123 research outputs found

    System Architectures for Cooperative Teams of Unmanned Aerial Vehicles Interacting Physically with the Environment

    Get PDF
    Unmanned Aerial Vehicles (UAVs) have become quite a useful tool for a wide range of applications, from inspection & maintenance to search & rescue, among others. The capabilities of a single UAV can be extended or complemented by the deployment of more UAVs, so multi-UAV cooperative teams are becoming a trend. In that case, as di erent autopilots, heterogeneous platforms, and application-dependent software components have to be integrated, multi-UAV system architectures that are fexible and can adapt to the team's needs are required. In this thesis, we develop system architectures for cooperative teams of UAVs, paying special attention to applications that require physical interaction with the environment, which is typically unstructured. First, we implement some layers to abstract the high-level components from the hardware speci cs. Then we propose increasingly advanced architectures, from a single-UAV hierarchical navigation architecture to an architecture for a cooperative team of heterogeneous UAVs. All this work has been thoroughly tested in both simulation and eld experiments in di erent challenging scenarios through research projects and robotics competitions. Most of the applications required physical interaction with the environment, mainly in unstructured outdoors scenarios. All the know-how and lessons learned throughout the process are shared in this thesis, and all relevant code is publicly available.Los vehículos aéreos no tripulados (UAVs, del inglés Unmanned Aerial Vehicles) se han convertido en herramientas muy valiosas para un amplio espectro de aplicaciones, como inspección y mantenimiento, u operaciones de rescate, entre otras. Las capacidades de un único UAV pueden verse extendidas o complementadas al utilizar varios de estos vehículos simultáneamente, por lo que la tendencia actual es el uso de equipos cooperativos con múltiples UAVs. Para ello, es fundamental la integración de diferentes autopilotos, plataformas heterogéneas, y componentes software -que dependen de la aplicación-, por lo que se requieren arquitecturas multi-UAV que sean flexibles y adaptables a las necesidades del equipo. En esta tesis, se desarrollan arquitecturas para equipos cooperativos de UAVs, prestando una especial atención a aplicaciones que requieran de interacción física con el entorno, cuya naturaleza es típicamente no estructurada. Primero se proponen capas para abstraer a los componentes de alto nivel de las particularidades del hardware. Luego se desarrollan arquitecturas cada vez más avanzadas, desde una arquitectura de navegación para un único UAV, hasta una para un equipo cooperativo de UAVs heterogéneos. Todo el trabajo ha sido minuciosamente probado, tanto en simulación como en experimentos reales, en diferentes y complejos escenarios motivados por proyectos de investigación y competiciones de robótica. En la mayoría de las aplicaciones se requería de interacción física con el entorno, que es normalmente un escenario en exteriores no estructurado. A lo largo de la tesis, se comparten todo el conocimiento adquirido y las lecciones aprendidas en el proceso, y el código relevante está publicado como open-source

    Contributions to autonomous robust navigation of mobile robots in industrial applications

    Get PDF
    151 p.Un aspecto en el que las plataformas móviles actuales se quedan atrás en comparación con el punto que se ha alcanzado ya en la industria es la precisión. La cuarta revolución industrial trajo consigo la implantación de maquinaria en la mayor parte de procesos industriales, y una fortaleza de estos es su repetitividad. Los robots móviles autónomos, que son los que ofrecen una mayor flexibilidad, carecen de esta capacidad, principalmente debido al ruido inherente a las lecturas ofrecidas por los sensores y al dinamismo existente en la mayoría de entornos. Por este motivo, gran parte de este trabajo se centra en cuantificar el error cometido por los principales métodos de mapeado y localización de robots móviles,ofreciendo distintas alternativas para la mejora del posicionamiento.Asimismo, las principales fuentes de información con las que los robots móviles son capaces de realizarlas funciones descritas son los sensores exteroceptivos, los cuales miden el entorno y no tanto el estado del propio robot. Por esta misma razón, algunos métodos son muy dependientes del escenario en el que se han desarrollado, y no obtienen los mismos resultados cuando este varía. La mayoría de plataformas móviles generan un mapa que representa el entorno que les rodea, y fundamentan en este muchos de sus cálculos para realizar acciones como navegar. Dicha generación es un proceso que requiere de intervención humana en la mayoría de casos y que tiene una gran repercusión en el posterior funcionamiento del robot. En la última parte del presente trabajo, se propone un método que pretende optimizar este paso para así generar un modelo más rico del entorno sin requerir de tiempo adicional para ello

    Proceedings of the 9th Conference on Autonomous Robot Systems and Competitions

    Get PDF
    Welcome to ROBOTICA 2009. This is the 9th edition of the conference on Autonomous Robot Systems and Competitions, the third time with IEEE‐Robotics and Automation Society Technical Co‐Sponsorship. Previous editions were held since 2001 in Guimarães, Aveiro, Porto, Lisboa, Coimbra and Algarve. ROBOTICA 2009 is held on the 7th May, 2009, in Castelo Branco , Portugal. ROBOTICA has received 32 paper submissions, from 10 countries, in South America, Asia and Europe. To evaluate each submission, three reviews by paper were performed by the international program committee. 23 papers were published in the proceedings and presented at the conference. Of these, 14 papers were selected for oral presentation and 9 papers were selected for poster presentation. The global acceptance ratio was 72%. After the conference, eighth papers will be published in the Portuguese journal Robótica, and the best student paper will be published in IEEE Multidisciplinary Engineering Education Magazine. Three prizes will be awarded in the conference for: the best conference paper, the best student paper and the best presentation. The last two, sponsored by the IEEE Education Society ‐ Student Activities Committee. We would like to express our thanks to all participants. First of all to the authors, whose quality work is the essence of this conference. Next, to all the members of the international program committee and reviewers, who helped us with their expertise and valuable time. We would also like to deeply thank the invited speaker, Jean Paul Laumond, LAAS‐CNRS France, for their excellent contribution in the field of humanoid robots. Finally, a word of appreciation for the hard work of the secretariat and volunteers. Our deep gratitude goes to the Scientific Organisations that kindly agreed to sponsor the Conference, and made it come true. We look forward to seeing more results of R&D work on Robotics at ROBOTICA 2010, somewhere in Portugal

    Multi-agent Collision Avoidance Using Interval Analysis and Symbolic Modelling with its Application to the Novel Polycopter

    Get PDF
    Coordination is fundamental component of autonomy when a system is defined by multiple mobile agents. For unmanned aerial systems (UAS), challenges originate from their low-level systems, such as their flight dynamics, which are often complex. The thesis begins by examining these low-level dynamics in an analysis of several well known UAS using a novel symbolic component-based framework. It is shown how this approach is used effectively to define key model and performance properties necessary of UAS trajectory control. This is demonstrated initially under the context of linear quadratic regulation (LQR) and model predictive control (MPC) of a quadcopter. The symbolic framework is later extended in the proposal of a novel UAS platform, referred to as the ``Polycopter" for its morphing nature. This dual-tilt axis system has unique authority over is thrust vector, in addition to an ability to actively augment its stability and aerodynamic characteristics. This presents several opportunities in exploitative control design. With an approach to low-level UAS modelling and control proposed, the focus of the thesis shifts to investigate the challenges associated with local trajectory generation for the purpose of multi-agent collision avoidance. This begins with a novel survey of the state-of-the-art geometric approaches with respect to performance, scalability and tolerance to uncertainty. From this survey, the interval avoidance (IA) method is proposed, to incorporate trajectory uncertainty in the geometric derivation of escape trajectories. The method is shown to be more effective in ensuring safe separation in several of the presented conditions, however performance is shown to deteriorate in denser conflicts. Finally, it is shown how by re-framing the IA problem, three dimensional (3D) collision avoidance is achieved. The novel 3D IA method is shown to out perform the original method in three conflict cases by maintaining separation under the effects of uncertainty and in scenarios with multiple obstacles. The performance, scalability and uncertainty tolerance of each presented method is then examined in a set of scenarios resembling typical coordinated UAS operations in an exhaustive Monte-Carlo analysis

    Planning and estimation algorithms for human-like grasping

    Get PDF
    Mención Internacional en el título de doctorThe use of robots in human-like environments requires them to be able to sense and model unstructured scenarios. Thus, their success will depend on their versatility for interacting with the surroundings. This interaction often includes manipulation of objects for accomplishing common daily tasks. Therefore, robots need to sense, understand, plan and perform; and this has to be a continuous loop. This thesis presents a framework which covers most of the phases encountered in a common manipulation pipeline. First, it is shown how to use the Fast Marching Squared algorithm and a leader-followers strategy to control a formation of robots, simplifying a high dimensional path-planning problem. This approach is evaluated with simulations in complex environments in which the formation control technique is applied. Results are evaluated in terms of distance to obstacles (safety) and the needed deformation. Then, a framework to perform the grasping action is presented. The necessary techniques for environment modelling and grasp synthesis and path planning and control are presented. For the motion planning part, the formation concept from the previous chapter is recycled. This technique is applied to the planning and control of the movement of a complex hand-arm system. Tests using robot Manfred show the possibilities of the framework when performing in real scenarios. Finally, under the assumption that the grasping actions may not always result as it was previously planned, a Bayesian-based state-estimation process is introduced to estimate the final in-hand object pose after a grasping action is done, based on the measurements of proprioceptive and tactile sensors. This approach is evaluated in real experiments with Reex Takktile hand. Results show good performance in general terms, while suggest the need of a vision system for a more precise outcome.La investigación en robótica avanza con la intención de evolucionar hacia el uso de los robots en entornos humanos. A día de hoy, su uso está prácticamente limitado a las fábricas, donde trabajan en entornos controlados realizando tareas repetitivas. Sin embargo, estos robots son incapaces de reaccionar antes los más mínimos cambios en el entorno o en la tarea a realizar. En el grupo de investigación del Roboticslab se ha construido un manipulador móvil, llamado Manfred, en el transcurso de los últimos 15 años. Su objetivo es conseguir realizar tareas de navegación y manipulación en entornos diseñados para seres humanos. Para las tareas de manipulación y agarre, se ha adquirido recientemente una mano robótica diseñada en la universidad de Gifu, Japón. Sin embargo, al comienzo de esta tesis, no se había realzado ningún trabajo destinado a la manipulación o el agarre de objetos. Por lo tanto, existe una motivación clara para investigar en este campo y ampliar las capacidades del robot, aspectos tratados en esta tesis. La primera parte de la tesis muestra la aplicación de un sistema de control de formaciones de robots en 3 dimensiones. El sistema explicado utiliza un esquema de tipo líder-seguidores, y se basa en la utilización del algoritmo Fast Marching Square para el cálculo de la trayectoria del líder. Después, mientras el líder recorre el camino, la formación se va adaptando al entorno para evitar la colisión de los robots con los obstáculos. El esquema de deformación presentado se basa en la información sobre el entorno previamente calculada con Fast Marching Square. El algoritmo es probado a través de distintas simulaciones en escenarios complejos. Los resultados son analizados estudiando principalmente dos características: cantidad de deformación necesaria y seguridad de los caminos de los robots. Aunque los resultados son satisfactorios en ambos aspectos, es deseable que en un futuro se realicen simulaciones más realistas y, finalmente, se implemente el sistema en robots reales. El siguiente capítulo nace de la misma idea, el control de formaciones de robots. Este concepto es usado para modelar el sistema brazo-mano del robot Manfred. Al igual que en el caso de una formación de robots, el sistema al completo incluye un número muy elevado de grados de libertad que dificulta la planificación de trayectorias. Sin embargo, la adaptación del esquema de control de formaciones para el brazo-mano robótico nos permite reducir la complejidad a la hora de hacer la planificación de trayectorias. Al igual que antes, el sistema se basa en el uso de Fast Marching Square. Además, se ha construido un esquema completo que permite modelar el entorno, calcular posibles posiciones para el agarre, y planificar los movimientos para realizarlo. Todo ello ha sido implementado en el robot Manfred, realizando pruebas de agarre con objetos reales. Los resultados muestran el potencial del uso de este esquema de control, dejando lugar para mejoras, fundamentalmente en el apartado de la modelización de objetos y en el cálculo y elección de los posibles agarres. A continuación, se trata de cerrar el lazo de control en el agarre de objetos. Una vez un sistema robótico ha realizado los movimientos necesarios para obtener un agarre estable, la posición final del objeto dentro de la mano resulta, en la mayoría de las ocasiones, distinta de la que se había planificado. Este hecho es debido a la acumulación de fallos en los sistemas de percepción y modelado del entorno, y los de planificación y ejecución de movimientos. Por ello, se propone un sistema Bayesiano basado en un filtro de partículas que, teniendo en cuenta la posición de la palma y los dedos de la mano, los datos de sensores táctiles y la forma del objeto, estima la posición del objeto dentro de la mano. El sistema parte de una posición inicial conocida, y empieza a ejecutarse después del primer contacto entre los dedos y el objeto, de manera que sea capaz de detectar los movimientos que se producen al realizar la fuerza necesaria para estabilizar el agarre. Los resultados muestran la validez del método. Sin embargo, también queda claro que, usando únicamente la información táctil y de posición, hay grados de libertad que no se pueden determinar, por lo que, para el futuro, resultaría aconsejable la combinación de este sistema con otro basado en visión. Finalmente se incluyen 2 anexos que profundizan en la implementación de la solución del algoritmo de Fast Marching y la presentación de los sistemas robóticos reales que se han usado en las distintas pruebas de la tesis.Programa Oficial de Doctorado en Ingeniería Eléctrica, Electrónica y AutomáticaPresidente: Carlos Balaguer Bernaldo de Quirós.- Secretario: Raúl Suárez Feijoo.- Vocal: Pedro U. Lim

    Coordination on Systems of Multiple UAVs

    Get PDF
    Esta tesis trata acerca de métodos para coordinar las trayectorias de un sistema de Vehículos Aéreos no Tripulados y Autónomos (en adelante UAVs). El primer conjunto de técnicas desarrolladas durante la tesis se agrupan dentro de las técnicas de planificación de trayectorias. En este caso, el objetivo es generar planes de vuelo para un conjunto de vehículos coordinadamente de forma que no se produzcan colisiones entre ellos. Además, este tipo de técnicas puede usarse para modificar el plan de vuelo de un subconjunto de UAVs en tiempo real. Entre los algoritmos desarrollados en la tesis podemos destacar la adaptación de algoritmos evolutivos como los Algoritmos Genéticos y el Particle Swarm (Enjambre de Partículas), la incorporación de nuevas formas de muestreo del espacio para la aplicación del algoritmo Optimal Rapidly Exploring Random Trees (RRT*) en sistemas multi-UAV usando técnicas de muestreo novedosas. También se ha estudiado el comportamiento de parte de estos algoritmos en situaciones variables de incertidumbre del estado del sistema. En particular, se propone el uso del Filtro de Partículas para estimar la posición relativa entre varios UAVs. Además, se estudia la aplicación de métodos reactivos para la resolución de colisiones en tiempo real. Esta tesis propone un nuevo algoritmo para la resolución de colisiones entre múltiples UAVs en presencia de obstáculos fijos llamado G-ORCA. Este algoritmo soluciona varios problemas que han surgido al aplicar el algoritmo ORCA en su variante 3D en sistemas compuestos por vehículos reales. Su seguridad se ha demostrado tanto analíticamente, como empíricamente en pruebas con sistemas reales. De hecho, durante esta tesis numerosos experimentos en sistemas multi-UAV reales compuestos hasta por 4 UAVs han sido ejecutados. En dichos experimentos, se realiza una coordinación autónoma de UAVs en las que se asegura la ejecución de trayectorias libres de colisiones garantizando por tanto la seguridad del sistema. Una característica reseñable de esta tesis es que los algoritmos desarrollados han sido probados e integrados en sistemas más complejos que son usados en aplicaciones reales. En primer lugar, se presenta un sistema para aumentar la duración del vuelo de planeadores aprovechando las corrientes ascendentes de viento generadas por el calor (térmicas). En segundo lugar, un sistema de detección y resolución de colisiones coordinado para sistemas con múltiples UAVs reactivo ha sido diseñado, desarrollado y probado experimentalmente. Este sistema ha sido integrado dentro de un sistema automático de construcción de estructuras mediante múltiples UAVs.The aim of this thesis is to propose methods to coordinately generate trajectories for a system of Autonomous Unmanned Aerial Vehicles (UAVs). The first set of proposed techniques developed in this thesis can be defined as trajectory planning techniques. In this case, the objective is to generate coordinated flight plans for a system of UAVs in such a way that no collision are produced among each pair of UAVs. Besides, these techniques can be applied online in order to modify the original flight plan whenever a potential collision is detected. Amongst the developed algorithms in this thesis we can highlight the adaptation of evolutionary algorithms such as Genetic Algorithms and Particle Swarm, and the application of Optimal Rapidly Exploring Random Trees (RRT*) algorithm into a system of several UAVs with novel sampling techniques. In addition, many of these techniques have been adapted in order to be applicable when only uncertain knowledge of the state of the system is available. In particular, the use of the Particle Filter is proposed in order to estimate the relative position between UAVs. The estimation of the position as well as the uncertainty related to this estimation are then taken into account in the conflict resolution system. All techniques proposed in this thesis have been validated by performing several simulated and real tests. For this purpose, a method for randomly generating a huge test batch is presented in chapter 3. This will allow to test the behavior of the proposed methods in a great variety of situations. During the thesis, several real experimentations with fleets composed by up to four UAVs are presented. In these experiments, the UAVs in the system are automatically coordinated in order to ensure collision-free trajectories and thus guarantee the safety of the system. The other main topic of this thesis is the application of reactive methods for real-time conflict resolution. This thesis proposes a novel algorithm for collision resolution amongst multiple UAVs in the presence of static obstacles, which has been called Generalized-Optimal Reciprocal Collision Avoidance (G-ORCA). This algorithm overcomes several issues that have been detected into the algorithm 3D-ORCA in real applications. A remarkable characteristic of this thesis is that the developed algorithms have been applied as a part of more complex systems. First, a coordinated system for flight endurance extension of gliding aircrafts by profiting the ascending wind is presented. Second, a reactive collision avoidance block has been designed, developed and tested experimentally based in the aforementioned G-ORCA algorithm. This block has been integrated into a system for assembly construction with multiple UAVs

    Safe motion planning under uncertainty for mobile manipulators in unknown environments

    Get PDF
    For a mobile manipulator to operate and perform useful tasks in human-centered environments, it is important to work toward the realization of robust motion planners that incorporate uncertainty inherent in robot\u27s control and sensing and provide safe motion plans for reliable robot operation. Designing such planners pose a significant challenge because of computational complexity associated with mobile manipulator planning and planning under uncertainty. Current planning approaches for mobile manipulation are often conservative in nature and the uncertainty is largely ignored. In this thesis, we propose sampling-based efficient and robust mobile manipulator planners that use smart strategies to deal with computational complexity and incorporate uncertainty to generate safer plans. The first part of the research addresses the design of an efficient planner for deterministic case, where robot state is fully known, and then subsequent extension to incorporate base pose uncertainty. In the first part, we propose a Hierarchical and Adaptive Mobile Manipulator Planner (HAMP) that plans both for the base and the arm in a judicious manner - allowing the manipulator to change its configuration autonomously when needed if the current arm configuration is in collision with the environment as the mobile manipulator moves along the planned path. We show that HAMP is probabilistically complete. We then propose an extension of HAMP (HAMP-U) to account for localization uncertainty associated with the mobile base position. The advantages of our planners are illustrated and discussed. The second part of the research deals with the computational complexity involved in planning under uncertainty. For that, we propose localization aware sampling and connection strategies that help to reduce the planning time significantly with little compromise on the quality of path. In the third part, we learnt from the shortcomings of HAMP-U and took advantage of our smart strategies developed to combat the computational complexity. We propose an efficient and robust mobile manipulator planner (HAMP-BAU) that plans judiciously and considers the base pose uncertainty and the effects of this uncertainty on manipulator motions. It uses our localization aware sampling and connection strategies to consider only those nodes and edges which contribute toward better localization. This helps to find the same quality of path in shorter time. We also extend HAMP-BAU to incorporate task space constraints (HAMP-BAU-TC). Finally, in the last part of the work, we incorporate our planners (HAMP-BAU and HAMP-BAU-TC) within an integrated and fully autonomous system for mobile pick-and-place tasks in unknown static environments. We demonstrate our system both in simulation and real experiments on SFU mobile manipulator

    Optic Flow for Obstacle Avoidance and Navigation: A Practical Approach

    Full text link
    This thesis offers contributions and innovations to the development of vision-based autonomous flight control systems for small unmanned aerial vehicles operating in cluttered urban environments. Although many optic flow algorithms have been reported, almost none have addressed the critical issue of accuracy and reliability over a wide dynamic range of optic flow. My aim is to rigorously develop improved optic flow sensing to meet realistic mission requirements for autonomous navigation and collision avoidance. A review of related work enabled development of a new hybrid optic flow algorithm concept combining the best properties of image correlation and interpolation with additional innovations to enhance accuracy, computational speed and reliability. Key analytical work yielded a methodology for determining optic flow dynamic range requirements from system and sensor design parameters and a technique enabling a video sensor to operate as a passive ranging system for closed loop flight control. Detailed testing led to development of the hybrid image interpolation algorithm (HI2A) using improved correlation search strategies, sparse images to reduce processing loads, a solution tracking loop to bypass the more intensive initial estimation process, a frame look-back method to improve accuracy at low optic flow, a modified interpolation technique to improve robustness and an extensive error checking system for validating outputs. A realistic simulation system was developed incorporating independent, precision ground truthing to assess algorithm accuracy. Comparison testing of the HI2A against the commonly-used Lucas Kanade algorithm demonstrates major improvement in accuracy over greatly expanded dynamic range. A reactive flight controller using ranging data from a monocular, forward looking video sensor and rules-based logic was developed and tested in Monte Carlo simulations of a hundred flights. At higher flight speeds than reported in similar tests, collision-free results were obtained in a realistic urban canyon environment. The HI2A algorithm and flight controller software performance on a common PC was up to eight times faster than real-time for outputs of 250 measurements at 50 Hz. The feasibility of terrain mapping in real-time was demonstrated using 3D ranging data from optic flow in an overflight of the urban simulation environment indicating the potential for its use in path planning approaches to navigation and collision avoidance
    corecore