancy based techniques
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Figure 4.4: Reliability of a system with NO TMR, TMR, and TMR with scrubbing
[38].

is the ideal strategy to cope with SEUs. [38] and [24] consider this issue.

However, as in Figure 4.4 can be seen, even Triple Modular Redundancy (TMR)
without scrubbing can not improve the reliability of the system. Redundancy
based techniques, are the focus of this work.

4.3 Redundancy based techniques

Hardware redundancy techniques need additional hardware components for
masking the presence of SEUs or correcting them [82]. In the case of FPGAs,
fault detection and masking can be achieved by triplicating the circuit which is
implemented on FPGA [33][80] [89].

Triple Modular Redundancy (TMR) is a well known fault tolerant technique for
tolerating against the errors in integrated circuits. Traditional definition of TMR
mentions that, the TMR scheme uses three identical logic blocks performing the
same task. The corresponding outputs are compared through majority voters.
The simple scheme is shown in Figure 4.5.
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Figure 4.5: Triple Module Redundancy with majority vote

Implementing TMR to prevent the effects of SEUs in technologies such as ASICs
is generally limited to protecting only the memory elements since combinational
logic and interconnections are less sensitive to SEUs. When the configuration
memory of FPGAs is considered, the TMR implementation is different than ASICs
since a modification in the configuration memory may affect every FPGA’s re-
sources including combinational and sequential resources like is shown in Fig-
ure 4.6. This means that, the whole design can be affected by upsets and in the
simplest form, three copies of the whole circuit, including I/O logic, must be
implemented to harden it against upsets [123].

Redundancy based and reconfiguration based techniques can also work together
using dynamic partial reconfiguration. For example in a TMR design, if one of
the copies is affected by an SEU, one solution is to dynamically reconfigure this
part. Normally, if errors accumulate in TMR, the whole design must be recon-
figured which is a big overhead. However, by using dynamic partial reconfig-
uration, the affected copy will be reconfigured while the other copies are still
running [19][96].

Single voting is a single point of failure while an SEU affects it [33]. If the corre-
sponding SEU hits the voter, then TMR might not function anymore. Due to this
fact, normally TMR is implemented by triplicating the voters.

TMR, has been developed and improved through years of research. For ground
based complex systems, TMR might be practical while it corrects single failures.
If it is assumed that errors upon configuration or user logic functions can occur
one at a time, then TMR is able to mask them very well and prevent any corrup-
tion at the output.

It is necessary to notice that, in high upset rates, if there is a certain probability for
upset for one of the copies, by triplication, the probability will be also triplicated.
It means that, in high upset rates, redundancy will not necessarily result in more
reliability, if it is not accurately selected.
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Figure 4.6: Triple Module Redundancy abstraction in FPGAs. Three copies of a
design in addition with the voter are mapped on FPGA

For example, in space, upset rates are high and there is more possibility for mul-
tiple errors. If the conventional TMR is selected as the mitigation technique, it
might result in corruption. If two upsets occur simultaneously in two domains
of the same triplicated logic, the majority vote would choose the corrupted result
instead of the correct one. In addition, if one copy goes down, the masking capa-
bility of the voter is lost. The way to cope with this is that, the device which goes
down must be corrected before any other upset can occur. However, it might not
be possible in critical applications [23].

One of the major disadvantages of TMR in high upset rates is that, the whole
design is triplicated and then a voter decides about the correct output. In this
way, there is no internal accessibility to the design. If one error occurs in one of
the copies, the copy will go down. If more than one error occurs, also the copy
will go down. There is no difference between one or more errors, because there
is no accessibility to the inside.

An attractive alternative is to localize the TMR in the design. In this way, every
part of the design will be locally TMRed and voted. This results in local error
masking and improves the reliability in case of more errors. In this work, this
is generally named Fine Grain TMR or FGTMR. This work focuses on finding
suitable fine grain techniques to make a design high reliable.
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Figure 4.7: Using Fine Grain View to TMR in homogeneous FPGA architecture

4.4 Fine Grain TMR - FGTMR

Although aforementioned TMR redundancy methodology makes some systems
fault tolerant, there are scenarios where these approaches can fail. One of the
obstacles of TMR in its simple form, is its inability to cope with more frequent
upsets in the design. If parts of the combinational logic or one of the flipflops is
affected, the whole copy will go down. In addition, when an error changes the
state of a flipflop, it may remain there till it is rewritten again.

In this work, conventional TMR is named as Coarse Grain TMR (CGTMR). CGTMR
is a view to the fault tolerance issue, which does not cope with the fine grain
parts of the system. In other words, a design is triplicated and when an upset
occurs, it is not clear where exactly in the design is affected. This is specially an
obstacle when more than one copy is affected in CGTMR which is often in case
of multiple SETs.

A coarse grain view to redundancy might not be sufficient for scenarios with
high rates of SETs, SEUs and MBUs. If the system would be able to detect fail-
ures and upsets locally, it can be able to deal with high failure rates. These chal-
lenges lead to a more localized view regarding the application of fault tolerance
methods. It is categorized as Fine Grain TMR or FGTMR.

The principle behind using FGTMR is that, in a homogeneous architecture like
FPGAs, TMR can be applied to the fine grain homogeneous parts of the design
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Figure 4.8: CGTMR and FGTMR comparison. In the second scenario, an MBU
occurs for design X and two parallel SEUs occur for design Y. In both
cases the voter will be unable to decide for the correct value while
more than one design is corrupted. In the third scenario which is
FGTMR, designs can tolerate against more number of upsets.
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instead of the whole design (Figure 4.7). Homogeneous parts of FPGAs include
combinational logic and flipflops which in FGTMR are locally triplicated and
using local voters mask and correct errors.

The level of granularity can be determined based on the requirements of the
system. Failures are either distributed or are focused in a special area of archi-
tecture. In both cases, FGTMR can be useful. In Figure 4.8, CGTMR and FGTMR
are compared in a design.

4.5 Estimating reliability on different TMR

granularities

A simple reliability probability modeling can be used in order to analyse finer
granularities in TMR. Different granularities can be modeled and triplicated to
find a relationship between granularity level and reliability of design. Results
of the analysis show when the granularity level is increased the reliability is im-
proved. Here the reliabilities of two different levels is analyzed and discussed.

4.5.1 Coarse grain level redundancy

Assume that circuit A is triplicated in coarse grain. When a copy is affected
by failures it will perhaps generate the incorrect output and due to this will be
assumed out of order. PA1(0) is defined as the probability of one copy, that has no
failure inside. Assume that a coarse grain A consists of m fine grain components.
The probability of A to work correctly is defined as PA1(0) which means that,
there is 0 failures in m fine grains. It will be defined as pn. The other copies of
application have exact the same probability structure. The probability model in
application level is then given by:

PReliabilityA = PA1 (0)PA2 (0)PA3 (0)
+ (1 − PA1 )(0)PA2 (0)PA3 (0)
+ PA1 (0)(1 − PA2 )(0)PA3 (0)
+ PA1 (0)PA2 (0)(1 − PA3 (0))

(4.3)

which can be briefed as follow:

PReliabilityA = p3n + 3 × (1 − pn)× p2n (4.4)

42



4.5 Estimating reliability on different TMR granularities

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m=10
m=20
m=30
m=40
m=50
m=60
m=70
m=80
m=90
m=100
m=500
m=1000
Coarse Grain

0R

R

Figure 4.9: Reliability of Coarse Grain TMR vs Fine Grain one with different
number of grains(m)

4.5.2 Fine grain level redundancy

The probability model in a fine grain view to redundancy is defined. Assume, p
is the probability of one grain to work. If R0 is defined as the probability of the
whole m fine grains to work, then p will be

√
R0. The probability of TMR in a fine

grain M then will be defined as: RM as R3
M+3× RM (1 − RM) so 3× R2

M − 2× R3
M

and for the whole design with m blocks there will be:

PReliabilityR0,m = (3 × R2/m
0 − 2 × R3/m

0 )m (4.5)

for different m and also in coarse grain case, the experiment has done and the
analytical results are shown in Figure 4.9.

As can be seen in Figure 4.9 the reliability probability of different fine grains is
considerably in better condition than coarse grain one.

43



4 Reducing System Error - Common Test and Mitigation Techniques

CLK

D Q

CLK

D Q
Combinational 

Logic
Combinational 

Logic

Voter

Voter

Local TM
R

CLK

D Q

CLK

D Q

CLK

D Q

CLK

D Q

CLK

D Q

CLK

D Q

Combinational 
Logic

Combinational 
Logic

Figure 4.10: A design after applying Local TMR

4.6 Different Granular Techniques on FPGAs

Different strategies can be selected in order to apply FGTMR to a design on
FPGA. Here different techniques and their disadvantages have been described
in detail.

4.6.1 Local TMR - LTMR

In order to mask and correct SEUs which occur in fliplflops, one solution is to
triplicate flipflops and add voters to the output of these triplicated flipflops. As
Figure 4.10 shows, the datapath remains a singular path and redundancy is done
just in sequential level at the flipflops. The correct voted value can be transferred
back to every flipflop to correct them. This eliminates any error accumulation on
flipflops [23].

This method provides mitigation by redundancy, voting and feedback. What is
not protected here is clock and reset and also transient upsets (SETs) in data path.
Looking at the SEU resources from the previous section (Equation 3.3), the most
dominant factor in LTMR will be SETs which potentially can result in SEUs. The
SEUs which occur directly in flipflops, are masked by majority voting and are
corrected by feedback.
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Figure 4.11: Global TMR

Generally, SETs can occur in parallel in different parts of the data paths. If one of
SETs is propagated in a flipflop, it is possible to be masked by majority voting.
When more SETs are propagated, the voter will be unable to recognize the correct
result. To cope with SETs in the datapath, extra redundancy in the datapath is
needed.

Every time that multiple SETs occurred in the datapath, it can easily affect more
than one copy and make the whole mitigation strategy fail. As previously men-
tioned SETs are potential reasons of SEUs which result in in-correction in the
whole system. MBUs can also effect more than one copy at the same time and
make the fault tolerance strategy fail.

In addition to the disadvantages of voters, all flipflops share the same data path
and every SET in these data paths can affect them. Global routing can also be a
point of upset, which can affect more than one copy at the same time and cause
SEUs. However, more than one SEU in the same time at two different copies of
flipflops is not protectable by LTMR (Figure 4.12).
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Figure 4.12: a SET can result in SEU by affecting a flipflop or propagating
through it and changing its state. In LTMR there is no feedback
to FFs to correct the state and multiple SEUs can result in system
failures.

4.6.2 Global TMR - GTMR

An extension to LTMR results in GTMR. Global TMR or GTMR triplicates all
parts of the design including combinational logic, and flipflops. There are three
different clocks and three different domains. SEUs and SETs are protected by
triplicating and majority voting. This approach has shown in Figure 4.11. Voters
can write the correct output back to the flipflops in order to avoid error accumu-
lation [18].

Although GTMR can tolerate against SETs and SEUs, it is very power and area
hungry in comparison to LTMR.

In addition, in GTMR, not only domain placement is still a problem but clock
skew can also be a concern in GTMR because of three different clock domains. If
clock skew is larger than the feedback, timing correction does not work properly
any more. This cannot be diagnosed due to complexity reasons. It is possible
that the system is not able to mitigate as it was expected.

4.6.3 Distributed TMR - DTMR

A simplification of GTMR is Distributed TMR or DTMR. Here, every thing is
triplicated except for the global clock routing and reset. This protects the data
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Figure 4.13: Distributed TMR

path against SETs. However, it is not clear if two SETs at the same time effect
two copies and propagate in corresponding flipflops, how the voter recognize
the correct output. Figure 4.13 presents DTMR scheme.

In DTMR there are still voter problems like in GTMR and LTMR, but the clock
skew problem is not a matter any more. On the other hand, SEUs in clock rout-
ings can be a problem which is not fixed because clock remains singular.

What is not discussed is that, when complex FPGAs are used, there are generally
elements which can share routing matrix. Strikes on shared routing matrix can
take out two domains and this causes the mitigation to fail.

One idea is to place the elements far from each other. However, this is a trade
off. Because if elements are placed far from each other, they need more nets and
probably make the critical path longer.

In all of the TMR techniques, verifying the TMR by making sure that every node
has been triplicated, always could be a problem. There is no fine grain control
on the system and every susceptibility in finer grains, such as two SETs in one
domain or in two copies of one fine grain, can result in mitigation technique
failure.
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Figure 4.14: Combinatorial Logic in XTMR

4.7 Integrating FGTMR in FPGAs

In FPGAs, TMR insertion is based on homogeneity of reconfigurable architec-
tures, respectively SRAM-based FPGAs. By focusing on architectural design
primitives it is possible to define localized redundant patterns for LUTs and ap-
ply these patterns to any design that is mapped to the FPGA. This allows au-
tomatic introduction of TMR as sole exchange of modules based on a library
approach(e.g. LUT vs. TMR-LUT)(Figure 4.7).

Because all FGTMRs are a small TMR system each of them can deal with one sin-
gle failure without disturbance of the overall system. The probability of multiple
failure occurrence in two redundant fine grain is much less than the coarse grain
one. Hence the fine grain redundancy is expected to be a more tolerant structure
against multiple distributed failures.

4.7.1 Xilinx TMR - XTMR

Xilinx uses the fine grain redundancy in the form of GTMR and has developed
the TMR tool for Virtex FPGA families. In XTMR, the voters are also triplicated,
which consumes more logic but improves the reliability. Outputs are further en-
hanced with a minority voter to prevent drive tights which may damage device
and/or board components. When the inputs and outputs are also triplicated, the
SEEs are eliminated.
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In order to correctly implement the TMR circuit on Virtex architecture, XTMR
groups the data structures in a design into four different types and applies the
FGTMR depending on the type of the structure to avoid in-correction. The four
different types include: Throughput Logics, State Machine Logic, I/O logic and
special features like Block RAMs. Here it is shortly described the way that FGTMR
is applied to each type.

4.7.1.1 TMR in Throughput Logic

In order to implement TMR for throughput Logic, XTMR simply creates three
copies of the basic structure. This includes three versions of inputs and outputs
of throughput logic. However, throughput logics are naturally between various
state machines in a design. XTMR simplify the TMR implementation by creating
hierarchical boundaries around individual state machine logic structures. Figure
4.14 shows the throughput logic between state machines which is simply tripli-
cated. There is no voter at the end of throughput logic because it is constructed
inside the state machines.

The point in throughput Logic triplicating is that, it is not shared between two
state machines. Any soft error can propagate through the next state machine
and will not get caught in any loop. As in [33] is mentioned, the only purpose
for the redundant logic between state machines without voters is to carry the
triple redundant output of the previous state machine without creating a single
point of failure. Not using the voters at the output of redundant logics, eliminate
the interconnection between the three outputs.

4.7.1.2 State Machines

State machines are by their definition state dependent. If they are simply trip-
licated and voted without feedback, it is likely that the voting fails to recognize
the correct value after a while due to SEUs. Feedback will solve this problem.
Figure 4.15 shows the problem of voting in case of one bit Counter and Figure
4.16 the solution using feedback paths after redundant voters.

Therefore, the basic concept of XTMR includes, triplicating every state machine
and combinatorial logic and inserting majority voter at the end of every loop or
feedback path like DTMR. The use of three redundant majority voter eliminates
the single point of failure and provides three logic path inputs and outputs [33].
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4.7.1.3 I/O Logic

The main purpose of XTMR is removing the single point of failures from the de-
sign. This can begin with the FPGAs inputs. Every input failure can be a starting
point for propagating an error in the whole design if it is not detected and recov-
ered. Because of this reason, every input is triplicated and if one input suffers a
failure, it will only affect one redundancy. However, this means a huge amount
of I/O resource usage and must take into account when choosing a device.

As well as inputs, outputs are also triplicated in XTMR. Since there are three
copies of the logic path, if there is just a single path which brings them to output,
this single path can be critically a single point of failure. Every redundant copy
sends its output to a minority voter. The minority voter (Figure 4.18) feeds the
output buffers which are hardwired together on the circuit board.

The structure of minority voters is as follows: Every minority voter has a primary
path and two secondary paths. If the primary path is a part of majority paths(the
other two secondary paths) minority voter allows it to feed the output buffer and
not vice versa. The structure of I/Os in XTMR is presented in Figure 4.17.
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Y

Figure 4.18: Minority Voter Circuit
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4.7.1.4 Special Architecture Features

In XTMR target FPGAs which are the Virtex Family, there are some more special
feature architectures like BRAMs, DLLs, DSP, and etc., which make the design
more efficient and allow higher performance implementations. However, XTMR
is still under development and as [33] mentions, currently this components are
used as a triplicated form in order to be compatible with the other parts of the
design. More details on these special architectures can be found in [33].
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4.7.2 XTMR Failures

[73] did experiments on possible XTMR failures by inserting faults in the bit-
streams. They observed that the main reason of XTMR failures is the undesir-
able shorts occurring due to in-correct routing as a result of bit flipping in the
bitstream or configuration latches. Normally, the bit which is affected makes a
connection between two redundant modules. After this kind of bit flipping both
modules fail.

The basic idea to avoid this, is logic partitioning. In this way, firstly logics are
partitioned and triplicated majority voters are inserted after every stage of min-
imal logic [122]. Due to this method, the faulty connection can no longer lead
to a failure as the voters along this connection will vote out the erroneous stage
output. [122] Has measured different logic partitioning levels and counts the
number of wrong answer for a digital low pass filter as case study. Results show
about 4% of failures in the case of XTMR with minimum partitioning and 0.98%
in case of maximum partitioning in logics.

In another research, fault injection mechanisms are used to realize failures in
XTMR and it proves that XTMR does not provide 100% protection against SEUs.
It is shown that a single SEU is able to produce multiple errors that can lead to
TMR failure.

Consequently an algorithm is used to make the XTMR robust and insensitive
to SEUs. The algorithm is called the Reliability Oriented place and Route Algo-
rithm (RoRA) ([116]) which places and routes designs according to a set of design
rules that make designs insensitive to SEUs. This research focuses on the failures
in routing resource instead of CLBs. However, after applying RoRA, routing fail-
ures are reduced. But the failures in CLBs and logic parts still remains an open
issue [16][117].

This results are a motivation to do research on a fine grain TMR approach which
suitably is applicable on FPGAs Look Up Tables and flipflops. The rest of this
chapter issues this approach.

4.8 New approach on FGTMR

XTMR is specific to the Virtex FPGAs and not the other FPGA families like Altera
SRAM-based FPGAs. Also, it does not offer flexibility in selectively applying it
to the design. Therefore, it is often expensive in terms of resource utilizations,
power consumptions, etc [33][13].

Moreover even by XTMR, the design is still susceptible to SETs. In XTMR, com-
binatorial logic is a black box which is triplicated between two state machines.
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When multiple SETs occurs in the combinatorial logic, they can potentially prop-
agate through and effect the flipflops in the next state machine. When more than
one flipflop is affected, even with feedback, the incorrect result will change their
states and redundancy strategy will fail to recover the design.

To reduce the cost of mitigation, one way is to apply it selectively on a subset
of the design on FPGA. In this work a FGTMR tool is developed which has the
property to cope with some issues on XTMR. The approach of this tool looks to
the design on the FPGA as a fine grain of homogeneous LUTs or LUT-FFs pairs.
Every fine grain is triplicated and voters are added at the outputs. It is actually
the full partitioned XTMR which eliminates affecting the combinatorial logic or
probably flipflops with multiple SETs and SEUs and in addition eliminates pos-
sible errors which effect more than one copies in TMR.

In addition to multiple SETs, the FGTMR can be applied to a subset of the design
which is sensitive to an upset. In [98] some experiments have been conducted to
recognize the sensitive parts of a design. Using this experiments, in every design,
FGTMR can be applied to the most critical sections of a design. This reduces the
area and power usage of the system. By selectively applying mitigation to a de-
sign, one can find the most effective balance between FGTMR cost and reliability
cost in high upset rates [98].

In Figure 4.19, the idea of fine grain TMR on FPGAs is specified. It is imple-
mented to evaluate the area and fault tolerance by more frequent voting in the
fine grain parts of the design without using the XTMR. The FGTMR can be gen-
eralized for all kinds of FPGAs based on their homogeneity issue.

4.8.1 Automatic Insertion of FGTMR in Synthesis Flow

In general, the commonly used design flow for FPGAs consists of three phases
(see Figure 4.20). In the first phase a synthesizer is used to transform the high
level circuit model in hardware description language into a netlist in RTL level.
The RTL level design in the second phase is used by technology mapper to be
transform to a gate level model which is composed of LUTs, FFs, BRAMs and
the like. Finally the physical implementation is achieved by placing and routing
the mapped design onto the FPGA.

For current FPGAs like Virtex-5 devices [63] physical placement is already done
within the mapping step. The RapidSmith XDL parser tool [103] is used, which
convert the NCD form of the map result to an XDL format data structure and
makes it easy to apply different modification algorithms after map. The modi-
fication algorithm is in this case FGTMR which triplicates every LUT and insert
proper voters to the design.

54



4.8 New approach on FGTMR

High Level
Design

Mapping Design 
on FPGA

Place and Route

Physical Design

Synthesis

Synthesis
Flow

in
FPG

A
s

Fine Grain TMR insertion

Figure 4.20: Fine Grain TMR in Synthesis flow.

The abstract framework of the automatic fault tolerance tool is depicted in Figure
4.20. Further modifications in Fine Grain fault tolerance are the focus of this
work. Due to this, more integrations are done in the synthesis flow for fault
tolerance reasons. Fine Grain fault tolerance integrations in synthesis flow are
described and detailed in the following chapters.

If FGTMR covers the whole design and not a part of it, the area usage is more
than in CGTMR because of triplicating every fine grain part. But in comparison
to XTMR, it makes practically no difference while XTMR triplicates the logic as
well the pure logic consumption.

Major difference are the voters which are necessary for each fine grain in FGTMR.
In XTMR the voter size can be usually neglected because it is extremely small
in comparison to the three functional copies. This does not apply to FGTMR
because the voter’s size is similar to each of the three LUT copies, hence resulting
in an overhead of four times (or six times in case of triple voting) of the singular
copy instead of three times.

However the results show that this overhead might be worth its price because
this methodology can recover from a huge variation of failures from SETs to
manufacturing and process variation effects(two completely different resources
of failure).
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Table 4.1: Area overhead comparison between the original circuit, the circuit
which is coarse granular redundant and the circuit which is fine gran-
ular redundant.

Parameters
KCPSM3
(PicoBlaze of Xilinx)

3DES
(Data Encryptor Standard)

Number of BUFGs         
Number of External IOBs   
Number of Slice Registers 
Number used as Flip Flops 
Number of Slice LUTS       
Number of Slice LUT-Flip Flop pairs 

Original CGTMR FGTMR Original CGTMR FGTMR

1
58
76
76

149

1
190
263

153

3
174
228
228
621
633

3
174
228
228
846
858

531
642

263

3
570
789

2163
2100

789

3
570
789
789
5487
5595

Table 4.2: Tolerance of design against LUT defecting. C indicates the number of
LUTs which are defected concentrated in a coarse grain copy of design
while D shows the number distributed broken ones. Fault tolerance
percentage of every method is shown in the last row

KCPSM3
(PicoBlaze of Xilinx)

3DES
(Data Encryptor Standard)

Probable Num of broken LUTs

Original CGTMR FGTMR Original CGTMR FGTMR

153 633 858 642 2100 5595Number of Slice LUT-Flip Flop pairs 
0 153(C) 286(D) 0 642(C) 3145(D)

Fault Tolerance Percentage 0 24 33 0 30 56

4.8.2 Results on Area and Fault Tolerance

The presented methodology has been verified using a Xilinx XC5VLX110T Virtex-
5 FPGA [63]. The automatic approach is applied to different circuits and two
benchmarks are selected to prove the FGTMR and compare the area overheads.
First one is Kcpsm3, PicoBlaze from Xilinx which supports a program up to
length 1024 instructions [65], and the other one is 3DES which is a Data Encryp-
tion Standard cipher algorithm from OpenCores [93].

To check the area overhead of FGTMR with CGTMR and the original design are
compared. Table 4.1 shows the result of original design after Place and Route us-
ing Xilinx ISE Synthesis Tool in comparison with Coarse Grain TMR implemen-
tation of the circuit and Fine Grain TMR which the automatic tool has inserted in
the flow of synthesis tool. As the results show, area overhead is about 2.5 times
for pairs of FF and LUTs for FGTMR.
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To check the fault tolerance percentage of the FGTMR, LUTs are injected with
faults, by changing the initialized data of LUTs after post routing simulation re-
sult(VHDL format). Then the design is simulated after this modification and is
checked for correctness. Although there is an area overhead for FGTMR, Table
4.2 shows that using FGTMR, the circuit is able to tolerate against 33 percent and
56 percent of the faulty pairs of LUTs and FFs in two benchmarks in comparison
with CGTMR which is able against about 30 percent of pairs and just in the cases
that failures are concentrated on one coarse grain copy of design. As described
in the previous sections, the advantage of FGTMR is multiple failures tolerance
which are distributed on the circuit.

Figure 6.21 in Chpater 6 illustrates another possibility for FGTMRs. It is re-
lated to so far as possible placement of fine grain LUTs on the design to tolerate
against the MBUs, which can effect a special place of the FPGA which contains
an amount of slices. If every three redundant LUT be computed to place so far as
possible on the design, at least two of them will scape from MBUs. This is easier
applicable to FGTMR, because in the case of CGTMR there is not any control on
Fine Grains to make the best placement for redundant ones. This issue will be
discussed in more detail in Chapter 6.

4.9 Discussion on fine grain fault tolerance

As mentioned, in order to be able to control and verify each node of the de-
sign, one must have a finer view to the FPGA structure. In this work it is called
Fine Grain fault tolerance. The approach is based on one important feature of
reconfigurable architectures, respectively SRAM-based FPGAs, namely their ho-
mogeneity [92].

Henceforth, the scale for mitigation will be limited to pairs of LUT and FF. By
focusing on architectural design primitives it is possible to define localized re-
dundant patterns for LUTs-FFs and apply these patterns to any design that is
mapped to the FPGA. This approach needs to insert LUTs to the design which
rule as voters. Then based on the TMR technique which is used, it can achieve
more reliability. Every fine grain defined part, can deal with one SEU and much
possible SETs as soon as not more than LUT in every TMR-LUT are the same
time affected, which has a very low probability. In the big scale, the design will
be available for a long time. SETs occur and are masked by local voters and SEUs
are masked and are corrected in case of using feedback at their inputs [91].

However, in FGTMR a lot of fine grain voters are used which effect critical path
strongly. The next step of this work will modify the voting structure of fine grains
in the system, including evaluation on complex designs. The work on the inte-
gration of inherent voting for FPGA primitives, becoming an integral part of the
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framework is done as well. Still an open issue in the implementation are place
and route constraints targeting to solve MBU effects.

However, although fine grain TMR is simple and applicable to every kind of
design, using voters at the output of every fine grain can result in a big area
overhead in the system. Because of this, the techniques which eliminate using
voters may be interested in reliability approaches. Quadded redundancy which
is based on inherent voting is the focus of this work and will be discussed in the
next chapter.
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Redundancy - A New Trend on
Mitigation Techniques

In this chapter, the fundamentals of Quadruplicate Force Decide Redundancy
(QFDR) are described. QFDR is a fault tolerance technique based on inherent
voting. The proposed methodology is an extension of quadded logics which has
been proposed for logic gates. In this work, the quadded logic methodology has
been extended to boolean functions.

As mentioned in the previous section, [99] shows that, by partitioning the TMR
in the design, the system will achieve higher levels of reliability. For example
[99] applies the Markov model [83] to a system that is implemented by TMR
to analyze the reliability. However, in high scales, several voting steps for a
fine grain TMR results in a big overhead in area as described in the last chapter.
This work is focusing on an alternative to fine grain TMR which does not need
voters in the fine grain fault tolerance structure. QFDR is a methodology that
uses the fundamentals of voting without requiring specific voter components in
the output of fine grains.

5.1 Inherent Fault Tolerance in Logics

Inherent fault tolerance was originally defined for logic gates, as some gates the
feature of error masking inherently exists within their boolean function.

In general, NOR, NAND, AND, and OR logic gates are the basic gates with this
feature. In these logics, there always exists a dominant input which defines the
output value. If there is one dominant input value in the inputs, other input
lines will be masked due to the dominant input value which forces the output to
a given value. For example, in a NOR gate with two inputs, as soon as one of the
inputs has the value ’1’, the output is always ’0’ either the other input is ’0’ or
’1’. This means as soon as a correct dominant input exists, the output is correct,
independent of failures in the other lines.
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Figure 5.1: NAND, NOR, AND and OR logics in a combination which is used in
quadded form. Dominant input values are having a deciding rule in
the next level. Two inputs in every gate are duplicated.

If the dominant input value is faulty, the output will be forced to a faulty value
while the other input lines have no control on it. In order to cope with this
problem, two countermeasures can be taken to make the structure fault toler-
ant. Firstly, redundancy can be added to the design for saving the correct output
value for example by duplicating the gates.

The second countermeasure refers to the structure of boolean function of the
gate. If the faulty output value is a weak value and not the dominant value in
the next logic stage (conversion of dominant value), it is automatically ignored
in the next stage by using the duplicated correct and dominant output value. For
example, in NOR logic, ’1’ is the dominant input value and as soon as it appears
in one of the input lines, the output value will be ’0’ which is the conversion of
’1’. This simple feature exists in NOR, NAND, and the combination of AND/OR
logics. Figure 5.1 refers to this feature.

If two duplicated gate’s outputs are used as inputs to the next stage gates, then
the correct dominant output value defines the output of the new stage and in this
way the fault is corrected.
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Figure 5.2: (a) a simple AND(*)/OR(+) logic Network (b)The basic quadruplica-
tion of gates

However, by duplicating the inputs and gates, there are still some scenarios in
which the inherent fault tolerance will fail. When, a dominant input value influ-
ences both gates, the correct output value can not be saved anymore. Because
the structure of masking and correcting is based on duplication, the number of
gates can be evenly grown up. Due to this quadded logics are constructed which
are based on quadruplicating the logic gates.

5.2 Quadded Logics

Quadded Logic (QL) is a redundant logical structure which is based on the pre-
viously described inherent fault tolerance feature in logic gates. It is proved to
be tolerant against all single faults and most multiple ones [120][121]. To intro-
duce the concept of quadded logic for gates, the easiest way is to build it up from
some rather simple principles. The fundamentals as described in [121] include:

1. The logical circuitry is quadruplicated and the inputs are duplicated.

2. Any error can be corrected in the logic just downstream of the fault that
caused it.

3. Correction is accomplished by good signals from the neighbors of the faulty
unit on the same logic level.
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Figure 5.3: Duplicated ouput in the second stage defines the ouput value and
masks the faulty input.
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Figure 5.4: Different connection possibilities between two stages

4. In order to save the correct values, in every stage, two gates in addition
to their inputs and outputs are independent from the other two gates in
quadruplicated form.

These principles form the quadded logic fault tolerance structure. To get the
nature of quadruplication, it is applied to a simple logical network. The original
network in AND/OR gates is shown in Figure 5.2(a). The quadruplicated circuit
is shown in Figure 5.2(b).

According to the first fundamental, the original network is quadruplicated. Four
identical logic networks are fed with four identical inputs. If the inputs are cor-
rect and not faulty, they generate four identical outputs.

When an error occurs, every input line which has bit flipping can fulfill these
two possibilities:
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Figure 5.5: Mechanism of Error Masking in Quadded AND/OR Logic

1. The current value is not a dominant value as input of the gate. In this
case, it will be ignored by the other dominant value and the error will be
inherently masked and not propagated.

2. The current value is a dominant value as input of the gate. In this case, it
will change the output to a wrong value. As described, this wrong value,
due to the function of the gates which were listed, is surely not the domi-
nant input value of the next stage. This means that, this wrong value will
be ignored by the other correct input values from neighbors.

For example, as shown in Figure 5.3, the inputs are duplicated in a NOR gate and
the NOR gate is also quadruplicated. When the original and not faulty value of
inputs is ’1’, the output value will be always ’0’ even when one of them is ’1’
due to bit flipping. When the original value is ’0’, while bit flipping, the value
will be changed to ’0’. However, in the next stage, ’0’ will have a pair from
one of the other quadruplicated gates. When all of other outputs from previous
stages are ’1’ and just this one due to bit flipping is ’0’, then its pair will be ’1’
instead of ’0’ and forced the output to ’0’ and then the function of NOR helps
ignoring the wrong value. This basic inherent fault tolerance can be defined also
for NAND gates and AND/OR level gates in a similar manner, based on their
special features.

In the AND/OR circuit in Figure 5.5 is shown how duplicating the inputs and
the described features mask and correct an incorrect value in AND/OR levels.

The final quadded circuit is illustrated in Figure 5.6. Quadding method cleans
failures up using the same feature. However, the key feature is that the wrong
output value which is generated, is not the dominant input for the next stage and
the neighbor correct output values are not the same as the wrong one. Due to this
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Figure 5.6: Final Quadded AND/OR Logic

fact, they can role as the dominant input value for the next stage [70][120][121].

It should be noticed that, in order to be operational, in quadded form, the output
of each logic unit is joined at the next logical unit by the output of a neighbor.
The pattern of the connection is systematic. Between each group of four logical
units and the following group, there are four straight-through and four crossed
connections. The error normally spreads into two channels before being cor-
rected. If the connection structure remains similar till the end, it is possible that
the error is propagated till the final stage. In this way of connection, the error
will be blocked before propagating into the further stages. Different connection
possibilities are shown for the simple circuit in Figure 5.4. More details on this
way can be found in [120][121].

5.3 Quadded Force Decide Redundancy

In order to explore the idea of quadded logics in a general boolean function,
some features have to be added to the general logic. The Quadded Force De-
cide Redundancy (QFDR) is a redundant logical structure which quadruplicates
logical functions and defines two different Force and Decide rules for logic func-
tions based on their level in the design and then connects them together using
special connection patterns. While QL only allows simple gates like AND and
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OR, that have to be interconnected in a certain manner, in QFDR, the behavior is
generalized to all boolean functions.

The reason that quadded logic in its basic definition for gates does not directly
work for boolean functions is that, the basic feature which makes quadded logics
possible in NAND, NOR, and AND/OR logics, is their definition. As described,
dominant inputs in these logics can define the output value. Quadded logic is
constructed by using this feature to mask and correct errors. However this fea-
ture is missing for a boolean functions in this general definition. It is possible
that for example a ’0’ is a dominant value in a certain input line but not the other
input lines. Due to this fact, a more general description of quadruplicating is
needed for boolean functions.

A general quadruple network is constructed using the following underlying as-
sumptions: First, the logical functions must appear in quadruplicated form and
all inputs must be duplicated. Every two out of four quadruplicated copies are
the duplicated inputs of the next level. Second, errors are corrected in the logic
just downstream of the fault that caused it and third, the connection is accom-
plished by correct signals from the neighbors (in duplicated inputs) of the faulty
logic function.

This can be solved by the Force/Decide approach which is proposed in this work.
It works as follows: Every input is duplicated and overall there are three possi-
bilities for duplicated inputs. Either both are ’1’ or both are ’0’ or one of them is
’0’ and the other one is ’1’. Any difference in duplicated inputs means that one
of them has incorrect value.

In the first level the output is forced to a one in case of difference in two dupli-
cated inputs. This means whenever the output is zero it is known that no error
occurred. If it is one it might be correct or wrong.

This way the bit value contains implicitly some additional information which is
used by the next level. The next level knows about the forced output value as
the result of the previous level and in case of one the output value will not be
assumed as correct value and respectively will not be selected as input value of
the second level. Functions f and g are modified to satisfy the corresponding
force and decide rules.

Figure 5.7 (a) shows function f containing two original inputs and in the qua-
druplicated form, four inputs with every two being equal (Figure 5.7 (b)). In
this example duplicated inputs are (i1 and i3) and (i2 and i4). The modification
of f (i, j) and g(k, l) is done for the force level function as follows (exemplarily
shown for f1):

k1 = f1(i1, i3, j1, j3) =
{

f (i1, j1) (i1 = i3) & (j1 = j3)
1 otherwise
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Figure 5.7: Quadruple Force Decide Redundancy for logic functions
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and for decide level (exemplarily shown for g1):

g1(k1, k2, l1, l2) =

⎧⎪⎪⎨
⎪⎪⎩

g(k1, l1) (k1 = k2) & (l1 = l2)
g(k1, 0) (k1 = k2) & (l1 �= l2)
g(0, l1) (k1 �= k2) & (l1 = l2)
g(0, 0) (k1 �= k2) & (l1 �= l2)

This method is applied to all fis and gis accordingly. The method is applica-
ble to all n input functions, while the example depicts two input functions for
simplicity.

Now assume a failure occurs at input i1. It will not be equal to i3 anymore. The
output in this condition is set to a zero forced value. Two scenarios are possible.
The first scenario is, that f1 and f3 are forced to the default value and it is equal
to the correct output value which comes from f2 and f4.

Hence, the next level, which contains function g, will have four equal inputs from
the previous level (f) and accidentally the forced value in this case was equal to
the correct output value. The worst case scenario is shown in Figure 5.7(c) where
the forced output value of f1 and f3 is not equal to the correct output of f2 and
f4 . Because the next level including function g knows about the forced output
value of the previous level, it will select the correct result in case of difference.

However, as for FGTMR described, all fine grain fault tolerant parts are small
parts of the system and each of them can deal with one single failure without
disturbance of the overall system. Due to this fact, the probability of multiple
failure occurrences in two redundant fine grains is much less than the coarse
grain one. Multiple distributed failures are harmful for CGTMR. They affect the
fine grains as well, but the fine grains deal with the failures separately. In this
way the fine grains redundancy protects the system against multiple distributed
failures. Due to fine grain fault tolerance in both FGTMR and QFDR, the same
model for FGTMR can be used for QFDR.

5.4 Realization of QFDR in FPGAs

FPGAs are homogeneous architectures which consist of LUTs/FFs in a fine grain
view. As LUTs realize boolean functions, they can also be a part of QFDR in
FPGAs. In order to apply QFDR to FPGAs, LUT’s functionality is defined as
boolean function and in addition with flipflops the LUTS are quadruplicated and
connected in a manner which forms QFDR. This is the basic principle in applying
QFDRs on FPGAs.

67



5 Quadruplicate Force Decide Redundancy - A New Trend on Mitigation Techniques

LUT

LUT

LUT

CLK

D Q

LUT

CLK

D Q

LUT

CLK

D Q

LUT

CLK

D Q

LUT

CLK

D Q

LUT

CLK

D Q

CLK

D Q

CLK

D Q

Figure 5.8: Every LUT and its corresponding flipflop is quadruplicated in QFDR
in FPGAs

Before proposing QFDRs for FPGAs, it is needed to mention, even quadded log-
ics in their traditional form are applicable on FPGAs. In this way, the fault tol-
erance targets the SETs which occur in logic and can be propagated to flipflops to
cause SEUs. The combinational logics are modified to NAND, NOR, or AND/OR
forms and then are quadded. However, this does not provide the expected re-
sult, as the synthesis tools automatically pack several logic layers into singular
LUTs hence removing the inherent recovery feature. In addition one can expect,
that such redundancy will be removed by the synthesis flow.

In order to realize force and decide rules in LUTs, the boolean function of each
LUT needs to be modified. As described, input lines are duplicated in every
function. When the LUT’ role is a Forcer, every duplicated lines are compared
and if they are different (one ’0’ and one ’1’) the corresponding input line will be
forced to ’1’. Two duplicated input lines A and B are replaced with: (A XOR B)
OR f(A) and force the output to ’1’ as the value of input in case of difference.

If the LUT’s role is a Decider, in case of difference, it will decide for ’0’. Therefore,
two duplicated input lines A and B can be replaced with: A AND B. This means
that, if they are different, ’0’ will be set as input and if they are similar, one of
them will be set as input.
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This is the only modification which is needed in the function of LUTs. In addi-
tion, conncetions between LUTs are also modified in a manner, which completes
the QFDR. Realization of QFDR on FPGAs and its limitations and requirements
is described in detailed in the next chapter.

As Figure 5.8 illustrates, in a general form, LUT/FFs can be QFDRed. In this way,
QFDR makes the combinational logic tolerant against SETs. Thus, no SET is pos-
sible to propagate in the logic and spread out to the next level of flipflop. When
a SEU affects a flipflop directly, a permanent state change occurs in the flipflop.
Due to QFDR, the next level will mask the wrong output from the faulty flipflop
and avoid propagating it through the design. The faulty flipflop is corrected as
soon as the fresh correct inputs are feeding it.

5.4.1 Flipflops without Enable

Flipflops in a design can be grouped into two different types. The first type
comprises the flipflops which always change their state with each clock pulse.
In the second type, there is an enable signal for the flipflops which activates or
disactivates the loading of new values. This grouping is important due to SEUs.
As previously described, SEUs can change the state of a flipflop. If a flipflop hold
its state, it is possible that a SEU changes this state and is not further corrected
by a good signal from the input of flipflop.

In the first type of flipflops, SEUs can change the state of flipflops. However this
is ignorable because in the next clock cycle the correct value will be written again
in the flipflop and corrects the state. Even when one of the flipflops is affected
by SEUs, this will be duplicated in the next level of design and will be masked
after an step of force/decide. Figure 5.9 illustrates the these kind of designs with
QFDR.

5.4.2 Flipflops with Enable

In the cases of enable in flipflops, which are for example used in counters and
state machines, simple QFDR may be unable to control the state of flipflops after
a SEU changes the state of it and it remains as the state of flipflop till enable is
further active.

The scenario is as follows: a flipflop is affected by an SEU. This flipflop doesn’t
use an input from the previous stage’s combinational logic to be corrected, but
rather, the state remains in the flipflop. In this case, it means that, in the case
of affected flipflop, the state will be never corrected till the flipflop enable is
activated and the flipflop is initiated to a correct value.
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To cope with the SEU in flipflop with enable, one solution is to check the state
of quadruplicated flipflops with a voter and as soon as a change occures in the
state of one of them and its enable is not active, active the enable of it and rewrite
the correct state from the other three flipflop copies. This can be done by using a
multiplexer at the input of flipflop and voter as shown in Figure 5.10.

However, this problem is not limited to the QFDR. The other redundancy-based
fault tolerance methods also have challenges to correct the flipflops with en-
ables in case of SEUs change their states. Table 5.1 has measured the number of
flipflops with feedbacks in different benchmarks. However, in the benchmarks
which does not include state machines, about 15% of flipflops use feedback and
the overhead of using voters at the end of them is ignorable in the whole design.

In QFDR the role of voter is actually distributed between the next level of logics.
This means that, instead of inserting the voters in this case, one solution can
be to use the output of Decider LUTs in the next level of combinational logic.
However, this is more complicated and needs exact analysis of the design to
avoid some wrong scenarios. As a result it does not have the overhead of using
voters in a QFDRed design.

Table 5.1: Amount of flipflops with Enable in different designs

Design All Num. of FFs FFs with Enable Percentage(%)
Cordic 2159 265 12

MotorCtrl 543 26 4.7
uProc. 773 44 11.5

FuzzyCore 1259 145 4.1
PicoBlaze 241 10 4.1
Counter 15 2 13.4

5.4.3 One Stage Combinational Logic

In some special cases, combinational logic includes not enough stages to be able
to form Force/Decide structures. In this cases, some extra logics can be added to
the combinational logic which function as a Decider.

Figure 5.11 shows this condition. The combinational logic is modified by insert-
ing a Decider Stage. The next flipflops will use the output of the Decider. The
output can be used also back in the combinational logic in cases of feedback for
example to balance feedbacks. So FGTMR can also be used in this situations.
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5.5 Reliability of QFDR

The exact analysis of reliability of quadded logic method has been regarded
as extremely difficult and costly [14][119][71]. The reliability of a network of
QFDR is the probability that it functions correctly. One idea is to calculate it
as a function of the reliability (or the failure probability) of a fine grain compo-
nent (LUT/FF) with certain assumptions. If a component fails so that it gives
an intermittent or transient error at its output, this will be correctly immediately
unless its neighbor gives a wrong output at the same time. The probability of
error occurring for two neighbor components in the same time period is very
small. Furthermore, their permanent effect on the system is realized when SEUs
occur in flipflops and are permanent. Therefore, the SET effects in this analyze is
reduced to the SEU results on flipflops which are permanent failures.

QFDR is designed to correct all single incorrect bit flipping and many multiple
ones in a network of LUT/FFs if the proper interconnections are made, i.e. if
the pattern at the output of a quadruplicate component is different from the in-
terconnection patterns of any of the quadruplicate series at its input as already
mentioned.

In this reliability analysis, the quadruplicated form of a LUT/FF pair is called
a quad and is shown as Q. Because of the symmetry of the components in a
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Figure 5.12: Reliability of a quadded design vs. the probability of logic failure. It
is compared to the corresponding TMR network and non-redundant
circuit [14].
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quad, it is not needed to know which one of the quadruplicated components are
faulty. Therefore a critical fault pattern which can make system failures can be
concisely denoted by

{
Qj1

1 , Qj2
2 , ..., Qjn

n

}
where ji ∈ {1, 2, 3, 4}. This model of

presentation is already used to analyze the reliability of quadded logics [14]. Qji
i

means that quad Qi has ji critical faults. Basics of quadded logic reliability anal-
ysis and QFDR reliability analysis are similar because the QFDR is derived from
quadded logics and changes the function of LUT to be passable to the quadded
logic features. Due to this fact, their reliability analysis have the same steps.

A quad Qi is said to feed another quad Qj if there are lines connecting the out-
puts of Qi to the inputs of Qj. If two quads Qi and Qj feed the same quad,
this relationship may be denoted concisely by QiFQj. Two quads are said to be
dependent if QiFQj or if there exists a sequence of quads in the set. As in the
definition of QFDR is described, a fault in a QFDR network is tolerable if all pos-
sible output failures in a quad are not the dominant input value for the quad
which is fed by it. In this way, the reliability of QFDR network is defined as the
probability that just the tolerable faults occur in the QFDR network. Therefore,
in order to analyze the reliability of QFDR, it is needed to find all the tolerable
fault patterns of the QFDR network.

The results are formalized in the lemmas below. The proofs are found in [15].

Lemma1: Given a set of dependent quads {Q1, Q2, ..., Qn}, the number of tolera-
ble fault patterns of the type

{
Qj1

1 , Qj2
2 , ..., Qjn

n

}
is equal to

2. ∏ 2/ji ji ∈ {1, 2}

Lemma 2 : Subcritical faults are those that are not dominant and ignored by the
next level in the existence of another dominant input value. Given a fault pattern{

Qj1
1 , Qj2

2 , ..., Qjn
n

}
, the number of ways in which a quad Qi can have one or two

subcritical faults, which are tolerable, denoted by li and mi, respectively, is as
follows. If Qi ∈ {Q1, Q2, ..., Qn}, then if Qi is fed by any of the quads in the set,

li = 2/ji
mi = 2/ji − 1

In the case that Qi is not fed by any of the quads in the set,

li = 2/ji + 1

mi = 4/ji − 2
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In the case that Qi /∈ {Q1, Q2, ..., Qn} but is fed by one of them,

li = 2

mi = 1

and finally if Qi is not fed by any of the quads in the set,

li = mi = 4

for a critical fault pattern
{

Qj1
1 , Qj2

2 , ..., Qjn
n

}
two vectors can be defined which

give the number of ways in which each quad can have one or two subcritical
faults respectively [14]. As [14] describes, when there is a network of n quads,
the topology of the network may be represented by the structure of matrix S of
this network. An n× n matrix includes n quads which feed n other ones:

S (i, j) = 1, if Quad Qi feeds Qj

S (i, j) = 0, otherwise

This matrix makes it easy to partition the network to the independent quads. The
set of tolerable fault patterns of the network is given by the fault matrix F which
is defined to be a (2n + 1) X (2n + 1) matrix such that

F(i,j) = number of ways in which exactly i critical and j subcritical tolerable faults
may occur in the network. The theorems below show how may be obtained for
a network [14][15]. Using the proofs of [15], these three theorems are used to
estimate the reliability of a QFDR network.

Theorem 1: For a critical fault pattern
{

Qj1
1 , Qj2

2 , ..., Qjn
n

}
where the set {Q1, Q2, ..., Qn}

can be partitioned into m independent classes, the number of ways in which the
tolerable critical faults can occur is given by:

Gc = ∏allmclassesk

[
2. ∏ji∈{classk} 2/ji

]
Theorem 2: Given a critical fault pattern with sets L and M, the number of ways
which exactly k tolerable subcritical faults can occur is given by Gc(k)

Theorem 3: The entries of the fault matrix are given by

F(i, j) = ∑allcritical f aultpatterns Gc(j)
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and finally, the reliability of a QFDR network is given by:

RQ = ∑0≤i≤2n ∑0≤j≤2n F(i, j).pi
1.pj

0.R4n−(i+j)

where p1 probability that a component fails as 0 is flipped to 1

p0 probability that a component fails as 1 is flipped to 0

R probability that the component does not fail.

The probability of failure of the quadded network and its comparison to TMR
and non-redundant one is depicted in Figure 5.12. However, as described, be-
cause QFDR is derived from quadded logics, the probability assumptions and
network presentations remains the same for QFDR networks and due to this
fact, Figure 5.12 still is referable when analyzing QFDR reliability.

In addition it is needed to prove the concept of QFDR by applying it to some
benchmarks. Firstly it must be integrated in our synthesis tool and secondly be
proved by experiments. In the next chapter, this issue is discussed in detail.
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in Synthesis Flow

In this chapter, the approach which is used to integrate QFDR in the synthesis
flow of FPGAs is discussed. The implementation is based on but not limited to
Xilinx Virtex5 FPGAs.

6.1 Synthesis Flow

The traditional approach to implement logic designs on FPGAs is started with a
description of design in any kind of hardware description language (HDL) and
then goes through series of steps to generate an output bitstream. This bitstream
is further used to configure the FPGA with the design. This steps are called
Synthesis flow and is generally the same for different kind of FPGAs families
and their corresponding tools.

The first step is to take a logic circuit described in an HDL and convert it into a
graph of logic gates. This graph is then optimized using various algorithms in a
step called Logic Synthesis. Following Logic Synthesis, the Technology Mapping

Bit Stream
Generation

Phyiscal 
DesignHigh Level 

Design Synthesis
(RTL Level) Mapping

(Manual P&R)
Floorplan

Implementation
(Place&Route)

Figure 6.1: Synthesis Flow in Xilinx ISE and a lot of other Synthesis Tools
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Figure 6.2: Structure of Synthesizing a design and mapping it on FPGAs

step takes an optimized graph of gates and represents it as a graph of resources
available on an FPGA. These resources are usually Lookup Tables, Memory and
Input/Output pins.

General logic functions are usually implemented as Lookup Tables, data storage
modules are assigned to memory blocks and external connections are facilitated
by I/O pins. A graph of hardware resources can then be placed on an FPGA, and
the links between each node of the graph are realized by routing the physical
connections between logic components using a programmable routing network.
This step is called Placement and Routing.

Finally, the resulting implementation is analyzed by using a timing analyzer. A
Timing Analyzer is a tool that computes the worst case delay information and
determines the maximum clock frequency at which the circuit can operate. Re-
sults from the Timing Analyzer complete the timing analysis step, which is then
followed by generation of a programming bit stream [30]. The above steps are
depicted in Figure 6.1.

78



6.2 Targeted FPGA family

In order to apply QFDR to a design, it must be integrated in the synthesis flow.
This means that, the suitable level of circuit description must be used as the input
of QFDR. The QFDRed form will be further used as the input of the next level.

In theory, automatic insertion of QFDR can be done in different levels of syn-
thesis flow. However, in the behavioral description of the design, homogeneous
structures do not exist in every step.

In the synthesis result, the behavioral description is decomposed to smaller and
more homogeneous logic gates. Although the netlist description in this level is
optimized, more optimizations is possible during the technology mapping, in
order to fit the design a given size FPGA resources. If QFDR be inserted to the
synthesized netlist, it is possible that it is reduced due to the optimization during
technology mapping. In Figure 6.2 the structure of synthesis and mapping is
shown in more details. However, the result of synthesis is not homogeneous and
the netlist parts sometime will be decomposed or recomposed after mapping.
Due to these facts, circuit may not be a suitable input for applying QFDR directly
after high-level synthesis.

The circuit description after technology mapping, is a netlist of FPGA resources
which is a homogeneous description. It is a suitable input for QFDR. In modern
Xilinx FPGAs, placement is done during the technology mapping. This is a dis-
advantage for QFDR, because the new copies which are added due to QFDR can
not be automatically placed on the suitable resources by the original tooling.

Another possibility for applying QFDR is the routed description of the design.
If QFDR copies are inserted after routing, the routing of inserted copies must be
done manually. This is a time consuming process and may result in an unopti-
mized routing.

The last level of a synthesis flow is the bit stream generation. In theory QFDR
can also be inserted after bit stream generation. However, the structure of bit
stream is not clear and homogeneous structures can not be detected inside it.

In conclusion, QFDR is inserted to the synthesis flow after technology mapping
in this work. This chapter focuses on the mechanism and structure of integrating
QFDR to the standard synthesis tools.

6.2 Targeted FPGA family

This work targets Xilinx FPGA families and uses the corresponding ISE synthe-
sis tool [64] to insert automatic redundancy. In this section, an overview of the
Virtex-5 families is briefly described and then it is integrated to the radiation
tolerant architecture by integrating QFDR on design synthesis flow.
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Figure 6.3: Arrangement of Slice with CLBs and carry chains [63].

6.2.1 Xilinx Virtex-5 Architecture

The Virtex-5 is an FPGA Virtex family that consists of two major components:
Configurable Logic Blocks and Digital Signal Processing element.

6.2.1.1 Configurable Logic Blocks - CLB

The CLBs are the main logic resources for implementing sequential as well as
combinational circuits. There are switch matrices at the neighborhood of CLBs.
Switch matrices are used for routing. Every CLB contains two slices. Each slice
has a specified position which is labeled with X and Y. Every Slice contains four
Look Up Tables that are followed by flipflops. As already discussed, these are
the basic elements which are used in QFDR on FPGAs. Figure 6.3 shows the CLB
form in Virtex5 FPGAs and their connection to switch box and Figure 6.4 shows
the X and Y positioning of slices and their connections together.

In addition to this, some slices support two additional functions: storing data
using distributed RAM and shifting data with 32 bit registers. Slices that sup-
port these additional functions are called SliceM; others are called SliceL. An
overview of two slice types is shown in Figures 6.5.

• Look Up Tables Look Up Tables are the essential elements in every slice
to implement functions. As mentioned, there are four LUTs in every slice.
Every LUT can be implemented as six-input function. There are six inde-
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Figure 6.4: Row and Column Relationship between CLBs and Slices [63]

pendent inputs (A inputs - A1 to A6) and two independent outputs (O5 and
O6) for each of the four LUTs in a slice (A, B, C, and D). The LUT can be
implemented as any arbitrarily defined six-input Boolean function. Each
LUT can also be implemented as two arbitrarily defined five-input boolean
functions, as long as these two functions share common inputs. Only the
O6 output of the LUT is used when a six-input function is implemented.
Both O5 and O6 van be used for each of the five-input function which is
implemented [63].

In addition to the basic LUTs, slices contain three multiplexer. The multi-
plexers combine up to four LUTs in a slice and provide seven or eight input
LUTs.

• Distributed RAMs In sliceM, multiple LUTs can be combined in various
ways to store an amount of data. The LUTs in SliceM can be implemented
as a distributed RAM element. Based on the number of LUTs which are
occupied, different configurations for RAMs (with different spaces) can be
constructed.

• Shift Registers SliceM LUTs can also be configured as a 32-bit shift register.
By combining the LUTs in a SliceM, it is even possible 128-bit shift register.
Bigger ones can be constructed by combing a couple of slices.
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• Digital Signal Processor - DSP In addition to the CLBs, Virtex-5 FPGAs are
equipped with DSPs. In Virtex-5 DSP blocks (DSP48E), the 18x18 multipli-
ers have been replaced with asymmetrical ones (18x25 bits signed). This
reduces the DSP cost of floating-point single precision (24-bit significant)
from 4 to 2.

6.3 Integration of QFDR on Virtex-5 FPGAs

In the previous chapter, the fundamentals of QFDR were described. In QFDR ap-
proach, every element of a design must be quadruplicated. In addition the inputs
must be duplicated and the function of element must be modified depending of
its role in QFDR.

Designs on Virtex-5 FPGAs are mapped on LUT and flipflop pairs, depending
on the mapping strategy which is used. When area optimization is targeted,
normally the design will be mapped in the least number of LUTs as possible. This
means that, as much as possible number of inputs are used in LUTs to realize the
function and optimize the design.

One of the main challenges in integrating of QFDR is here. LUTs in Virtex5 FP-
GAs contain six inputs. In order to be able to duplicate the number of inputs
in QFDR, every function is allowed to use maximum three of six inputs in ev-
ery LUT. For example, if a LUT in original design, realizes a function with three
inputs and then the number of inputs are duplicated, all six inputs are used to
realize QFDR.

Therefore, all functions must be decomposed to three or less input functions in
order to realize QFDR.

6.4 LUTs Decomposition

6.4.1 Problem Formulation

Given an architecture A as the input of QFDR, which is used to implement differ-
ent function of up to K variables, a function f(X) is regarded as a wide function,
if |X| > K. For Virtex5 FPGAs, K is equal to 3.

82



6.4 LUTs Decomposition

Figure 6.5: Diagram of SliceL. SliceM has the same structure as SliceL in addition
to the feature that LUTs can be implemented as distributed RAMs in
SliceMs.
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Figure 6.6: A 6-LUT can be divided to 3-LUTs using shannon’s expansion theory

6.4.2 Shannon Decomposition

Shannons decomposition technique is applied to the LUTs in FPGA with more
than three inputs. Afterwards, every LUT in FPGA has three or less inputs and
the new design is ready to be modified by QFDR.

The approach is based on the well-known Shannon’s theorem [11], which is
briefly described here. Using Shannon’s theorem, any Boolean function, g, of
n variables, g = f (x1, x2, ..., xi, ...xn), can be decomposed with respect to one of
its variables, xi, and written as the logical OR of two sub functions:

g = xi. f (x1, x2, ..., 1, ..., xn) + x̄i. f (x1, x2, ..., 1, ..., xn) (6.1)

where f (x1, x2, ..., 1, ...xn) is called the 1-cofactor of f with respect to variable xi
and g = f (x1, x2, ..., 0, ...xn) is called the 0-cofactor.

6.4.3 Area Overhead of decomposition

Figure 6.6 shows the LUTs which are decomposed to 3-LUTs. In the first step of
decomposition, a huge number of LUTs are needed to realize the decomposition
as in Figure can be seen.

However, there are some methods which can significantly reduce this area over-
head. During the decomposition and due to the Shannon approach, several cases
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Figure 6.7: Original Cordic Design Overhead is compared to after decompositon
of 6-, 5- and 4-LUTs and to the result of optimizations.

of functions will be ANDed to zero or will be ORed with one and this results to
a lot of function eliminations. A Cordic design is used as a test case. It includes
7 numbers of 5-LUT and 44 numbers of 4-LUT in its original design. As in Fig-
ure 6.7 is shown, the number of LUT usage is enormously increased in order to
decompose 4-LUTs, 5-LUTs, and 6-LUTs. After optimization, the area overhead
can be extremely reduced.

However, the optimizations which are done, are locally for each LUT and cover
the local functions only. If a multi step optimization strategy is employed and
a global view to the optimization problem, like what is done during synthesis
flow, the design can be optimally implemented using 3-LUTs with much less
overhead.

In order to proof this issue, another experiment is done. The benchmarks are
synthesized in Spartan3 using XC3S50 [66] and then are used for technology
mapping for Virtex5 devices.

They key improvement is that, the size of LUTs in Spartan 3 family is maximum
4-LUT. If the NGC format of Spartan 3 be further used in Virtex 5 technology
mapping, less 6-LUTs will be generated and this mean less area overhead in the
whole design. In Table 6.1 a comparison between using Virtex 5 in the whole
synthesis flow and using Spartan 3 in synthesis is shown. Results show a huge
area optimization in case of using Spartan 3 in synthesis flow. Results in case
of big benchmarks for example Fuzzy Logic Core shows more than 50% area
optimization after using Spartan 3 to generate synthesied design.

This means that, if it is possible to optimize globally, like what is done automat-
ically in synthesis for Spartan3, the area overhead of decomposition should not
be a huge matter anymore. As in Table6.1 can be seen, the area overhead which
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6 Integration of QFDR in Synthesis Flow

Table 6.1: Area overhead in the original design, after modifications which is
needed before applying QFDR, and after applying QFDR. Compar-
isons have done for Virtex5 FPGA in the whole synthesis flow and in
a second case in order to optimize number of LUTs with more than 3
input, synthesis is done for Spartan 3 and technology map is further
continued for Virtex 5 FPGA.

Cordic MotorCtrl uProc. Fuzzy_Core PicoBlaze Counter
S3 V5 S3 V5 S3 V5 S3 V5 S3 V5 S3 V5

Original 1162 1162 314 274 383 387 614 630 138 138 8 8
Modified 1572 1572 672 1084 1035 1657 1464 5114 284 284 22 22
QFDRed 6288 6288 2688 4336 4140 6628 5856 20456 1136 1136 88 88
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Figure 6.8: Area Overhead after decomposition and after QFDR in term of LUT
types.
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Figure 6.9: On the downer LUT both 5 and 6 outputs are used

is the result of modifications on LUTs is much more than the overhead of QFDR.

However, [11] has shown, if the k-LUT is divided to several n-LUTs, where n<k,
the number of SRAM cells which is used, is a sight better than the case which
k-LUT is used for mapping.

6.4.4 LUTs with two functions

As described, it is possible to implement two independent function in one LUT
as long as these two functions share common inputs. However, in order to apply
QFDR, every LUT must realize one function because QFDR modifies the func-
tions in LUTs. Due to this, if one LUT has used both O5 and O6 independent
outputs, it must be split to two LUTs. The separation methodology is shown in
Figure 6.10.

However, due to the design limitations, it is needed to connect the O5 outputs
to VDDs in the Area Overhead results in Figure 6.8, after separating O5 and O6,
there are still O5 outputs there which refers to this issue.

6.5 LUT Function Modification

In order to quadruplicate a LUT, firstly, inputs must be duplicated. After decom-
posing a LUT, maximum three inputs are used which are A1, A2, and A3. A1,
A2, and A3 are duplicated respectively in A4, A5, and A6.
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Figure 6.10: LUTs which use both O5 and O6 are separated as illustrated

Depending on the stage of LUT in design, it is role as Forcer or Decider. When a
LUT is a Forcer, it means that, when its duplicated inputs have different values,
or in other words, one of the inputs is faulty, the corresponding output will be
forced to ’1’. In this way, two duplicated inputs are XORed together and are
replaced on the original input.

For example, if a LUT is fullfill the following function,

O6=(((A1*A2)+( A1*A3)))

The forced LUT will be modified to:

O6= (((A1*A2)+( A1*A3)))+((A1@A4)+(A2@A5)+(A3@A6))

where *, +, @, and are respectively the AND, OR, XOR, and NOT symbols in
NCD description of LUTs.

If no error exist, duplicated inputs have the same value. If an error occurs, the
duplicated inputs will not be similar any more. In this case, if they are the inputs
of a Forcer LUT, they both will be forced to ’1’, based on the fundamentals of
QFDR.

Otherwise, they are the inputs of a Decider LUT, and ’0’ is decided to be the
common value of the inputs. In other words, if A1 and A4 which are duplicated
inputs have different values ’0’ and ’1’, ’0’ will be decided as the correct value.
Hence, A1 will be replaced to (A1*A4) where * is the AND symbol.
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f((A1 AND A4),(A2 AND A5),(A3 AND A6))

Figure 6.11: Forcer and Decider implementation in a LUT

Therefore, the same function in the decide rule will be modified as the following:

O6=(((A1*A4)*(A2*A5))+( (A1*A4)*(A3*A6)))).

In both Forcer and Decider LUTs, a comparison between two duplicated inputs is
done and based on the result of comparison, a decision is made. This comparator
is the basic structure of Forcer and Decider LUTs. Figure 6.11 shows this for
Forcer and Decider LUTs.

In the first version of QFDR on Virtex-5 FPGAs, the forced and decided roles
are applied on LUTs in SlicesL and SliceM. However, the other elements, like
Memories, shift registers, and DSPs, are quadruplicated to feed the inputs to the
corresponding LUTs. This is a correct modification, because if one element such
as DSP is affected, the forced/decide methodology which is used in LUTs can
mask it and it will not be propagated through the circuit. In the input, they have
normally voters which decide the correct value in four prepared outputs from
the previous step.

6.6 Flipflops with Enable

LUTs are quadruplicated as a pair of LUT/FFs. However, flipflops which use
enables, are those which need special voting wire as in the previous chapter de-
scribed. Here if a SEU changes the state of flipflop, it will not be corrected till
the enable is active. Here, an extra hardware is inserted to the input of flipflop
(Chapter 5, Figure 5.10)
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Figure 6.12: CE is active enable in FF in a part of SliceL.

6.7 Rapid Prototyping Platform

As already described, the logic optimization of the mapping step removes at least
parts of the redundancy due to logic optimization. This was the main reason to
apply QFDR to the mapped (and for new Xilinx architectures also placed) de-
sign. The result of map, which is a netlist in *.ncd format is taken and converted
into ASCII *.xdl [22]. In the next step the redundancy is automatically added
to the *.xdl design description. Then the resulting netlist is converted back into
*.ncd. This can be used within ISE again for Place and Route and finally bitstream
generation.

6.7.1 Xilinx Design Language

Xilinx Design Language (XDL) is a presentation of design on Xilinx FPGAs in
general and an alternative (or a conversion) to the native netlist format called
NCD. NCD is the result of synthesis, map, and place and route on FPGA which
gives a netlist format of resources. This netlist can be presented in text form as
XDL. An XDL file represent a design using 4 different statements [22]. The design
statement, the module statement, the instance statement, and the net statement
as shown in Figure 6.13.
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6.7.1.1 Design Statement

To represent the design in XDL format a Design statement is used and is started
with the keyword Design. It contains the design name and the name of targeted
FPGA. Figure 6.13 shows an abbreviated XDL file with a design with the name
adder4bit targeted for the FPGA part xc4vsx35ff668-10 [50].

The design statement includes instance of primitives which are represented in
instance statement. These primitives are configured to provide logical function-
ality. It also contains nets to logically interconnect the instanced primitives to-
gether. A design may contain one or more module statements. Every module
statement includes instances of primitives and nets to connect it to the other
modules. Nets in the design also interconnect the Modules. The design State-
ment, is modified in the number of instances in a module, also the number of
inputs and outputs which are quadruplicated in QFDR.

6.7.1.2 Instance Statement

In the XDL file the Instance statement starts with the keyword inst and it in-
stances a FPGA primitive. The instance statement contains a field for the instance
name, which has to be unique in a design. The instance statement also contains
a field for the primitive type, which can be a SliceL, SliceM, DSP48, or RAMB16.
Figure 6.13 shows an instance with the name adder1 of primitive type SliceL.

The instance statement also contains a configuration string, which starts with the
keyword cfg to describe the primitive. The configuration string contains several
attribute strings with the format attribute name:logical name:value and each of these
attributes configures a part of the primitive. The attribute name represents a part
of the primitive that is being configured and generally it is the name of a physical
gate in the primitive.

From Figure 6.13 the instanced primitive’s configuration string contains an at-
tribute string DXMUX::#OFF, which indicates that the DXMUX attribute repre-
senting DXMUX gate is switched off and the logical name is left blank. Primi-
tives are configured with the help of different attribute strings, which together
form the primitive configuration string. In this way, logic blocks of different
types like adders and counters can be made out of instanced primitives with
each of them configured using different configuration strings.

The instance statement also contains a field for the placement information if the
primitive is placed in one of the Tiles that can contain that primitive type. In
Figure 6.13, the primitive is placed in location (primitive site) SLICE X1Y74 and
that represents the first SliceL from the left of the FPGA and 74th SliceL from the
bottom of the FPGA. In the same figure, the same location is also represented in
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terms of a Tile location CLB X1Y37, which indicates that the Tile is a CLB and
the first one from the left of the FPGA and 37th from the bottom of the FPGA.
Placement modifications can also be done in instances. This issue which is used
in MBU fault tolerance has been later described in more details.

Figure 6.13: Abbreviated version of an XDL file [50]
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Figure 6.14: Integration of QFDR in ISE CAD tool using Rapidsmith. The ncd
format of mapped design is converted to xdl and is presented in an
objective form in RapidSmith. QFDR tool uses this objective form
and modify the mapped design. Finally it creates a modified ncd
file.

6.7.1.3 Net Statement

Net statements present the connections between LUTs in every slice instances.
In order to complete QFDR, connections between Forcer and Decider LUTs must
be modified. It includes adding new nets for new LUTs and also modifying the
connections between existed LUTs. Every net has an outpin and several inpins.

6.7.2 RapidSmith

In order to automatically add QFDR to the design, the RapidSmith framework
[103] was used. RapidSmith is a JAVA based API built to manipulate XDL files
and is used to integrate QFDR in Xilinx ISE.

RapidSmith was extended with the proposed QFDR approach. Due to the flex-
ibility of this framework, every extension on xdl form can be done to achieve
fault tolerance targets.

In order to apply QFDR, instance statements in xdl format are the key state-
ments. Because through them, it is possible to access the function of every LUT
and modify it. Figure 6.14 shows the process of integrating QFDR in synthesis
flow using RapidSmith. In the first step the design is transformed and parsed
to the internal object representation. In order to apply this methodology some
preprocessing of the design must be made.
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Design after 
QFDR

Figure 6.15: A Cordic implementation before and after applying QFDR on FPGA
Editor. Placement of Slices has done without using any optimized
algorithm.

In the first step, the instance statements are read and different kind of slices
(SliceM and SliceL) are separated. In every kind of slices, the whole process
of QFDR modification is done. Firstly, LUTs which use both O5 and O6 are di-
vided to two LUTs. Then, using Shannon decomposition method, LUTs with
more than 3 inputs are detected and reduced to 3 inputs. Afterwards, optimiza-
tions are done. All this is done in using the object structure of RapidSmith. Then
the logic is quadruplicated in the next step and the functions are modified to re-
alize the force decide behavior. Thereafter the wiring is updated to connect the
different levels of the quadruple force decide structure. Finally the placement is
optimized.

Some modifications also are needed in net statements in order to implement the
wiring in QFDR. In net statement, inpins must be also duplicated and recon-
nected to the corresponding Quadded LUT.

The whole process is done on the XDL format using RapidSmith which presents
the structure in objective form. Using RapidSmith, Slices and Nets can be used
as objects and modification can be done on objects. Finally the modified objects
can be represented again in XDL.
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6.8 Integration of QFDR in

Future FPGA architectures

Although QFDR can easily be implemented in current FPGAs, future implemen-
tations can still be improved in various ways to decrease area overhead and in-
crease reliability.

As described, QFDR applies two basic rules to the duplicated inputs of every
LUT: Force and Decide. Currently, these rules are applied to a design by chang-
ing the function which is implemented on LUT. To cope with the extra area over-
head that was mentioned in the previous section, one solution is to adjust every
Slice structure to QFDR in future FPGA designs.

As shown in Figure 6.11, the structure of a Forcer and Decider is easily imple-
mentable in hardware. Both include a comparison between duplicated inputs in
addition with an AND or OR gate depending on the Force or Decide roles.

In this way, every LUT will be modified to two different sorts of LUTs: Forcer
LUT or Decider LUT. Both LUTs will basically have the structure of current LUTs.
In addition some new hardwares in their input lines needs to be added.

In Forcer LUT, all duplicated input lines are XOred in order to recognize any
difference in the duplicated inputs. If it occurs, the output is forced to ’1’. This
is done using the OR at the output of XORs. In a Decider one, an AND gate will
be added to the input lines of LUT to decide for the correct input value.(Figure
6.16).

The only information which is needed is the role of a function which might be
Forcer or Decider, and then, the original design can be easily fitted on the suitable
LUT based on standard place and route algorithms.

In addition this would extremely simplify the QFDR integration process. Firstly,
decomposition of functions is not the case any more, because six (or more) inputs
can be used in design. The reason is that, duplication is done in a prior level to
the inputs of described AND and OR gates.

It will also extremely decrease the area overhead. If one assumes a three input
LUT which is QFDRed in the current manner, the number of transistors for a
K-LUT (NK) which are used can be computed as follow:

NK = 2K × 6 + NK−MUX (6.2)

Here, 2K is the number of SRAM cells which are needed to realize a K-LUT func-
tion, 6 is the number of transistors in a SRAM-cell [114][77], and NK−MUX is

95



6 Integration of QFDR in Synthesis Flow

CLK

D Q

A11
A12
A21
A22
A31
A32
A41
A42
A51
A52
A61
A62

LUT

A1

A4

A2

A5

A3

A6

(c)

CLK

D Q

A11

A22

A12

A31

A21

A32

LUT

A1

A4

A2

A5

A3

A6

(a)

LUT

A1

A4

A2

A5

A3

A6

A11
A12

A21
A22

A31
A32

A41
A42

A51
A52

A61
A62

CLK

D Q

(b)

: XOR

Figure 6.16: (a) Current LUTs which are modified for QFDR. Here three inputs
can be used in the function and these inputs are duplicated. (b)
A new implementation of a LUT in adidition with extra hardware
which realizes a Forcer. Duplicated inputs force the output to one in
case of difference in duplicated inputs. This is done using an exter-
nal hardware.(c) A new implementation of a LUT in adidition with
extra hardware which realizes a Decider. Inputs are externally du-
plicated and ANDed together and the result is connected to LUT.
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the number of transistors which are needed to realize the multiplexer in K-LUT.
In case of three input LUT, although K is equal to three, but due to QFDR K is
assumed 6 for a 3-LUT.

If the new hardware structure is used, K can be assumed 3. Number of transistors
in extra hardware for the Forcer LUT will be:

NKForcer = NK + K × NXOR + NOR (6.3)

In case 3-LUT, K is equal to 3 and NXOR and NOR are respectively the number of
transistors in XOR and OR gates.

In conclusion the number of transistors in extra hardware for the Decider LUT
will be:

NKDecider = NK + K × NAND (6.4)

Table 6.2 shows an estimation of the difference for different LUTs.

Table 6.2: Different LUTs number of transistors for current QFDR method and
the hardware integrated one.

QFDRed LUT Forcer LUT Decider LUT

1-LUT 30 20 18
2-LUT 114 48 42
3-LUT 414 84 78
4-LUT - 144 138
5-LUT - 252 246
6-LUT - 456 450

Secondly, function modification is not more necessary. Currently function modi-
fication is done, because the behavior of AND and OR gates must be realized in
the function. If these gates exist separately, function does not need to be modified
any more.

Integration of QFDR in hardware will also reduce the SRAM cells which are
needed to configure the QFDRed design on FPGA. Currently, modified functions
are needed to be configured on LUTs. However, if the behavior of QFDR exists in
hardware, the number of SRAM cells which are needed to configure the design,
will be reduced to the original design in addition to the routing modifications.
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Figure 6.17: Static and Dynamic Power usage of different benchmarks and their
QFDR form.

6.9 Power Estimation

In this section, several circuits are compared based on the selected XC5VLX110T
Virtex-5 FPGA in term of power usage.

There are two main groups of power consumption during operation mode in
SRAM-Based FPGAs: Dynamic and Static. The peak in power consumption in
SRAM-Based FPGAs is caused by the fact that the logic states are not determined
[95].

However, this increases when the overhead of QFDR is inserted to the architec-
ture. While the static power usage in SRAM-based FPGAs can be ignored [95],
dynamic power usage shows a few overhead in case of QFDR. Power analyzing
is done using XPower Analyzer which is provided by Xilinx ISE [9]. In Figure
6.17 for several benchmark the comparison between a benchmark power usage
and its quadded form power usage is done.

6.10 Fault Tolerance

Using the simulation tool, faults are inserted in different signals randomly dur-
ing their simulations. Every QFDRed benchmark is executed 1000 times per ev-
ery executions 5, 10, 20, and 50 faults are periodically inserted. The results of
Fault tolerance are shown in Figure 6.20.
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Figure 6.18: An SET which is simulated on Signal by fault injection
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Figure 6.19: The structure of Fault Inejctor

In order to measure the fault tolerance of every structure, every circuit is simu-
lated several times by changing the value of the LUTs which is a simulation of
SET affections. The simulation of radiation effect is done using the ModelSim
simulation tool.

Design developments with fault tolerance targets require a test phase which is
composed fault injection. Ideally, the system is irradiated with energized par-
ticles. However, this is a process that requires appropriate facilities, use of a
custom test adapter and control equipment, and extracting data of the project
under test, which this results in high cost. To circumvent this problem, a sim-
ulation framework is used which has been integrated into ModelSim [7] and is
capable of generating and injecting faults in a design.

ModelSim provides both a graphical environment for simulation as a console for
writing scripts in the language Tool Command Language(TCL) and the output in
text form. Beside these facilities, a feature which is interesting for the simulation
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Figure 6.20: 1000 times executions. Different number of faults which are injected
in every execution time.

tool is the ability to access, read, and write any logic signal exists in the simula-
tion process at any desired time. The simulation framework, which is used here,
uses this feature and injects faults on logic signals of the designs.

The fault injector’s main object is to generate scripts in TCL format to run on
ModelSim. While the fault injection is on LUTs, the fault injector provides a
good estimation of fault coverage.

The fault injector is divided into two distinct stages. 1) Generating a set of faults.
2) Simulating the fault set using ModelSim and collecting the results generated
by ModelSim. Figure 6.19 shows the process.

The faults can act as an SET or SEU. They can be transient or permanent. This is
defined in the TCL script for each fault. An SET can behave like in Figure 6.18.
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CLB1 CLB2 CLB3 CLB4 CLB5

A MBU Length

Figure 6.21: One 3 bit MBU can effect a length of 4 CLBs based on experiments
on [101]. Mapping of the Slices of the same fine grains should be
done in a distance of 4 CLB to protect the design against MBUs.

6.11 MBU Mitigation

MBUs are increased in new FPGA technologies since the technology scales are
decreased. Multiple Bit Upset can be a result of a strong strike or a single upset
which flips its neighbors. In both cases it is possible, that more than one copy in
a quad is affected and due to this fact, some modification is needed in order to
mitigate against MBUs.

In order to make the design on Virtex-5 FPGAs tolerant against MBU, as de-
scribed in the previous chapter, one method is to change the placement of the
quadruplicated LUTs.

As described in Chapter 3, the measurement shows that currently the four bit
upsets are the most crucial MBUs which can be detected (Table 3.3). If an MBU
of four bits occurs in an FPGA, it is possible that a distance of 4 × 4 CLBs, is
affected. However, this distance can flexibly change because the probability of 1
SEU or 2 MBUs are much more as results show.

In Figure 6.21 a possible placement of slices on FPGA is shown. The key issue of
the reliable placement is that, slices are placed in a distance which an MBU can
cover.

This means, if a design is QFDRed, every slice has three other copies. If the four
copies are neighbor slices, it is possible that after an MBU, all the four slices are
affected and none of the copies functions any more. One idea is to place 4 copies
in a distance of 4 × 4, depending on the MBU rates. This is applicable to all fine
grain fault tolerance methods which are applied on FPGA homogeneous slices.
However, long distance placement will affect the routing network. More nets are
needed to realize the routing. This affect power usage and performance of the
system.
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Table 6.3: Number of PIPs in different designs does not before and
after placement modifications

Number of PIPs
(before and after placement modification)

In order to measure the overhead of placement modifications, the structure of
routing was analyzed. Router uses algorithms to find optimal way between two
placed slices. Programmable Interconnection Points or PIPs are programmable
boxes which are between slices and are used to connect two or more slices to-
gether. If two slices are placed far from each other, normally more nets are need
to connect slices though PIPs together. This results in a more complicated routing
in the design which affect dynamic power usage.

However the number of PIPs does not change ([27]) . Although a quad four
components are placed far from each other, the other components form other
quads may be placed in between and the final number of PIPs remains similar.
Table 6.3 shows the number of PIPs for some benchmarks. However, the number
of nets which connect two slices together are increased. The reason is that more
PIPs are needed to connect two slices as they are placed far from each other.

Recent studies have characterized different bit errors arising from an SEU and
suggests that 1 to 5 % of the SEUs can cause multiple bit upsets.

Based on [101], the probability of adjacent double bit errors is much higher than
other multiple bit errors. However, modification of reliability tools to tolerate
against MBUs is necessary in near future.

Coping with the MBU problems in more details includes the future works and is
not in the scope of this contribution.
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7 Exploring Quadded Logics for
Reliability in Future Technologies

In the previous chapters, the advantages of reconfigurable architectures such as
FPGAs in space and their obstacles were described. The focus was on SRAM
based FPGAs which use current CMOS technology and its benefits.

Gordon Moore predicted in 1965 that the number of transistors which could eco-
nomically be placed on an integrated circuit would increase exponentially with
time. Eventually this leads to some physical limitations in CMOS technology and
the need for new architectures are risen up. In this chapter, the focus is turned
around the nano architectures which are expected to be the future architecture
which is one of the best alternative to CMOS. The programmability issue in state
of the art nano architectures is mentioned and its challenges are discussed.

7.1 Nano Architectures and their Challenges

In these years, nano architectures have emerged as an alternative to CMOS tech-
nology for the integration within CMOS as one approaches the end of the semi-
conductor road map and lithography based fabrications meet physical limita-
tions [102][115][75]. Now it is becoming possible to look beyond lithography
and explore how devices can be built without relying on lithography to pattern
the smallest feature sizes [39][37] [40].

Bottom-up self-assembly techniques are demonstrated to define key feature sizes
[39][118][62]. Self-assembly is a process in which molecules adopt a defined ar-
rangement without guidance or management from an outside source. This no-
ramlly results in regular structures. It has been shown that, by using bottom-up
self-assembly techniques, it is possible to build nano devices such as carbon nan-
otubes and silicon nanowires. These devices have been rated among the most
promising of all the new technologies under investigation [12].
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A0 A1 A2 A3 Vcommon

Vrow2

Vrow1

OR

OR

InvertBuf

Invert Buf

Figure 7.1: Basic structure of nanoPLA with two planes. Broken wires can be dis-
tributed overall the PLA. It consists of two ORs (Top-Left and Bottom-
Right) and Buffer and Inverter on the other side of every plane [42].

These techniques allow to build features which are just a few atom scales. It is
projected that, only regular structures such as the 2D crossbar can be manufac-
tured. Chemically self-assembled structures, as the building blocks for molec-
ular scale computing, are by their nature very regular. This way regular pro-
grammable architectures are currently being investigated in research. These ar-
chitectures share some similarities with conventional FPGAs. In particular they
are well suited to be used to implement regular arrays similar to FPGAs [29][37].

In general, by reducing the feature size, the control over the fabrication process
is reduced as well. There is no outside control on self assembly processes and
this makes it unlikely to construct complex circuits without any defect [29]. In
any kind of nano architectures, nanowires are a few atoms long in the diameter.
The contact area between nanowires contains only a few tens of atoms.

Even in the largely manufactured conventional lithographic systems, the tech-
nology is facing reliability challenges. As a result, design rules will change and
become more restricted to the regular design structures [113].

Furthermore, circuit designers can no longer design simply by technology de-
sign rules and expect a functional and still scalable design. Designers must know
when to use more relaxed rules and not simply relax the rules on the entire de-
sign, which negates physical scaling[20].

Hence, nano scale architectures come with a new set of challenges due to defects
as a result of smaller cross section and contact areas. Designs in this scale must
be defect tolerant, making the test or characterization for usability an essential
step in building circuits with nanowires [87][42].

For emerging nano technologies the defect rate is even higher due to the small
feature size and bottom up nature of the design. Although the defect rate for
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7.2 NanoPLA Architecture

Figure 7.2: Wired-OR plane operation. Programmed on crosspoints are shown in
black; off crosspoints are shown in grey. Dark lines represent a NW
pulled high, while light lines remain low. Output NWs are marked
dark, starting at the diode that pulls them high, in order to illustrate
current flow; the entire output NW would be pulled high in actual
operation [40].

emerging technologies is expected to decrease once the technologies are more
mature, due to the nature of the fabrication process it is still expected to be high
[35][59].

7.2 NanoPLA Architecture

Several researchers have begun to explore programmable logic structures in this
scale. [60] introduces a vision for this kind of molecular scale logic. Nano Fab-
rics [37] are an example of this vision. They use two terminal diode crosspoint
nanowires. [40] has explored how to use nanowires to build sub-lithographic
PLAs and interconnected PLAs which is called nanoPLA. They built a two plane
PLA with decorated silicon nanowires and device building blocks.

nanoPLAs are the most promising circuit solutions because of their regular ge-
ometry which enables large scale fabrications in order of nanometers. The regu-
lar nature of these devices can support implementation of Programmable Logic
Arrays (PLAs). This means that, in future they seem to be the best alternative of
reconfigurable architectures like FPGAs.
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Figure 7.3: Crossbar routing configuration. Programmed on crosspoints are
shown in black; off crosspoints are shown in grey. The crossbar is
programmed to connect A −→ T, C −→ V, D −→ S, E −→ U, and
F −→ R [40].

As Dehon firstly suggested in [42], NanoPLAs, like conventional PLAs, consist
of two programmable NOR planes (Figure 7.1). Each one of them consists of two
arrays: a logic array and a buffer/inverter array.

The logic array is the programmable part of the NOR plane. Using junctions
which are bistable crosspoints, the logic array implements the OR function of
its inputs [87]. If there is a way to program the crosspoints into high or low
resistance states, it is possible to program OR logic into a crosspoint array.

One can consider a single row of nanowire. If any of the columns of nanowires
which cross this row are connected with low resistance crosspoint junctions and
are driven to a high voltage level, the current into the nanowire in column will
be able to flow into the row and charge the row up to a higher voltage. If none
of the connected columns is high, the row nanowire will remain low.

Consequently the row nanowire effectively computes the OR of its programmed
inputs. When an input participates in an OR function of the design, the junction
of the input and the wired-OR will be closed while applying the high voltages to
the nanowire which crosses the junction and if it does not participate, will be left
open as it is in the initial state. Figure 7.2 shows the wired OR plane operation.

If one restricts himself to connecting a single row wire to each column wire, the
crosspoint array can serve as a crossbar switch. This allows to route any input
(column) to any output (row). Figure 7.3 mentions an example for crossbar rout-
ing configuration.

106



7.3 Crosspoint Arrays and Defects

Output

GND

Inputs Inputs

Output

Figure 7.4: (a) Wired OR logic in crosspoints. (b) Its corresponding structure in
nanoPLA

Each of the connected junctions behaves like a diode and produces the wired OR
logic of its inputs. If any of the inputs is high, it pulls up the OR term output.
Figure 7.4 shows wired OR circuits, which can be constructed by programming
the crosspoints.

As Figure 7.1 shows, the NOR plane also consists of a buffer/inverter array.
Buffer/inverter arrays, which have nonprogrammable junctions [42][41], are used
to restore/invert the input signals. In order to provide a NOR function, the OR-
term signals use these arrays for inversion. The output of the inversion can then
be buffered for further usages.

The inputs of the buffer/inverter array are the OR-term nanowires or the pri-
mary input nanowires. The outputs are always the restored signals. The restored
signals either are buffered or inverted. Accordingly, the input signals to the logic
array can be buffered or inverted. Some of the signals are just buffered while
some are only inverted, and some are both buffered and inverted [87].

For example, to implement the XOR function on nanoPLA, every function must
be rewritten in NOR form to be able to be programmed on nanoPLAs (See Figure
7.6 in section 7.5).

7.3 Crosspoint Arrays and Defects

As already mentioned, due to atomic scale of nanowires, defects are very com-
mon in nanoPLAs. Figure 7.1 shows possible defect places in nanoPLA which
are used in the defect model. Some spaces in nanowires are shown to be broken.
Two main defects in nanoPLAs are defects in programmable crosspoints due to
the structure of the junction and defects in nanowires [42].
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[87] has distributed a probability model for the crosspoint defect. Authors show,
Nanowires with 40nm diameters have the cross sectional area of 1600nm2 and as
a result 1100 programmable molecules can be placed in the cross section. If the
nanowires of width 8nm which is demonstrated in the later technologies is used,
the cross sectional area will be 64nm2 which is 1

25 of the first cross sectional area
and scaling the number of molecules in the cross section with 1

25 yields about 44
molecules. When P is the probability of a single molecule on a unit of area, the
probability distributed function of the number of molecules on a cross sectional
area of 44 times molecule area is:

P =

(
44
x

)
Px(1 − P)44−x (7.1)

x is the number of molecules in the cross sectional area. If Nmin is the minimum
number of molecules in the cross section to make a junction programmable, the
probability of a junction to be programmable is about 0.85. [86] has illustrated the
above distribution function in addition with its Cumulative Distribution Func-
tion with P=0.8. Figure 7.5 shows these two curves.

[59] reported that 95% of the wires measured had good contacts, and [35] re-
ported that 85% of crosspoint junctions measured were also properly usable.
[105] mentioned that both of these experiments were early measurements and
therefore, the yield is expected to be improved. [87] reported about more than
90% good nanowires and more than 80% defect free crosspoint junctions. In the
approach the system will work properly even if only 80% of nanowires and junc-
tions are good.

But if the defect rates are reduced in the future some new methodologies such
as the proposed one are needed for reliability. In nano architectures in general,
variation effects on design result in a higher rate of soft errors, due to the in-
tensive structure of carbon nano tubes. Therefore, it is mandatory to implement
high-reliable designs [21].

7.4 Conventional Test and Characterization process

in nanoPLAs

[40] presents an exhaustive test procedure for nanoPLAs. The test procedure is
done before programming a function (for example XOR) on nanoPLA. Test pro-
cedure includes two steps: Discovering Present Addresses and Discovering Polari-
ties. After knowing about the presence and polarity of each address, the Program-
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Figure 7.5: Cumulative Distribution function and the probability of distribution
function [86].

ming Diode Crosspoints procedure is performed to configure NOR-NOR planes
to implement the corresponding logic function. More details on programming
crosspoint junctions can be found in [40].

In this methodology, defects in nanowires can be detected by applying a voltage
to only one nanowire through the decoder, then reading the value from the other
end and determining if the nanowire conducts across its length. The horizontal
nanowires can be tested by applying a voltage through the decoder from one end
and read back the value from the other end.

To test the vertical nanowires the high voltage is applied to a horizontal nanowire
through the decoder, then the signal controls a vertical nanowire current through
the FET-like restoring junction of the buffer/inverter array. The value of the
vertical nanowire can be read from the other end.

As [105] also addressed, the test and characterization procedures take together
about 128 steps for each nanoPLA. This leads to high test cost when considering
large scale production.

In the work, this process is removed and instead of it, the function structure is
modified to make it tolerant against defects on nanowires. It means that instead
of doing a process to find suitable (not defected) nanowires, which consumes
time, a defect tolerance function on existing nanowires is programmed.
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Figure 7.6: XOR implemented on NanoPLA

In order to program a function on nanoPLAs, it must be reconstructed in NOR
gates. This property is suitable for quadded NOR logics, which use the behav-
ior of NOR gates and wires them together making the function tolerant against
faults.

7.5 Quadded Logic on nanoPLA

As described in section 7.2 the complete characterization for each nanoPLA is
done in the conventional test to determine the exact programming steps that
need to be followed to program the intended function. Although this approach
can provide exact function and prevent extra spares and due to this guarantee
a good yield, the huge number of characterization steps may not be suitable for
high demand fabrication process.

[105] presents a different paradigm of testing which is based on removing the
process of characterization and inserting spare wires to guarantee the correct
function in case of defect in original wires.

In the previous chapters the fundamentals of quadded logics and their usages
were described. A methodology based on quadded logics is introduced, which
makes not only a defect tolerant design but also reliable even against other kind
of transient errors. The basic idea is to use quadded NOR logics in nanoPLAs
and make the design defect and fault tolerant. NanoPLA is especially suitable
for quadded NOR form because NORs can be provided using nanoPLA.

First, the fundamentals of quadded NOR logics in nanoPLAs using the wrap-
ping feature of nanoPLAs is described. This feature makes it easy to implement
function on nanoPLAs.
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           =xor(i0,i1)

Figure 7.7: Wrapping feature in nanoPLAs is used here to implement four inputs
XOR on nanoPLA. Two input XORs are generated in the first wrap
and four input one in the second wrap [42].

To introduce the concept of quadded logics for nanoPLAs, XOR logic which is
rewritten in NOR logics is shown in Figure 7.8 in both its non-redundant and
quadded forms. XOR is presented in NOR form due to the nanoPLA usage pur-
pose.

Each NOR gate in Figure 7.8(a) is replaced by four NOR gates in Figure 7.8(b).
Each quadded form NOR has twice as many inputs as the non-redundant gate.
Four outputs of each stage are divided into two sets of two outputs. Each set
provides inputs to two gates in the succeeding stage.

This arrangement of NOR gates and interconnections provides error correction
capability. Error definition varies from bit flipping to defective wires which re-
sult in bit flipping. Both are probable in nanoPLAs. Any single error and a
number of multiple errors introduced in quadded XOR will not cause failure in
the functioning of the system.

To illustrate this capability, in Figure 7.8(b) assume that i0 generates ’1’ instead
of ’0’ as the result of defect in wire. The result of neighbored NORs (S2 and S3)
is one as should be and i0 will effect S0 and S1 to ’0’. Because ’1’ is the dominant
value for NOR logic, it will remove this error in the next stage using the correct
value of the neighbors. More details on quadded logics and their proof can be
found in Chapter 5 and [90][70][120][121].

7.5.1 Multilevel logic evaluation in nanoPLA

As described in the previous section, every function must be rewritten to NOR
parts to be able to map on nanoPLA. The XOR in NOR form is rewritten and is
programmed on nanoPLA. In order to use quadded NOR logics, one must have
the entire design in NOR gates. It is implemented as shown in Figure 7.8(a).
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Equation 7.2 shows the NOR formed XOR logic which is used to map XOR on
nanoPLA in Figure 7.6. Implementation is done after passing test and character-
ization process. For simplicity, in the continuing figures, the nanoPLA is shown
by its programming part in addition to buffer and inversion parts.

O = i ⊕ j

= i.j + i.j

= (i + j) + (i + j)

(7.2)

i and j are inverted and buffered in the below plane right and are programmed
as corresponding OR which is needed in the up plane. Then they are inverted in
the top plane and finally are ORed again in the bottom plane as the result.

Rather than using a separate physical plane for every logic stage of evaluation
in a spread PLA mapping, the logic function can be wrapped around the PLA
multiple times [42].

Consider a 4-input XOR. The XOR is rewritten to some NOR terms. [42] shows
that it is possible to wrap the XOR twice through the PLA, computing 4 input
XOR as a cascade of two level XORs. In Figure 7.7, implementation of the 4-
inputs XOR on nanoPLA using wrapping feature has been shown [42].

Figure 7.6 illustrates the original implementation of NOR-NOR form of XOR.
The inverting and buffering parts of nanoPLA are shown. In the bottom row, i
and j as inputs are derived and inverted or buffered as shown. In the top lines
corresponding ORs are generated and finally in the top left line the final inver-
sion is done and the XOR result is generated.

The multilevel programming ability, which is presented in Figure 7.7, for a 4-
input XOR logic wraps around the nanoPLA in order to program the sub XORs
and the main XOR and the end as follows:

O = i0 ⊕ i1 ⊕ i2 ⊕ i3
= (i0 ⊕ i1)⊕ (i2 ⊕ i3)

= ((i0 + i1) + (i0 + i1))⊕ ((i2 + i3) + (i2 + i3))

(7.3)

Every part is mapped on nanoPLA and used in the next wrapping. This feature
is used in the next section while the quadded XOR is mapped on nanoPLA.
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Figure 7.8: (a) XOR logic in NOR form. (b) Quadded NOR Logic form of XOR

7.6 The Proposed Approach

The multi-level logic map capability in nanoPLA is used to map quadded logic
form on it and make it tolerance against defects.

The nanoPLA, illustrated in Figure 7.1, is the target architecture for design method-
ology. In Figure 7.6 is shown how an XOR is programmable on nanoPLA, after
passing the process of test and characterization of nanoPLA.

The programming strategy, implements the quadded form XOR instead of XOR
on nanoPLA. Every nanoPLA has two planes and every plane consists of 6 wires.
The number of nanowires in every plan is increased in order to achieve the
quadded form. Based on [52] there is no physical limitation to increase the num-
ber of nanowires in every plane. Because of the nature of quadded logics, which
quadruplicates the input numbers, the number of nanowires in nanoPLA is in-
creased to be further used in quadruplicated form.

Equation 7.2 rewrites the XOR in NOR forms to be suitable for nanoPLA. The
quadded form XOR in NOR gates is modified based on the Figure 7.8. There
is still NOR formed, but the number of inputs is quadruplicated as a result of
quadded modification. Equation 3.1, 7.5 and 7.6 show the rewritten quadded
XOR in quadded form.
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P0 = (i0 + i1 + j0 + j1)

P1 = (i1 + i0 + j1 + j0)

P2 = (i2 + i3 + j2 + j3)

P3 = (i3 + i2 + j3 + j2)

(7.4)

Q0 = (i0 + i1 + j0 + j1)

Q1 = (i1 + i0 + j1 + j0)

Q2 = (i2 + i3 + j2 + j3)

Q3 = (i3 + i2 + j3 + j2)

(7.5)

O0 = (P0 + P3 + Q0 + Q3)

O1 = (P1 + P2 + Q1 + Q2)

O2 = (P2 + P1 + Q2 + Q1)

O3 = (P3 + P0 + Q3 + Q0)

(7.6)

As Figure 7.9 shows, only the programming part of nanoPLA is used to show the
quadded XOR implementation on nanoPLA using the wrapping feature.

Firstly, the top inverting line buffers the inputs i0 to i3 and j0 to j3 twice to be used
in the bottom ORed area. Secondly, the bottom plane generates the quadded OR
forms and inverter of bottom plane inverts it. It also inverts the results of S0..3
and T0..3. They are then ORed again with the buffered i0..3 and j0..3 in a suitable
manner for quadded logics. Finally, the inverter in the bottom plane inverts the
result and generates O0..3.

Although quadded logics have shown to be high-reliable [120], applying them
on logics will result in a 4 times bigger size. However, in nanoPLA, and by using
the wrapping feature, this area overhead is not the case anymore. One can define
nanoPLAs with up to 100 nanowires [42].

In order to implement the XOR function, nanowires in programming part of
nanoPLA and inverting/buffering lines are used and added together in a way to
achieve the function. The entire quadded form is implemented in one nanoPLA
by using more nanowires. Therefore, even for big circuits, the number of used
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Figure 7.9: Quadded XOR on nanoPLA

nanoPLAs can be the same as the original design even for quadded form. Using
quadded form, new nanowires in parallel are added to the original circuit wires.

7.7 Implementations

In this section, it is discussed how to implement the nanoPLA in a simulation
environment to allow for fault injection and reliability evaluation.

A nanoPLA in VHDL is described by defining four internal wires: top and bot-
tom buses and inverting and restoring buses in each every right and left parts of
the nanoPLA. Inverting/restoring buses are connected to top (bottom) bus and
then are ORed together in bottom (top) bus, achieving NOR logic, as shown in
Figure 7.6.

The XOR mapping on nanoPLA in Figure 7.6 is used to make connections be-
tween corresponding buses. First, one has to buffer i and j in the top bus, then
transfer them to the bottom bus. By inverting/buffering them in the left buses,
one obtains them ORed together in the top bus, and they are then sent to the right
plane to be inverted and form a NOR gate. Assuming TB, BB, RI, RB, LI and LB
respectively as Top Bus, Bottom Bus, Right Inverter, Right Buffer, Left Inverter
and Left Buffer, Figure 7.6 shows the performed computations to achieve a XOR
gate.
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7.7.1 Quadded Form

In a similar way to the XOR, quadded XOR form can be implemented as shown
in Figure 7.9. In order to obtain the quadded gate, inputs are quadruplicated in
the top bus and buffer them, and then are sent to the circle of nanoPLA.

After buffering inputs in Top-Right position, they are sent to the Down-Right
part and are ORed in a proper manner to achieve quadded Logic properties.
Then, in the Down-Right part they are inverted/buffered and are sent to the
Top-Left part, where they are again ORed together to obtain the second level of
the design in Figure 7.8(b). Finally, they are inverted in the Top-Left inverting
lines and send them to the outputs.

7.7.2 TMR Form

In a similar fashion to the quadded form, the TMR form of an XOR is imple-
mented to be compared to quadded form concerning defect tolerance. Every
XOR logic gate (reconstructed in NOR gates) is triplicated, then a majority voter
is inserted to compute the correct result. The voter is rewritten also in NOR form.
The voter can be designed as shown in Equation 7.7. However, for TMR form of
XOR, the function is triplicated on nanoPLA.

O = (O0 + O1 + O0)

+ (O0 + O1 + O2)

+ (O0 + O1 + O2)

+ (O0 + O1 + O2)

(7.7)

TMR’s implementation on nanoPLA is shown in Figure 7.10.

7.8 Experimental Results

To assess the reliability of the quadded form, the primary study focuses on the
three different implementations of a simple XOR gate. The original XOR circuit, a
TMR implementation with single voting, and the quadded XOR logic are tested.
For each of these the experiments for all four combinations of the input vector
are conducted and the results are measured. In order to influence the circuit,
one, two or three faults are injected randomly in the design and compared the
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Figure 7.10: TMR implementation on nanoPLA. Gray wires show the voter
implementation.

result of the faulty circuit to the expected result. In the framework fault injection
in all nanowires of the nanoPLA is possible. Each of the faults corresponds to a
typical defect in this kind of architecture. In this first experiment just one single
nanoPLA is used. Defects and faults between different tiles will be considered in
the future works.

The fault injector works as follows. For each run one, two, and three random
faults are injected in the design by forcing the nanowires to one or zero and run-
ning a ModelSim simulation for this special case. This defect defines a stuck at
one or zero on wires in the circuit. The fault injector checked the golden value of
a wire, then flipped the value (stuck-at failure injection) and simulated the faulty
circuit again. This is done 1000 times for each circuit and one to three faults. The
number of 1000 runs per test case has been shown to be a good number as the
results get stable and a significant amount of different fault combinations in dif-
ferent wires is tested. Moreover the setup guarantees that each single junction
is tested once at least. Finally 1000 runs still give a reasonable runtime for the
simulation.

Figure 7.11 shows the experimental results which include availability percentage
of an XOR in original circuit, its TMR implementation and the quadded form for
all different input vectors. 3 curves show experiments, which are done respec-
tively for 1, 2, and 3 defects each time.
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Figure 7.11: Availability percentage of an XOR in original circuit, TMRed and
quadded form vs. different input distributions. Experiments are
done for 1, 2, and 3 defects each time. In different distribution of
inputs, different availability percentage was found, reported by the
fault injector.
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7.9 Discussion

In the first curve, 1 defect is inserted in every simulation of the circuit. It means
that, one nanowire is defective in every simulation and the result is checked for
correctness. For quadded form, correction is done for all single defects as the
curve shows. The availability is reported to be 100%. TMR achieves between
80% and 90% depending on the input value which is mainly caused by the voter
as it is a single point of failure. The original implementation is correct in 10% to
25% depending on the input vectors.

In the second curve, experiments are repeated for 2 defect injections in every
simulation. The correctness of the original circuit increases to 20% to 40% caused
by two compensating faults. The TMR reliability decreases because two copies
can be affected at the same time. The quadded logic is still able to correct up to
90% of the defects.

In the third curve, quadded form still gives a correct result for up to 80% for the
test cases. Interestingly TMR gives almost the same result as the simple XOR
implementation.

7.9 Discussion

By using different input vectors, different availability percentages were found,
reported by the fault injector. It is due to the partial fault correctness feature of
XOR logic gate. For example, when two input vectors have a different value,
the output value is always one. Now, if both of inputs are faulty and change
the value (one to zero and vice versa), the output will still remain the correct
value. In the results can also be seen that different input vectors result in different
availabilities of the circuit in the existence of defects.

As Figure 7.11 shows, quadded logics are able to tolerate against single defects in
all cases based on the experiments and also the proof in [120]. As shown, TMR is
unreliable as the number of defects increases. As already noted, a voter in TMR
is a single point of failure which hugely effect the reliability.

In large scales, quadded logics are able to make designs high-reliable. As men-
tioned before, the quadded NOR logics can be used in nanoPLA to get the ben-
efits of quadded NOR logics reliability on nanoPLAs. NOR logic gates can be
used to implement more complex systems and quadded logics are more reliable
when there are more levels between designed NOR gates.

In comparison to the conventional logic mapping on nanoPLA [40], the method
allows for faster mapping. The process of test and characterization of nanoPLA is
eliminated and quadded method tolerates all single defects and most of multiple
defects in design.
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8 Conclusion and Future work

As described in the beginning, the work presented here aims at designing an effi-
cient approach for high reliability of FPGA based systems under high radiation.

The possibility to integrate a complex Systems-on-Chip (SoC) on a single FPGA
device, combining speedup of hardware with flexibility of software, the oppor-
tunity of practically unlimited reconfiguration in SRAM based FPGAs as well
as drastically sinking prices, have made FPGAs attractive for a wide variety of
application domains.

In special application domains such as space applications, FPGAs are inherently
flexible to meet multiple requirements and offer significant performance and cost
saving for such critical applications. Therefore the popularity to use such devices
in space applications has increased in recent years. Especially SRAM-based FP-
GAs which embed megabits of RAMs and plenty of configurable logic and rout-
ing resources, makes it possible to implement circuits composed of millions of
gates which are tailored to the application.

The main motivation for studying fault tolerance techniques for FPGAs, is the
lack of robustness in modern technologies due to the following reasons: First,
state of the art nano scale technologies in general and SRAM based FPGAs in
particular have been shown to be susceptible to radiation in the aforementioned
environment. In fact, these effects can cause transient or permanent bit flipping
on SRAM cells and respectively change the function of logic elements within
FPGAs.

In addition, as technology size decreases below nanometers, several major single
event effect challenges related to nuclear and space radiation arise. Experiments
show a huge increase in SEU sensitivity for each new device generation using
shrinking technology. In addition, MBUs which are the result of SEUs are more
likely to provoke more than one bit upset. The width of the area which is affected
by MBUs is likely to have an influence on fault tolerance methodologies.

Traditional methods such as triple modular redundancy approaches have been
proved to be ineffective in mitigating against SEEs with relatively high rates.
Along with decreasing technology scales this causes the coarse grain TMR to
face some challenges.
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In addition with multiple SETs traditional coarse grain TMR approaches might
be unable to detect and recover from an error state. This can be improved when
redundancy is used on smaller portions of the design, hence going to a more fine
grain view.

In this work, methodologies are studied and proposed which focus on solving
the aforementioned challenges by changing the granularity of fault tolerance to
very fine grain levels. The work is composed of two improvements on conven-
tional redundancy. The basic principle that has been followed, is to change the
granularity of fault tolerance in FPGAs.

In the first step, suitable granular redundancy for FPGAs is examined and the
suitable granularity level is studied. The homogeneous nature of FPGAs allows
to find a common level where a methodology can be applied without being fo-
cused to a certain design. Coupling the redundancy to FPGA primitives allows
to apply new considerations in using fault tolerance methodologies.

This way the FGTMR technique is introduced in this work as an improvement
to TMR. It allows to recover from failures on local parts of the architecture. This
comes to the price that every TMRed fine grain part needs a voter to select the
correct output value which results in a longer critical path. Therefore in the sec-
ond step of this contribution the focus is on this challenge. A possible solution
are methodologies which don’t need voting and are still applicable to fine grains.

Therefore a methodology is discussed which uses inherent voting in fine grain
parts of FPGAs by wiring different copies of a grain in a special manner and
using them to vote for correct values. The idea is based on quadded logic and
is enhanced in order to work on modern reconfigurable architectures. The new
method is named QFDR. It applies two different rules to the boolean functions
(LUTs in FPGAs) and realizes inherent voting by connecting the LUTs in a special
way.

Using these approaches, a tool flow is introduced which has been developed in
this work and can be easily integrated in standard synthesis tools for FPGAs.
This tool flow allows automatically applying FGTMR or QFDR to any design
after the mapping process. As case study, the Xilinx ISE tool flow is used to
integrate fault tolerance methodologies on the Xilinx Virtex-5 family. The tool
flow modifies designs in lower levels of the synthesis flow and applies QFDR
or FGTMR to them. Experiments are done on different designs and results on
area overhead, power usage, and fault tolerance are presented. The trade-off
between high reliability and resource consumption based on the aforementioned
methodologies is eventually discussed.

Eventually both FGTMR and QFDR show an improvement in reliability. Of
course this comes to the price of additional area consumption. However this
overhead can be significantly reduced as soon as slight changes to the FPGA
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LUT architecture are considered. Therefore an improved slice presentation is in-
troduced. In addition this allows to simplify the methodology of automatically
applying QFDR on future FPGAs.

Finally, in a longer perspective, nano architectures are studied in this work.
These architectures are likely to replace the CMOS technology because as soon
as the end of the scaling road map is reached. Therefore trends on new nano
architectures and defect tolerance as their main challenge are discussed in this
contribution. These architectures show some similarities to current reconfig-
urable architectures. Especially high failure and error rates are expected for these
nanoPLAs due to the fabrication process. Hence fault tolerance methodologies
are absolutely necessary. In this work is shown, that quadded logic is applicable
for nanoPLAs, provides good results and even can simplify the characterization
process.

As in any methodology there are some limitations and some challenges remain.
The current technique which is used in QFDR, assumes that in the case of flipflop
with enable, voter is inserted to provide the correct output value to be written
back to the flipflop. Although this implementation recovers flipflops in case of
SEUs, it adds an overhead of voters to the design. One of the major next steps of
this work can be extending QFDR in order to cope with SEUs in flipflops which
use enable.

Also the area overhead of the proposed methodologies is a challenge. It can
be improved by using mechanisms which optimize the placement and routing
issues in a synthesis flow as has been shown in the Spartan-3 synthesis Virtex-5
P&R experiment. In principle, high-level synthesis can be done for 3-LUT slices
or less and be optimized for a special number of inputs in LUTs in order to apply
QFDR without needing for LUT decomposition. This way a better optimization
is feasible.

Another challenge are MBUs. In this work, a methodology was presented which
is based on placement modifications. This can only be seen as a principle and
needs some refinement.

In conclusion the results of this work show, that changing the granularity level of
redundancy on SRAM based FPGAs brings some benefits whenever high error
rates are being considered. First of all a higher fault tolerance compared to coarse
grain approaches is achieved by applying the new methodologies that have been
developed in this work. Secondly using FPGA primitives for tolerance insertion
allows to fully automatically integrate redundancy to any FPGA design in princi-
ple. Eventually this work demonstrates how quadded logic even can be applied
to future nanotube based architectures beyond the CMOS roadmap.
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FGTMR . . . . . . . . . . Fine Grain TMR
FPGA . . . . . . . . . . . . Field Programmable Gate Array
GEO . . . . . . . . . . . . . Geoscnchronous
GPS . . . . . . . . . . . . . . Flobal Positioning System
GTMR . . . . . . . . . . . Global TMR
HDL . . . . . . . . . . . . . Hardware Description Language
IC . . . . . . . . . . . . . . . Integrated Circuit
IOB . . . . . . . . . . . . . . Input Output Block
IP . . . . . . . . . . . . . . . . Intellectual Property
JEDEC . . . . . . . . . . . Joint Electron Devices Engineering Council
KCPSM . . . . . . . . . . Ken Chapmans Programmable State Machine
LEO . . . . . . . . . . . . . Low Earth Orbit
LET . . . . . . . . . . . . . . Linear Energy Transfer
LTMR . . . . . . . . . . . . Local TMR
LUT . . . . . . . . . . . . . Look Up Table
MBU . . . . . . . . . . . . . Multiple Bit Upset
MUX . . . . . . . . . . . . Multiplexer
NASA . . . . . . . . . . . National Aeronautics and Space Administration
NCD . . . . . . . . . . . . . Natural Circuit Description
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NW . . . . . . . . . . . . . . Nano Wire
PAL . . . . . . . . . . . . . . Programmable Array Logic
PIP . . . . . . . . . . . . . . Programmable Interconnection Point
PLA . . . . . . . . . . . . . Programmable Logic Array
PLD . . . . . . . . . . . . . Programmable Logic Device
PROM . . . . . . . . . . . Programmable Read-only Memory
QFDR . . . . . . . . . . . . Quadded Force Decide Redundancy
QL . . . . . . . . . . . . . . . Quadded Logic
ROM . . . . . . . . . . . . Read Only Memory
RoRA . . . . . . . . . . . . Reliability Oriented place and Route Algorithm
RTL . . . . . . . . . . . . . . Register Transfer Level
SE . . . . . . . . . . . . . . . Single Event
SEB . . . . . . . . . . . . . . Single Event Burnout
SEE . . . . . . . . . . . . . . Single Event Effect
SEGR . . . . . . . . . . . . Single Event Gate Rupture
SEL . . . . . . . . . . . . . . Single Event Latchup
SET . . . . . . . . . . . . . . Single Event Transient
SEU . . . . . . . . . . . . . . Single Event Upset
SOC . . . . . . . . . . . . . System On Chip
SRAM . . . . . . . . . . . Static Random Accessible Memory
TCL . . . . . . . . . . . . . Tool Command Language
TID . . . . . . . . . . . . . . Total Ionizing Dose
TMR . . . . . . . . . . . . . Tripple Modular Redundancy
VHDL . . . . . . . . . . . Very High Speed Description Language
XDL . . . . . . . . . . . . . Xilinx Design Language
XOR . . . . . . . . . . . . . Exclusive OR
XTMR . . . . . . . . . . . Xilinx TMR
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