CONTRACTO

1. Welcome to ICEIC 2019	_2
2. Technical Program Overview	_ 3
3. Committee	
- Organizing Committee	_4
- Technical Program Committee	_5
- Advisory Committee	_6
4. Time Table	_7
5. Floor Map	_8
6. Conference Information	
- Registration	_ 10
- Presentation	_11
- Coffee Break and Lunch	_11
- Social Program	_ 12
7. Plenary Talks	_13
8. Technical Program	_
9. Poster Session	_
10. Venue & Accommodation	_

2019 International Conference on Electronics, Information and Communication (ICEIC) 2019

Welcome to ICEIC 2019

Technical Program Overview

On behalf of the Technical Program Committee of the 18th annual International Conference on Electronics, Information, and Communication (ICEIC 2019), it is a great pleasure to welcome all participants and introduce the technical program.

This year, 417 papers were submitted to the conference from 24 different countries all over the world. After review process, the technical program committee selected 320 qualified papers that cover a broad range of important and timely issues in the field of electronics, information, and communication technologies. The selected papers were organized into 24 oral sessions with 120 papers and 6 poster sessions with 200 papers.

The program also includes two plenary talks given by Dr. Aiguo Patrick HU from the University of Auckland, New Zealand and Prof. Heung-No Lee from Gwangju Institute of Science & Technology (GIST), Korea.

The technical program would not be possible without enthusiastic support from outstanding colleagues. First of all, we would like to express our sincere gratitude to all the participants including the authors, the speakers, and the chair persons. We appreciate the voluntary contributions from the technical program committee members. Special thanks go to the track chairs who helped on the review process and session organization. Also, we would like to thank the member of the organizing committee for their seamless assistance.

We truly hope that you will enjoy the technical program and could find big inspiration from the technical discussion and interactions with your colleagues. We also wish you have the most fruitful and pleasant time in Auckland.

Technical Program Chair Oh-Soon Shin Soongsil University, Korea

Committee

Organizing Committee

General chair

Cheon Won Choi (Dankook University, Korea)

General Co-Chair

Wahab Almuhtadi (IEEE CE Society, USA)

OC chair

Seokhyun Yoon (Dankook University, Korea)

OC co-chair/Local arrangement

Ho Seok Ahn (University of Auckland, New Zealand)

Publicity Chair

Byung Cheol Song (Inha University, Korea)

Publication Chair

Jong-Moon Chung (Yonsei University, Korea)

Registration Chair

Chang-Su Kim (Korea University, Korea)

Finance Chair

Ji-Hoon Yoon (Seoul National University of Science and Technology, Korea)

Publicity co-chair

Chae-Eun Rhee (Inha University, Korea)

Conference Activity

Sunghyun Cho (Hanyang University, Korea)

Publication co-chair

Jin Young Hwang (Korea Aerospace University, Korea)

Technical Program Committee

TPC Chair

Oh-Soon Shin (Soongsil University, Korea)

TPC Track Chair

Wonjong Kim (ETRI, Korea)

Illsoo Sonh (Seoul National University of Science and Technology, Korea)

Jong-Ho Lee (Soongsil University, Korea)

Young Mo Chung (Hansung University, Korea)

Seongjae Cho (Gachon University, Korea)

TPC Member

Van-Dinh Nguyen (Soongsil University, Korea)

Jiho Song (Ulsan University, Korea)

Ji-Hyeong Han (Seoul National University of Science & Technology, Korea)

Chang-Woo Lee (Catholic University, Korea)

In Kyu Park (Inha University, Korea)

Yong-Hwa Kim (Myongji University, Korea)

Seung-Hoon Hwang (Dongguk University, Korea)

Woonghee Lee (LG Electronics, Korea)

Jungmin Yoon (Seoul National University, Korea)

Jae Kyoung Mun (ETRI, Korea)

Woosuk Yang (ETRI, Korea)

Sangyoub Lee (R&S Lab,)

Dongwann Kang (Seoul National University of Science & Technology, Korea)

Young-Jun Yoon (Seoul National University, Korea)

Sungjun Kim (Chungbuk National University, Korea)

Won-Tae Kim (Koreatech University, Korea)

Kee-Won Kwon (Sungkyunkwan University, Korea)

Advisory Committee

Jin Ok Park (Korea Military Academy, Korea)

Duckjin Kim (Korea University, Korea)

Kyu Tae Park (Yonsei University, Korea)

Jung Uck Seo (e-Trade Promotion Committee KITA, Korea)

Tae Won Rhee (Korea University, Korea)

Choong Woong Lee (Seoul National University, Korea)

Yung-Kwon Kim (Huree Univ. ICT, Korea)

Seung Hong Hong (Inha University, Korea)

Moon Key Lee (Yonsei University, Korea)

Sang Seol Lee (Hanyang University, Korea)

Jung Woong Ra (KAIST, Korea)

Soo-Jung Kim (Kyungpook University, Korea)

Do Hyun Kim (Kookmin University, Korea)

Hang Gu Bahk (Soamsystel Inc., Korea)

Sung Han Park (Hanyang University, Korea)

Jin-Koo Rhee (Dongguk University, Korea)

Koeng Mo Sung (Seoul National University, Korea)

Jong Wha Chong (Hanyang University, Korea)

Jaihie Kim (Yonsei University, Korea)

Jae Hong Lee (Seoul National University, Korea)

Hong-Tae Jeon (Chung-Ang University, Korea)

Seong Dae Kim (KAIST, Korea)

Kukjin Chun (Seoul National University, Korea)

Sung-Jea Ko (Korea University, Korea)

Young Shik Moon (Hanyang University, Korea)

Byung Gook Park (Seoul National University, Korea)

Yong Seo Koo (Dankook University, Korea)

Daesik Hong (Yonsei University, Korea)

Joonki Paik (Chung-Ang University, Korea)

Stephen Dukes (IEEE Consumer Electronics Society, USA)

Stefan Mozar (IEEE Consumer Electronics Society, USA

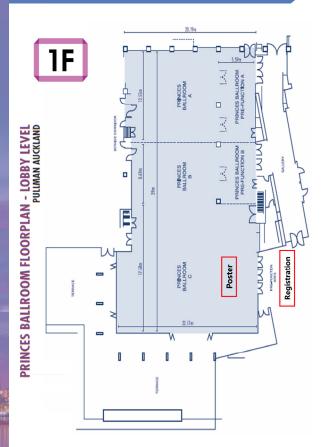
Time Table

January 22nd (TUE), 2019

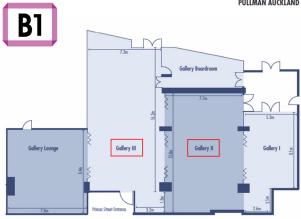
Room	Princes A+B	Princes C	Gallery 2	Gallery 3	Regatta B	Regatta C
15:00~17:00	Registration (Lobby 1F)					
17:30	Welcome Reception (Top of the Town 14F)					

January 23rd (WED), 2019

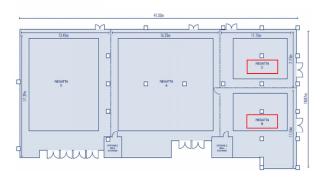
Room	Princes A+B	Princes C	Gallery 2	Gallery 3	Regatta B	Regatta C
08:30~16:00			Registration	(Lobby 1F)		
09:00~10:30		P1	A1	A2	A3	A4
10:45~11:00		Opening Ceremony (Princes A+B)				
11:00~12:30		Plenary Talk 1, 2 (Princes A+B)				
12:30~14:00		Lunch				
14:00~15:30		P2	B1	B2	В3	B4
15:30~16:00	Coffee Break					
16:00~17:30		P3	C1	C2	G	C4


January 24th (THU), 2019

Room	Princes A+B	Princes C	Gallery 2	Gallery 3	Regatta B	Regatta C
09:00~16:00			Registration	(Lobby 1F)		
10:00~12:00		P4	D1	D2	D3	D4
12:00~13:30		Lunch				
13:30~15:00		P5	E1	E2	E3	E4
15:00~15:30		Coffee Break				
15:30~17:00		P6	F1	F2	F3	F4
18:00			Banquet (P	rinces A+B)		


January 25th (FRI), 2019

Room	Princes A+B	Princes C	Gallery 2	Gallery 3	Regatta B	Regatta C
		ICEIC 20	19 Group Dis	cussion and V	Vrap-up	


Floor Map

GALLERY FLOORPLAN - LOWER LEVEL PULLMAN AUCKLAND

REGATTA ROOM FLOORPLAN - LOWER LEVEL PULLMAN AUCKLAND

Conference Information

Registration

Basically, One regular registration will cover the publication of only one accepted paper. Each additional accepted paper by the same "corresponding" author will follow the policy described below. In case of four or more papers, only three registrations are required, which will cover the attendance of three people at the conference. Beyond these three registered participants, additional registrations by coauthors and students are needed to participate in the conference.

Accepted papers (by the same Author)	First Paper	Second Paper	Third Paper	Rest of the Papers
One Paper	Regular registration			
Two Papers	Regular registration	Student Registration		
Three Papers	Regular registration	Student Registration	Student Registration	
Four Papers or More	Regular registration	Student Registration	Student Registration	Free

Registration Fee

	Dom	estic	Ove	rseas
Category	Pre-registration for IEIE/IEEE members	Non-members /On-site	Pre-registration for IEIE/IEEE members	Non-members /On-site
Author/ Regular Registration	KRW 715,000	KRW 825,000	USD 650	USD 750
Student Registration	KRW 385,000	KRW 495,000	USD 350	USD 450
Additional Proceeding	KRW 66,000		USI	O 60
Additional Banquet Ticket	KRW 110,000		USD 100	

^{*}Due date for pre-registration is by December 17, 2018

Registration Fee includes

Regular Registration

Admission to All Sessions, USB Proceedings, Banquet, Coffee Breaks

Student Registration

Admission to All Sessions, USB Proceedings, Coffee Breaks

^{*} A banquet ticket is not included.

Presentation

Oral Presentation

Please meet the session chair at your session at least 15 minutes before the session starts. You should identify yourself to the session chair and check in with the AV staff to go over your equipment needs. You need to bring your ppt file on USB memory, and load it on the computer in your session room. You also need to confirm whether it is working properly. This is very important to pay attention to this time frame. The visual equipment provided is a beam projector.

Time assignment including discussion is as follow

Plenary : 45minutes Regular : 15minutes

Poster Presentation

The size of the poster board is 120 cm (width) $\times 230 \text{cm}$ (length). You need to prepare your poster within this size and attach it on the poster board in your session room at least 10 minutes before the session starts, and then remove your poster immediately after the session finishes.

Lunch

Lunch will be provided to all participants. Please bring your lunch coupon with your name tag.

Location	
Operating Time	January 23 (Wed) 12:30~14:00 January 24 (Thu) 12:00~13:30

Social Program

Welcome Reception

Date: Tuesday, January 22, 2019

Time: 17:30

Place: Top of the Town (14F)

An invitation to the welcome reception is extended to all par-

ticipants including registered students.

Opening Ceremony

Date: Wednesday, January 23, 2019

Time: 10:45~11:00 Place: Princes A+B

All registered participants are cordially invited to join us and

celebrate the official opening.

Banquet

Date: Thursday, January 24, 2019

Time: 18:00

Place: Princes A+B

We hope this banquet will offer you a good opportunity to promote friendship with participants. Delicious food and special performance will be offered at the banquet. A banquet ticket is included in the Regular Registration. Student Registration does

not include the banquet.

ICEIC 2019 Group Discussion and Wrap-up

Date: Friday, January 25, 2019

Time: 09:00~11:00

Plenary Talks

-Plenary Talk 1

Room:

Dr. Aiguo Patrick HUUniversity of Auckland, New Zealand

Basic theories and development trends of wireless power transfer technologies

Abstract

Wireless Power Transfer (WPT) has drawn wide attentions of both academic researchers and design engineers, and it has been recognized as one of the technology trends by the World Economic Forum. There is an increasing development need for wireless power transfer to movable devices for increased convenience, reliability and safety, particularly under special operating conditions where direct wire connections are difficult or impossible. However, the current technologies are still far away from being able to achieve useful amount of wireless power over long distances on the earth, nothing comparable to what have been achieved in communication systems for wireless signal transfer. This presentation will review the fundamental theories behind wireless power transfer technologies for IPT (Inductive Power Transfer), CPT (Capacitive Power Transfer), and UPT (Ultrasonic Power Transfer) systems, and discuss their fundamental features, challenges, and development trends.

Biography

Dr. Aiguo Patrick HU graduated from Xian JiaoTong University, China, with BE and ME degrees in 1985 and 1988 respectively. He received his Ph.D from the University of Auckland in 2001 before he served as a lecturer, the director of China Italy Cooperative Technical Training Center in Xian, and the general manager of a technical development company.

Funded by Asian2000 Foundation he stayed in NUS (National Univ of Singapore) for a semester as an exchange postdoc research fellow. Patrick is a leading researcher in wireless power technologies. He holds about 20 patents in wireless/contactless power transfer and microcomputer control technologies, published more than 200 peer reviewed journal and conference papers with more than 4700 citations, authored the first monograph on wireless inductive power transfer technology, and contributed 4 book chapters on inductive power transfer modeling/control as well as electrical machines.

Prof Patrick Hu is with the Department of Electrical and Electronic Engineering, the University of Auckland, New Zealand. He also serviced as the Head of Research of PowerbyProxi Ltd, as well as guest professor of Xian Jiaotong Univ, ChongQing Univ and TaiYuan Univ of Technology, China. He is a Senior Member of IEEE, the former Chairman of IEEE NZ Power Systems/Power Electronics Chapter and Chairman of NZ North Section. His research interests include wireless/contactless power transfer systems, and application of power electronics in renewable energy systems.

-Plenary Talk 2 -

Room:

Prof. Heung-No LeeGwangju Institute of Science and Technology,
Korea

제목

Abstract

Exhibition I

Robots in CARES

Centre for Automation and Robotic Engineering Science, University of Auckland

Abstract

CARES evolved from the robotics research activity across the University of Auckland. An interdisciplinary group developed over time with some thirty staff including academic researchers, postgraduate students, programme managers, project managers and professional staff from the research office and UniServices. Our mission is Inspiring and creating innovative robotic technologies that improve societal wellbeing. By integrating research and commercial interests, CARES creates a high functioning interdisciplinary team. Our skills encompass pure and applied sciences across robotics, electrical engineering, mechatronics, mechanical engineering, software engineering and computer science along with healthcare disciplines such as general practice and primary care, gerontology, nursing, pharmacy, health psychology, with expertise in user trials. CARES has secured domestic and international recognition for our collective strengths in Human-Robot interaction, robotics end-user programming and our interdisciplinary approach to research which is driven by a user-centric focus on applying robotic systems in the healthcare, home, industrial, educational and agricultural environments. We shows some of our robotic works at the ICEIC2019 exhibition.

Exhibition II

The New Dexterity Dual Arm Hand System Telemanipulation Platform

Minas Liarokapis, University of Auckland

Abstract

In this demo we will focus on teleoperation and telemanipulation with a dual robot arm hand system, using a mapping scheme that guarantees anthropomorphism. Two motion trackers will be used to capture the position and orientation of human hands in 3D space. Human motion will be mapped to equivalent robot motion and a series of dexterous tasks will be executed by the robot arm hand systems in real time. Such telemanipulation frameworks are important for robotic platforms that need to operate in remote or dangerous environments (e.g., extraterrestrial, deep sea, radioactive etc.).

Technical Program

Session A

SA01

Big Data and Deep Learning I

09:00-10:30

Wednesday, January 23, 2019

Room: Gallery 2

Chair:

01 Deep Learning Model for Atrial Fibrillation Prediction using Short-Term Electrocardiography

Urtnasan Erdenebayar $^{\rm l}$, Jong-Uk ${\rm Park}^{\rm l}$, Dong-Won ${\rm Kang}^{\rm 2}$, and Kyoung-Joung Lee $^{\rm l}$

¹Yonsei University, Korea, ²Mediana Co. Ltd

02 Fraud Detection with Multi-Modal Attention and Correspondence Learning

Jongchan Park¹, Min-Hyun Kim², Seibum Choi², In So Kweon², and Dong-Geol Choi³

¹Lunit Inc., Korea, ²KAIST, Korea, ³Hanbat National University, Korea

03 Development of a Convolutional Neural Network (CNN) Detection Algorithm for Neuro-Degenerative Diseases (NDDs) based on Time-Frequency Spectrogram of Gait Force Signal

An-Bang Liu^{2,3}, Febryan Setiawan¹, and Che-Wei Lin¹

¹National Cheng Kung University, Taiwan, ²Buddhist Tzu Chi General Hospital, Taiwan, ³Buddhist Tzu Chi University, Taiwan

04 Face Attribute Editing using AttGAN and Guide Mask Hyeon Seok Yang and Young Shik Moon Hanyang University, Korea

05 Sentiment Analysis of Saudi Dialect Using Deep Learning Techniques Rahma M. Alahmary, Hmood Z. Al-Dossari, and Ahmed Z. Emam King Saud University, Saudi Arabia

SA02 Image Processing

09:00-10:30 Wednesday, January 23, 2019

Room: Gallery 3
Chair:

01 Computationally Efficient Image Upscaling Algorithm from 1080p to 4K Using Linear/Triangular Interpolation Technique

Yu-Hsuan Lee and Cheng-Yi Tsai *Yuan-Ze University, Taiwan*

02 Face Recognition using Ensemble of CNNs

Hanbyeol Bae, Yongju Lee, Taejae Jeon, and Sangyoun Lee Yonsei University, Korea

03 A global-based fingerprint matching algorithm for touchless fingerprint

Joon Pyo Hong, Jun Beom Kho, and Jaihie Kim Yonsei University, Korea

04 A bifurcation-based descriptor for sclera recognition

Sanghak Lee and Jaihie Kim Yonsei University, Korea

05 An Experiment on Automatic Segmentation of Femur Bone from Pelvis CT Sequences

Young-Ji Yun¹, Muthusubash Kavitha², and Sung-Il Chien¹

¹Kyungpook National University, Korea, ²Hiroshima University, Japan

SA03 Communication Systems I

09:00-10:30

Wednesday, January 23, 2019

Room: Regatta B

Chair:

01 Efficient MMSE-PIC Detection Scheme for Coded Massive MIMO system

Meixiang Zhang¹ and Sooyoung Kim²

¹Yangzhou University, China, ²Chonbuk National University, Korea

02 High-Throughput Covert Channels in Adaptive Rate Wireless Communication Systems

Peter M. B. Harley, Murali Tummala, and John C. McEachen Naval Postgraduate School, Monterey

03 Optimal Preamble Length for Spectral Efficiency in Grant-Free RA with Massive MIMO

Jie Ding, Daiming Qu, and Hao Jiang Huazhong University of Science and Technology, China

04 Interference Cancellation scheme for M× NSISO X Channel with Synergistic Alternating CSIT

Young-Sik Moon and Jong-Seon No Seoul National University, Korea

05 The Tomlinson-Harashima Precoding-based FBMC-QAM System

Jintae Kim¹, Yosub Park², Hyunsoo Kim¹, and Daesik Hong¹ Yonsei University, Korea, ²Samsung Electronics Co., Korea

SA04 VLSI and Computing Technologies 09:00-10:30

Wednesday, January 23, 2019

Room: Regatta C

Chair:

01 Analysis of Crosstalk Noise for Coupled Microstrip Interconnect Models in High-Speed PCB Design

Raju Mudavath, B. Rajendra Naik, and Bhaskar Gugulothu Osmania University Hyderabad, India

02 Implementation of multi-layer neural network system for neuromorphic hardware architecture

Wookyung Sun, Junhee Park, Sumin Jo, Jungwon Lee, and Hyungsoon Shin

Ewha Womans University, Korea

03 Development of Predictive Maintenance Technology for Wafer Transfer Robot using Clustering Algorithm

Hyeong-Gyun Kim, Hee-Seung Yoon, Ji-Hyun Yoo, Hyun-il Yoon, and Seung-Soo Han

Myongji University, Korea

04 Development of an Efficient CNN HW Accelerator by Reducing Off-chip Memory Access

Sungjae Yoon, Hanjin Cho, and Wonjong Kim Electronics and Telecommunication Research Institute (ETRI)

05 A Hardware Implementation of SHA3 Hash Processor using Cortex-M0

Dong-Seong Kim, Sang-Hyun Lee, and Kyung-Wook Shin Kumoh National Institute of Technology

Session B AR, VR and Graphic Applications

SB01 14:00-15:30

Wednesday, January 23, 2019

Room: Gallery 2

Chair:

01 Image Segmentation With Deformable Spatial Pyramid Pooling

Sang-il Ahn, Toan Duc Bui, Hyekyoung Hwang ,Yongwoo Lee, and Jitae Shin

Sungkyunkwan University, Korea

02 Analysis and Visualisation of Music

Michael Taenzer¹, Burkhard C. Wünsche², and Stefan Müller³

¹Semantic Music Technology Group, Germany, ²University of Auckland, New Zealand, Universität Koblenz-Landau, Germany

03 CodeRunnerGL - An Interactive Web-Based Tool for Computer Graphics Teaching and Assessment

Burkhard C. Wünsche¹, Edward Huang¹, Lindsay Shaw¹, Thomas Suselo¹, Kai-Cheung Leung¹, Davis Dimalen¹, Wannes van der Mark¹, Andrew Luxton-Reilly¹, and Richard Lobb²

¹University of Auckland, New Zealand, ²University of Canterbury, New Zealand

04 Mixed Reality Piano Tutor: A Gamified Piano Practice Environment Will Molloy, Edward Huang, and Burkhard C. Wünsche University of Auckland, New Zealand

05 Immersion or Diversion: Does Virtual Reality Make Data Visualisation More Effective?

Benjamin J. H. Andersen, Arran T. A. Davis, Gerald Weber, and Burkhard C. Wünsche *University of Auckland, New Zealand*

SB02 Signal Processing I

14:00-15:30

Chair:

Wednesday, January 23, 2019

Room: Gallery 3

01 Motion Estimation by Using Stereo Vision Analysis For Underwater Observation System

Masyhuri Husna binti Mazlan¹, Morisawa Daisuke¹, Koike Yoshikazu¹, Shimizu Junji¹, Enomoto Eriko¹, Hirohashi Noritaka², Shimizu Etsuro³, and Sakata Kunio⁴

¹Shibaura Institute of Technology, Japan, ²Shimane University, Japan,

02 Signal Processing in Micro-Doppler Image Based Concealed Dangerous Object Detection

Xin Di, Zhaoyu Zhang, Yi Xu, Lei Li, and Jun Tian Fujitsu Research and Development Center Co., Ltd, P.R.China

03 Performance and Computational Efficiency of a Radar Detection Scheme for Range-Spread Targets

Seungwon Lee¹, Iickho Song¹, Seokho Yoon², and Jinsoo Bae³ Korea Advanced Institute of Science and Technology, Korea, ²Sungkyunkwan University, Korea, ³Sejong University, Korea

³Tokyo University of Marine Science and Technology, Japan,

⁴Mukoujima Tech, Inc., Japan

04 Super-Resolution Convolutional Neural Networks Using Modified and Bilateral ReLU

Hyeongyeom Ahn, Byungjin Chung, and Changhoon Yim Konkuk University, Korea

05 A Comparison of Machine Learning Schemes for Moving Direction Estimation with Acoustic Data

Yoojeong Seo, Beomhui Jang, and Sungbin Im Soongsil University, Korea

SB03 Internet of Things 14:00-15:30 Wednesday, January 23, 2019 Room: Regatta B Chair:

01 Community Collaboration Platform for Small Black Mosquito Prevention and Control

Yuan-Chih, Yu Chinese Culture University, Taiwan

02 Let & Make Some Music

Muhammad Nadeem, Aimee Tagle, and Sakayan Sitsabesan University of Auckland, New Zealand

03 Environmental Noise Monitoring Using Distributed IoT Sensor Nodes

Adiraek Siamwala, Zac Lochhead, and Waleed Abdulla University of Auckland, New Zealand

04 Towards Real-Time Data Delivery in oneM2M Platform for UAV Management System

Sung-Chan Choi^{1,2}, Il-Yeop Ahn¹, Jong-Hong Park¹, and Jaeho Kim¹ Korea Electronics Technology Institute(KETI), Korea, ²Yonsei University, Korea

05 Analyzing the Security of Bluetooth Low Energy

Seth Sevier and Ali Tekeoglu SUNY Polytechnic Institute, USA

SB04 Emerging Memory Technology

14:00-15:30

Wednesday, January 23, 2019

Room: Regatta C

Chair:

01 Statistical Modeling and Design of a 16nm 9T SRAM Cell Considering Post-Synthesis Removal of Metallic Carbon-Nanotubes Yanan Sun¹, Weifeng He¹, Zhigang Mao¹, Hailong Jiao², and Volkan Kursun³

¹Shanghai Jiao Tong University, P.R. China, ²Shenzhen Graduate School, Peking University, ³Hong Kong University of Science and Technology, Hong Kong

02 High performance 4T-2R Non-Volatile TCAM with NMOS Booster Byoungkon Jo and Kee-Won Kwon Sungkyunkwan University, Korea

03 Trap and Electron Occupancy Analysis in RRAM with Si3N4 Resistive Switching Layer

Yeon-Joon Choi¹, Min-Hwi Kim¹, Tae-Hyeon Kim¹, Dong Keun Lee¹, Suhyun Bang¹, Kyungho Hong¹, Chaesoo Kim¹, Sungjun Kim², and Byung-Gook Park¹

¹Seoul National University, Korea

04 PCI-Express Gen4.0 based Portable SSD Test System

Jung-Hoon Cho and Soo-Il Choi EXICON Co., Ltd., Korea

05 Novel current-mirror based time dependent sense scheme for MLC PRAM

Jun-Tae Choi¹, YunHeub Song¹, and Tony Tae-Hyoung Kim²

¹Hanyang University, Korea, ²Nanyang Technological University, Singapore

Session C

SC01 Communication Protocols

16:00-17:30

Wednesday, January 23, 2019

Room: Gallery 2

Chair:

01 Study of Multi-Path TCP Scheduler to Suppress QoS Fluctuation for Improving WebQoE

Kensuke Noda and Yoshihiro Ito Nagoya Institute of Technology, Japan

²Chungbuk National University, Korea

02 Harvest-Until-Access Protocol Based on Slotted ALOHA for Wireless Powered Dense Networks

Hyun-Ho Choi1 and Wonjae Shin2

¹Hankyong National University, Korea, ²Pusan National University, Korea

03 Cost-effective Congestion-aware Load Balancing for Datacenters

Bo Ting Chiang and Kuochen Wang National Chiao Tung University, Taiwan

04 An Efficient Contending-type MAC Scheme for Wireless Passive Sensor Networks Affected by Capture Phenomenon

Phil-Seong Ghang¹, Insoo Jun², Heewon Seo³, Jun Ha³,

Jin Kyung Park³, and Cheon Won Choi³

¹Rockley Photonics Inc., USA., ²Jet Propulsion Laboratory, USA.,

³Dankook University, Korea

05 TCP/NC performance in bi-directional loss environments

Nguyen Viet Ha and Masato Tsuru Kyushu Institute of Technology, Japan

SC02

Antennas and Propagation

16:00-17:30

Wednesday, January 23, 2019

Room: Gallery 3

Chair:

01 Silver Nanoflake Printed Flexible Composite Broadband Dipole Antenna

Kam Eucharist Kedze and Ikmo Park Ajou University, Korea

02 Hexagonal Shape Slotted Patch Antenna Having Defected Ground for Wide Band Applications

Girish Awadhwal¹, Ali Bostani²

¹UIT Bhopal, India, ²College of Engineering and Technology American University of the Middle East, Kuwait

03 Miniaturized Dual-Symmetrical Beam Antenna with Split-Ring Slot Structure

Yohanes Galih Adhiyoga, Catur Apriono, and Eko Tjipto Rahardjo Universitas Indonesia. Indonesia

04 Microstrip Feed Asymmetric PatchAntenna Having Slotted Ground For UWB Applications

Girish Awadhwal¹ and Ali Bostani²

¹UIT Bhopal, India, ²College of Engineering and Technology American University of the Middle East, Kuwait

05 A Double Layer FSS Reflector using Interdigital Split Ring Resonators for LTE and WLAN Systems

Wiset Saksiri, Pongsathorn Chomtong, and Prayoot Akkaraekthalin King Mongkut's University of Technology North Bangkok, Thailand

SC03	Measurement and Estimation			
16:00-17:30 Wednesday, January 23, 2019				
Room: Reg Chair:	Room: Regatta B			

01 Reliability of wireless sensors using low cost WiFi chipsets for Structural Monitoring

Morgan Look, Wayne S Holmes, and Roger Birchmore Unitec Institute of Technology, New Zealand

02 Saliency Measurement and Hybrid Map based Ceiling-Vision SLAM Ling Li, Ung-hee Lee, and Tae-Yong Kuc Sungkyunkwan University, Korea

03 Simulation on Improvement of Position Estimation Accuracy in Underwater Using MEMS IMU

Junji Shimizu¹, Kenta Hata¹, Yoshikazu Koike¹, Hiroaki Morino¹, Eriko Enomoto¹, Masyhuri Husna¹, Noritaka Hirohashi², Etsuro Shimizu³, and Kunio Sakata⁴

¹Shibaura Institute of Technology, Japan, ²Shimane University, Japan, ³Tokyo University of Marine Science and Technology, Japan,

04 Application of Range Finder by Image Sensor in the Underwater Environment

Eriko Enomoto¹, Junji Shimizu¹, Yoshikazu Koike¹, Husna Masyhuri¹, Yuichi Hashimoto¹, Hiroaki Morino¹, Noritaka Hirohashi², Etsuro Shimizu³, and Kunio Sakata⁴

¹Shibaura Institute of Technology, Japan, ²Shimane University, Japan,

05 Low-Complexity Frequency Estimation Method Using Amplitude Tracking Square Wave

Abhisek Ukil¹, Yew Ming Yeap², and Kuntal Satpathi³

¹University of Auckland, New Zealand, ²Institute for Infocomm Research, A*STAR, Singapore, ³Nanyang Technological University, Singapore

⁴Mukoujima Tech, Inc, Japan

³Tokyo University of Marine Science and Technology, Japan,

⁴Mukoujima Tech, Inc, Japan.

SC04 Sensor Technology 16:00-17:30 Wednesday, January 23, 2019 Room: Regatta C Chair:

01 Design of a Hybrid Column Segmented CMOS Image Sensor with an Artificial Intelligence Core and a Novel SRAM Readout Logic Keunyeol Park, Cheeyoung Lee, Soo Youn Kim, and Minkyu Song Dongguk University, Korea

02 Sensing Characteristics of Si FET-type Humidity Sensor Having a W03 Sensing Layer by Using Pulse Scheme

Yoonki Hong, Yujeong Jeong, Meile Wu, Seongbin Hong, Gyuweon Jung, Dongkyu Jang, and Jong-Ho Lee Seoul National University, Korea

03 AlGaN/GaN UV Phototransistor with recessed detected area

Won-Ho Jang¹, Hyun-Seop Kim¹, Hyungtak Kim¹, Ho-Kyoung Lee¹, Ho-Young Cha¹, and Eugene Chong²

¹Hongik University, Korea, ²Agency for Defense Development, Korea

04 A Low-cost Colorimeter Based on LED Light Sources

Ittaka Aldini1 and Soochan Kim2

¹Indonesian Agency for Meteorology, Climatology, and Geophysics, Indonesia, ²Hankyong National University, Korea

05 Silicon Nanowire based Resonators for Increasing Near-infrared **Light Absorption**

Myunghae Seo, Kihyun Kim, and Chang-Ki Baek Pohang University of Science and Technology (POSTECH), Korea

	Session D				
SD01 Clouds, Platforms and Security					
10:00-12:00 Thursday, January 24, 2019					
Room: Gal Chair:	llery 2				

- 01 Illuminance-robust semipermanent 2D porous code Kentaro Kimura, Asuka Ohashi, Yohei Fukumizu, and Takakuni Douseki Ritsumeikan University, Japan
- 02 Bibliometric Analysis of Published Literature on Industry 4.0 Aidi Ahmi¹, Hany Elbardan², and Raja Haslinda Raja Mohd Ali¹ ¹Tunku Puteri Intan Safinaz School of Accountancy Universiti Utara Malaysia, Malaysia, ²Bournemouth University, United Kingdom (Great Britain)

03 Proposal of e-Learning System integrated P2P Model with Client-Server Model

Toshiya Kawato^{1,2}, Masayuki Higashino¹, Kenichi Takahashi¹, and Takao Kawamura1

¹Tottori University, Japan, ²Yonago College, Japan

04 Design Space Exploration of FPGA-based FIR Filter Group in Fourier Domain

Haomiao Wang and Oliver Sinnen University of Auckland, Zealand

05 Managing Work Dependencies in Open Source Software Platforms Sultan Alyahya and Ghadah Alamer

King Saud University, Saudi Arabia

06 Design and Implementation of Secure and Transferable eCoupons M. Fahim Ferdous Khan and Ken Sakamura Tovo University, Japan

SD02 Image Analysis and Understanding

10:00-12:00

Thursday, January 24, 2019

Room: Gallery 3

Chair:

01 Reconstructing and Calculating PSNR of Structural and Textual **Images**

Misbah Mateen, Amad Ud Din, and Wagar Mahmood Fatima Jinnah Women University(FJWU), Pakistan

02 HDR Image Reproduction Using the Local Saturation-based Fusion of Multi-tone Mapping Images

Sung-Hak Lee, Dong-Min Son, and Tae-Young Jung Kyungpook National, Korea

03 Photon crosstalk in pixel array for X-ray CMOS image sensor

Giyoon Kim¹, Kyeongjin Park¹, Kyungtaek Lim¹, Seungryong Cho¹, Hojong Chang², Byunghun han², and Gyuseong Cho¹ ¹Korea Advanced Institute of Science and Technology, Korea, ²Korea Advanced Institute of Science and Technology, Institute for

Information Technology Convergence, Korea

04 Life Long Across All Four Seasons Scene Understanding

Zhennan Wang, Xiang Gao, Guoyang Xie, and Jishun Guo GAC R&D Center, China

05 Extraction of Leukocyte Motions in a Microvessel using Spatiotemporal Image Analysis Method

Eung Kyeu Kim¹, Jae Won Lim¹, Kyesun Ahn², and Byunghyun Jang³

¹Hanbat National University, korea, ²Daeduk University, Korea ³University of Mississippi, USA

06 A Novel Probabilistic Appearance Model for Cigarette Detection Under Illumination Change

Han Wang¹, Daviad K. Han², and Hanseok Ko³

¹Nantong University, China, ²Army Research Laboratory, USA,

³Korea University, Korea

SD03 Communication Networks 10:00-12:00 Thursday, January 24, 2019

Room: Regatta B

Chair:

01 Wavelength-Selective Fog-Computing Network for Big-Data Analytics of Wireless Data

Michael Conrad Meyer¹, Yu Wang², and Takahiro Watanabe¹ Waseda University, Japan, ²University of Aizu, Japan

02 Modeling of Wireless Sensor Networks for Detection Land and Forest Fire Hotspot

Evizal Abdul Kadir¹, Hitoshi Irie², and Sri Listia Rosa¹

"Universitas Islam Riau, Indonesia, ²Chiba University, Japan

03 Enhanced Adaptive Cluster Control for Energy Harvesting Wireless Sensor Networks under Geographical Non-uniform Energy Harvesting Conditions

Koya FUJINO, Kosuke SANADA, and Kazuo MORI *Mie University, Japan*

04 A Closer Look at IoT s Low-Power Wide Area Networks

Mncedisi Bembe, Motselisi Chere, and Tembisa Ngqondi University of Mpumalanga, South Africa

05 Multipath Selection Method for En-route Filtering in Dynamic Wireless Sensor Network

Kyoung A Kim and Tae Ho Cho Sungkyunkwan University, Korea

06 WIRELESS LOW POWER AREA NETWORKS IN THE INTERNET OF THINGS: A GLIMPSE ON 6LOWPAN

Motselisi Chere, Prof Tembisa Ngqondi, and Dr Mncedisi Bembe *University of Mpumalanga, South Africa*

SD04

Analog and Digital Integrated Circuits

10:00-12:00

Thursday, January 24, 2019

Room: Regatta C

Chair:

01 DVCC-based current-mode IAFs without parasitic effects

Takao Tsukutani1 and Noboru Yabuki2 ¹Matsue College, Japan, ²Tsuyama College, Japan

02 A Fully-Static and True-Single-Phase Dual-Edge Triggered Flip-Flop for Subthreshold Applications

Yongmin Lee and Yoonmyung Lee Sungkyunkwan University, Korea

03 A Voltage-Mode Buck Converter With a Reduced Type- I Compensation Capacitor Using an Error-Amplifier Current-Sampling Scheme

Dae-Jin Kim, Tae-Hyeong Kim, Hyeon-Sam Shin, Bo-Seok Seo, Mi-Jeong Kim, and Byung-Do Yang Chungbuk National University, Korea

04 A 12-bit 500KSPS Charge Recycling SAR ADC with MSB-Split Capacitors for Temperature Sensor

Youngtaek Roh, Himchan Park, Changzhi Yu, Hyunmook Kim, and Jinwook Burm

Sogang University, Korea

05 A Design of 34.6% High Efficiency Class-D Power Amplifier for 2.4 GHz Bluetooth Low-Energy applications

Sol-Hee In, Yasser Mohammadi Qaragoez, and Kang-Yoon Lee Sungkyunkwan University, Korea

06 2-stage ESD protection circuit with high holding voltage and low trigger voltage for high voltage applications

Byung-Seok Lee, Kyeong-Il Do, Hee-Guk Chae, Jin-Woo Eo, and Yong-Seo Koo

Dankook University, Korea

	Session E				
SE01 Big Data and Deep Learning II					
13:30-15:00 Thursday, January 24, 2019					
Room: Gallery 2 Chair:					

01 On Deep Learning based algorithms for Detection of Diabetic Retinopathy

Haneesha Thanati, Renoh Johnson Chalakkal, and Waleed H. Abdulla University of Auckland, New Zealand

02 Single-image reflection removal using conditional GANs

Miran Heo and Yoonsik Choe Yonsei University, Korea

03 Rule-Based Arabic Stemmer as an R package: arStemmer1

Alshahrani Hasan A¹, Alvis C. Fong¹, and Alshahrani Fatimah²

¹Western Michigan University, USA, ²Princess Nourah bint Abdulrahman University, Saudi Arabia

04 Design of A Bit-Serial Artificial Neuron VLSI Architecture with Early Termination

Yun-Nan Chang and Guan-Jhen Chen National Sun Yat-sen University, Taiwan

05 Unmanned Store Service via a Camera-in-Hand Robotic Arm Using a Convolutional Neural Network

Oscal T.-C. Chen, Yu Cheng Zhang, Pei-I Kuo, Zheng Kuan Lin, and Yi Lun Lee

National Chung Cheng University, Taiwan

SE02	Signal Processing II	
13:30-15:0	0 Thursday, January 24, 2019	
Room: Gal Chair:	lery 3	

01 High-Precision Pedestrian Positioning by Using Radio Signals from Vehicles and Roadside Units

Kazuhiro Toda, Suhua Tang, and Sadao Obana University of Electro-Communications, Japan

02 Root-MUSIC based Multiple Orthogonal Subarrays in a Rectangular Array

Ho Jae Kim¹, Dong-Gyu Kim¹, Hea-Min Noh¹, Hyoung-Nam Kim¹, and Jeehoon Kim²

¹Pusan National University, Korea, ²The Affiliated Institute of ETRI, Korea

03 Direction of Arrival Estimation in Planar Time Modulated Arrays

Hea-Min Noh, Dong-Gyu Kim, Ho Jae Kim, Hyoung-Nam Kim, and Jeehoon Kim

¹Pusan National University, Korea, ²The Affiliated Institute of ETRI, Korea

04 Blind beamforming based on Multi-target SCORE with a DMP

Ji-Hyeon Kim¹, Young-Kwang Seo¹, Soon-Young Kwon¹, Hyoung-Nam Kim¹, Jin-Oh Park², Hyun Jin Kang², Jae Yun Kim², and Byung Ho Mun²

¹Pusan National University, Korea, ²LIG Nex1, Korea

05 High Volume Rate Parallel Beamformer Design for 3D Medical Ultrasound Imaging

Bo-Yuan Hong¹, Kuan-Ting Chen¹, Yin-Tsung Hwang¹, and Gua-Zua Wu²
¹National Chung Hsing University, Taiwan, ²ITRI, Taiwan

SE03 Communication Systems II 13:30-15:00 Thursday, January 24, 2019

Room: Regatta B

Chair:

01 Proximity-based D2D Mode Selection Scheme for LTE Networks Han-Ni Su¹, Wen-Kang Jia², and Yaw-Chung Chen³ ¹National Chiao Tung University, Taiwan, ²Fujian Normal University, China, ³National Chiao Tung University, Taiwan

02 Performance analysis of FSO transmission of double watermarked image over Weibull-Rician turbulence channel

Stefan Panic¹, Bojan Prlincevic², Hranislav Milosevic³, and Vera Petrovic⁴

¹National Research Tomsk Polytechnic University, Russia, ²High Technical College, Srbija, ³University of Pristina, Serbia, ⁴High school of electrical engineering, Serbia

03 Distributed Antenna System Design for Ultra-Reliable Low-Latency Uplink Communications

Jun-Pyo Hong¹, Jaehyun Park¹, Wooram Shin², and Seungkwon Beak²

¹Pukyong National University, Korea, ²Electronics and Telecommunications Research Institute, Korea

04 Synchronization of Bursty QPSK Narrowband Satellite Receiver Having Large CFO - An Implementation on C66x TI DSP

Dileep K G, Laxmaiah P, Ipsita S, Nithin Kumar S, Hari Prasad S V, Soundarakumar M, and Vipin Tyagi

Centre for Development Of Telematics (C-DOT), India

05 Flexible Capacity Allocation in Non-Orthogonal Multiple Access with Coordinated Direct and Alternating Relay Transmission

Yunsung Choi and Dongwoo Kim Hanyang University, ERICA, Korea

SE04	Emerging Technologies	
13:30-15:0	00 Thursday, January 2	4, 2019
Room: Regatta C		

01 The effect of Micro-current electrical stimulation on muscle atrophy caused by sciatic nerve compression

Seohyun Kim¹, DongHyun Hwang¹, Hana Lee¹, Han Sung Kim¹, and Seungkwan Cho²

¹Yonsei University, Korea, ²Cellogin Inc., Korea

02 The evaluation of a combined ceramic materialbased therapy in the musculoskeletal disorders: morphological analysis by micro-CT DongHyun Hwang¹, Seohyun Kim¹, Hana Lee¹, Han Sung Kim¹, and Seungkwan Cho²

¹Yonsei University, Korea, ²Cellogin Inc., Korea

03 Sensitivity enhancement of the bio-FET using transinet measurement

Kyoung Yeon Kim and Byung-Gook Park Seoul National University, Korea

04 PQ Control-based Novel Passive Islanding Detection Method for Renewable Energy Application

Xibeng Zhang, Don Gamage, Yousef Rashid, Viren Manglani, and Abhisek Ukil

University of Auckland, New Zealand

05 Efficient Data Representation for Real-time 3D Object Detection

Yurim Jeon and Seung-Woo Seo Seoul National University, Korea

Session F

SF01 Robots and Automation

15:30-17:00

Thursday, January 24, 2019

Room: Gallery 2

Chair:

01 Automatic PTZ Camera Control Based on Deep-Q Network in Video Surveillance System

Dongchil Kim, Kyoungman Kim, and Sungjoo Park KETI(Korea Electronics Technology Institute), Korea

02 Synthesizing IEC 61499 Function Blocks to hardware

Hammond Pearce and Partha Roop University of Auckland, New Zealand

03 Companion Robot focusing on Multimodal Emotional Behaviour Generation

Joel P. De Zoysa, Li Jong, and Ho Seok Ahn University of Auckland, New Zealand

04 Embedded Systems Layout for Routing Planning in Smart Home Yang-Hsin Fan

National Taitung University, Taiwan

05 System designed to enable scientific analysis on robot pollination algorithm for orchard robot research

Fung Yang, Ho Seok Ahn, JongYoon Lim, Mahla Nejati, Henry Williams, and Bruce MacDonald

University of Auckland, New Zealand

SF02

Analysis and Implementation of Communication Systems

15:30-17:00

Thursday, January 24, 2019

Room: Gallery 3

Chair:

01 Parallel Timing Synchronization Algorithm and Its Implementation in High Speed Wireless Communication Systems

Xin Hao, Qiuyu Wu, Zhaohui Wang, and Changxing Lin China Academy of Engineering Physics, China

02 Performance analysis of 5G wireless transmission in the presence of kappa-mu fading and multiple NLOS interferers of arbitrary power Hranislav Milosevic¹, Stefan Panic², Vera Petrovic³, and Suad Suljevic⁴ University of Pristina, Serbia, ² National Research Tomsk Polytechnic University, Russia, ³ High school of electrical engineering, Serbia, ⁴ University of Nis, Serbia

03 Modeling of SWIPT System with ASK Modulation in LabVIEW

Muhammad Riaz ur Rehman, Seong Jin Oh, Imran Ali, Muhammad Asif, and Kang-Yoon Lee

Sungkyunkwan University, Korea

04 Coverage and Capacity Dynamics in 4G-LTE Deployment in India

Ashutosh Jha and Debashis Saha

Management Information Systems (MIS), India

SF03 System Analysis and Design

15:30-17:00 Thursday, January 24, 2019

Room: Regatta B

Chair:

01 Modelling of Shunt Active Power Filter for Harmonics Case Study of Steel Industry

Santos Kihwele

University of Dar es Salaam(UDSM), Tanzania

02 Enhancement of Voltage Stability Margin Using FACTS Devices for 132 kV Tanzania Grid Network

Santos Kihwele

University of Dar es Salaam(UDSM), Tanzania

03 Estimation of the Metering Quality in Broadband PLC AMI Based on Statistical Learning

Dong Sik Kim¹, Beom Jin Chung², and Young Mo Chung³

¹Hankuk University of Foreign Studies, Korea,

²Gachon University, Korea, ³Hansung University, Korea

04 Prototyping of Artificial Respiration Machine Using AMBU Bag Compression

Mukaram Shahid

Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, Pakistan

SF04

Novel Materials, Processing and Reliability

15:30-17:00

Thursday, January 24, 2019

Room: Regatta C

Chair:

01 Investigation of 4H-SiC MOS with PECVD SiON

Hyun-Seop ${\rm Kim}^{\rm l}, {\rm Won\text{-}Ho\ Jang}^{\rm l}, {\rm Ho\text{-}Young\ Cha}^{\rm l}, {\rm Jae\text{-}Gil\ Lee}^2,$ and ${\rm Kwang\text{-}Seok\ Seo}^2$

¹Hongik University, Korea, ²Seoul National University, Korea

02 Improved Resistive-switching Performance of Sol-gel Processed ZrO₂ RRAM Devices

Sojeong Lee, Won-Yong Lee, Bongho Jang, Taegyun Kim, and Jaewon Jang $\,$

Kyungpook National University, Korea

03 Sol-gel Processed Mg-doped Indium Oxide Thin-Film Transistors for Improvement in Positive Bias Stress Stability

Taegyun Kim, Bongho Jang, Sojeong Lee, Won-Yong Lee, and Jaewon Jang

Kyungpook National University, Korea

Poster Session Po1 Poster I 09:00-10:30 Wednesday, January 23, 2019 Room: Princes C Chair:

01 DNN based multi-speaker speech synthesis with temporal auxiliary speaker ID embedding

Junmo Lee, Kwangsub Song, Kyoungjin Noh, Tae-Jun Park, and Joon-Hyuk Chang *Hanyang University, Korea*

02 Lower Bound for Performance of Group Testing Problems under Tradeoff Condition

Jin-Taek Seong

Mokpo National University, Korea

03 Moving Object Detection via Foreground and Background Segmentation

Woo Jin Kim, Sangwon Hwang, Junhyeop Lee, Jaesung Choi, and Sangyoun Lee *Yonsei University, Korea*

04 Analysis of Redundancy Model with Two Active and Two Standby Components

Y. Lee Dong-eui University, Korea

05 Parallelizing Bank-level Fine Granularity Refresh with Column Access Operation using Split Row Buffer

Minkyu Lee and Ki-Seok Chung Hanyang University, Korea

06 A Fully Integrated Ka-band Low Noise Amplifier in 65-nm CMOS Sung Wook Yoon¹, Changyeol Kim¹, Yangji Jeon¹, Doo Hyung Woo², and Ilku Nam¹

¹Pusan National University, Korea ²The Catholic University of Korea, Korea

07 A real-time visual feedback system of strength self-training with motion capture

Hikaru Kaneko and Mitsunori Makino *Chuo University, Japan*

08 Inductively Coupled Power/Dada Link with Novel Charge Balancing Algorithm for Neural Stimulator

Jang-Woo Park, Sang-Hoon Baek, Kyung-Sub Son, Hun-Kee Kim, Sang-Min Lee, and Jin-Ku Kang *Inha University, Korea*

09 Start-End Time Detection in Baseball Videos for Automatic Pitching Trajectory Analysis

Hongjun Lee, Jeyeon Kim, Joongsik Kim, Jieun Yu, and Whoi-Yul Kim Hanyang University, Korea

10 Monopolar Microstrip Antenna Using Vialess Mushroom Resonator Array On Wired Ground Plane

Dongho Lee¹, Yoonseuk Choi², and Seongmin Pyo²

¹Yeungnam University College, Korea, ²Hanbat National University, Korea

11 A Finite Element Model for Stochastic Set Operation in Phase-Change Memory

Min-Kyu Shin¹, Donghwa Lee², Pil-Ryung Cha³, and Yongwoo Kwon¹ Hongik University, Korea, ² Pohang University of Science and Technology, Korea, ³ Kookmin University, Korea

12 Study on 3D Action Recognition Based on Deep Neural Network Sungjoo Park and Dongchil Kim

Korea Electronics Technology Institute(KETI), Korea

13 Pedestrian' Orientation Estimation For Collision Avoidance in Advanced Driver Assistant System

Duyoung Heo, Mira Jeong, Jae-Yeal Nam, and Byoung Chul Ko Keimyung University, Korea

14 Single-balanced Subharmonic LMV

Nam-Jin Oh

Korea National University of Transportation, Korea

15 A compact 79GHz LNA for Automotive radar in 0.13- μ m SiGe BiCMOS

Han-Woong Choi¹, Kyeong-Hyeok Lee¹, Jae-Eun Lee¹, Jeong-Taek Lim¹, Sun-Ik Lee², Ki-Ho Kwon², Jin-Back Jang², Won-Kyu Lim², and Choul-Young Kim¹

¹Chungnam National University, Korea, ²Korea Aerospace Research Institute

16 DC-DC Buck Converter for Supercapacitor

Beomsu Yun, Taekyoung Jung, Jinhyun Kim, and Joongho Choi University of Seoul, Korea

17 Improved Bacteria Detection using Partial Morphological Opening

Jaelin Lee, Younghyeon Park, and Byeungwoo Jeon Sungkyunkwan University, Korea

18 An Adaptive Coverage Algorithm for Multiple Mobile Robots Using Artificial Neural Network

Eun-Jin Kim, Gun-Gyo In, Arpan Ghosh, Ho-Cheol Ahn, and Tae-Yong Kuc Sungkyunkwan University, Korea 19 A Mobile Edge Computing Device to Support Data Collecting and Processing from IoT

Youngjae Lee, Wonjong Kim, Kiyoung Moon, and Kiltaek Lim ETRI, Korea

20 Low-Power Programmable Gain Amplifier Using a Self-Biased Ring Amplifier for CMOS Image Sensors

Seungil Huh, Sang-Hoon Kim, Jaehyuk Choi, and Jung-Hoon Chun Sungkyunkwan University, Korea

21 Analysis of TDM-FBG Optical Sensing in Passive Optical Networks Nguyen Khac Binh and Su-il Choi Chonnam National University, Korea

22 A Study on Data Interoperability for Deep Learning in CCTV Monitoring Environment

Taewoo Kim, Hyungheon Kim, and Pyeongkang Kim Innodep Inc., Korea

23 Simulation Study on Localized States in Amorphous-InGaZnO Thin Film Transistors

Jihwan Park¹, Do-Kyung Kim¹, Jin-Hyuk Bae¹, and Hyeok Kim² Kyungpook National University, Korea, ²Gyeongsang National University, Korea

24 Design of Analog and Digital Hybrid MAC Circuit for Artificial
Neural Networks

Ki-Hyuk Park, Min-Hyung Cho, Young-Deuk Jeon, and Joo-Hyun Lee Processor Research Group, Korea

25 Human Safety Assessment of 4×8 Array Antenna for Wireless Power Transfer System using 2.4 GHz and 5.8 GHz

Young Jun Ju¹, Jun Hee Kim¹, Yu-ri Lee¹, and Yong Seok Lim²

¹EMF Safety Inc., Korea, ²Korea Electronics Technology Institute, Korea

26 Design and development of complex sensor interface module in socket for Prostheses Users

Jin-Woo Shin, Su-Hong Eom, and Eung-Hyuk Lee Korea Polytechnic University

27 NSC Data Detection Scheme in NR-based Communications System

Sangmi Moon, Soonho Kwon, Hyeonsung Kim, Byeonggyu Song, and Intae Hwang

Chonanm National University, Korea

28 A 30-GHz ladder-arrayed Si pin photodetector for environmental light communication

Yung Hun Jung¹, Seongjae Cho¹, Hoon Heo², and Yun Hyun Cho² ¹Gachon University, Korea, ²Korea University, Korea

29 Spectral Efficiency Maximization for V2X Communication Underlaying Uplink SCMA System

Gil-Mo Kang, Hyeon-Min Kim, Hieu V. Nguyen, Yoan Shin, and Oh-Soon Shin

Soongsil University, Korea

30 Learning an Object Detector Using Zoomed Object Regions

Sung-Jin Cho, Seung-Wook Kim, Kwang-Hyun Uhm, Hyong-Keun Kook, and Sung-Jea Ko

Korea University, Korea

31 Image Shaking Calibration Algorithm for The Vehicle Image-based Surveillance System

Jeong-uk Chang and Chi-ho Lin Semyung University, Korea

32 A Low-Crosstalk 64-Pixel Stimulator Array Design for Subretinal Implants

Wajahat. H. Abbasi¹, Youkyeong Park¹, Jae Kun Kim¹, Jungsuk Kim¹, and Hosung Kang²

¹Gachon University, Korea, ²Korea University, Korea

33 Regenerative Two-Way Relay Based on Space-ime Line Codes with Power Allocation

Jingon Joung¹ and Jihoon Choi²

¹Chung-Ang University, Korea, ²Korea Aerospace University, Korea

P02 Poster II 14:00-15:30 Wednesday, January 23, 2019 Room: Princes C Chair:

01 The Color Detection Method for Object Recognition using Dynamic Range

Thathupara Subramanyan Kavya, Young-Min Jang, Erdenetuya Tsogtbaatar, and Sang-Bock Cho University of Ulsan, Korea

02 Performance Evaluation under Practical Channel Estimation for OFDM Transmissions in IEEE 802.11ad

Jungmin Yoon, Heonkyo Sim, and Seong-Cheol Kim Seoul National University (SNU), Korea

03 Individual identification Based on Cascaded PCANet from ECG Signal

Jae-Neung Lee, Sung Bum Pan, and Keun-Chang Kwak Chosun University, Korea

04 Comparison of Controller Performance by Parameters in Lateral Control of Self Driving Vehicle

Jong hwi Park, Yeong won Lee, and Byungyong You Kyungil University, Korea

05 Random I/O Performance Boosting Technique based on Statistical I/O Traffic Patterns of Embedded Storage

Myung Sub Shin and Tae Hee Han Sungkyunkwan University, Korea

06 Simulation of MAC layer DDoS attacks in wireless networks

Seong Oun Hwang¹, Ji-Hoon Park², and Byung-Seo Kim¹

¹Hongik University, Korea, ²Nong-Shim Data Systems(NDS), Korea

07 Inaudible Acoustic Signal Based Multi-Point Gesture Recognition using CNN

Donghwan Shin and Jongwon Yoon Hanyang University, Korea

08 Wireless DC power Generator for Passive RFID by using Cockcroft-Walton Voltage Multiplier in CMOS 0.18um Technology

Jae-Hyeok Song, Eun-Gyu Lee, Sun-Kyu Choi, Jung-Taek Lim, Jae-Eun Lee, Han-Woong Choi, Kyung-Hyeok Lee, Sang-Hyo Kim, and Choul-Young Kim

Chungnam National University, Korea

09 A Design of Data Path Based on CMOS Logic for a 72-Gb/s PAM-4 Transmitter in 28-nm CMOS

Moon-Chul Choi, Haram Ju, Han-Gon Ko, and Deog-Kyoon Jeong Seoul National University, Korea

10 A Simple Ramp Generator With an Active Ramp Tracking Control For a Fast Response PWM Buck Converter

Hyeon-Sam Shin, Sang-Ho Lee, Dae-Jin Kim, Tae-Hyeong Kim, Ki-Chan Woo, and Byung-Do Yang Chungbuk National University, Korea

11 Ring Oscillator based 1.5ps resolution vernier-Based TDC Hyunmook Kim, Changzhi Yu, Himchan Park, and Jinwook Burm Sogang University, Korea

12 Deep Neural Network Optimization based on Non-Uniform Quantization for Weights with Large Magnitude

Joo-Ho Kim, Kyung-Kuk Jo, and Joon-Sung Yang Sungkyunkwan University, Korea

13 A Wideband Digital TV Receiver front-end with On-chip Notch Filter

Yangji Jeon¹, Sung Wook Yoon¹, Changyeol Kim¹, Hyunwon Moon², and Ilku Nam¹

¹Pusan National University, Korea, ²Daegu University, Korea

14 Optimal Cloud Computing Resource Allocation For Centralized Radio Access Networks

Taewoon Kim¹ and Wooyeol Choi²

¹Hallym University, Korea, ²Chosun University, Korea

15 Improvement of Curve Driving Method using Two Magnetic Sensors Array

Ji-hwan Lee and Kwang-ryul Beak Pusan National University, Korea

16 RGB-D Visual Odometry Using Depth-based Feature

Nan Cheny^{1,2}, Yuri Goncalves Rochaand¹, Tae-Yong Kuc¹, and Jiandong Zhang³

¹Sungkyunkwan University, Korea, ²Northwestern Polytechnical University, P.R. China, ³Northwestern Polytechnical University, P.R. China

17 High Linearity 65nm CMOS Ka-band SPDT Switch with Shunt Switch Device

Kyeong-Hyeok Lee¹, Sun-Kyu Choi¹, Eun-Gyu Lee¹, Jea-Eun Lee¹, Jeong-Taek Lim¹, Han-Woong Choi¹, Sang-Hyo Kim¹, Jae-Hyeok Song¹, Dongju Lee², Wansik Kim², Jongpil Kim², Mihui Seo³, Sosu Kim³, Bang-Chul Jung¹, and Choul-Young Kim¹ Chungnam National University, Korea, ²LIG NEXI, Korea, ³Agency for Defense Development, Korea

18 Multiple Transform of Intra Predicted Chrominance Signal with Information Sharing with Luminance

Jeeyoon Park and Byeungwoo Jeon Sungkyunkwan University, Korea

19 Bidding Strategy for Virtual Power Plant in a Day-ahead Market Daeyoung Kang, Gi-ryang Jeon, and Kyu-han Shim Korea University. Korea

20 Moving Object Segmentation and Matching between Two Asynchronous Cameras for 3D Reconstruction

Ji-Min Cho, Soon-Yong Park, and Sung-Il Chien Kyungpook National University, Korea

21 Polar code interleaver for higher order modulation

Gangsan ${\rm Kim}^1, {\rm Hong\mbox{-}Yeop\mbox{ } Song}^1, {\rm Chanki\mbox{ } Kim}^2, {\rm Jong\mbox{-}seon\mbox{ } No}^2,$ and Jaeha ${\rm Ahn}^3$

¹Yonsei University, Korea, ²Seoul National University, Korea, ³Agency for Defence Development, Korea

22 Unified Time Synchronization and Fault Diagnosis Scheme of Automotive CAN Bus

Jong-Bae Lee, Tae-Wook Kang, and Seongsoo Lee Soongsil University, Korea

23 Outlier Detection Technique for IoT Sensor-Driven Big Data Systems

Sunho Seo and Jong-Moon Chung *Yonsei University, Korea*

24 A 2.4 GHz Fractional-N Sub-Sampling PLL with a Hybrid Type Phase Interpolator

Yun-Sik Choi, Kitae Yoo, Dong-Hyun Yoon, Ji-Min Choi, and Kwang-Hyun Baek

Chung-Ang University, Korea

25 Monitoring Duty Cycle MAC Protocols for Various Traffic Networks

Gayoung Kim, Jingu Kang, and Minjoong Rim Dongguk University, Korea

26 The design of monitoring system for crop cultivation environment using IOT system

Seon Gwang Kim, Sehi Park, Sung Goo Yoo, and Kil To Chong Chonbuk National University, Korea

27 Design of Portable Functional Near-Infrared Spectroscopy-based Brain Monitoring System

Seungchan Lee and Heung-No Lee Gwangju Institute of Science and Technology(GIST), Korea

28 A Method of Channel Selection for Multi-GNSS Receiver

Kwi Woo Park, Bo-Seok Seo, Jae-Won Suh, and Chansik Park Chungbuk National University, Korea

29 Elbow-Fixed Distance Measuring System with Using MEMS and Laser Module, Encoder Measurement System

Soohyun Kim and Hansil Kim University of Ulsan, Korea

30 Object Detection Based on VGG with ResNet Network

Md Foysal Haque, Hye-Youn Lim, and Dae-Seong Kang Dong-A University, Korea

31 3D Pose Estimation of Ring-Shape Objects using Elliptical Model Fitting to Depth Image

Min-Jae Lee¹, Sang-Seung Kang², and Soon-Yong Park¹
¹Kyungpook National University, ²Electronics and Telecommunications Research Institute, Korea

32 Fairness Improvement of BBR Congestion Control Algorithm for Different RTT Flows

Geon-Hwan Kim, Imtiaz Mahmud, and You-Ze Cho Kyungpook National University, Korea

33 Method of Optimal Caemra Path Estimation Based on Optical Flow for Video Stabilization

Inhye Yoon, SangHyun Byun, and Joonki Paik Chung-Ang University, Korea

P03	Poster III	
16:00-17:30		Wednesday, January 23, 2019
Room: Princes C Chair:		

01 A New Data Preparation Methodology in Machine Learning-based Haze Removal Algorithms

Dat Ngo and Bongsoon Kang Dong-A University, Korea

02 Design of a Voltage Controlled Oscillator (VCO) MMIC without Varactor Diodes

Keun-Kwan Ryu², Yong-Hwan Kim¹, and Sung-Chan Kim²

¹WaveTrack Inc., Korea, ²Hanbat National University, Korea

03 Retinex Algorithm using Contrast Modification and Saturation Correction for Color Image Enhancement

Han-Sol Kang¹, Yun-Ho Ko¹, Si-Woong Lee², and Byung-Ju Yun³

¹Chungnam National University, Korea, ²Hanbat National University, Korea, ³Kyungpook National University, Korea

04 Commercial CPUs on Performance of Distributed System Hee-Sung Yang¹ and Youngmi Kwon² ¹Ares Co., Ltd, Korea, ²Chungnam National University, Korea

05 CNN Models Performance Analysis on MRI images of OASIS dataset for distinction between Healthy and Alzheimer' patient Bijen Khagi, Bumshik Lee, Jae-Young Pyun, and Goo-Rak Kwon Chosun University, Korea

06 Obstacle Detection Using Feature Analysis and Dense Disparity Map
Chung-Hee Lee

Daegu Gyeongbuk Institute of Science & Technology, Korea

07 Inter-Frame Compression of 3D Point Cloud Sequences Ji-Su Kim, Seonho Lee, Jae-Han Lee, and Chang-Su Kim Korea University, Korea

08 Mitigation of the Third-Order Passive Intermodulation Distortion Interference on Uplink Signal

Beomhee Jang, Hyunchae Kim, Yoojeong Seo, Sungbin Im, and Seungmo Hong Soongsil University, Korea

09 Loading Effects on Upstream Converter' Input Impedance in Multistage Dc Power

Distribution Systems Syam Kumar Pidaparthy and Byungcho Choi Kyungpook National University, Korea

10 Multi-user Coding Scheme for High Spectral Efficient Transmission Arim Lee and Wangrok Oh

Chungnam National University(CNU), Korea

11 Charge trapping memory characteristics of the multilayer high-k structure with HfO₂/Al₂O₃ laminated films

Jinhyuk Yoo, Soonkon Kim, Woojin Jeon, and Byoungdeog Choi Sungkyunkwan university, Korea

12 Agile Navigation of Indoor Quadrotor Using CV-SLAM and Adaptive Backstepping Control

Hong-Rae Kim, Sang-Yoon Kim, Ho-Cheol Ahn, Yong-Serk Kim, and Tae-Yong Kuc Sungkyunkwan University, Korea

13 SATE: Providing Stable and Agile Adaptaion in HTTP-based Video Streaming

Wangyu Choi, Jisung Jeong, and Jongwon Yoon Hanyang University, Korea

14 Prediction of Critical Mass Flux Using Artificial Intelligence

Ye Ji An¹, Kwae Hwan Yoo¹, Man Gyun Na¹, Kyung-Suk Kim¹, and Yeon-Sik Kim²

¹Chosun University, Korea, ²Korea Atomic Energy Research Institute, Korea

15 Channel Environment Adaptive Symbol Decision Method for Visual-MIMO Synchronization System

Tae-Ho Kwon and Ki-Doo Kim Kookmin University, Korea

16 Design and Analyze of Compact Ku-Band Wilkinson Power Combiner in 65 nm CMOS Technology

Sang-Hyo Kim, Eun-Gyu Lee, Sun-Kyu Choi, Jung-Taek Lim, Jae-Eun Lee, Han-Woong Choi, Kyung-Hyeok Lee, Jae-Hyeok Song, and Choul-Young Kim

Chungnam National University, Korea

17 Configurable Automotive Cluster Display Considering Driver' Cognitive Characteristics

Jin-Kyu Choi, Young-Jin Kwon, Juil Jeon, Kyongho Kim, Hyunkyun Choi, and Byungtae Jang Electronics and Telecommunications Research Institute(ETRI), Korea

18 A blockchain for media: Survey

The Aspect of Content security and Content right management

Sunghyun Cho and Chiyoung Jeong

Hanyang University, Korea

19 A Study on Embedded System Modeling Method in Virtual Machine Environment

Tai-Gil Kwon and Jin-Woong Cho Korea Electronics Technology Institute, Korea

20 Interference-Aware Spreading Factor Assignment Scheme for the Massive LoRaWAN Network

Arshad Farhad, Dae-Ho Kim, Pranesh Sthapit, and Jae-Young Pyun Chosun University, Korea

21 Sol-gel Processed SnO2/Au Schottky Diode

Bongho Jang, Taegyun Kim, Sojeong Lee, Won-Yong Lee, and Jaewon Jang

Kyungpook National University, Korea

22 Probabilistic Modeling of Reaction Force/Torque through Fourier Transform and Entropy Analysis

Nam Jun Cho¹, Sang Hyoung Lee², Il Hong Suh¹, and Hong-Seok Kim² ¹Hanyang University, Korea ²Korea Institute of Industrial Technology, Korea

23 Design of A Broadband CMOS Class-E PA for TVWS Applications

Yasser Mohammadi Qaragoez, Sung Jin Kim, and Kang-Yoon Lee Sungkyunkwan University, Korea

24 Adversarial Style Transfer for Long Sentences

Wooyong Choi, Su Jeong Choi, Seyoung Park, and Sang-Jo Lee Kyungpook National University, Korea

25 A 135 dB-ohm Low Noise Transimpedance Amplifier With a Gain Modifier Circuit For Very Low Current Sensing

Fatemeh Abbassi, Abdolhamid Noori, Yasser Mohammadi Qaragoez, SungJin Kim, and Kang-Yoon Lee Sungkyunkwan University, Korea

26 Dereverberation Using Generative Adversarial Network for **Reverberant Speech Recognition**

Min Sik Kim, Jaemin Han, and Hyung Soon Kim Pusan National University, Korea

27 Investigation of Time-Dependent Breakdown of normally-off AlGaN/GaN gate-recessed MISHFETs With OFF-State Stress

Dongmin Keum, Ho-young Cha, Hyungsik Shin, and Hyungtak Kim Hongik University, Korea

28 A circled Bloom filter for the membership identification of multiple

Jungwon Lee and Hyesook Lim Ewha Womans University, Korea

29 Vehicle License Plate Recognition with Anchor based Detector

Sung-Hoon Im and Jae-Heung Lee Hanbat National University, Korea

30 Investigation of Coupling Effects of Monolithic 3D Inverter with Junctionless Field-Effect Transistors

Tae-Jun Ahn and Yun Seop Yu Hankyong National University, Korea

31 AlGaN/GaN Heterojunction-based MIS-HEMTs with Effective SiN Passivation Layer for Improving Device Reliability

Young Jun Yoon, Min Su Cho, Jun Hyeok Jung, Won Douk Jang, Hye Jin Mun, and In Man Kang Kyungpook National University, Korea

32 Selection of Optimal Reasoning path by Bayesian Switching mechanism in the Brain Sensory System

JeongYon Shim
Kangnam University, Korea

33 Evaluation of the Kubernetes's Container Recovery Function in Multi Node Cases

Sungun Hong and Younghan Kim Soongsil University, Seoul, Korea

P04	Poster IV
10:00-12:0	Thursday, January 24, 2019
Room: Pri	nces C

01 Migration of oxygen ions and vacancies in tunneling based resistance switching element

Seung Jae Baik Hankyong National University, Kore

02 Highly Linear InGaP/GaAs HBT Power Amplifier with Harmonic Trap for Small-Cell Applications

Hyunjin Ahn and Ockgoo Lee Pusan Nation University, Korea

03 Low Power 3T-2R Non-Volatile TCAM Cell with Dual Match-line Dojong Cheon^{1,2} and Kee-Won Kwon¹ ¹Sungkyunkwan University, Korea, ²Samsung Electronics Co., LTD, Korea

04 DRAM Effects on the Embedded Processor Performance

Jongbok Lee Hansung University, Korea

05 Simple Calibration Method between RGBD Camera and Omnidirectional Camera

Minkyu Lee, Jaesung Choi, Woojin Kim, Yongju Lee, and Sangyoun Lee Yonsei University, Korea

06 Combining Depth Maps through 3D Weighted Least Squares in Shape from Focus

Usman Ali and Muhammad Tariq Mahmood

Korea University of Technology and Education, Korea

07 Design and Development of Data Map Visualization Tool for Property Search of Police Information

Sang-Yun Lee¹, Wonjoo PARK¹, Yong-Tae Lee¹, KongMin Kim², Gyung-Rok Yeom³, and Jiho Shin⁴ ¹ETRI, Korea, ²CEN Corporation Co., Ltd., ³IWAZ, ⁴Police Science Institute

08 Performance Analysis of Multihop Multirelay Multiuser CRNs with Energy Harvesting

Toan-Van Nguyen¹, Sang-Yep Nam², and Beongku An¹ ¹Hongik University, Korea, ²Kookje University, Korea

09 Bandwidth Estimation Scheme Based on Network Adaptability for **UHD Streaming Service**

Minsu Kim and Kwangsue Chung Kwangwoon University, Korea

10 Single Image Dehazing Based on Histogram Stretching

Se Eun Kim, Cheol Woo Park, and Il Kyu Eom Pusan National University, Korea

11 Accurate Self-heating Simulation for Integrated Circuit Design

Jongwook Jeon¹, Heesauk Jhon², Yoon Kim³, and Myounggon Kang⁴ ¹Konkuk University, Korea, ²Mokpo National University, Korea, ³Pusan National University, Korea, ⁴Korea National University of Transportation, Korea

12 RGB-D Camera based Pose Estimation of Indoor Mobile Robot using Line Feature Only

Min-Woo Ryu¹, Tae-Yong Kuc¹, Jongkoo Park¹, and Jong-Wan Seo² ¹Sungkyunkwan University, Korea, ²CASE Lab, Korea

13 A 4.7 μ A Quiescent Current Synthesizable Digital Low Dropout Regulator in 28-nm CMOS

Jonghyun Oh, Jun-Eun Park, and Deog-Kyoon Jeong Seoul National University, Korea

14 Extended ICP based SLAM using straight line and point cloud

Ung-Hee Lee, Sung-Hyeon Joo, Kyung-Tae Nam, Jong-Wan Seo, and Tae-Yong Kuc Sungkyunkwan University, Korea

15 Study on the performance improvement of face recognition-based

security system

using high-level image processing technology Hyun Ahn¹, Young-Hwan Yoon¹, Sangjoon Lee¹, Yong-Min Lee¹, and Kye-Shin Lee

¹Sun Moon University, Korea, ²The University of Akron, USA

16 Self-Adaptive System Verification based on SysML

Seung-Min Lee¹, Soojin Park², and Young B. Park¹ ¹Dankook University, Korea, ²Sogang University, Korea

17 Analysis of Correlation Characteristics of 10230 Period PRN Code using Concatenated Gold Code

Seung Tae Kim and Jae Min Ahn
Chungnam National University, Korea

18 A Sidelobe Mitigation Method for an FM-radio-based PCL System

So-Young Son $^{\rm l}$, Geun-Ho ${\rm Park}^{\rm l}$, Hyoung-Nam Kim $^{\rm l}$, Kyu-Ha ${\rm Song}^{\rm 2}$, and Jun-Il ${\rm Ahn}^{\rm 2}$

¹Pusan National University, Korea, ²Agency for Defense Development, Korea

19 Various Device Structures for Steep Switching Silicon-On-Insulator Feedback Field Effect Transistor

Changhoon Lee and Changhwan Shin Sungkyunkwan University, Korea

20 Real Time Android Ransomware Detection by Analyzed Android Applications

Ju-Seong Ko, Jeong-Seok Jo, Deuk-Hun Kim, Seul-Ki Choi, and Jin Kwak *Ajou University, Korea*

21 Net Load Variability in Future Jeju Power System with Very High Penetration of Renewable Generation

Jinyeong Lee, Rakkyung Ko, Sangmin Ryu, and Sung-Kwan Joo Korea University, Korea

22 Image Restoration for CsI(Tl)-Scintillator Mammography Detectors

Dong Sik Kim and Eunae Lee Hankuk University of Foreign Studies, Korea

23 Analysis of Mining Performance Based on Mathmatical Approach of PoW

Jusik Yun, Yunyeong Goh, and Jong-Moon Chung Yonsei University, Korea

24 On-demand Syndrome Calculation for BCH decoding

Hyeonkyu Kim, Soyeon Choi, and Hoyoung Yoo Chungnam National University, Korea

25 Effect of soft baking temperature on solution-processed SnO2 thin-film transistors

Won-Yong Lee, Taegyun Kim, Sojeong Lee, Bongho Jang, and Jaewon Jang

Kyungpook National University, Korea

26 Comparing the Performance of a Deep Learning System for Determining Stroke Depending on a Pre-Processing Algorithm

Su-min Jung and Taeg-keun Whangbo *Gachon University, Korea*

27 A meshless method based on improved boundary distributed method for estimating of bladder size using electrical impedance tomography

Anil Kumar Khambampati, Sunam Kumar Sharma, You Jeong Han, Sravan Kumar Konki, and Kyung Youn Kim Jeju National University, Korea

28 An effective model for detect Early Symptoms of Stroke Jae Seoung Kim and Taeg Keun Whangbo Gachon University, Korea

29 Radio Frequency Interference Analysis of Camera Module and Antenna in Smartphones

Youngbong Han¹, SeungHyuk Lee², Hai Au Huynh¹, and SoYoung Kim¹

Sungkyunkwan University, Korea, ²Samsung Electronics Co., Ltd, Korea

30 Cuckoo Bloom Filter

Ju Hyoung Mun and Hyesook Lim Ewha Womans University, Korea

31 Performance Analysis of TWRN with Adaptive Modulation in Presence of Channel Estimation Error over Nakagami-m Fading Channel

Kyu-Sung Hwang¹ and Chang Kyung Sung²

¹Kyungil University, Korea, ²CSIRO, Australia

32 An Evaluation of the popular CMFD methods based on binary descriptors

Wendimagegn Tariku W.¹, Kim Hyoung Joong ¹, and YongSoo Choi² ¹Korea University, Korea, ²SungKyul University, Korea

33 Plano-Convex Lens Fabrication for Distance Sensor based on Single Vision

Yumee Kim and Kukjin Chun Seoul National University, Korea

P05 Poster V

13:30-15:00 Thursday, January 24, 2019

Room: Princes C
Chair:

01 Green Cognitive Femtocells Deployment House Modelling for Interference Mitigation

Muhammad Rafay Khan Sial and Muhammad Talha Gul Superior University, Pakistan

02 Vectored-Bloom Filter Implemented on FPGA for IP Address Lookup

Hayoung Byun, Qingling Li, and Hyesook Lim Ewha Womans University, Korea

03 A Study on Cell-Type Classification using Gene-Expression Data: Maximum Likelihood Approach and Support Vector Machine

Dongmug Kang, Seokhyun Yoon, and Kyoungpil Ra Dankook University, Korea

04 Analysis of Power Consumption on Match Line of TCAM and Power Efficient Architecture

Sung-Yong Kim, Cheol Kim, Jisu Min, Seung-Kwang Hong, and Kee-Won Kwon

Sungkyunkwan University, Korea

05 A Study on Improvement of Character Recognition through Selective Application of Deep Learning Method

Yongju Park and Sangyun Kim Korea Electronics Technology Institute, Korea

06 GNSS based waypoint generation and tracking algorithm for autonomous agricultural vehicle

Joong-hee Han and Chi-ho Park
Daegu Gyeongbuk Institute of Science & Technology, Korea

07 Low On-resistance 1700V 4H-SiC UMOSFET with Local Floating Superjunction

Jinyoung Goh and Kwangsoo Kim Sogang University, Korea

08 A Hardware-Friendly Compression Algorithm for Profiling DDR4 Memory Accesses

Xuan Truong Nguyen¹, Jiwoong Choi¹, Hyuk-Jae Lee¹, and Hyun Kim²
¹Seoul National University, Korea, ²Seoul National University of
Science and Technology, Korea

09 Machine-Learning based Loss Discrimination Algorithm for Wireless TCP Congestion Control

Kimoon Han, Jae Yong Lee, and Byung Chul Kim Chungnam National University, Korea

10 Eye Blink Pattern based Drowsiness Detection with Convolutional Neural Network

Hyeonjeong Lee, Khurelbaatar Zolzaya, and Miyoung Shin Kyungpook National University, Korea

11 Automotive Radar Mutual Interference Reduction Using the Variance of Signal Power

Youn-Sik Son, Ho-Kyoung Lee, and Seo Weon Heo *Hongik University, Korea*

12 A Study on the Application of Decision Tree Algorithm to Differentiate Gait Phases in the Users of Transfemoral Prostheses

Sun-Jong Na $^{\! 1},$ Su-Hong Eom $^{\! 1},$ Chol-U Lee $^{\! 1},$ Mun-Seok Jang $^{\! 2},$ and Eung-Hyuk Lee $^{\! 1}$

¹Korea Polytechnic University, Korea, ²Dong-Eui Institute of Technology, Korea

13 Arduino based Balancing Robot

Sunjin Yu

Tongmyong University, Korea

14 Study on Leakage Current Characteristics of MIM Capacitors with High-k Dielectrics for Leakage Current Reduction

Jong-Min Lee¹, Jong-Min Lee², Pyung-Ho Choi², and Byoung-Deog Choi²

¹Samsung Electronics Co., Korea, ²Sungkyunkwan University, Korea

15 An Injection Locked All-Digital Referenceless CDR

Changzhi Yu, Hyunmook Kim, Himchan Park, Youngtaek Roh, and Jinwook Burm

Sogang University, Korea

16 An intelligent chat bot agent system that can provide various services according to user's intention

Donghyun Kang, Dennis Singh Moirangthem, and Minho Lee Kyungpook National University, Korea

17 A Strategy for Estimating Bistatic Range and Velocity in FM-radiobased Passive Bistatic Radar

Geun-Ho Park¹, So-Young Son¹, Dong-Gyu Kim¹, Hyoung-Nam Kim¹, Kyu-Ha Song², and Jun-Il Ahn²

 1 Pusan National University, Korea, 2 Agency for Defense Development, Korea

18 Low Dynamic Range Image Set Generation from Single Image Rappy Saha, Partha Pratim Banik, and Ki-Doo Kim Kookmin University, Korea

19 Bi-Directional Depth Propagation for 2D-to-3D Conversion with Color/Depth-Based Superpixel Segmentation

Inyong Yun¹, Byunghyun Kwon¹, Joongkyu Kim¹, and Cheolkon Jung²

¹Sungkyunkwan University, Korea, ²Xidian University, China

20 K-CBS-based unilateral spatial neglect rehabilitation training contents utilizing virtual reality

Ho-Sang Moon, Sung-Wook Shin, Sung-Taek Chung, and Eok Kim Korea Polytechnic University, Korea

21 Adaptive Plane Fitting-Based Stereo Matching with Image Guided Disparity Refinement

Jonghyun Kim, Inyong Yun, and Joongkyu Kim Sungkyunkwan University, Korea

22 FPGA Design and Implementation of Accelerated Stereo Matching for Obstacle Detection

Yongseok Lee, Eunchong Lee, Sang-Seol Lee, Sung-Joon Jang, and Byoung-Ho Choi

Korea Electronics Technology Institute, Korea

23 Resistive Random Access Memory with Controlled Surface

Energy for Ultrathin Electrode Formation

Sunghwan Lee, Shem Seo, and Seunghyun Lee *Kyunghee University, Korea*

24 Survey on the Application of BlockChain to IoT

Research Trend for Applying BlockChain to IoT

Sunghyun Cho and Sejong Lee Hanyang University, Korea

25 Design and Application of Dual Loop Visual Servo to Robot Arm for Dynamic Manufacturing Automation

 $\rm Ji\text{-}Min\,Lim^1, Sang\text{-}Hyeon\,Bae^1, Tae\text{-}Yong\,Kuc^1, Jong\text{-}Koo\,Park^1,}$ and Kwang-Hee $\rm Lee^2$

¹Sungkyunkwan University, Korea, ²Korea Institute of Industrial Technology, Korea

26 A Dynamic Visual Servo Control Architecture for Human-Robot Cooperative Manufacturing Process

Sang-Hyeon Bae 1 , Ji-Min Lim 1 , Tae-Yong Kuc 1 , Yong-Serk Kim 1 , and Kwang-Hee Lee 2

¹Sungkyunkwan University, Korea, ²Korea Institute of Industrial Technology, Korea

27 Improved implementation method of DPWM for NTV DC-DC converter in 65nm CMOS

Wonjune Hwang, Dang Van Thai, Dong-kyu jung, and Kwang-Hyun Baek Chung-Ang University, Korea

28 Performance Analysis of Satellite Laser Transmission System

Won Ho Kim and Seon Gi Kim Kongju National University, Korea

29 Skin-Attachable Epileptic Seizure Detector

Inyeol Yun, Jinpyeo Jeung, Yoonyoung Chung, and Young-Seok Kim Pohang University of Science and Technology(POSTECH), Korea

30 Reconfigurable Gain, Low Noise Trans-Impedance Amplifier with process compensation and wide input range for Biosensor Applications

Abdolhamid Noori, Fatemeh Abbassi, Yasser Mohammadi Qaragoez, Sung-Jin Kim, and Kang-Yoon Lee Sungkyunkwan University, Korea

31 A Machine Fault Detection and Diagnosis System using a Soundto-Image Conversion Feature Representation

Caleb Vununu¹, Oh-Heum Kwon¹, Suk-Hwan Lee²,

Kyung-Won Kang², and Ki-Ryong Kwon¹

¹Pukyong National University, Korea, ²Tongmyong University, Korea

32 Depth Map Estimation Model with Efficient Feature Extraction Module

Soo-Yeon Shin, Dong-Myung Kim, Byung-Do Yang, Chan-Sik Park, and Jae-Won Suh

Chung-Buk National University, Korea

33 Development of Electromagnetic Wave Remote Power Transmission System Using Beam Forming Technique

Yongju Park

Korea Electronics Technology Institute, Korea

34 ACO-based Optimal Node Selection Method for QoE Improvement in MEC Environment

Sanghoon Lee and Hwasung Kim Kwangwoon University, Korea

P06	Poster VI	
15:30-17:00		Thursday, January 24, 2019
Room: Princes C Chair:		

01 Fog Synthesis For Effective Object Detection On Road Driving Images

Kyeong-Min Jeong and Byung Cheol Song *Inha University, Korea*

02 SSKIP: Lifetime Aware Page Skipping for Multi-Level Cell Flash-based Solid-State Drives

Jian-Geng Li¹, Guan-Yu Chen¹, Hsung-Pin Chang², and Da-Wei Chang¹ ¹National Cheng Kung University, Taiwan, ²National Chung-Hsing University, Taiwan

03 Analysis of Underwater Acoustic Communication Channel Parameters in Shallow Water

Jong Rak Yoon, Jihyun Park, and Minja Bae Pukyong National University, Korea

04 High Breakdown Voltage 4H-SiC UMOSFET with a Source-Trench Oxide Structure

Taehong Kim and Kwangsoo Kim Sogang University, Korea

05 A Preprocessing Method for Improving the Compression Ratio of LPDDR4 Command Trace

Jiwoong Choi¹, Boyeal Kim¹, Hyuk-Jae Lee¹, and Hyun Kim²

¹Seoul National University, Korea, ²Seoul National University of Science and Technology, Korea

06 Window Processing of SSB CP-0FDM System for the 00B Spectrum Reduction

Kyeongsoo Jang, Dayoung Kim, Changyoung An, and Heung-Gyoon Ryu Chungbuk National University, Korea

07 Low Power Digital PWM Buck Converter With a Clock-Gating Shift-Register

Tae-Hyeong Kim, Dae-Jin Kim, Hyeon-Sam Shin, Sang-Ho Lee, Jae-Won Suh, and Byung-Do Yang Chungbuk National University, Korea

08 Comparison of Clustering Algorithms Based on Weighted Clustering Metrics for Unmanned Aerial Vehicle Networks Mahamad Vesign America and Sangaran Mah

Muhammad Yeasir Arafat and Sangman Moh Chosun University, Korea

09 Cyclostationary Feature Detection for Spectrally Overlaid Systems Jaehyun Park¹ and Heesun Park²

¹Pukyong National University, Korea, ²The Affiliated Institute of ETRI, Korea

10 Slip and Tip-over Prediction Map for Stable Driving of Mobile Robot Sungmin Lee and Jaebyung Park Chonbuk National University, Korea

11 A 16x16 Programmable Anlaog Vector Matrix Multiplier using CMOS compatible Floating gate device

Yong-Hyun Kim, Jong-Moon Choi, Je-Joong Woo, Eun-Je Park, Sang-Won Kim, and Kee-Won Kwon Sungkyunkwan University, Korea

12 A Realtime Autonomous Robot Navigation Framework for Human like High-level Interaction and Task Planning in Global Dynamic Environment

Sung-Hyeon Joo, Sumaira Manzoor, Yuri Goncalves Rocha, Hyun-Uk Lee, and Tae-Yong Kuc Sungkyunkwan University, Korea

13 Phased Array Ultrasonic using Coded Pulse for Grating Lobes Suppression in Air

Sang-Ho Park, Jeong yeonkeun, and Kwang-Ryul Baek Pusan National University(PNU), Korea

14 Pre-training Framework for Improving Learning Speed of Reinforcement Learning based Autonomous Vehicles

Jung-Jae Kim¹, Si-Ho Cha², Minwoo Ryu³, and Minho Jo⁴
¹POSCO R&D Center, Korea, ²Chungwoon University, Korea, ³KT R&D Center, Korea, ⁴Korea University, Korea

15 Impacts of Hydrogen Exposure on the Electrical Properties of ZrO₂/Al₂O₃/ZrO₂ Films

Pyungho Choi, Jongmin Lee, and Byoungdeog Choi Sungkyunkwan University, Korea

16 Indoor Localization using Vanishing Point and Environment's Structural Feature

Gang-Myung Lee and Kwang-Ryul Baek Pusan National University(PNU), Korea

17 Design of Servo Motor Speed Adaptive Control System Using Neural Network

Yo-han Ko, Chong-deuk Lee, Sung-Goo Yoo, and Kil-To Chong Chonbuk National University, Korea

18 A Long Wavelength-dependent Optical Memory Characteristics of Amorphous Oxide-based Thin Film Devices

Junyoung Bae, Inkyung Jeong, and Sungsik Lee Pusan National University, Korea

19 Structural and Sensing Characteristics of Lanthanum Fluoride Membrane for Fluoride ion Sensor

Hyeonsu Cho, Kihyun Kim, and Chang-Ki Baek Pohang University of Science and Technology(POSTECH), Korea

20 Effect of α -Fe₂O₃/ZnO heterojunction for CO gas sensors

Jeongseok Lee, Se-Hyeong Lee, So-Young Bak, Yoojong Kim, Kyoungwan Woo, Yooseong Lim, Moonsuk Yi, and Sang-Hyun Lee *Pusan National University, Korea*

21 Performance analysis on three-layered division multiplexing transmission

Soon-Young Kwon¹, Ho Jae Kim¹, Hyoung-Nam Kim¹, JaeHwui Bae², YoungSu Kim², and Namho Hur²

¹Pusan National University, Korea, ²Electronics and Telecommunications Research Institute, Korea

22 An efficient multi-factor authenticated key exchange with physically unclonable function

Jin Wook Byun
Pyeongtaek university, Korea

23 Performance Improvement of MIMO MC-CDMA system

Chan Kyu Kim Hanbat University, Korea

24 Multiple UAVs-based Surveillance and Reconnaissance System Utilizing IoT Platform

Jong-Hong Park, Sung-Chan Choi, Il-Yeop Ahn, and Jaeho Kim Korea Electronics Technology Institute(KETI), Korea

25 Improved Multiview Stereo based on Semiglobal Matching and Color Consistency

Pathum Rathnayaka¹, Soon-Yong Park¹, Joungil Yun², and Won-Sik Cheong²

¹Kyungpook National University, Korea, ²Electronics and Telecommunications Research Institute(ETRI), Korea

26 A Study on The Algorithm for Cerebrovascular Extraction Using Canny Edge Detection

Young Min Jang, Sung Goo Yoo, and Kil To Chong Chonbuk National University, Korea

27 Illegal Trash Dumping Detector using Difference Image and Convolutional Neural Networks

Dong-Gyun Ryu and Jae-Heung Lee Hanbat National University, Korea

28 Applying the Kalman filter to increase accuracy of location measurement

Su-Jin Lee and Han-Sil Kim Ulsan University, Korea

29 Real-time object detection algorithm based on YOLOv3-tiny

Kyung-min Lee¹, Hyok Song¹, Je-woo Kim¹, and Chi-ho Lin²

¹Korea Electronics Technology Institute, Korea, ²Semyung University, Korea

30 A Bioelectrical Signals based Preliminary Algorithm for Mental Tension and Relaxation Monitoring

Young Chang Jo, Won Hee Hwang, Dong Hyeon Hwang, Hyuck Ki Hong, Yeon Shik Choi, and Suk Won Jung Korea Electronics Technology Institute(KETI), Korea

31 Brain Lobe Location based 3-D CNN with Deep Neural Network for Epileptic Seizure Detection

Junkyung Kim, Gwangho Choi, Kyeongyuk Min, HwangSik Bae, Jongwha Chong, and Inwhee Joe *Hanyang University, Korea*

32 Data Collection Protocol for Sensors Networks based on Molecular Communications

Namho Kim¹, Sungrae Cho², and Joon-Sang Park¹

Hongik University, Korea, ²Chung-Ang University, Korea

33 Implementation of LTE-A Release 13 PDSCH Decoder Using TMS320C6670

Heungseop Ahn¹, Daejin Kim¹, Gwangmin Lee¹, Hoil Kim¹, Jaeho Lee¹, Seungwon Choi¹, Ildo Jung², and Joonyoung Kang² *Hanyang University, Korea, ²LG Uplus, Korea*

34 Implementation of RRS-based Vehicular Communication Platform Using a General-purpose DSP

Heungseop Ahn¹, Daejin Kim¹, Hoil Kim¹, Gwangmin Lee¹, Jaeho Lee¹, Seungwon Choi¹, Markus Mueck², Vladimir Ivanov³, and Young-Seo Park⁴

¹Hanyang University, Korea, ²Intel Deutschland GmbH, Germany,

³State University of Aerospace Instrumentation, Russia,

⁴Samsung Electro-Mechanics, Korea

Venue & Accommodation

Pullman Auckland hotel

http://www.pullmanauckland.co.nz/ Corner Princes Street and Waterloo Quadrant, 1010 Auckland. New Zealand

Tel: +64 9 353 1000 Fax: +64 9 353 1002

Email: info@pullmanauckland.co.nz

Waitomo Glowworm Caves

The glowworm, Arachnocampa luminosa, is unique to New Zealand. Thousands of these tiny creatures radiate their unmistakable luminescent light as our expert guides provide informative commentary on the Caves' historical and geological significance.

Waitomo Glowworm Caves are a must-see for any traveller. Enjoy the world famous boat ride under thousands of magical glowworms and become a part of over 120

years of cultural and natural history.

THE BOAT RIDE

Marvel at Mother Nature's light display as you glide silently through the starry wonderland of the Glowworm Grotto. Meander underground along the Waitomo River and gaze in silence at the myriad of glow-worm lights that make up the Glowworm Grotto. As you enter this galaxy of tiny living lights, you'll immediately experience a serene ambience and be fascinated and intrigued by tiny glowworms that light your way.

Hobbiton Movie Set

Visit the movie The Lord of the Rings and the Hobbit movie set (Hobbiton Movie Set: Hobbit Village) and experience the middle ground (Middle-earth). The guide tour begins with a view of the beautiful view of the Kaimai Ranges (Kaimai Lances) far away, running on a picture-like landscape

of 1,250 acres of sheep ranch. Take a look at the back end (Bag End) and many other Hobbit houses where Frodo and Bilbo's adventures began, and visit Green Dragon Inn (Mill) and the Party Tree (Party Tree). I also hear an exciting story about how Hobbitton started.

Coromandel

There are many walkways and trekking courses in the wooded forest, and there are many places to do like skydiving and sea kayaks, as well as famous tourist attractions such as Hot Water Beach, which are special natural sea hot springs in hot waters due to volcanic activities.

Most of the travelers who visit Coromandel go to the Coromandel Peninsula, where the Cassidral Cove is a mysterious scenery with a cave-like hole in the rock overlooking the turquoise seawater, and a film location where the Chronicles of the movie Narnia are filmed.

Rotorua

Rotorua is a city in New Zealand, North Island, with an area of 2,614.9 km² and a population of 68,200 in Rotorua in 2009. Rotorua is located at the center of the North Island, 60 km south of Tauranga,

80 km north of Taupo, 105 km east of Hamilton, and 230 km southeast of Auckland. Volcanoes and geothermal development have developed, and it is the largest tourism center in New Zealand as the center of Maori culture. The city is well known for its geothermal activities, and these create geysers, the most famous of which is the Pohutu geyser with Wakareware, and it is made of hot mud. This geothermal activity originated in the city of Rotorua Caldera, where Rotorua became the home of many large-scale research institutes at universities and has the Wyariki Institute of Technology

Pukaki Lake

If you want to see the mystery of nature while traveling on the South Island of New Zealand, let's hear Lake Pukaki. The iceberg, located between Queenstown and Christchurch, is facing Mountain Cook, New Zealand's highest peak, and the mysterious lake, which boasts its distinctive clear water, attracts many travelers. The land-scape of the lake, which is made up of natural changes by the sunset and the wind, is a work of God's art that admires the landscape of the lake. As you drive along the lakeside, you can see the sign of the Fookaki Lake Information Center, which is the best place to have another attraction, as you can see from the observation deck built in the building.

Auckland Sky Tower

The Auckland Sky Tower is located in the middle of downtown Auckland, New Zealand's largest economic center. If you want to watch the view of Auckland, climb the sky tower and enjoy 360 degrees of the city over the glass from the observation deck. From the observatory, you can see almost all the city of Auckland, including Harbor Bridge and Devonport, and there are sky jumps and skywalks that you can experience for a fee when you climb to the top. Sky Tower jump, which is gaining popularity among young travelers who visited Auckland, is enjoyed at 192m of the tower, and you can fly the Auckland Building Forest by wearing jump-suits and safety devices.

Agrodom Farm

Agrodom Farm is a reenactment of New Zealand's authentic farm. Not only can you meet mild animals close, but you can also watch fleece pod shows. You can see not only wool clippings but also 19 sheep and sheep who can know the kind of wool, and you can see the cute show, and take a bus to see the kiwi orchard and honey. You can experience a typical New Zealand farm, such as feeding milk to lambs and cows.

Modeling of Wireless Sensor Networks for Detection Land and Forest Fire Hotspot

Evizal Abdul Kadir¹, Hitoshi Irie², Sri Listia Rosa³

1,3 Department of Informatics Engineering, Faculty of Engineering, Universitas Islam Riau, Indonesia

²Center for Environmental Remote Sensing, Chiba University, Chiba, Japan

Email: evizal@eng.uir.ac.id, hitoshi.irie@chiba-u.jp, srilistiarosa@eng.uir.ac.id

Abstract — Forest fires in Indonesia is one of big issue and disaster because of Indonesia located in tropical region. furthermore some of region consist of peat land that high risk for fire especially in dry season. Riau Province is one of region that regularly incident of forest fire with affected the length and breadth of Indonesia. This research proposes development of Wireless Sensor Networks (WSNs) for detection of forest fire hotspot in Indonesia, further case location in Riau province one of the region that high risk forest fire in dry season. WSNs technology used for ground sensor system to collect environmental data, any change by the times reporting to the data center to be analyze. Data training for fire hotspot detection is done in data center to determine and conclude of fire hotspot then potential to become big fire. The deployment of sensors will be located at several locations that has potential for fire incident in previous case and forecast location with potential fire happen. Mathematical analysis is used in this case for modelling number of sensor required to deploy and the size of forest area. The design and development of WSNs give high impact and feasibility to overcome current issues of forest fire and fire hotspot detection in Indonesia. The development of this system used WSNs highly applicable for early warning and alert system for fire hotspot detection.

Index Terms — WSNs, Forest Fire Hotspot, Detection, Sensors

I. INTRODUCTION

Land and forest fire in Indonesia is a disaster that incident annually happen, especially in summer season. Data shows that total loss because of this fire in 1997 is USD2.45 billion [1], but this loss still smaller compare to 1995, the loss is USD19.1 billion. Riau province is one of the state that high risk to this disaster because of type of land which is peat land. Total economic loss for Riau province in year 2015 because of fire up to USD1.65 billion. Beside economic loss, most of activities stop because of badly environmental (haze) and all of school, government office and other institution no activities. The impact of this land forest fire is not only in Indonesia or Riau Province but to the others country such as Malaysia and Singapore, because of Riau is directly border to that countries. Current procedure is using satellite to detect hotspot then informs to the authority and team will go to the site for action to stop fire, there is no prevention action although there is some socialization and campaign to communities to stop firing land and forest but in some area because of peat land its can be fire by itself.

Therefore, in this research focus on developing ground level smart monitoring system to detect and monitor the environmental behavior in term of temperature, humidity and gasses as represent fire hotspot parameters. The integration of WSNs sensors would have an effect to local community and

local authority to access the information through developed real-time database online. It is anticipated to be faster and cheaper solution than to satellite data acquisition and this would definitely be beneficial to social welfare and economy development. In addition, the development of real-time database would also require some support from them as a policy maker to understand how the system works and also understand the pattern of the results so that an appropriate action can be taken.

II. LITERATURE REVIEW

Environmental monitoring caused by land and forest fire can be done in many ways, most of technology currently use is satellite images, by capture earth image to find hotspot for environmental detection. In Indonesia, satellite used as well for detection land and forest fire by government to monitor status of fire hotspot. A new technology use for hotspot detection is wireless sensor, this technology ability to detect potential of fire by analyze environmental changing. Proposes new method for land and forest fire detection and monitoring system to be able to give early warning system before fire disaster is happen, by analyze environmental changing with various sensors and detection method this system able to give accurate information of location as well early warning for prevention action. Fig.1 shows a satellite image for Indonesia hotspot status by mid of year 2017, most of hotspot located in central of Sumatera and west of Kalimantan Island.

Fig. 1. Fire hotspot in Indonesia based on satellite image [2].

Wireless Sensor Networks (WSNs) can be apply in many applications, such as in remote environmental monitoring, industrial automatic control, remote sensing and target tracking. The similar application system is in environmental

monitoring system which is for fire hotspot detection that can make a real-time monitoring and detection. WSNs consists numerous number of small nodes in most situations, which small nodes are deployed in remote and inaccessible hostile environments or over large geographical areas. The large number of sensor small nodes sense environmental changes and report them to cluster head node or sensor base station, then through a gate way to transfer data to the servers which the deployment and maintenance should be easy and scalable.

A system to development of a simulator for approximates behavior of a wireless network of temperature sensors deployed in the area affected by a wildfire. Based on a new signal processing to approach in which the temperature experienced at a sensor due to a spreading of fire front is modelled as the mixture of two-dimensional Gaussian distributions as discussed [3]. WSNs based Wildfire Hazard Prediction (WFHP) system is a systematic description of architectural details and requirements of WSN for WFHP applications. The model measure in terms of network latency, energy consumption, and scalability is analyzed through simulation. Verification of model sanity and performance are carried out taking real weather datasets and their corresponding wildfire hazard outputs as benchmarks and elaborate in [4].

Modeling forest fires according to the Fire Weather Index (FWI) system which is one of the most comprehensive forest fire danger rating systems. Then, a model the forest fire detection problem as a node k-coverage problem ($k \ge 1$) in WSNs. Approximation algorithms for the node k-coverage problem which is shown to be NP-hard. The simulation shows that algorithms: activate near-optimal number of sensors, converge much faster than other algorithms, significantly prolong (almost double) the network lifetime, and can achieve unequal monitoring of different zones in the forest [5]. Development of WSNs based on multi-sensor system and artificial neural network (ANN). Sensors (CO, CO2, smoke, air temperature and relative humidity) were integrated into one node of WSNs. An experiment was conducted using burning materials from residual of forest to test responses of each node under no, smoldering-dominated flaming-dominated combustion conditions. achieving higher identification rate, an ANN model was built and trained with inputs of four sensor groups: smoke; smoke and CO2; smoke and temperature; smoke, CO2 and temperature as discussed in [6].

Several research on Wireless Sensor Network (WSN) as discuss in [7], the WSN Simulator is developed based on proposed Sensor model and WSN model. The WSN Simulator address important design issues as: coverage of the area under surveillance in relation to initial sensor deployment, number of sensors needed for targeted deployment, and coverage change as function of time. A new approach for forest fire monitoring and detection as discussed in [8] which using data aggregation in WSN. The proposed approach can provide faster and efficiently reaction to forest fires while consuming economically WSN's energy, which has been validated and evaluated in extensive simulation experiments. Wireless sensor network be able to provide better solution for disaster management and rescue operations such as earthquake detection and alert system, flood detection, landslide detection, forest fire detection, water level monitoring of Himalayan Rivers, monitoring of glaciers, pilgrimage and tourist management are various examples where WSN can be used. Sensors are deployed for measuring various parameters and on [9, 10].

WSN algorithm to identify malicious data injections and build measurement estimates that are resistant to several compromised sensors and even when they collude in the attack. The methodology to apply this algorithm is in different contexts and evaluate its results on three different datasets drawn from distinct WSN deployments [11, 12]. The others research have been done is application of WSN in predicting natural disasters like hailstorm, fire, rainfall etc. by WSN are infrequent and stochastic [13]. As well as in design and implementation of a smart fire detection system using a WSN and Global System for Mobile (GSM) communication to detect fires effectively and reduce false positives, the system uses smoke and temperature sensors [14]. Application of WSN in energy conservation, reducing data transmission delay and improving the network lifetime. Used of clusterchain mobile agent routing (CCMAR) for low energy adaptive clustering hierarchy (LEACH) and power-efficient gathering in sensor information systems (PEGASIS) [15].

III. MODELING OF WSNs IN FIRE HOTSPOT DETECTION

Nowadays, many kind of monitoring system based on aim and objective as well as parameters to be monitor. Environmental monitoring for fire hotspot detection is implemented in some of institution or agency to monitor latest status of environmental. Current technology using is mostly from satellite data to detect hotspot of fire hotspot, this technology has some weakness and limitation such as only detect when fire already happen and in some case for example in bad weather or cloudy then satellite unable to penetration of cloud and image will not update. Ground sensing technology which is WSNs enable to penetrate smoke environmental as well to detect fire hotspot. WSNs sensor will deploy in the area with high risk of fire to collect data such smoke detection, temperature, particle changing, etc. All the information collected by sensors will send to sensor base station as gateway to transfer data to monitoring system (data center) because the distance between sensor base station to monitoring system very far away more than 100 km in some area to monitor data to analyze any changing of environmental image. Beside new technology and smart sensors as elaborate previously, common environmental parameters such as temperature, humidity, wind speed and direction are applying in this monitoring system as supporting data to analyze potential of fire.

The use of WSNs sensors and base stations will setup at difference area to collect information from environmental and sensors deploy surrounding. Information collected by sensor forward to base station and will keep in internal database then send to monitoring system (data center), because of sensor base station locate in rural area that far away up to 200 km then solar panel system will use as power supply for system. Latest technology of communication system also proposes such as 4G technology or even 5G technology for future in order to achieve real-time data to display to monitoring system. In the end of this system expected be able to gives early warning before fire is happen to authority for prevention action. Fig. 2 shows a map of fire hotspot detected in Riau Province in Indonesia.

Fig. 2. Fire hotspot detected by satellite image in Riau Province.

The impact of land and forest fire to the land as shows in fig. 3, there are a few fire hotspots in smoke environmental. The point and typical of hotspot is very important to design and model of sensors in detecting of hotspot on the field, whether fire is spreading or point to a central of hotspot.

Fig. 3. Example of fire hotspot detected in a land fire.

Another model of fire in a forest with big fire is required to design WSNs sensor to detect how big the fire spreading and impact to the forest as shows in fig. 4.

Fig. 4. Example of fire hotspot detected in a forest fire.

The area of fire hotspot modeling coverage assumes a set of WSNs sensors distributed over a geographical region of land or forest area, in this case Riau Province in Indonesia is model to monitor that coverage area. Coverage function P is given as:

$$P = f(x, y, t) = \{(x_1, y_1), ..., (x_n, y_n)\},\$$

$$(x_k, y_k) = f(t), k = 1, 2, 3, ..., n$$
(1)

where (x, y) are coordinates of sensor within the monitored region, and t is time. Model is using a projection in the 2D space of a fire surveillance region, which is a 3D sphere. In the case of network is stationary, without mobile WSNs sensors, but the sensor positions are time dependent, since sensor nodes of WSNs are expected to stop operating in time. In this cease operation can have different causes: hardware faults, accidental, battery depletion, and intentional sensor removal, etc.

Assume to define coverage index IP as a scalar value representing the percentage of coverage for the area under the monitoring at a specific time as:

$$IP = \frac{\text{area covered with sensors}}{\text{the total area of the surveillance region}} \cdot 100\%$$

The basic model component is a WSN sensor node defined as a vector:

$$S = (d, E(t)) \tag{3}$$

where d is a range of sensor transmission, or radius of transmission area, the area covered by radio signal for data exchange with a neighboring node. E(t) is energy available for sensor power supply. Assume a homogenous sensor network with n unified type sensors and one hub-sensor for communication with a dispatcher node.

Network parameters are described as a vector:

$$M = (n, f_0, \Delta E) \tag{4}$$

where n is the number of sensors, fo is the frequency of regular transmissions, and ΔE is energy consumption per transmission. Assume that sensor nodes periodically transmit the data collected to the neighboring nodes. Energy consumption ΔE includes also energy spent in sensing and data processing. Each node has two roles:

- (a) sensing environmental data and its transmission.
- (b) receiving data from neighboring nodes and forwarding.

The sensing role is defined in accordance with the WSNs sensor network application, and can be easily influenced with sensor node type selection. Energy consumption ΔE is thus linked to the sensor node type and its value is listed in the sensor node data sheet. The forwarding neighboring sensor node data role is primary defined by communication protocol. WSNs simulator having knowledge of sensor nodes positions and defines paths for data forwarding employing optimization algorithms. Assume that routing optimization would be implemented in the real protocol as well. In order to simplify the model, each sensor node is aware of its GPS co-ordinates, which are used in communication as an identification code. It is also assumed that the hub node initially broadcasted across all the nodes. Based on these assumptions it is possible to implement optimized routing algorithm. Energy consumption needed for receiving and forwarding neighbor data is ΔE . Object under surveillance is modeled as four-side stationary polygon defined as a set:

$$O = (A, B, C, D) = \{(x_A, y_A), (x_B, y_B), (x_C, y_C), (x_D, y_D)\}$$
(5)

where A, B, C and D are polygon points with co-ordinates (x, y).

The role of WSNs hub sensor node is to collect data from each sensor node and forward the data to base station or coordination center. Data package received and forwarded by the hub node contains originator sensor node address and measurement values (temperature, humidity and CO₂). The WSN hub node has uninterrupted power supply and that communication channel between the hub node and coordination center is unremitting. Hence, simulation is treating the hub sensor as "constantly available". The main objective of the simulation is to optimize network routes for data transmission from sensor nodes to the hub node [7].

In addition of the use and model of fire hotspot sensor to prevent incident of fire, the environmental sensor in WSNs system to detect several of parameters that normally appear because of land and forest fire such as Carbone Dioxide (Co2), Haze, Air Temperature and Humidity. Fig. 5 shows impact for environmental because of land or forest fire, case recorded from Pekanbaru City in Riau Province Indonesia.

Fig. 5. Topology of WSN sensor nodes deploy in forest for fire detection.

IV. DEVELOPMENT WSN IN FOREST FIRE DETECTION

Forest fires are a natural and recurrent phenomenon or manmade, in many case of the world. Burning areas are mainly located in temperature climates where its rainfall is high enough to enable a significant level of vegetation, but in summers session are very hot and dry environment, be able to create a dangerous fuel load. Global warming will contribute to increase the number and importance of these disasters. In every season, not only are thousands of forest hectares destroyed by wild land fires, but also properties, assets and public resources and facilities are destroyed because of fire.

A forest fire in general a dynamic phenomenon that may changes its properties and behavior by the time from one place to another and with the passage of time. In the fact that the forest fuel available in a given location is limited, for a fire to continue it must spread to neighboring fuel. This is performed through the complex heat spread to neighboring fuel and performed through the complex fire behavior. Another approach is also based on the WSNs paradigm has been designed and developed in the context of a research project that included all the key actors in forest as well as fire fighting for operations. This unique proposed ecosystem has provided the solution with a holistic perspective that results in a set of distinguishing features, which all node types can include environment and meteorological sensors.

Another scenario is in fig. 6 shows a schematically structure proposed of the development ZigBee-WSNs-based system for land and forest fire detection and protection management, consisting of multi-sensor nodes, coordinators, cluster heads, routers and remote decision server. This cluster-tree network topology structure proposes design to reduce the loss of energy and data package while transferring. ZigBee technique is a global standard based on IEEE 802.15.4 applicable for low-rate wireless Personal Area Networks (PAN). ZigBee is one of the wireless network standard targeted at low power sensor that apply in multi frequencies 868 MHz or 915 MHz and 2.4 GHz. The technical advantage proposes of ZigBee is to offer a system with long battery life, small size, low-cost, high reliability and automatic or semi-automatic installation. Therefore in this development design WSNs node to achieve an optimal choice for forest fire detection and monitoring [16].

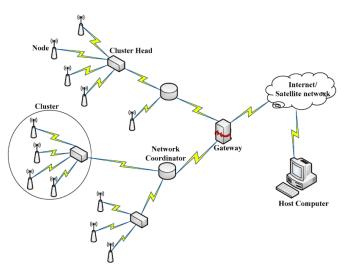


Fig. 6. A WSN sensor nodes propose use ZigBee standard.

Actual hardware on WSNs node for fire hotspot detection and monitoring can be found in many types in the market. Where temperature, humidity, smoke and carbon sensor installed in the node to detect all the parameter that high relation to the forest fire. Fig. 7 shows actual fabricated sensor ready to deploy, before sensor node deploy in the field the sensor nodes have to configure based on design and requirement. All the nodes will send a data or message to the WSNs coordinator that has function to receive all information from node scattered.

Fig. 7. A WSN sensor nodes propose use ZigBee standard Proposed monitoring system expected to detect any abnormality in environmental for land and forest fire,

monitoring system normally used by government institution or agency assign to do a monitoring. With a new technology proposed with smart sensors, the system may adopt by many company to detect and monitoring environmental based on they are purpose. For example, a paper and pub company may use this monitoring system for detection fire or hotspot at they are farming area. Furthermore, the monitoring system can be used for community for they are to know environmental status such as air quality, temperature, humidity, etc. A mobile application can be done based of data collected then community be able to check environmental by remote in mobile phone or others mobile device. The application and product potential for market and new novelty based on smart sensor developed, a decision easier to do because have some background and real data. During research and development of smart monitoring system, government and some private institution such as industrial and community have to involve in this project. Information of area with high risk and placement of sensor base station in correct location is very important to achieve faster and accurate data to send to monitoring system. Thus, some information from local community is really helping to determine sensor location. Government institution as well because to get license to enter in some of area that under control of government for example protected forest area and special land for industrial etc.

V. CONCLUSION

Development of WSNs nodes for land and forest fire detection, furthermore for monitoring have been modelled. In this case the design and analysis use mathematical approach according to the area have to cover which in the whole Riau Province in Indonesia. Air temperature and humidity, haze and Co2 sensor are high light in this case because of those parameters are basic parameters to the fire hotspot case either in the land or forest area. Proposed design sensors node use ZigBee model, with low power then sensor nodes can use in long life as node powered by battery. In order to cover the whole of Riau province, minimum have to create network coordinator in each of area and a gateway to access in server (cloud database) as well monitoring computer. Theoretical proposed concept of WSNs very applicable to use for detection forest fire, especially in Riau Province in Indonesia.

ACKNOWLEDGMENT

Authors would like to say thank you very much to RISTEKDIKTI Indonesia for funding this research with grant No.142/KONTRAK/LPPM/2-2018 and Universitas Islam Riau, Indonesia to support the facilities.

REFERENCES

- [1] N. Yulianti, H. Hayasaka, and A. Usu, "Recent Forest and Peat Fire Trends in Indonesia The Latest Decade by MODIS Hotspot Data," *Global Environmental Research*, vol. 16, no. 22, pp. 105-116, 2012.
- [2] Google. (2018). Google Earth.
- [3] E. S. Manolakos, D. V. Manatakis, and G. Xanthopoulos, "Temperature Field Modeling and Simulation of Wireless Sensor Network Behaviour During A Spreading Wildfire," presented at the 16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25-29, 2008, 2008.
- [4] H. Sabit, A. Al-Anbukya, and H. GholamHosseinib, "Wireless Sensor Network Based Wildfire Hazard Prediction System Modeling," presented at the The 2nd International Conference on Ambient Systems, Networks and Technologies, 2011.
- [5] M. Hefeeda and M. Bagheri, "Forest Fire Modeling and Early Detection using Wireless Sensor Networks," Ad Hoc & Sensor Wireless Networks, vol. 7, pp. 169-224, 2008.

- [6] X. Yan, H. Cheng, Y. Z. W. Yu, H. Huang, and X. Zheng, "Real-Time Identification of Smoldering and Flaming Combustion Phases in Forest Using a Wireless Sensor Network-Based Multi-Sensor System and Artificial Neural Network," *Sensors*, vol. 16, no. 1228, pp. 1-10, 2016.
- [7] A. Aksamovic, M. Hebibovic, and D. Boskovic, "Forest fire early detection system design utilising the WSN simulator," in 2017 XXVI International Conference on Information, Communication and Automation Technologies (ICAT), 2017, pp. 1-5.
- [8] Y. Liu, Y. Liu, H. Xu, and K. L. Teo, "Forest fire monitoring, detection and decision making systems by wireless sensor network," in 2018 Chinese Control And Decision Conference (CCDC), 2018, pp. 5482-5486.
- [9] D. Pant, S. Verma, and P. Dhuliya, "A study on disaster detection and management using WSN in Himalayan region of Uttarakhand," in 2017 3rd International Conference on Advances in Computing, Communication & Automation (ICACCA) (Fall), 2017, pp. 1-6.
- [10] C. Aranzazu-Suescun and M. Cardei, "Distributed algorithms for event reporting in mobile-sink WSNs for Internet of Things," *Tsinghua Science and Technology*, vol. 22, no. 4, pp. 413-426, 2017.
- [11] V. P. Illiano and E. C. Lupu, "Detecting Malicious Data Injections in Event Detection Wireless Sensor Networks," *IEEE Transactions on Network and Service Management*, vol. 12, no. 3, pp. 496-510, 2015.
- [12] E. A. Kadir, S. L. Rosa, and H. Gunawan, "Application of RFID technology and e-seal in container terminal process," in 2016 4th International Conference on Information and Communication Technology (ICoICT), 2016, pp. 1-6.
- [13] A. Kansal, Y. Singh, N. Kumar, and V. Mohindru, "Detection of forest fires using machine learning technique: A perspective," in 2015 Third International Conference on Image Information Processing (ICIIP), 2015, pp. 241-245.
- [14] M. Saoudi, A. Bounceur, R. Euler, T. Kechadi, and A. Cuzzocrea, "Energy-Efficient Data Mining Techniques for Emergency Detection in Wireless Sensor Networks," in 2016 Intl IEEE Conferences on Ubiquitous Intelligence & Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People, and Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), 2016, pp. 766-771.
- [15] S. Sasirekha and S. Swamynathan, "Cluster-chain mobile agent routing algorithm for efficient data aggregation in wireless sensor network," *Journal of Communications and Networks*, vol. 19, no. 4, pp. 392-401, 2017.
- [16] E. A. Kadir, "A reconfigurable MIMO antenna system for wireless communications," in 2017 4th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), 2017, pp. 1-4.

Certificate of Presenter

January 22, 2019

Name: Evizal Abdul Kadir

Affiliation: Universitas Islam Riau

We certify that the above person participated in as a presenter 2019 International Conference on Electronics, Information and Communication (ICEIC 2019) which was held at Pullman Auckland Hotel, New Zealand from January 22 – January 25, 2019.

Sincerely yours,

Cheon Won Choi
President of IEIE

The Institute of Electronics and Information Engineers

RM #907, Science and Technology New Building 22, Teheran-ro 7-gil (635-4 Yeoksam-dong), Gangnam-gu, Seoul, Republic of Korea 06130