110 research outputs found

    Hydrogeological Risk Management in Smart Cities: A New Approach to Rainfall Classification Based on LTE Cell Selection Parameters

    Get PDF
    The sudden climate change, that has taken place in recent years, has generated calamitous phenomena linked to hydrogeological instability in many areas of the world. An accurate estimate of rainfall levels is fundamental in smart city application scenarios: it becomes essential to be able to warn of the imminent occurrence of a calamitous event and reduce the risk to human beings. Unfortunately, to date, traditional techniques for rainfall level estimation present numerous critical issues. This paper proposes a new approach to rainfall classification based on the LTE radio channel parameters adopted for the cell selection mechanism. In particular, this study highlights the correlation between the set of radio channel quality monitoring parameters and the relative rainfall intensity levels. Through a pattern recognition approach based on neural networks with Multi-Layer Perceptron (MLP), the proposed algorithm identifies five classes of rainfall levels with an average accuracy of 96 % and a F1 score of 93.6 %

    SMILE: Smart Monitoring IoT Learning Ecosystem

    Get PDF
    In industrial contexts to date, there are several solutions to monitor and intervene in case of anomalies and/or failures. Using a classic approach to cover all the requirements needed in the industrial field, different solutions should be implemented for different monitoring platforms, covering the required end-to-end. The classic cause-effect association process in the field of industrial monitoring requires thorough understanding of the monitored ecosystem and the main characteristics triggering the detected anomalies. In these cases, complex decision-making systems are in place often providing poor results. This paper introduces a new approach based on an innovative industrial monitoring platform, which has been denominated SMILE. It allows offering an automatic service of global modern industry performance monitoring, giving the possibility to create, by setting goals, its own machine/deep learning models through a web dashboard from which one can view the collected data and the produced results.  Thanks to an unsupervised approach the SMILE platform can understand which the linear and non-linear correlations are representing the overall state of the system to predict and, therefore, report abnormal behavior

    Applications of Soft Computing in Mobile and Wireless Communications

    Get PDF
    Soft computing is a synergistic combination of artificial intelligence methodologies to model and solve real world problems that are either impossible or too difficult to model mathematically. Furthermore, the use of conventional modeling techniques demands rigor, precision and certainty, which carry computational cost. On the other hand, soft computing utilizes computation, reasoning and inference to reduce computational cost by exploiting tolerance for imprecision, uncertainty, partial truth and approximation. In addition to computational cost savings, soft computing is an excellent platform for autonomic computing, owing to its roots in artificial intelligence. Wireless communication networks are associated with much uncertainty and imprecision due to a number of stochastic processes such as escalating number of access points, constantly changing propagation channels, sudden variations in network load and random mobility of users. This reality has fuelled numerous applications of soft computing techniques in mobile and wireless communications. This paper reviews various applications of the core soft computing methodologies in mobile and wireless communications

    Mission-Critical Communications from LMR to 5G: a Technology Assessment approach for Smart City scenarios

    Get PDF
    Radiocommunication networks are one of the main support tools of agencies that carry out actions in Public Protection & Disaster Relief (PPDR), and it is necessary to update these communications technologies from narrowband to broadband and integrated to information technologies to have an effective action before society. Understanding that this problem includes, besides the technical aspects, issues related to the social context to which these systems are inserted, this study aims to construct scenarios, using several sources of information, that helps the managers of the PPDR agencies in the technological decisionmaking process of the Digital Transformation of Mission-Critical Communication considering Smart City scenarios, guided by the methods and approaches of Technological Assessment (TA).As redes de radiocomunicações são uma das principais ferramentas de apoio dos órgãos que realizam ações de Proteção Pública e Socorro em desastres, sendo necessário atualizar essas tecnologias de comunicação de banda estreita para banda larga, e integra- las às tecnologias de informação, para se ter uma atuação efetiva perante a sociedade . Entendendo que esse problema inclui, além dos aspectos técnicos, questões relacionadas ao contexto social ao qual esses sistemas estão inseridos, este estudo tem por objetivo a construção de cenários, utilizando diversas fontes de informação que auxiliem os gestores destas agências na tomada de decisão tecnológica que envolve a transformação digital da Comunicação de Missão Crítica considerando cenários de Cidades Inteligentes, guiado pelos métodos e abordagens de Avaliação Tecnológica (TA)

    Positioning of a wireless relay node for useful cooperative communication

    Get PDF
    Given the exorbitant amount of data transmitted and the increasing demand for data connectivity in the 21st century, it has become imperative to search for pro-active and sustainable solutions to the effectively alleviate the overwhelming burden imposed on wireless networks. In this study a Decode and Forward cooperative relay channel is analyzed, with the employment of Maximal Ratio Combining at the destination node as the method of offering diversity combining. The system framework used is based on a three-node relay channel with a source node, relay node and a destination node. A model for the wireless communications channel is formulated in order for simulation to be carried out to investigate the impact on performance of relaying on a node placed at the edge of cell. Firstly, an AWGN channel is used before the effect of Rayleigh fading is taken into consideration. Result shows that performance of cooperative relaying performance is always superior or similar to conventional relaying. Additionally, relaying is beneficial when the relay is placed closer to the receiver

    6G—Enabling the New Smart City: A Survey

    Get PDF
    Smart cities and 6G are technological areas that have the potential to transform the way we live and work in the years to come. Until this transformation comes into place, there is the need, underlined by research and market studies, for a critical reassessment of the entire wireless communication sector for smart cities, which should include the IoT infrastructure, economic factors that could improve their adoption rate, and strategies that enable smart city operations. Therefore, from a technical point of view, a series of stringent issues, such as interoperability, data privacy, security, the digital divide, and implementation issues have to be addressed. Notably, to concentrate the scrutiny on smart cities and the forthcoming influence of 6G, the groundwork laid by the current 5G, with its multifaceted role and inherent limitations within the domain of smart cities, is embraced as a foundational standpoint. This examination culminates in a panoramic exposition, extending beyond the mere delineation of the 6G standard toward the unveiling of the extensive gamut of potential applications that this emergent standard promises to introduce to the smart cities arena. This paper provides an update on the SC ecosystem around the novel paradigm of 6G, aggregating a series of enabling technologies accompanied by the descriptions of their roles and specific employment schemes

    Modelling of propagation path loss using adaptive hybrid artificial neural network approach for outdoor environments.

    Get PDF
    Doctor of Philosophy in Electronic Engineering. University of KwaZulu-Natal. Durban, 2018.Prediction of signal power loss between transmitter and receiver with minimal error is an important issue in telecommunication network planning and optimization process. Some of the basic available conventional models in literature for signal power loss prediction includes the Free space, Lee, COST 234 Hata, Hata, Walficsh- Bertoni, Walficsh-Ikegami, dominant path and ITU models. But, due to poor prediction accuracy and lack of computational efficiency of these traditional models with propagated signal data in different cellular network environments, many researchers have shifted their focus to the domain of Artificial Neural Networks (ANNs) models. Different neural network architectures and models exist in literature, but the most popular one among them is the Multi-Layer Perceptron (MLP) ANN which can be attributed to its superb architecture and comparably clear algorithm. Though standard MLP networks have been employed to model and predict different signal data, they suffer due to the following fundamental drawbacks. Firstly, conventional MLP networks perform poorly in handling noisy data. Also, MLP networks lack capabilities in dealing with incoherence datasets which contracts with smoothness. Firstly, in this work, an adaptive neural network predictor which combines MLP and Adaptive Linear Element (ADALINE) is developed for enhanced signal power prediction. This is followed with a resourceful predictive model, built on MLP network with vector order statistic filter based pre-processing technique for improved prediction of measured signal power loss in different micro-cellular urban environments. The prediction accuracy of the proposed hybrid adaptive neural network predictor has been tested and evaluated using experimental field strength data acquired from Long Term Evolution (LTE) radio network environment with mixed residential, commercial and cluttered building structures. By means of first order statistical performance evaluation metrics using Correlation Coefficient, Root Mean Squared Error, Standard Deviation and Mean Absolute Error, the proposed adaptive hybrid approach provides a better prediction accuracy compared to the conventional MLP ANN prediction approach. The superior performance of the hybrid neural predictor can be attributed to its capability to learn, adaptively respond and predict the fluctuating patterns of the reference propagation loss data during training

    Intelligent Circuits and Systems

    Get PDF
    ICICS-2020 is the third conference initiated by the School of Electronics and Electrical Engineering at Lovely Professional University that explored recent innovations of researchers working for the development of smart and green technologies in the fields of Energy, Electronics, Communications, Computers, and Control. ICICS provides innovators to identify new opportunities for the social and economic benefits of society.  This conference bridges the gap between academics and R&D institutions, social visionaries, and experts from all strata of society to present their ongoing research activities and foster research relations between them. It provides opportunities for the exchange of new ideas, applications, and experiences in the field of smart technologies and finding global partners for future collaboration. The ICICS-2020 was conducted in two broad categories, Intelligent Circuits & Intelligent Systems and Emerging Technologies in Electrical Engineering
    corecore