157 research outputs found

    POF 2016: 25th International Conference on Plastic Optical Fibres - proceedings

    Get PDF

    Indoor Positioning and Navigation

    Get PDF
    In recent years, rapid development in robotics, mobile, and communication technologies has encouraged many studies in the field of localization and navigation in indoor environments. An accurate localization system that can operate in an indoor environment has considerable practical value, because it can be built into autonomous mobile systems or a personal navigation system on a smartphone for guiding people through airports, shopping malls, museums and other public institutions, etc. Such a system would be particularly useful for blind people. Modern smartphones are equipped with numerous sensors (such as inertial sensors, cameras, and barometers) and communication modules (such as WiFi, Bluetooth, NFC, LTE/5G, and UWB capabilities), which enable the implementation of various localization algorithms, namely, visual localization, inertial navigation system, and radio localization. For the mapping of indoor environments and localization of autonomous mobile sysems, LIDAR sensors are also frequently used in addition to smartphone sensors. Visual localization and inertial navigation systems are sensitive to external disturbances; therefore, sensor fusion approaches can be used for the implementation of robust localization algorithms. These have to be optimized in order to be computationally efficient, which is essential for real-time processing and low energy consumption on a smartphone or robot

    MEMS based radar sensor for automotive collision avoidance

    Get PDF
    This dissertation presents the architecture of a new MEMS based 77 GHz frequency modulated continuous wave (FMCW) automotive long range radar sensor. The design, modeling, and fabrication of a novel MEMS based TE10 mode Rotman lens. MEMS based Single-pole-triple-throw (SP3T) RF switches and an inset feed type microstrip antenna array that form the core components of the newly developed radar sensor. The novel silicon based Rotman lens exploits the principle of a TE10 mode rectangular waveguide that enabled to realize the lens in silicon using conventional microfabrication technique with a cavity depth of 50 μm and a footprint area to 27 mm x 36.2 mm for 77 GHz operation. The microfabricated Rotman lens replaces the conventional microelectronics based analog or digital beamformers as used in state-of-the-art automotive long range radars to results in a smaller form-factor superior performance less complex low cost radar sensor. The developed Rotman lens has 3 beam ports, 5 array ports, 6 dummy ports and HFSS simulation exhibits better than -2 dB insertion loss and better than -20 dB return loss between the beam ports and the array ports. A MEMS based 77 GHz SP3T cantilever type RF switch with conventional ground connecting bridges (GCB) has been designed, modelled, and fabricated to sequentially switch the FMCW signal among the beam ports of the Rotman lens. A new continuous ground (CG) SP3T switch has been designed and modeled that shows a 4 dB improvement in return loss, 0.5 dB improvement in insertion loss and an isolation improvement of 3.5 dB over the conventional GCB type switch. The fabrication of the CG type switch is in progress. Both the switches have a footprint area of 500 µm x 500 μm. An inset feed type 77 GHz microstrip antenna array has been designed, modelled, and fabricated on a Duroid 5880 substrate using a laser ablation technique. The 12 mm x 35 mm footprint area antenna array consists of 5 sub-arrays with 12 microstrip patches in each of the sub-arrays. HFSS simulation result shows a gain of 18.3 dB, efficiency of 77% and half power beam width of 9°

    A Review of Measurement Calibration and Interpretation for Seepage Monitoring by Optical Fiber Distributed Temperature Sensors

    Get PDF
    Seepage flow through embankment dams and their sub-base is a crucial safety concern that can initiate internal erosion of the structure. The thermometric method of seepage monitoring employs the study of heat transfer characteristics in the soils, as the temperature distribution in earth-filled structures can be influenced by the presence of seepage. Thus, continuous temperature measurements can allow detection of seepage flows. With the recent advances in optical fiber temperature sensor technology, accurate and fast temperature measurements, with relatively high spatial resolution, have been made possible using optical fiber distributed temperature sensors (DTSs). As with any sensor system, to obtain a precise temperature, the DTS measurements need to be calibrated. DTS systems automatically calibrate the measurements using an internal thermometer and reference section. Additionally, manual calibration techniques have been developed which are discussed in this paper. The temperature data do not provide any direct information about the seepage, and this requires further processing and analysis. Several methods have been developed to interpret the temperature data for the localization of the seepage and in some cases to estimate the seepage quantity. An efficient DTS application in seepage monitoring strongly depends on the following factors: installation approach, calibration technique, along with temperature data interpretation and post-processing. This paper reviews the different techniques for calibration of DTS measurements as well as the methods of interpretation of the temperature data.Tento článek shrnuje různé techniky pro kalibraci měření DT

    Improvement Schemes for Indoor Mobile Location Estimation: A Survey

    Get PDF
    Location estimation is significant in mobile and ubiquitous computing systems. The complexity and smaller scale of the indoor environment impose a great impact on location estimation. The key of location estimation lies in the representation and fusion of uncertain information from multiple sources. The improvement of location estimation is a complicated and comprehensive issue. A lot of research has been done to address this issue. However, existing research typically focuses on certain aspects of the problem and specific methods. This paper reviews mainstream schemes on improving indoor location estimation from multiple levels and perspectives by combining existing works and our own working experiences. Initially, we analyze the error sources of common indoor localization techniques and provide a multilayered conceptual framework of improvement schemes for location estimation. This is followed by a discussion of probabilistic methods for location estimation, including Bayes filters, Kalman filters, extended Kalman filters, sigma-point Kalman filters, particle filters, and hidden Markov models. Then, we investigate the hybrid localization methods, including multimodal fingerprinting, triangulation fusing multiple measurements, combination of wireless positioning with pedestrian dead reckoning (PDR), and cooperative localization. Next, we focus on the location determination approaches that fuse spatial contexts, namely, map matching, landmark fusion, and spatial model-aided methods. Finally, we present the directions for future research

    Recent Progress in Optical Fiber Research

    Get PDF
    This book presents a comprehensive account of the recent progress in optical fiber research. It consists of four sections with 20 chapters covering the topics of nonlinear and polarisation effects in optical fibers, photonic crystal fibers and new applications for optical fibers. Section 1 reviews nonlinear effects in optical fibers in terms of theoretical analysis, experiments and applications. Section 2 presents polarization mode dispersion, chromatic dispersion and polarization dependent losses in optical fibers, fiber birefringence effects and spun fibers. Section 3 and 4 cover the topics of photonic crystal fibers and a new trend of optical fiber applications. Edited by three scientists with wide knowledge and experience in the field of fiber optics and photonics, the book brings together leading academics and practitioners in a comprehensive and incisive treatment of the subject. This is an essential point of reference for researchers working and teaching in optical fiber technologies, and for industrial users who need to be aware of current developments in optical fiber research areas

    Computational Multispectral Endoscopy

    Get PDF
    Minimal Access Surgery (MAS) is increasingly regarded as the de-facto approach in interventional medicine for conducting many procedures this is due to the reduced patient trauma and consequently reduced recovery times, complications and costs. However, there are many challenges in MAS that come as a result of viewing the surgical site through an endoscope and interacting with tissue remotely via tools, such as lack of haptic feedback; limited field of view; and variation in imaging hardware. As such, it is important best utilise the imaging data available to provide a clinician with rich data corresponding to the surgical site. Measuring tissue haemoglobin concentrations can give vital information, such as perfusion assessment after transplantation; visualisation of the health of blood supply to organ; and to detect ischaemia. In the area of transplant and bypass procedures measurements of the tissue tissue perfusion/total haemoglobin (THb) and oxygen saturation (SO2) are used as indicators of organ viability, these measurements are often acquired at multiple discrete points across the tissue using with a specialist probe. To acquire measurements across the whole surface of an organ one can use a specialist camera to perform multispectral imaging (MSI), which optically acquires sequential spectrally band limited images of the same scene. This data can be processed to provide maps of the THb and SO2 variation across the tissue surface which could be useful for intra operative evaluation. When capturing MSI data, a trade off often has to be made between spectral sensitivity and capture speed. The work in thesis first explores post processing blurry MSI data from long exposure imaging devices. It is of interest to be able to use these MSI data because the large number of spectral bands that can be captured, the long capture times, however, limit the potential real time uses for clinicians. Recognising the importance to clinicians of real-time data, the main body of this thesis develops methods around estimating oxy- and deoxy-haemoglobin concentrations in tissue using only monocular and stereo RGB imaging data
    corecore