
Proyecto Fin de Carrera
Ingeniería de Telecomunicación

Formato de Publicación de la Escuela Técnica
Superior de Ingeniería

Autor: F. Javier Payán Somet

Tutor: Juan José Murillo Fuentes

Dep. Teoría de la Señal y Comunicaciones
Escuela Técnica Superior de Ingeniería

Universidad de Sevilla

Sevilla, 2013

Tesis Doctoral
Ingeniería de Telecomunicación

Coordination on Systems of Multiple
UAVs

Autor: David Alejo Teissière
Directores: Guillermo Heredia Benot

Aníbal Ollero Baturone

Ingeniería de Sistemas y Automática
Escuela Técnica Superior de Ingeniería
Universidad de Sevilla

Sevilla, 2015

Tesis Doctoral
Ingeniería de Telecomunicación

Coordination on Systems of Multiple UAVs

Autor:

David Alejo Teissière

Directores:

Guillermo Heredia Benot
Profesor Titular

Aníbal Ollero Baturone
Catedrático

Ingeniería de Sistemas y Automática
Escuela Técnica Superior de Ingeniería

Universidad de Sevilla

2015

Tesis Doctoral: Coordination on Systems of Multiple UAVs

Autor: David Alejo Teissière
Directores: Guillermo Heredia Benot, Aníbal Ollero Baturone

El tribunal nombrado para juzgar la Tesis arriba indicada, compuesto por los siguientes
doctores:

Presidente:

Vocales:

Secretario:

acuerdan otorgarle la calificación de:

El Secretario del Tribunal

Fecha:

A mi familia
A Mar y a mi hijo David

Agradecimientos

Muchas personas, a lo largo del camino de la escritura de esta tesis doctoral, han
contribuido a hacerla posible ya sea aportando ideas, consejos, ayudando a darle

forma o simplemente con su apoyo y comprensión. Una vasta tarea como esta sería casi
imposible de realizar sin su ayuda.
En primer lugar, quiero dar las gracias a mi “mujer” María del Mar Arcos Muñoz por

su inestimable apoyo, paciencia y sus ánimos para realizar este trabajo. Se pueden contar
por cientos las horas en las que no he podido estar ayudándola más en las tareas diarias
por dedicarlas a la escritura de este libro y a la elaboración de experimentos, simulaciones,
etc. que se han llevado a cabo en su marco. Por eso, es de justicia manifestarle mi
agradecimiento. Este agradecimiento, es extensible al resto de mi familia: mis padres, mis
hermanas y “hermanoide“, primos, tíos, mi querida familia política y a todos mis amigos.
Todos ellos han estado siempre dando ánimos y muestras de cariño que han sido vitales
para mí.

Dentro del ámbito más académico, agradecer a los que día a día he compartido trabajo
y que me han ayudado a superar los no pocos obstáculos que se presentan a la hora de
desarrollar, probar, reiterar, escribir el material del que consta una tesis doctoral. Un
agradecimiento especial a mis directores de tesis, Aníbal Ollero Baturone y Guillermo
Heredia por haber confiado en mí y haberme propuesto la escritura de esta tesis doctoral,
cuya temática me ha sido una fuente de inspiración y un reto. También un agradecimiento
especial a José Antonio Cobano Suárez, con quien he trabajado más codo con codo y que
es responsable directo de que esta tesis haya llegado a su estado actual. Muchas gracias,
José Antonio por tu paciencia y tus ánimos, siendo estricto cuando debías serlo. También
muchos profesores han sido fuente de sabiduría y consejos, como Ramiro Martínez (inu-
merables comidas hemos compartido), Iván Maza (con quien tuve el placer de desarrollar
mi proyecto final de carrera), Fernando Caballero, Luis Merino, Ángel Rodríguez, Begoña
Arrúe, Joaquín Ferruz, Manolo Béjar.

Entre mis compañeros (o ex-compañeros) de laboratorio y de carrera, quería agradecer
especialmente a una persona muy especial para mí, Roberto Conde Ojeda, con quien he
compartido tanto toda la carrera de Ingeniero de Telecomunicación como mis primeros
años dentro del mundo de la investigación. No pocas ideas de las que aquí se presentan

III

han surgido de su mente y en su desarrollo hemos trabajado de forma colaborativa. Él
decidió seguir su camino de desarrollador software, en el cual creo que tiene un gran
futuro. Muchos otros compañeros me han ayudado en gran medida, como los grandes
Fran Real, Víctor Vega, Pablo Soriano, Nicolás Peña, Jesús Capitán, Jesús Martín, José
Joaquín Acevedo, Santiago Vera, Luis Sandino, José Ramón Santos, Julio Antequera,
Juan Carlos del Arco y muchos otros que seguro que estoy dejando atrás, ruego que no se
ofendan. Aparte, nombrar compañeros de carrera y amigos de los que he aprendido y sigo
aprendiendo tanto como Marisa Serrano (gracias por tus correcciones), Víctor Cañada,
Hipólito Guzmán, Ignacio Núñez, el “aberrado” Carlos Borrego.
No puedo pasar sin dar un agradecimiento especial a otras tantas personas que me

han aportado ideas, ánimos y con las que he compartido muchos momentos. Quiero
agradecer su gran contribución a José Miguel Díaz-Báñez y a Páblo Pérez-Lantero, que
han contribuido notablemente dando rigor formal a los algorithmos y discusiones del
capítulo 5 y proponiendo dos de las técnicas que se emplean. Se me vienen a la cabeza
colegas del CATEC: Miguel Ángel Trujillo, Jonathan Ruiz, Antidio Viguria, Yamnia
Rodríguez. Muchas gracias por vuestra paciencia y vuestra inestimable ayuda a la hora
de realizar los numerosos experimentos multi-UAV en vuestras instalaciones. También
mi agradecimiento especial a Salah Sukkarieh, por introducirme en el mundo de los
planeadores y de aprovechamiento de térmicas, así como ayudarnos tanto a José Antonio
como a mí en el diseño de los sistemas. También a Alexandre le Boeuf y Juan Cortés del
Laboratorie d’Analyse et Sistémes de Toulouse.

Por último, esta tesis ha sido posible gracias a la aportación económica obtenida del Min-
isterio de Educación y Ciencia con el Programa de Formación de Profesorado Universitario
(FPU). Además, ha sido parcialmente subvencionada con fondos de diversos proyectos na-
cionales: URUS (P09-TIC-5121), CLEAR, ROBAIR, ATLÁNTIDA; autonómicos: RAN-
COM (P11-TIC-7066) e internacionales: ARCAS (FP7-ICT-2011), EC-SAFEMOBIL
(FP7-ICT-2011), PLANET (FP7-ICT-257649) y MUAC-IREN (DPI2011-28937-C02-01).

David Alejo Teissiere
Grupo de Robótica, Visión y Control de la Universidad de Sevilla

Sevilla, 2015

Resumen

Esta tesis trata acerca de métodos para coordinar las trayectorias de un sistema de
Vehículos Aéreos no Tripulados y Autónomos (en adelante UAVs).

El primer conjunto de técnicas desarrolladas durante la tesis se agrupan dentro de las
técnicas de planificación de trayectorias. En este caso, el objetivo es generar planes de vuelo
para un conjunto de vehículos coordinadamente de forma que no se produzcan colisiones
entre ellos. Además, este tipo de técnicas puede usarse para modificar el plan de vuelo de
un subconjunto de UAVs en tiempo real. Entre los algoritmos desarrollados en la tesis
podemos destacar la adaptación de algoritmos evolutivos como los Algoritmos Genéticos y
el Particle Swarm (Enjambre de Partículas), la incorporación de nuevas formas de muestreo
del espacio para la aplicación del algoritmo Optimal Rapidly Exploring Random Trees
(RRT*) en sistemas multi-UAV usando técnicas de muestreo novedosas.

También se ha estudiado el comportamiento de parte de estos algoritmos en situaciones
variables de incertidumbre del estado del sistema. En particular, se propone el uso del
Filtro de Partículas para estimar la posición relativa entre varios UAVs.

Además, se estudia la aplicación de métodos reactivos para la resolución de colisiones
en tiempo real. Esta tesis propone un nuevo algoritmo para la resolución de colisiones
entre múltiples UAVs en presencia de obstáculos fijos llamado G-ORCA. Este algoritmo
soluciona varios problemas que han surgido al aplicar el algoritmo ORCA en su variante
3D en sistemas compuestos por vehículos reales. Su seguridad se ha demostrado tanto
analíticamente, como empíricamente en pruebas con sistemas reales.
De hecho, durante esta tesis numerosos experimentos en sistemas multi-UAV reales

compuestos hasta por 4 UAVs han sido ejecutados. En dichos experimentos, se realiza
una coordinación autónoma de UAVs en las que se asegura la ejecución de trayectorias
libres de colisiones garantizando por tanto la seguridad del sistema.
Una característica reseñable de esta tesis es que los algoritmos desarrollados han sido

probados e integrados en sistemas más complejos que son usados en aplicaciones reales.
En primer lugar, se presenta un sistema para aumentar la duración del vuelo de planeadores
aprovechando las corrientes ascendentes de viento generadas por el calor (térmicas). En se-
gundo lugar, un sistema de detección y resolución de colisiones coordinado para sistemas

V

VI Resumen

con múltiples UAVs reactivo ha sido diseñado, desarrollado y probado experimental-
mente. Este sistema ha sido integrado dentro de un sistema automático de construcción de
estructuras mediante múltiples UAVs.

Abstract

The aim of this thesis is to propose methods to coordinately generate trajectories for
a system of Autonomous Unmanned Aerial Vehicles (UAVs).

The first set of proposed techniques developed in this thesis can be defined as trajectory
planning techniques. In this case, the objective is to generate coordinated flight plans for a
system of UAVs in such a way that no collision are produced among each pair of UAVs.
Besides, these techniques can be applied online in order to modify the original flight plan
whenever a potential collision is detected. Amongst the developed algorithms in this thesis
we can highlight the adaptation of evolutionary algorithms such as Genetic Algorithms
and Particle Swarm, and the application of Optimal Rapidly Exploring Random Trees
(RRT*) algorithm into a system of several UAVs with novel sampling techniques.

In addition, many of these techniques have been adapted in order to be applicable when
only uncertain knowledge of the state of the system is available. In particular, the use of
the Particle Filter is proposed in order to estimate the relative position between UAVs.
The estimation of the position as well as the uncertainty related to this estimation are then
taken into account in the conflict resolution system.

All techniques proposed in this thesis have been validated by performing several simu-
lated and real tests. For this purpose, a method for randomly generating a huge test batch
is presented in chapter 3. This will allow to test the behavior of the proposed methods in a
great variety of situations.
During the thesis, several real experimentations with fleets composed by up to four

UAVs are presented. In these experiments, the UAVs in the system are automatically
coordinated in order to ensure collision-free trajectories and thus guarantee the safety of
the system.
The other main topic of this thesis is the application of reactive methods for real-time

conflict resolution. This thesis proposes a novel algorithm for collision resolution amongst
multiple UAVs in the presence of static obstacles, which has been called Generalized-
Optimal Reciprocal Collision Avoidance (G-ORCA). This algorithm overcomes several
issues that have been detected into the algorithm 3D-ORCA in real applications.
A remarkable characteristic of this thesis is that the developed algorithms have been

applied as a part of more complex systems. First, a coordinated system for flight endurance

VII

VIII Abstract

extension of gliding aircrafts by profiting the ascending wind is presented. Second, a
reactive collision avoidance block has been designed, developed and tested experimentally
based in the aforementioned G-ORCA algorithm. This block has been integrated into a
system for assembly construction with multiple UAVs.

Contents

Resumen V
Abstract VII
Acronyms XV

1. Introduction 1
1.1. Motivation 2
1.2. Notes on the ATM amplification procedure 3

1.2.1. Reactive Collision Avoidance on ATM 5
1.2.2. Future of ATM 6

1.3. UAV CA schemes 7
1.4. Related work 9
1.5. Objectives 10
1.6. Outline and main contributions 11
1.7. Framework 13

1.7.1. ARCAS project 13
1.7.2. Other projects 16

1.8. Conclusions 17

2. State of the art in UAV planning 19
2.1. Introduction 19
2.2. Problem Formulation 21

2.2.1. Configuration and State Spaces of a robot and a system of robots 21
2.2.2. Path Planning Problem Definition 21
2.2.3. Optimal Planning 23
2.2.4. Interfacing the UAV 23
2.2.5. Complexity 24

2.3. Graph search method 24
2.4. On obtaining the graph representation 26

2.4.1. Exact graph generation methods 27
2.4.2. Probabilistic Roadmaps 27

IX

X Contents

2.4.3. Rapidly-exploring Random Trees 28
2.4.4. Optimal probabilistic methods 29
2.4.5. Parallelization 30

2.5. Reactive Methods 30
2.5.1. Velocity Obstacles 30
2.5.2. Potential Field Methods 31

2.6. Optimal Methods 32
2.6.1. Evolutionary Optimization Applied to Path Planning 32
2.6.2. Swarm Optimization Applied to Path Planning 32
2.6.3. Linear and non-linear Programming methods 33

2.7. Optimal Control Methods 33
2.8. Conclusions 35

3. Evolutionary multi-UAV planning 39
3.1. Introduction 40
3.2. Non-collaborative Genetic Algorithm Path Planner 40

3.2.1. Initialization of the population 42
3.2.2. Selection 43
3.2.3. Crossover algorithm 44
3.2.4. Mutation 45
3.2.5. Evaluating the fitness of the individuals 45

Aligned Bounding Boxes Detection 47
Continuous collision detection 47

3.2.6. Control Parameters 49
3.3. Uncertainty considerations 50

3.3.1. Overview of the system 50
3.3.2. Monte-Carlo analysis 50
3.3.3. Stochastic Model 51
3.3.4. A simple test case 53
3.3.5. Simulation batch 53

Dependency of the criteria with the number of GA iterations 54
Dependency of the execution time with the number of UAVs and obstacles 56
Different wind conditions 56
Execution time distribution 56

3.4. Collaborative GA planner 59
3.4.1. Main Changes in GA 59

Initialization 59
Crossover 59
Evaluation 60

3.4.2. Simulations 60
Crossover operator selection 60
Test set design 65
Simulation results 66

Contents XI

3.5. Experiments 68
3.6. Conclusions 71

4. Multi-UAV planning with Particle Swarm Optimization 73
4.1. Collaborative PSO planner 74

4.1.1. A simple example 76
4.2. GA and PSO Comparison 76

4.2.1. Time of execution against the number of UAVs 78
4.2.2. Optimality comparison 78
4.2.3. Time for 90% of optimality 81

4.3. Anytime approach 81
4.3.1. One at a time strategy 82

Inserting the solution into the population 83
4.3.2. Virtual roundabouts 84
4.3.3. Simulations 84

Estimating the quality of the solution 87
4.4. Reducing the dimensionality problem 88

4.4.1. Course change 89
4.4.2. Maneuver selection 90
4.4.3. Simulations 91

A simple case 92
Test set 93

4.5. Experiments 94
4.5.1. Objectives of the Experiment 94
4.5.2. Experimental scenario 96
4.5.3. Solution and results 98

4.6. Conclusions 99

5. Velocity planning: Coordination of Multi-UAVs Trajectories 103
5.1. Introduction 103
5.2. Proposed approaches 104
5.3. Problem Formulation 105
5.4. NP-Hardness Proof 107
5.5. Proposed Methods 109

5.5.1. Greedy Method 109
5.5.2. The discrete allocation problem 110
5.5.3. Heuristic velocity planning with optimization phase 112

Search tree step 112
One conflict zone problem 112
More than one conflict zone 114
QP-problem 114

5.6. Simulations 116
5.6.1. Velocity profile calculation 116
5.6.2. Greedy results 117

XII Contents

5.6.3. 2-VA Results and Generalizations 118
5.6.4. Heuristic VP results 120
5.6.5. Comparison with the number of safety cells 121

5.7. Experiments 121
5.8. Conclusions 123

6. A Distributed System for Cooperative Static Soaring 127
6.1. Introduction 127
6.2. State of the art 129
6.3. Overview of the system 130

6.3.1. Local Path Planner 130
6.3.2. Autopilot 132
6.3.3. Thermal Detector 132
6.3.4. Mission Manager 132
6.3.5. Thermal Manager 133
6.3.6. Collision Detection and Resolution block 133

6.4. Thermals detector 133
6.4.1. Thermal model 134
6.4.2. Thermal detection algorithm 135
6.4.3. Computation of the TPs 136

6.5. Path planner 138
6.6. Conflict detection and resolution 139

6.6.1. RRT 140
6.6.2. RRT* 141
6.6.3. Gliding UAV Model 143

6.7. Simulation results 143
6.7.1. Collision Detection and Resolution Simulation 144
6.7.2. Whole system simulation 145

Mono UAV simulation 145
6.8. Experimental results 148

6.8.1. Preflight considerations 149
6.8.2. Scenario 1 149
6.8.3. Scenario 2 150
6.8.4. Scenario 3. Thermal emulation real-time experiment 152

6.9. Conclusions 154
6.9.1. Future work 155
6.9.2. What is next? 155

7. Real-time 3D Collision Avoidance with Static Obstacles 157
7.1. Optimal Reciprocal Collision Avoidance 158
7.2. Proposed method: Generalized ORCA 160

7.2.1. Kinematic and Dynamic constraints handling 161
7.2.2. Considering 3D obstacles 161

Original ORCA static obstacles considerations 162

Contents XIII

Proposed solution 162
Dealing with non-convex obstacles 165

7.2.3. Non spherical robot 166
7.2.4. Safety region 168

7.3. Multi-Quadrotor Simulations 170
7.3.1. 2 UAVs with and without static obstacles 170
7.3.2. Scalability 171

Scenario with up to 8 UAVs and two static obstacles 171
7.3.3. Scenario with up to 8 UAVs and complex static obstacles 172
7.3.4. Scenario with 20 UAVs 174

7.4. Conclusions 175

8. Experimental G-ORCA based Collision Avoidance 179
8.1. Introduction 179
8.2. Basic architecture of the system 180

8.2.1. Trajectory Generator Module 181
8.2.2. Collision Avoidance Module 182

8.3. Preliminary experiments 183
8.3.1. Experiment 1 183
8.3.2. Experiment 2 185
8.3.3. Experiment 3 186
8.3.4. Conclusions 186

8.4. Lessons learned 187
8.5. Final experiments 190

8.5.1. Experiment 4 191
8.5.2. Experiment 5 191
8.5.3. Experiment 6 192

8.6. Conclusions 194

9. Conclusions and Future Developments 197
9.1. Summary of contributions 197
9.2. Future developments 199

9.2.1. Evolutionary-based methods parallelization 199
9.2.2. Extensive thermal identification and exploitation experimentation 199
9.2.3. Integrated ARCAS experiments 200
9.2.4. G-ORCA and SLAM integration 200

Appendix A.Multi-UAV indoors testbed 201
Appendix B.Multi-UAV Thermal Detection and Exploitation System Architecture205

B.1. Introduction 205
B.2. Objectives 206
B.3. System description 206

B.3.1. Hardware 207
B.3.2. Software in Real flight configuration 207

XIV Contents

B.3.3. Software: HIL Configuration 208
B.3.4. Off-line processing 210

B.4. Communications 210
B.4.1. Protocol and parameters 211

B.5. Developed GUI 212
B.6. Conclusions 213

Appendix C.G-ORCA Integration in the ARCAS system 215
C.1. Overview of the ARCAS system 215
C.2. ORCA’s module interfaces 216

C.2.1. Mission protocol 217

List of Figures 219
List of Tables 227
Bibliography 229

Notation

Acronyms

ACAS Aerial Collision Avoidance System
ACO Ant Colony Optimization
ADS-B Automatic Dependent Surveillance-Broadcast
AI Artificial Intelligence
APP Adaptive Pure Pursuit
ARCAS Aerial Robotics Cooperative Assembly System
ASM AirSpace Management
ATC Air Traffic Control
ATFM Air Traffic Flow and capacity Management
ATLANTIDA Application of Leading Technologies to UAVs for R&D in ATM
ATM Air Traffic Management
BADA Base of Aircraft Data
BFS Breadth First Search
BRHS Bounded Recursive Heuristic Search
CA Collision Avoidance
CATEC Centre for Advanced Aerospace Technologies
CBL Convective Boundary Layer
CD Conflict Detection
CDR Conflict Detection and Resolution
CDTI Spanish Center for the Technological and Industrial Development
CNRS Centre National de la Recherche Scientifique
CR Conflict Resolution
DFS Depth First Search
DLR Deutsches Zentrum Für Luft – Und Raumfahrt EV
DP Dynamic Programming
ECD Exact Cell Decomposition
ETA Estimated Time of Arrival

XV

XVI Chapter 0. Notation

FAA Federal Aviation Administration
FADA Fundación Andaluza para el Desarrollo Aerospacial
FDM Flight Dynamics Model
FIDL Flight Intent Description Language
FL Flight Level
FoV Field of View
G-ORCA Generalized ORCA
GA Genetic Algorithm
GCS Ground Control Station
GNSS Global Navigation Satellite System
GP Genetic Programming
GPS Global Positioning System
GRVC Robotics Vision and Control Group
GUI Graphical User Interface
HACD Hierarchical Approximate Convex Decomposition
HIL Hardware In the Loop
ICRA International Conference on Robotics and Automation
ICUAS International Conference on Unmanned Aerial Systems
IMU Inertial Measurement Unit
IROS International Conference on Intelligent Robots and Systems
IW Intermediate Waypoint
JINT Journal of Intelligent & Robotic Systems
LGL Legendre-Gauss-Lobatto
LiPo Lithium-Polymer
LPP Local Path Planner
MAC Mid-Air Collision
MAVLink Micro Aerial Vehicle communication protocol
MED Mediterranean Control Conference
MILP Mixed Integer Linear Problem
MM Mission Manager
MPP Motion Planning Problem
MS-PSO Maneuver Selection PSO
MUAC-IREN Multi-UAV Cooperation for long endurance applications
N-PC N-point Crossover
NextGen Next Generation Air Transportation System
NLP Non Linear Programming
OC Optimal Control
ORCA Optimal Reciprocal Collision Avoidance
PF Potential Field
PMP Piano Movers Problem
PoI Point of Interest
PP Pure Pursuit
PRM Probabilistic RoadMaps
PSO Particle Swarm Optimization
QP Quadratic Programming

XVII

RA Resolution Advisory
ROS Robotic Operating System
RRT Rapidly-exploring Random Trees
RWS Roulette Wheel Selection
SESAR Single European Sky ATM Research
SLAM Simultaneous Localization And Mapping
SSR Secondary Surveillance Radar
TA Traffic Alert
TBO Trajectory-Based Operational System
TCAS Traffic Collision Avoidance System
TD Thermal Detector
TG Trajectory Generator
TM Thermal Manager
TP Thermal Point
TS Tournament Selection
UAV Unmanned Aerial Vehicle
UC Uniform Crossover
UGV Unmanned Ground Vehicle
USV Unmanned Surface Vehicle
UUV Unmanned Underwater Vehicle
VD Voronoi Diagrams
VG Visibility Graph
VMP Vehicle Motion Planning
VO Velocity Obstacle
WP Waypoint
WSN Wireless Sensor Node

1 Introduction

Do or do not. There is no try.

Yoda - The empire strikes back.

This thesis presents several novel systems and algorithms for multi-UAVs system
coordination. The main objective is to develop these algorithms so they can be used

as a safety block while the UAVs are performing some high level tasks such as mapping,
search and rescue, Wireless Sensor Node (WSN) data collection and forest fire detection.

Therefore, several methods to perform multi-UAV trajectory planning, distributed multi-
UAV real-time Conflict Detection and Resolution (CDR) and trajectory coordination are
presented. In addition, some of these methods have been integrated into more complex
systems in the context of two international projects: ARCAS (Aerial Robotics Cooperative
Assembly System) and MUAC-IREN (Multi-UAV Cooperation for long endurance applica-
tions) (see Section 1.7). In the ARCAS project, the goal of the system is to collaboratively
assemble a structure with UAVs. In the context of MUAC-IREN, several UAVs will search
for thermals in the environment and profit them in order to increase the autonomy of the
UAVs.

Most of the methods presented in this thesis have been experimentally validated in both
indoors and outdoors environments. The indoor scenario is located in the facilities of the
Centre for Advanced Aerospace Technologies (CATEC) in Seville (Spain). For outdoors
experiments, several local airfields like Utrera, Bellavista and Isla de la Cartuja have been
used in the context of this thesis.
This chapter summarizes and puts into context the work carried out as per below:

• Section 1.1 expresses the motivation that yielded to the development of this thesis.

• Section 1.2 studies the systems being used nowadays in commercial aviation. It
is very useful and inspiring to study and already developed and thoroughly tested
system that has been able to manage millions of flight with a very low accident rate.

1

2 Chapter 1. Introduction

• Section 1.3 proposes two different schemes in which CDR and CA could be applied
in multi-UAV systems.

• Section 1.4 lists the additional safety requirements resulting from performing mis-
sions with multiple UAVs.

• Section 1.5 gathers the objectives for this thesis.

• Section 1.6 drafts the outline of the thesis and describes the main scientific outputs
generated by this thesis.

• Section 1.7 links the work carried out during the thesis to the portfolio of projects
and activities of the group where the author and directors of this thesis belong to,
as well as to the national and international projects in which the author has been
working in.

• Finally, Section 1.8 points out the conclusions that can be taken from this chapter.

1.1 Motivation

In recent years, the Research and Development (R&D) of UAVs is becoming more and
more popular. UAVs are self-propelled air vehicles that are either remotely controlled or
able to perform basic or complex missions autonomously. Following the first UAV flight
in 1917 during the Great War, the UAVs have been mainly used in military applications
that were, in general, classified.

Nowadays they are being employed also in civil tasks thanks to the advances in electron-
ics, sensors, motors and batteries that have made these platforms less expensive and have
reduced their size. These civil tasks include surveillance, forest fire detection, industrial
and power-line inspection, agriculture, video-capturing and many more. In recent days,
the development of UAV autonomous systems with manipulating capabilities constitute a
relevant research topic in robotics.

A great variety of UAVs have emerged including fixed-wing UAVs, rotary-wing UAVs
such as helicopters and multi-rotors configurations like quadrotors, hexarotors and oc-
tarotors. In particular, the quadrotor configuration has become the de facto standard for
indoors navigation with little exceptions due to their maneuverability, stability and its ease
of control. As a matter of fact, there are some market solutions that offer great teleoperation
capabilities and real-time video emission in the market with prices as low as 300 euros.
The most important advantage that UAVs present with regard to Unmanned Ground

Vehicles (UGVs) is their capability of reaching some inaccessible places. In addition,
UAVs have a great value in surveillance tasks as they are capable of filming scenes from
high altitude which can provide the user a great Field of View (FoV) which can be of great
use when performing monitoring, search and rescue or patrolling missions.
However, some drawbacks have to be taken into account when comparing UAVs and

UGVs. Their more evident limitation is that UAVs still have strong limitations in terms of
flight endurance. The propulsion system of most of rotary-wing UAVs consist of several
brush-less electric motors which are powered by Lithium-Polymer (LiPo) batteries. These
vehicles are able to fly for tens of minutes in most cases. However, this maximum flight

1.2 Notes on the ATM amplification procedure 3

time is reduced in a great deal when some additional payload is required such as sensors,
cameras and lasers.
The things do not become much better when considering battery-powered fixed-wing

UAVs. Even though they are more efficient than rotary-wing UAVs, their maximum flight
time still do not exceed an hour in most cases. The good news are that the flight time is
less dependent on the weight of the UAV. To our relief, UAVs equipped with fuel powered
motors can increase the flight time significantly, which could be necessary in missions
with long duration or long range. Furthermore, soaring UAVs are able to harvest energy
from the atmosphere in order to increase their flight endurance. Last but not least, solar
UAVs such as the Sunrise and the Zephir with an autonomy that range from more than
twenty hours to hundreds of hours have emerged recently [1].

There are some applications in which the use of multiple UAVs can be of great interest.
These applications include mapping, surveillance, search and rescue, structure assembly
and load transportation. By using more than one UAV the performance of the system could
be improved in terms area coverage, time of finding the target, the construction time and
the maximum weight of the load, respectively. Note that in these situations heterogeneous
UAVs may be employed; for example, several small size UAVs can perform a search task
and make a report whenever some target has been found; then, a larger UAV can be sent in
order to deliver some first necessity load due to its improved payload handling capabilities.
Although the systems presented in this thesis are focused in solving the multi-UAV

coordination problem, they can easily be extended to other types of vehicles such as
UGVs, Unmanned Underwater Vehicles (UUVs) and Unmanned Surface Vehicles (USVs).
However, they are much more necessary in UAVs because of the disastrous consequences
of an aerial collision.
The main objective of this thesis is to develop trajectory planning methods that can

safely guide a team of autonomous UAVs and thus preventing collisions between UAVs and
with the environment. These problems have been deeply studied in the literature of both
multi-robot systems and in the field of Air Traffic Management (ATM). Also, most of the
work presented in this thesis could be applied to ATM. For example, they could increase
the automation in Air Traffic Control (ATC) area. In the next section the organization of
ATM is described to put this application into perspective.

1.2 Notes on the ATM amplification procedure

The air traffic transportation is one of the most efficient and safest means of transport. Its
accident rate per thousand of kilometers is similar to the one achieved on rail transportation.
In comparison, bus transportation is significantly riskier, up to eight times, while private
road transportation is the riskiest mean of transport, being up to 10 times riskier than the
bus on displacements of equal length [2]. Despite of this, there is still a need of making
ATM safer. First, because of the high number of fatalities associated with each aerial
accident. Second, because of the high visibility of each accident, that spreads a higher
risk perception of air transportation.
Nowadays, commercial aircrafts are only allowed to follow some predefined routes in

order to travel from one airport to another. These routes are usually defined as a sequence

4 Chapter 1. Introduction

of waypoints that are connected with airways which are 10 nautical miles wide in Europe.
When flying through an airway, each aircraft flies in a different flight level (FL) (each FL
is separated by 1000 feet with the surrounding level). In order to prevent accidents; in
bi-directional airways, the odd FLs are reserved for east directions while the even FLs are
reserved for west directions.

The route planning inside the ATM can be classified according to the as represented in
Figure 1.1 in terms of the proximity of the operation as follows.

1. Strategic. The commercial routes are defined at the first layer of ATM, Airspace
Management (ASM), at the strategic level. The actions performed at this level are
planned months or even years before the operation.

2. Pre-tactical. The second layer of the ATM is the so-called Air Traffic Flow and
capacity Management (ATFM). In this layer all the pre-tactical computations are
performed. In first place, the company generates a flight plan according to its
preferences and the ASM organization. This plan is then matched with other flight
plans operating in the same time windows. All flights that operate in a region must
be submitted to an ATFM unit (the Eurocontrol’s Central Flow Management in the
case of Europe), where they are analyzed and processed. This process is repeated
the day before the departure and finally in real-time few hours before operation.

3. Tactical. All tactical operations are performed at the third layer of the ATM system,
the ATC layer. There should be a unit to ensure that all flights evolve safely, detecting
and avoiding any potential hazard such as conflicts between vehicles and adverse
meteorological conditions. The responsibility of ATC systems is to detect these
hazards in advance and to reassign the routes to the involved aircrafts. Tactical
operations must be defined with a minimum time in advance in order to enable
coordination between ATC and the personnel onboard the airplane.

4. Reactive. When dealing with conflicts between airplanes, there are situations in
which the collision is inminent enough to prevent the negotiation between ATC
systems and the personnel. In these cases, the Traffic Collision Avoidance System
(TCAS) onboard system automatically detects the inminent hazards and prevents
the collision with them. In these cases, the pilots must accomplish the maneuvers
indicated by the TCAS.

Therefore, there are two possible ways of avoiding a collision on ATM. If the threat is
detected soon enough, the ATC controller can communicate with the personnel onboard the
planes and modify the flight plan of each vehicle in order to avoid the imminent collision.
As the calculations are performed in a central station which has available all information
about the traffic and the weather, the ATC can offer optimal or quasi-optimal trajectories
in most cases. Systems that performs in this centralized way are usually referred as CDR
systems. However, if the collision is imminent, the ATC is relieved of its intervention and
each pilot must fulfill a CA maneuver which is computed locally and where the safety
is more important than the optimality. In this thesis, the collision avoidance algorithms
proposed in Chapters 3-6 are more focused on solving the ATC coordination problem, and
thus they can be considered tactical or pre-tactical algorithms. In contrast, the algorithms
proposed in Chapters 7 and 8 focus on the reactive part of the problem.

1.2 Notes on the ATM amplification procedure 5

ASM

ATFM

ATC

Years prior

operation
Weeks prior

 operation

Hours prior

 operation

Few minutes

to operation

TCAS

Strategic Pre-tactical Tactical Reactive

Figure 1.1 Operation levels in the ATM system. Figure adapted from [3].

1.2.1 Reactive Collision Avoidance on ATM

Onboard CDR systems have already been developed for commercial aircrafts as a reac-
tion to the increment of Mid-Air Collisions (MACs) due to air traffic growth. The first
recorded mid-air collision was produced in the ’Milano Circuito Aereo Internazionale’
(Italy, October 1910). In the earlier days of commercial flights, ground based ATC had
the responsibility to keep the aircrafts separated. However, these systems could fail and
then the collision avoidance maneuvers had to be performed by the pilots following a “see
and avoid” procedure [4]. As a result, several mid-air accidents occurred in situation were
the “see and avoid” procedure was impossible to follow such as the collision between two
airliners aircraft over the Grand Canyon (USA, June 1956) and in Nantes (France, 1973)
due to meteorological reasons.
In order to overcome these situations, it was clear that a CA backup device that would

act as emergency support without the intervention of ground systems had to be imple-
mented. Thus, the mandatory CA system that is used nowadays in commercial aircrafts
was developed in the 80s. However, as unexpected situations were found due to increasing
traffic, it had to be further developed until reaching the standard that is used nowadays
since the early 2000s.
The TCAS is an airborne aircraft CA system that was designed by the US Federal

Aviation Administration (FAA) to reduce the incidence of MACs. The first version of
TCAS only was designed to improve the situational awareness of the pilots based on
Secondary Surveillance Radar (SSR) transponder signals. A Traffic Alert (TA) is sent to
the pilot whenever an intruder was detected, that is, another aircraft is found inside the
safety region of the aircraft (see Figure 1.2).
However, as MACs continued to happen, a resolution maneuver generated from the

TCAS module without the intervention of the Ground ATC was found necessary and yield

6 Chapter 1. Introduction

to the development of the TCAS II which is used nowadays. TCAS II provides vertical
Resolution Advisories (RAs) in addition to the TAs that were introduced in the first version
of TCAS. The RA that TCAS II is capable to produce are very limited. In particular, only
flight level changes are considered in order to avoid collisions.

Figure 1.2 TCAS protecting volumes for displaying both TAs and RAs. Source: Wikime-
dia Commons.

1.2.2 Future of ATM

Several initiatives for optimizing and automating the ATM systems such as the EU Single
European Sky initiative from the European Commission (2004) and the Next Generation
Air Transportation System (NextGen1) from the USA have been proposed. As part of the
EU initiative, SESAR (Single European Sky ATM Research 2) represents its technological
dimension. It will help create a paradigm shift in ATM, supported by state-of-the-art and
innovative technology.
One of the main objectives of these initiatives is to transform the ATC system from

a ground-based system to a satellite-based system. One of the consequences is to shift
from the airways system for route generation which is currently used to a Trajectory-Based
Operational system (TBO) in which each aircraft can freely design its route. It is expected
that TBO will decrease the fuel consumption and will be able to handle the weather treats
more effectively.

Also, these initiatives include the revision of the current TCAS II system. Even though
TCAS II is a reliable and convenient CA system, several systems are in development in
1 https://www.faa.gov/ nextgen/
2 http://www.sesarju.eu/

https://www.faa.gov/nextgen/
http://www.sesarju.eu/

1.3 UAV CA schemes 7

order to reduce some deficiencies in this system. In particular, a new standard called Aerial
Collision Avoidance System X (ACAS) is under development. This new approach will
take advantage of recent advances in dynamic programming and other computer science
techniques that were not as developed when TCAS II was released. This approach will use
the same hardware as TCAS II, but it is aimed to improve safety while reducing false alerts
[4]. In addition, this new standard will have variants to adapt the behavior to different
types of vehicles, including UAVs.

On the other hand, more advanced equipment is under development. Most importantly,
the Automatic Dependent Surveillance-Broadcast (ADS-B). It is a Global Navigation
Satellite System (GNSS) based surveillance technology for tracking aircrafts: each aircraft
equipped with ADS-B broadcasts its state based on GNSS data and flight intent to others
and to the ground station. It is still under development but it will most likely replace the
radar as main surveillance system. This data will enhance the situational awareness of the
pilots on-board the aircraft as well as provide the ATCs with more precise information
of the state of the aircrafts. Nowadays, most airliners are equipped with ADS-B and it is
mandatory in some regions such as Australia above FL 300 (30,000 feet). It is expected that
newer standards for CA will take advantage of this system. In this thesis, this information
could be very useful in an implementation of the proposed algorithms.

1.3 UAV CA schemes

In multi-UAV missions where several UAVs have to fly in the same area performing their
tasks, usually optimized collision-free trajectories for each UAV are previously generated.
These trajectories may or not be coordinated prior to the take-off. Even if an off-line
coordination exists, deviations from the prescribed trajectories or unexpected events such
as dynamic obstacles or external perturbations may cause collisions with other UAVs or
with obstacles.

A classification of the actions performed in a multi-UAV system can be carried out
in a similar fashion as the ATM classification (see Figure 1.1). Figure 1.3 proposes
a rough classification of the actions depending on the look-ahead time. In first place,
strategic actions are carried out off-line usually in the experimental design phase prior to
the execution of the experiments. Then, pre-tactical computations can imply the planning
of a complex task online with look-ahead times of several minutes. Next, tactical actions
are also performed online with a look-ahead time of the order of several seconds. Last,
reactive actions are executed with very low look-ahead times that range from few seconds
to fractions of second and are critical to ensure the safety of UAV systems.
In most cases, tactical CDR systems are integrated in the system as depicted in Figure

1.4. They are implemented in the Conflict Resolution block (CR), which receives an alert
from the Conflict Detection block (CD). These two blocks receive the estimated state of
each UAV in the system and their flight plans. They predict the trajectories of the UAVs in
the future for a time horizon which is usually larger for CR than for CD in order to avoid
the generation of new conflicts whilst avoiding the ones already detected.

This scheme is centralized, as it relies in two external modules that should be executed
in a central system with access to all the information about the UAVs. As stated in Section

8 Chapter 1. Introduction

 Prior

experiment

 30 s Few

seconds

Strategic Pre-tactical Tactical Reactive

Offline Online

Figure 1.3 Proposed classification of the actions in a multi-UAV system depending on the
look-ahead time.

Figure 1.4 Block Diagram of the centralized implementation of a CDR system.

1.2, it is currently being used in ATC nowadays, which can give us an idea of its scalability.
In order to make the problem more tractable, the ATM system is divided into sectors,
in each sector the scheme is repeated. One similar approach could also be applied in
multi-UAV systems by dynamically generating robot teams that have to cooperate in order
to solve a conflict.
A different approach for reactively performing CA techniques is also possible. In this

approach, the CA system is constantly monitoring the current state of the system. It acts
as a filter in the inputs of the UAVs, processing them and generating safe inputs for the
system as shown in Figure 1.5. Basically, it checks if the current commands will lead to a
collision in a given time horizon (τ). If no collisions are detected the module will bypass
the inputs. Otherwise, it will change the commands of the UAV as less as possible in order
to prevent the potential collisions. Note that UAV-to-UAV communications are convenient
in order to difference between static obstacles and collaborative agents, as performed by
the ADS-B block in ATM. In this case, a reactive method should compute a fast solution

1.4 Related work 9

that has to ensure that the separation between the UAVs is greater than a given safety
distance. Therefore, in this case safety is prioritized with respect to optimality.

Figure 1.5 Block Diagram of the decentralized implementation of CA.

Note that these two schemes are complementary. It is usually preferable to detect
possible conflicts in advance and solve them in an optimal or close to optimal manner. On
the other hand, it is also crucial to add an onboard CA method in order to ensure the safety
of the UAVs in the case of failure of the CDR systems or in the presence of unexpected
threats.

1.4 Related work

In regards to motion planning, there are a lot of interesting surveys that include the most
relevant methods that have been applied to trajectory planning and CA. For example, a
useful classification of the different types of CA techniques has been proposed in [5]. The
problem of trajectory planning for mobile robots and manipulators has been extensively
studied in the late 80s and 90s. Two reference textbooks written in those years are [6] and
[7]. More recently, another important textbook on trajectory planning is [8].
Motion planning for aerial robots has emerged lately as one of the main areas of

robotic research. An interesting survey of planning methods for UAVs can be found in [9].
Following this survey, the main motion planners have been obtained with the development
of two different areas: robotics and Optimal Control (OC). From our point of view, another
area has also influenced the development: Artificial Intelligence (AI). AI had developed
the algorithms for obtaining the best paths in graphs representations such as Djikstra
and A* to name a few, that were used in first instance as motion planners. Then, the
robotic community focused on obtaining this graph representation taking into account
the shape of both obstacles and the mobile robot in problems with high dimensionality.
Obtaining an exact solution of these problems is in general not possible, and this yielded

10 Chapter 1. Introduction

to the development of probabilistic planners such as Probabilistic RoadMaps (PRM),
Rapidly-exploring Random Trees (RRT) and more recently RRT*.
On the other hand, in the field of ATM automation, there is a strong research line that

applies the results of OC to off-line trajectory generation from airport to airport. These
algorithms are computationally very expensive, but have the important advantages of
generating trajectories that meet the constraints of the considered vehicle and of being
able to take into consideration detailed weather forecasts [10]. In this thesis, the trajectory
generation will focus on the multi-UAV trajectory generation for trajectory deconfliction.
In this case, the available temporal resources can be very low (typically few seconds).
Therefore, OC methods could not be suitable for this task because of two main reasons: the
lack of anytime approaches that ensure a suboptimal solution even when the search process
has not finished and their lack of global optimal convergence, which is consequence of
the translation of the problem into a Non Linear Programming (NLP) problem, whose
solvers only search for local minima in the surroundings of an initial guess. Instead of
them, anytime approaches based on general purpose evolutionary optimizers, such as the
ones proposed in Chapters 3 and 4, can be more convenient [11] as they can avoid the
convergence to a local minimum and a feasible solution can be available whenever as soon
as needed.

The reader is referred to Chapter 2 for a deep dive on the UAV and multi-UAV motion
planning techniques that could be used in a CDR system.

1.5 Objectives

The main objective of this thesis is to develop new trajectory planning techniques and real-
time CA techniques in order to safely perform multi-UAV experiments in both indoors and
outdoors environments. These techniques have to be validated in as many real environments
as possible in order to evaluate them and test their proper behavior. In order to fulfill this
main objective, the following list of partial objectives have to be accomplished:

• Perform an exhaustive study of the state of the art in techniques that have been
applied to multi-UAV robot planning, CDR and CA in order to coordinate a system
composed by several UAVs.

• Implement, test and compare the most relevant of the aforementioned techniques in
simulation in order to evaluate the goodness of each approach. The test phase of
this objective is especially relevant because the algorithms should be tested in as
much situations as possible in order to detect potential risks.

• Develop new multi-UAV planning techniques to solve the coordinated trajectory
planning problem.

• Incorporate uncertainty analysis into the designed techniques in order to make the
CA more robust to imperfect sensing and to stochastic phenomena related to the
weather.

• Test the algorithms in real platforms, performing real-time CDR and CA experiments
in both indoor and outdoor environments. This step will require the adaptation of
the algorithms to the available information and the architecture of each platform.

1.6 Outline and main contributions 11

• Integrate the proposed algorithms into greater systems that are designed to perform
complex tasks such as aerial manipulation, area monitoring, surveillance, search and
rescue. In this case, the algorithm should be able to report to higher level algorithms
risky situations and other undesired events.

1.6 Outline and main contributions

This thesis consists of nine chapters, with complementary information in three appen-
dices. This section presents an overview of the contents of each chapter with additional
bibliographical information.

• In Chapter 2, an exhaustive study of the state of the art in UAV and multi-UAV
path and trajectory planning is presented from an historic perspective. This study
includes classical planning methods from the AI field, exact methods for trajectory
planning in low dimensional spaces, probabilistic methods for path planning in high
dimensional spaces, optimal methods that benefit from the development of general
purpose optimizers and the OC based planners.

• Chapter 3 proposes some collaborative and non-collaborativemethods for multi-UAV
quasi-optimal trajectory planning by using Genetic Algorithms (GA). In addition,
a brief insight into uncertainty estimation is also given. This estimation will be
handled by the trajectory planner in order to compute safer trajectories. Moreover, a
method to create randomized test scenarios is described. Several simulations and
experiments show the validity of the proposed methods. Some results of the chapter
have been published in the Proceedings of the International Conference on Robotics
and Automation (ICRA 2012 [12]) and the Journal of Intelligent & Robotic Systems
(JINT) [13].

• Chapter 4 handles the same trajectory planning problem by using a different opti-
mization method. The Particle Swarm Optimization (PSO) algorithm is used and
compared with the GA approach. A large batch of simulations is executed in order
to compare GA and PSO approaches. Also, an Anytime Approach that will ensure
a solution in low execution times is presented. This method is based on including a
simple solution to the initial population of the PSO. Several results of the chapter
have been published in the JINT [14].

• One of the first approaches to multi-UAV trajectory planning is the path-velocity
decomposition that was first proposed in [15]. Chapter 5 proposes three different
methods for multi-UAV path coordination. The main idea is to obtain the paths
for each UAV independently and then use one of the proposed methods in order to
obtain a velocity profile for each UAV that will lead to collision-free trajectories. In
this chapter, two simple and non-complete methods are given. The main advantage
of these approaches is their scalability although they are not complete methods.
Last, an optimal algorithm is presented which is based on formulating a Quadratic
Programming (QP) problem. Simulation and experimental results are given. Parts
of this Chapter has been published in ICRA [16] and in the JINT [17].

12 Chapter 1. Introduction

• The methods of the aforementioned chapters basically perform a trajectory replan-
ning whenever a conflict is detected. In these cases the conflict detection and
resolution are performed in different stages. In contrast, the method proposed in
chapter 7 is constantly performing both conflict detection and giving the UAVs safe
commands. It is a distributed approach that can be used to coordinate a system of
several UAVs with the presence of static obstacles that are described in a 3D mesh
file such those used in 3D modeling software as 3DStudio and Blender. Several
simulation results are detailed. Some results of the chapter have been published in
the International Conference on Unmanned Aerial Systems (ICUAS)[18].

• Part of this thesis has been developed in the scope of the ARCAS project. Its
main purpose is the development of a multi-UAV cooperative assembly system (see
Section 1.7 for more details). In Chapter 8, the algorithm proposed in Chapter 7
is integrated in the system. The main issues concerning this integration the main
issues that were detected when performing real experiments are detailed in this
chapter. Also, the final experiments in which the real UAVs perform real-time CA
with the desired behavior are given. Early experiments that are presented in this
chapter will be published in the JINT.

• The proposed methods have been included as the safety blocks of real systems that
performs a variety of tasks. In Chapter 6 a multi-UAV system for thermal detection
and exploitation that includes a CDR system is detailed. Most of the results that
are presented in this chapter are published in both ICRA [19] and the International
Conference on Intelligent Robots and Systems (IROS) [20]. It is further developed in
a chapter of the book “Human Behavior Understanding in Networked Sensing” [21].
Also, some of the experimental work and the proposed communication architecture
that is presented in Appendix B has been presented in the Mediterranean Control
Conference (MED 2015)[22].

• Finally, Chapter 9 discussiones the main results of this thesis, as well as points out
the future developments that are still ongoing.

Several publications in international conferences, indexed journals and book chapters
have been generated in the course of this thesis. The most important ones are listed here
for convenience:

• J. C. del Arco, D, Alejo , B. C. Arrue, J. A. Cobano, G. Heredia, A. Ollero, “Multi-
UAV ground control station for gliding aircraft”. 23rd Mediterranean Conference
on Control and Automation (MED 2015), pp 1–6.

• J. Cobano, D. Alejo, S. Vera, G. Heredia, S. Sukkarieh, and A. Ollero, “Distributed
thermal identification and exploitation for multiple soaring UAVs,” in Human
Behavior Understanding in Networked Sensing. Springer International Publishing
Switzerland, 2014, pp. 359–378.

• D. Alejo, J. A. Cobano, G. Heredia, and A.Ollero, “Optimal reciprocal collision
avoidance with mobile and static obstacles for multi-UAV systems.” 2014 Interna-
tional Conference on Unmanned Aircraft Systems (ICUAS), May 2014, pp. 1259–
1266.

1.7 Framework 13

• D. Alejo, J. A. Cobano, G. Heredia, and A. Ollero, “Collision-free 4D trajectory
planning in Unmanned Aerial Vehicles for assembly and structure construction,”
Journal of Intelligent and Robotic Systems, vol. 73, pp. 783–795, 2014.

• J. Cobano, G. H. D. Alejo, S. Sukkarieh, and A. Ollero, “Thermal detection and
generation of collision-free trajectories for cooperative soaring UAVs.” International
Conference on Intelligent Robots and Systems (IROS), Nov. 2013, pp. 2948–2954.

• J. A. Cobano, G. H. D. Alejo, S. Vera, and A. Ollero, “Multiple gliding UAV
coordination for static soaring in real time applications.” 2013 IEEE International
Conference on Robotics and Automation, May 2013, pp. 782–787.

• D. Alejo, J. A. Cobano, M. A. Trujillo, A. Viguria, A. Rodríguez, and A. Ollero,
“The speed assignment problem for conflict resolution in aerial robotics.” 2012 IEEE
International Conference on Robotics and Automation, May 2012, pp. 3619–3624.

• R. Conde, D. Alejo, J. A. Cobano, A. Viguria, and A. Ollero, “Conflict detection and
resolution method for cooperating unmanned aerial vehicles,” Journal of Intelligent
& Robotic Systems, vol. 65, pp. 495–505, 2012, 10.1007/s10846-011-9564-6.

• J. A. Cobano, R. Conde, D. Alejo, and A. Ollero, “Path planning based on genetic
algorithms and the monte-carlo method to avoid aerial vehicle collisions under
uncertainties,” in Proc. IEEE Int. Robotics and Automation (ICRA) Conf, 2011,
pp. 4429–4434.

• D. Alejo, R. Conde, J. A. Cobano y A. Ollero.“Multi-UAV collision avoidance with
separation assurance under uncertainties“. 5th IEEE International Conference on
Mechatronics, 2009, pp 1–6.

1.7 Framework

The work done in the thesis has been carried out while belonging to the Robotics, Control
and Vision Group (GRVC 3) of the University of Seville. This work could not have been
possible without the aid of my colleagues in this group, their advice and support. Many of
the vehicles that have been used in real experiments have been developed by this group,
such as the ones depicted in Figure 1.6.
The results presented in this thesis have been obtained in the framework of several

national and international projects that involving several partners from both academia and
industry. In particular, most of the results obtained in this thesis have been developed in the
context of the ARCAS project (FP7-2011-287617). This project proposes the development
and experimental validation of the first cooperative free-flying robot system for assembly
and structure construction. The details of the project are given in the next section.

1.7.1 ARCAS project

The ARCAS FP7 European Project [23] is developing a cooperative free-flying robot
system for assembly and structure construction. The ARCAS systemwill use aerial vehicles
3 http:// grvc.us.es

http://grvc.us.es

14 Chapter 1. Introduction

Figure 1.6 From left to right: fixed-wing gliding UAV used in experiments during the
thesis; Megastar fixed-wing UAV; Piper fixed-wing UAV. Also, the on-board
and deployed WSNs are detailed.

(helicopters and quad-rotors) with multi-link manipulators for assembly tasks [24]. The
aerial vehicles carry structure parts that will be assembled at the target destination. An
important part in ARCAS is cooperative assembly planning and safe trajectory generation
to perform the coordinated missions, assuring that neither the aerial vehicles nor the
manipulators or the objects being carried collide with each other (see Figure 1.7).

Figure 1.7 Motivational figure that proposes a task to be fulfilled in the ARCAS project.

ARCAS is providing integrated and consolidated scientific foundations for flying robot
perception, planning and control. In particular, ARCAS is producing a framework for the
design and development of cooperating flying robots for assembly operations.
The integration of these functionalities will pave the way for new applications and

services in aerial and space robotics. The building of platforms for the evacuation of
people in rescue operations, the installation of platforms in uneven terrains for landing of
manned and unmanned VTOL aircrafts, the cooperative inspection and maintenance and
the construction of structures, are some examples of aerial robotics’ potential.
The overview of the proposed architecture in ARCAS project is detailed in Figure 1.8.

The main objectives of the ARCAS project include:

1. New methods for motion control of a free-flying robot with mounted manipulator
in contact with a grasped object as well as for coordinated control of multiple

1.7 Framework 15

Figure 1.8 Basic overview of the proposed architecture that is currently in development in
the ARCAS project.

cooperating flying robots with manipulators in contact with the same object (e.g. for
precise placement or joint manipulation).

2. New flying robot perception methods to model, identify and recognize the scenario
and to be used for the guidance in the assembly operation, including fast generation
of 3D models, aerial 3D SLAM, 3D tracking and cooperative perception.

3. New methods for the cooperative assembly planning and structure construction by
means of multiple flying robots with application to inspection and maintenance
activities.

4. Strategies for operator assistance, including visual and force feedback, in manipula-
tion tasks involving multiple cooperating flying robots.

The project is being implemented by a prestigious Consortium whose Partners have a
sound demonstrated experience in cooperative transportation with aerial robots as well as
in high performance cooperative ground manipulation.
The Consortium includes several European Universities such as University of Naples

(Italy), Technical University of Barcelona (Spain), University of Seville (Spain). Also,
several technical organizations are in the project: Fundación Andaluza para el Desarrollo
Aerospacial (FADA) from Spain which is also the coordinator institution, Deutsches
Zentrum Für Luft – Und Raumfahrt EV (DLR) from Germany, and Centre National de
la Recherche Scientifique (CNRS) from France. Finally, two commercial companies are

16 Chapter 1. Introduction

also in the consortium: Spacetech GMBH (Germany) and Alstom Inspection Robotics
AG (Switzerland).

1.7.2 Other projects

The results of this thesis were also applied to the following projects in this area, to name
few:

• ROBAIR project has been funded by the Spanish R&D Program (DPI2008-03847).
Its main objective was the R&D of new methods and technologies to increase the
safety and reliability in Aerial Robotics. The project included three main topics:
safe and reliable controlled platforms, multi-UAV safe and reliable cooperation, and
integration of the aerial robots with the ground infrastructure.

• ATLANTIDA (Application of Leading Technologies to Unmanned Aerial Vehi-
cles for Research and Development in ATM). With a budget of 28,9 million euro
(44% funded by the Spanish Center for the Technological and Industrial Devel-
opment, CDTI) and 2011 as the time horizon, the ATLANTIDA project tackled
the technological and scientific challenges that needed to be addressed for high
levels of automation to be introduced into the management of complex air spaces.
ATLANTIDA explored an approach for automation in the management of air traffic
seamlessly applicable to any air vehicle operations, including conventional avia-
tion, civil and military UAVs and the futuristic personal air transport systems. A
remarkable aspect of the ATLANTIDA initiative is that it represented the main
international R&D effort in the area of civil UAV operations and the third largest
effort related to ATM, complementing the SESAR and NextGen initiatives.

• CLEAR. The main objective of CLEAR project “Misiones cooperativas de larga
duración empleando robots aéreos” (DPI2011-28937-C02-01) was the R&D of a
system that allows the cooperation among multiple UAVs in order to achieve long
endurance or persistent missions. One of its main objectives was the cooperation
between aerial and ground robots to perform missions of long endurance based on
the integration of autonomous subsystems for battery recharging or refueling.

• EC-SAFEMOBIL. Some of its objectives are the autonomous landing of UAVs
(both rotary and fixed wing) on mobile platforms, the deployment of small UAVs
from manned aircrafts, and the simultaneous tracking of multiple ground targets
with multiple UAVs involving collision detection and avoidance between aircrafts.

• MUAC-IREN is an International Research Exchange Network composed by leading
institutions in UAV technologies from Germany, Spain and Australia. Its main
objectives are:

– Research and advance in technologies that will help to create Long Endurance
Multi-UAV applications in the future, including:

∗ Control algorithms for the extension of the endurance of autonomous
aerial robots or UAVs using wind energy.

1.8 Conclusions 17

∗ Control and estimation algorithms for all-weather UAV operations. This
includes estimation and planning techniques to avoid weather hazards and
advance control techniques to overcome extreme weather conditions.

∗ New fully distributed methods for real-time cooperation of entities, involv-
ing fault adaptive reconfiguration of the trajectories for long endurance
applications.

1.8 Conclusions

The use of UAVs and multi-UAV systems for handling a great variety of tasks autonomously
is becoming widespread nowadays. Despite of their evident advantages due to its ease to
deploy and their capacity of reducing cost in several tasks such as powerlines inspection,
aerial mapping, aerial photography and filming; safety systems are mandatory in order
to ensure the success of their operations. This is even more evident when dealing with
multi-UAV systems. In this case, safety systems such as CDR and CA should be developed
in such a way that the collisions between UAVs or with a UAV and the environment are
eradicated, or at least reduced to a safe minimum accident rate.

Another challenge of autonomous UAV systems is their integration into the commercial
airspace which is ruled by the ATM system. As pointed out in Section 1.2, it could be a
potential application of the systems proposed in this thesis by providing the UAVs with
an ADS-B detector that enables them to be aware of the surrounding air traffic and their
intentions accurately.
In the next chapter, a thorough discussion of the state of the art in UAV and multi-

UAV trajectory planning will be presented. This discussion will justify the selection of
techniques that have been employed to solve the problem of multi-UAV trajectory planning,
CDR and CA throughout the thesis.

2 State of the art in UAV planning

We must be very careful when we give advice to younger people:
sometimes they follow it!

E. W. Dijkstra

In this chapter, the fundamentals of the trajectory planning of one UAV are discussed
and the extensions for multi-UAV planning are detailed. In addition, an exhaustive

study of the algorithms that have been employed to solve the trajectory planning problem
is presented. The most important algorithms are summarized in Table 2.2, highlighting
their distinctive characteristics.

2.1 Introduction

Vehicle Motion Planning (VMP) is a special case of the general Motion Planning Problem
(MPP) that has in the classic Piano Movers Problem (PMP) one of the most characteristic
example. The motion planning problems have been found to be very difficult to solve,
having a strong dependency with the number of degrees of freedoms of the mobile object.
In the case of VMP, its motion is generated by employing the actuators of the vehicle
which are limited in their maximum power and rotation characteristics.

The problem of making a unmanned vehicle autonomous is a non-trivial task that is
usually divided into several subproblems in order to make the problem tractable. A simple
block diagram is shown in Figure 2.1. On the one hand, the trajectory planning problem
focus on generating a continuous path to be followed by the vehicle. In this case, the
obstacles in the environment are assumed as known a priori. This trajectory is then
tracked by a trajectory tracker system that generates the control references (usually speed,
ascending rate and heading angle) to the autopilot system by using a estimation of the state
of the robot which is usually obtained by filtering measures of Inertial Measurement Units
(IMUs) and Global Positioning System (GPS) blocks in outdoors environments. Last, the
autopilot systemwill ensure the stability of the systemwhile following the control reference

19

20 Chapter 2. State of the art in UAV planning

commands. Additionally, real-time collision avoidance system can be added in order to
modify the control inputs of the waypoint tracker when detecting unexpected obstacles
that can be detected by using proximity sensors such as radar, cameras or lasers. These
unexpected obstacles could be added to the description of the obstacles in the environment
in real-time in order to take them into account in future missions.

Figure 2.1 Basic block diagram of an autonomous mobile robot.

Note that the localization problem in an indoor environment is difficult when addressed
by using onboard sensors exclusively. For this reason, localization systems that employ
external sensors such as VICON 1 which precisely estimates the state of the robot with the
aid of measures of multitude infrared cameras are usually installed in the UAV testbeds.
They can also be useful in order to provide ground truth data for other localization systems
to be tested. Finally, a popular and challenging problem which is being addressed by the
robotic community is performing Simultaneous Localization And Mapping (SLAM). In
this case, the robot is not provided with any a priori knowledge of the environment, so it
has to be generated from scratch with the measures from the proximity sensors. Once the
map is generated, the trajectory planning procedures detailed in this chapter can be used
for performing more effective movements. More interestingly, lazy variants that suppose
a free environment could be used. These techniques use replanning for generating new
trajectories whenever a new obstacle is detected. Some techniques based on SLAM could
allow the implementation cheaper localization techniques based on WSN, such as the
proposed in [25], although its precision is much lower when compared to VICON systems.
In this chapter, a review of main trajectory planning methods is presented. These

algorithms solve the problem of trajectory planning of a dynamics-constrained vehicle
through an environment with obstacles. In addition, the problem of finding a trajectory
that minimizes some cost functional is of interest. A general guidance problem is typically
characterized by a two- or three-dimensional problem space, limited information about

1 www.vicon.com

www.vicon.com

2.2 Problem Formulation 21

the environment, on-board sensors with limited range, speed and acceleration constraints,
and uncertainties in vehicle state and sensor data.

2.2 Problem Formulation

In this section, the basic concepts needed to formulate any general trajectory planning
problem are presented. A more detailed description of the problem formulation can be
found in [8]. Let T ∈ R denote the time interval, which may be bounded or unbounded. If
T is bounded, then T = [0,t f], in which 0 is the initial time and t f is the final time. If T is
unbounded, then T = [0,∞). An initial time other than 0 could alternatively be defined
without difficulty, but this will not be done here.

2.2.1 Configuration and State Spaces of a robot and a system of robots

A configuration is a vector of parameters that completely defines the state of a robot in
one instant of time. The dimension of the configuration depends on the characteristics
of the vehicle and the model that is being used to predict its behavior. Most vehicles can
be considered to be rigid bodies in three-dimensional space, and thus its position in the
space can be defined by six numbers: three position coordinates and three orientation
coordinates. However, if their dynamic behavior is being modeled, the first derivative of
each component of this position vector has to be added to the configuration.
On the other hand, manipulator generally have a much larger number of parameters,

because each degree of freedom of the manipulator adds a parameter to the configuration
space. Furthermore, if a mobile the vehicle is equipped with a manipulator, the complete
configuration of the robot has to include both the position of the robot and the state of the
joints of the manipulator. The set of all possible configurations of a vehicle is called the
configuration space or C-space.

It is also convenient to define the state space X as X =C×T . Therefore, the state of the
robot in time t can be represented as x = (q,t), to indicate the configuration q and time t
components of the state vector. Obviously, paths in X are forced to move forward in time.

This thesis discusses about trajectory planning in systems composed by several robots.
In this case, the configuration space of the whole system can be obtained by composing
the configuration space of each robot. Thus, let C1,C2, . . . ,Cn be the configuration spaces
of n individual robots, the configuration space of the whole system can be obtained as
follows: Cmulti =C1×C2× . . .×Cn.

2.2.2 Path Planning Problem Definition

MPP can now be described with the aid of the concepts that have been listed in the previous
section. In particular, the trajectory planning problem can be expressed as obtaining a
continuous, time-monotonic path τ : [0,1]→ X f ree, that unites the initial configuration and
the goal configuration of the system qinit and qgoal , respectively.

The shape of the robot A of, the shapes of separated links or robots: A = A1,A2, . . . ,An.
This shape is usually dependent on the configuration of the robots, so in general A(q).

22 Chapter 2. State of the art in UAV planning

As stated before, the initial instant is usually defined and, without loss of generality, is set
to zero. Thus, xinit = {qinit ,0}. In contrast, the final instant is not usually specified a priori.
So the final state is not totally specified and thus is expressed as a set: Xgoal = {qgoal , tgoal}.

Also, the Obstacle Region O(t) ∈ℜ
3 has to be known a priori in the planning problem.

Note that this region is time dependent. This is necessary in order to model mobile
obstacles. With O(t) we can obtain the collision free states of the system as follows:

Xobs = x ∈ X |A(q)∩O(t) 6= /0 (2.1)
X f ree = X\Xobs (2.2)

Having said that, the inputs and outputs of that are necessary in order to solve a trajectory
planning problem are summarized in Table 2.1.

Table 2.1 Inputs and outputs of the trajectory planning problem.

Inputs Outputs
Geometrical: O(t),A(q) ∈ℜ

3
τ : [0,1]→ X f ree�

Desired configurations: qinit , qgoal τ(0) = xinit and τ(1) ∈ Xgoal

Note that this general formulation does not express any constraints about robot motion.
It means that the model allows infinite acceleration and unbounded speed. The robot
velocity may change instantaneously, but the path through C should always be continuous.

In a typical UAV application, the vehicle operates in three-dimensional space, has two
to four degrees of freedom, and has differential constraints, including limited speed and
maximum acceleration. The resulting problem space has from five to twelve dimensions,
associated with the equations of motion and involving constraints on states and input
variables. It does not exist such an algorithm that provides an exact analytic solution to
this kind of a problem. Indeed, even state of the art approximation algorithms operating on
a three-dimensional subspace of this problem space are difficult to compute in real-time.
Furthermore, several simplifications and sub-cases of the general problem have been
proven to be unsolvable in polynomial time [6]. Approximation algorithms are possible,
and often rely on exact solutions to simplified sub-problems.
Some metrics to measure the performance of these algorithms have been proposed

including completeness, optimality, precision, and computational complexity are some of
them. A motion planning algorithm is considered to be complete if and only if it finds a
path when one exists, and returns a variable stating no path exists when none exists. It is
considered to be optimal when it returns the optimal path with respect to some criterion.
Note that any optimal planner is also complete. The completeness/optimality is also
related to the discretization of the solution space, and means that as the resolution of the
discretization increases, an exact solution is achieved as the discretization approaches the
continuum limit. Precision means the error of approximating the solutions with a family
of curves. Finally, the computational complexity concerns the computational time need
to find a solution path. This metric is also related with the efficiency of the method, but
efficiency is a global metric and it usually concerns some metrics at the same time.

2.2 Problem Formulation 23

2.2.3 Optimal Planning

When solving a trajectory planning problem, there are infinite sets of actions that can make
one UAV move from configuration qinit to the configuration qgoal while avoiding obstacles.
Therefore, it is necessary to design a criteria that will help us to compare the goodness of
two or more paths. There are several criteria that have been used for evaluating generated
paths. One the most simple and most used criteria is the path length because, in general,
we would like to reach the goal configuration by taking the shortest path.

However, there are many more criteria that can be complementary and even opposed to
the shortest path one. These criteria include shortest time, fuel consumption, maximum
clearance and many more. One significant example of criteria that is often used in civil
aviation is the comfort. It can be modeled by adding penalties when some maximum path
angles and or ascending or descending rates are violated.
Furthermore, planning optimal collision-free trajectories for multiple UAV leads to

optimization problems with multiple local minimum in most cases so local optimization
methods as gradient-based techniques are not well suited to solve it. The application of
GA and PSO is an efficient and effective alternative for this problem, since they can find
the global optimum of a function with multiple local optima when properly tuned [26].
In recent years, some algorithms that are capable of optimizing a vector criteria with

several components have arisen. They are usually referred as multi-objective optimization
algorithms. A solution is considered to be Pareto Optimal if no further improvements
can be made to one of the components of the criteria vector without negatively affecting
the other components. This type of optimization algorithms try to estimate the shape of
the Pareto Frontier, which is composed by the set of points that are Pareto Optimal. As
an alternative, the different components of the multi-objective criteria could be mixed
by means of a weighted sum, resulting on a scalar criterion. By optimizing this scalar
objective, one of the Pareto Optimal solutions is obtained [27], but no information about
the shape of the Pareto Frontier is computed. In this thesis, the multi-objective planning is
always approached by this weighted sum approach, as the real multi-objective optimization
is too computationally demanding for real-time computations.

2.2.4 Interfacing the UAV

The set of actions that can be performed by the UAV would depend not only on its physical
characteristics but also on the available interfaces of the autopilot system. The first type of
planners that have been detailed in this section aimed to generate a continuous trajectory
in the configuration space of the robot that have to meet some safety issues. In this thesis,
these kind of planners will be named as continuous planners as they generate a continuous
path that should be tracked by the autopilot.
However, most autopilots are not able to follow an arbitrary path or trajectory in the

configuration space but rather they are capable to follow a small set of flight directives
such as maintain climb rate, orientation, airspeed, and many more. Some efforts have been
carried out in order to standardize these directives for commercial aircrafts. The most
important is the development of the Flight Intent Description Language (FIDL) language
[28] which can be used to interface the some simulators based in the Base of Aircraft

24 Chapter 2. State of the art in UAV planning

DAta (BADA2) dataset. Unfortunately, no standards are available nowadays in regard to
interfacing to UAV autopilots, though some early de facto standards have arisen. The most
common standard that have appeared to date is the Micro Aerial Vehicle communication
protocol (MAVLink3). This protocol offers two sided communications between a Ground
Station and the on-board autopilot. It has been implemented in most available commercial
autopilots that have been designed for both rotary and fixed wing UAVs including PixHawk
and ArduPilot. The main drawback of this protocol is that each autopilot have developed its
own dialect of the main protocol that are usually incompatible. This makes the migration
from one platform to another non-trivial in spite of operating with the same communication
protocol.
A translation layer can be developed in order to describe the continuous trajectory

generated from continuous planners to a set of instructions that can be understood by the
autopilot inboard the UAV. However, this translation usually yields to trajectories that can
significantly differ from the original trajectories. In contrast, the discrete planners have as
outputs the set of instructions that are available on the autopilot. In this thesis, both the
GA planner described in Chapter 3 and the PSO planner in Chapter 4 will generate paths
that can easily be translated to a finite sequence of high level directives that can be loaded
into the UAV autopilot. For this reason, they are considered as discrete planners.

2.2.5 Complexity

It is shown in [29] [30][31] that the general trajectory planning is NP-hard. This means that
the complexity of the path planning problem increases exponentially with the dimension of
the configuration space C. So the main problem is when the dimension of C is unbounded.
In addition, some differential constraints given by the model of the UAV should be

considered to ensure flyable paths. Sampling-based techniques, as opposed to combinato-
rial planning, are usually preferred in order to compute a near optimal solution to these
NP-hard problems. In this thesis, two sampling based planner are proposed in chapters 3
and 4. These planning schemes are convenient when the solution space is hard to model
or unknown a priori because of its dynamic nature.
Next, an overview of the most relevant planning methods that have been proposed

to date is presented. These algorithms are classified in six main groups: graph search
algorithms, exact algorithms, probabilistic algorithms, optimal probabilistic algorithms,
reactive algorithms, optimal algorithms and OC algorithms.

2.3 Graph search method

Historically, the first path planning algorithms consisted on algorithms that found a path
to connect two nodes in a graph. In these early algorithms, it was assumed that a graph
G =< G,V > that unites points in the configuration space in such a way that G ∈C f ree
was either introduced by the designer or obtained by discretization. That is, dividing the
configuration space into cells that could be or not collision free.

2 https://www.eurocontrol.int/services/bada
3 http://qgroundcontrol.org/mavlink/start

2.3 Graph search method 25

The first developed algorithm that finds whether two vertices in a graph G =<V,E >
are or not connected is the Depth First Search (DFS) algorithm. The main idea was to
explore one of the paths of the graph until the solution was found, an already visited node
is found or no further paths exist. In such case, a backtracking process until the first node
with unexplored paths is carried out exploring another path of this node. Another popular
algorithm to find connectivity between graphs is the Breadth First Search algorithm (BFS).
This algorithm instead of greedily following a path like DFS, explores first all the nodes
connected to the starting node, then reproduces this procedure in each of the children
nodes until the desired node is found or all nodes connected to the starting node have been
visited. BFS has two main advantages over the DFS: it can obtain the goal node in infinite
graphs and in addition it returns the path with lowest number of edges. However, it is much
more memory consuming than DFS. Note that in path planning problems, BFS algorithm
returns the path with minimum length if all the edges have equal length.
Djikstra algorithm [32] is the first algorithm that efficiently solved the problem of

translating from one cell to another with lowest cost in a graph with weighted edges. Thus,
it can be used for obtaining the lowest cost path that connects the starting and goal nodes.
It can be considered an extension of the BFS algorithm to weighted graphs (i.e. the edges
of the graph have associated a cost). This algorithm will explore first the nodes with lowest
distance to the starting node, updating the cost of the successor of the current node.

One of the main problems of Dijkstra algorithm is that it does not take into account the
position of the goal in order to explore the graph. This fact can yield to unnecessary node
exploring in most situations. In order to overcome it, it was found that some heuristics
regarding to the distance to the goal node could be introduced in the algorithm in order
make the exploration of the graph more directed to the goal node generating the greedy
algorithms explore first the nodes which are closer to the goal node. These considerations
would be mixed in the A* algorithm [33] in which the nodes are first explored not only
taking into account the distance to the starting node but also the estimated distance to the
goal node. It has been demonstrated that if the heuristic function fulfills some requirements,
the A* algorithm returns the optimal path between the starting and goal nodes. This kind
of algorithms are often named as best first search algorithms.
Whenever these algorithms are applied, if not more details are given, the description

of the environment is assumed to be given by means of a matrix (which can be two- or
three-dimensional) where each cell can be blocked or not. Additionally, it can contain
a certain number that indicates how convenient is to travel the cell. These matrices are
usually called cell-maps. They are usually obtained by performing a discretization of the
space with a given resolution. Obviously, this kind of algorithms are not complete in a
strict sense: depending on the resolution of the matrix it will find or not existing paths
from a start to a goal. The classical matrix representation is also expensive in terms of
memory allocation. However, some methods such as quad and oct-trees [34] can be a
solution for generating more memory-efficient cell-maps.

A* algorithm is the one that is most often used in classical planning and has yield many
variations. In fact, it has been adapted to handle relevant problems that where not taken
into account in the original procedure. Next, the most important algorithms that have been
developed taking A* as basis are listed as well as their motivation:

26 Chapter 2. State of the art in UAV planning

• More directed search. Some works [35] demonstrate that weighting more the
heuristic function than the distance to the starting node results on great run-time
benefits while obtaining paths not noticeably longer.

• Unknown terrain. The above algorithms assume that perfect knowledge of the
environment is given by means of a graph or a cell matrix. However, this complete
knowledge is whether difficult to obtain or can change over the time. One possible
approach is to distinguish between global and local planners. Global planners will
give a complete path between starting and goal nodes while local planners will avoid
collision with unexpected obstacles and could invoke again the global planner if the
original path is completely blocked [36]. The development of D* algorithm [37]
proposes to fuse the two planners into a common procedure and thus simplifying
the planning process. This idea has proved to be successful and some variants such
as Focused D* [38] and D* Lite [39] (it is important to note that is not developed
from D* but from A*) are still being used in present days.

• Any Angle approaches. The main drawback of A* algorithm when used in cell-
maps is that it returns a path which is not smooth and their directions are restricted
to the directions of the cell map. This fact can make the generated path to be
not realistic and difficult to follow. A typical solution consist in applying a post-
processing algorithm to the generated path where some smoothing techniques can
be applied; but the procedure can fail and no guaranties of finding optimal smoothed
paths are given. In order to overcome this, any angle approaches have been proposed
like Theta* [40], its lazy variant [41] and Block A* [42] which can give paths whose
headings are not defined by the directions of the cells and can be smoother more
easily. In addition, an adaptation of Theta* algorithm to handle unknown terrain is
proposed with the incremental Phi* planner [43].

2.4 On obtaining the graph representation

In Section 2.3 it was assumed that the graph that unites collision free configurations of the
robot is given in advance. In addition, a naive implementation for obtaining this graph is
given by means of a cell map. In this case, the space is discretized in cells and each cell
can either be free or have the presence of obstacles.
However, obtaining and storing these cell maps in 3D environments and in large areas

can be time and memory consuming. In addition, the time required to perform an A*
search grows with the number of nodes expanded and with the branching factor (average
number of successors per node) of the graph. Therefore, a trade-off decision between the
resolution of the grid and the completeness of the algorithm is needed.

In this section, other methods for generating the graph that describes the collision-free
configuration space are described. First, the exact methods that give compact represen-
tation of a configuration space with the presence of polygonal obstacles are detailed.
These techniques present some drawbacks that yielded to the development of probabilistic
methods. Last, an extension of the probabilistic methods for optimal planning is given.

2.4 On obtaining the graph representation 27

2.4.1 Exact graph generation methods

Alongside with the naive grid discretization method there are some methods for obtaining
a graph in configuration spaces with polygonal obstacles. These methods are listed below:

• Exact Cell Decomposition Methods (ECD). In these methods the common idea is
to divide the free space into areas which are called cells. The centroid of each cell,
as well as the middle point of each division, are inserted as nodes in the graph and
then nodes belonging to neighboring nodes are connected. These methods include
vertical and horizontal cell decomposition.

• Visibility Graph (VG). This method can be used for finding shortest path in a
configuration space with polygonal obstacles. In this case, each vertex of each
obstacle is added to the graph and connected with other nodes if they have line of
sight.

• Voronoi Diagrams (VD). The VG method can find the shortest path but its main
drawback is that it can make the robot to move close to the obstacles. One technique
to avoid this situation is to artificially expand the obstacles to a desired clearance
(minimum distance to the obstacles), taking into account the shape of the robot or a
safety area that wraps the robot. If maximum clearance paths are necessary, they
can be found by generating the VD of the obstacles and adding to the graph the
points where three or more obstacles are at the same distance. It can be of great use
if only uncertain knowledge of the environment is available. The main drawback of
the method based in VD is that staying as far as possible from obstacles can result
on the generation of too conservative paths.

Note that the above algorithms are formulated in the Cartesian space and can be solved
easily in a 2D Cartesian space. However, the 3-dimensional version of the Euclidean
shortest path problem is much harder. In this case, the graph shortest path may not
transverse the edges of the polyhedral obstacles but rather any point in the edges of the
obstacles. This problem has been demonstrated to be NP-hard [6].
In addition, in some cases the graph is represented in the Configuration space, i.e.

taking into account not the position in the space but the configuration of the system. For
example, a configuration of a non-circular robot moving in a 2D space can be defined by
three coordinates: (x,y,θ), where θ represents the orientation of the robot. Hence, the
configuration space of this type of robots is of dimension three. The things become much
harder when planning with robots moving in a 3D space. In this case the configuration can
be determined by the vector (x,y,z,φ ,θ ,ψ), where φ , θ and ψ represent zyx-Euler angles
which are called roll, pitch and yaw respectively (see Figure 2.2). Note that extending this
to 3-dimensional multi-robot motion planning yields to systems with configuration spaces
with tenths of dimensions in which the above listed exact methods cannot be applied.

2.4.2 Probabilistic Roadmaps

In order to overcome the limitations of exact methods in systems with high dimensional
Configuration Spaces, probabilistic methods for generating the graph that describes C f ree

28 Chapter 2. State of the art in UAV planning

Figure 2.2 zyx-Euler angles for a robot moving in a 3-dimensional space.

where introduced in [44]. The basic method is called PRM and is divided in two steps:
the graph generation step and the query step.
The first stage is the graph generation step, in which the graph G is computed by

randomly generating nodes inC f ree and connecting them with close enough existing nodes
in G. In this case, the nodes are not generated taking into account the geometry of the
problem. Instead of this, they are generated randomly. The only condition that the nodes
and edges must accomplish is to be collision-free. So the problem is now divided into
two blocks: the graph generator block which do not have any geometric description of the
environment and the collision detector block that reports to the graph generator whether a
configuration or a path between two configurations is or not collision-free.

The second stage is the query step. In this step, the initial and goal configurations (qinit
and qgoal) of the problem to be solved are added and connected to G. Then, the shortest
path is obtaining by applying one of the methods described in Section 2.3 to G. This graph
G is generated once and then each time a path planning problem needs to be solved, the
graph is queried in order to generate a collision-free path. For this reason, this algorithm
is a multiple query algorithm. It is important to note that this query step can be performed
in tenths of seconds or seconds depending on the size of G, while the computation of G is
much more computationally demanding. This show the convenience of multiple query
algorithms if the environment is static and known in advance.
This approach has been modified in order to reduce the complexity of the generated

graph in the Visibility-based Probabilistic Roadmaps (v-PRM)[45]. Gaussian sampling
has been proposed in order to encourage connectivity in scenarios with narrow corridors
[46]. Also, a lazy-PRM approach in which edge collision checking is delayed until the
query step is presented in [47]. This work shows interesting runtime improvements when
performing collision checks is computationally expensive.

2.4.3 Rapidly-exploring Random Trees

PRM performs an exhaustive exploration of the configuration space in order to generate
a graph G that brings a detailed representation of this space. This graph will be used
in the query phase each time a path planning problem is being solved. This indicates
that PRM is a multiple query algorithm. In contrast, simple query algorithms generate a

2.4 On obtaining the graph representation 29

graph starting from the starting configuration of the problem and the exploration is usually
stopped when the goal configuration is reached or is sufficiently close. This graph has
to be generated from scratch whenever a path planning problem is formulated and will
therefore be discarded when the problem is solved.

Rapidly-exploring Random Trees (RRT) [48] is a probabilistic algorithm that generates
a tree shaped graph G ∈C f ree. This tree will rapidly cover the configuration space until the
goal configuration is sufficiently close from the tree. In contrast to PRM based planners,
this tree has to be generated from scratch each time a problem needs to be solved. Therefore,
it is a simple query path planner.
The basic RRT algorithm starts a tree by creating the root in qinit and extends the tree

by generating random samples (qrand) of the configuration space and by making the tree
extend towards qrand . This extend procedure is usually done by interpolation. If the path
between qnear and qnew is collision-free, this node is added to the tree. This procedure is
repeated until the distance between the new node and final state qgoal goes below dmin.
Like PRM algorithms, RRT is also claimed to be probabilistically complete: the prob-

ability that the generated tree will be closer than a minimum distance of the goal node
with probability that converges to zero with increasing time [49]. RRT is also capable to
generate paths that meet kinodynamic constraints: in this case a new node will be gener-
ated by integrating a model of the vehicle for a determinate amount of time ∆t , instead of
performing interpolation. The control inputs will usually be generated randomly; however,
it is possible to select randomly several control inputs, selecting the one that generates the
nearest node to qrand . Planning in the Control Space of the robot (CS-RRT) requires more
computational power than the basic RRT but it yields to feasible paths in vehicles with
kinodynamic constraints.
Several variations of the original RRT have been developed. In goal-biased RRT the

goal is selected as the qrand with some probability, encouraging the growth of the tree
towards the goal. Bidirectional RRT (bi-RRT) keeps the same principle as RRT, but it
starts one extra tree from the goal configuration and then attempts to unite the trees. A
procedure to encourage the connection between trees has been proposed [50].

2.4.4 Optimal probabilistic methods

The main problem of the basic probabilistic methods such as PRM and RRT is that even
though they generate paths that unite qinit and qgoal without collisions, no considerations
regarding the quality of the path are introduced. Thus, they have been found useful when
generating paths in problems with high dimensionality and in cluttered environments. But
their lack of consideration regarding to the quality of the path was evident when they
were applied to mobile robot path planning. Their generated paths yielded to random like
motions that were not properly optimized and were difficult to forecast.

Transition based RRT (t-RRT) [51] was proposed in order to generate paths with better
quality when planning on Configuration-spaces with an associated Costmap. Its strategy
is to sample first in the zones of C f ree that have lowest cost (i.e. valleys of the cost
function) and gradually broaden the sampling region if until a solution is found. This
approach has been tested to obtain paths with more quality than the original RRT procedure.

30 Chapter 2. State of the art in UAV planning

However, once the path is obtained, no further improvements on it are performed, so optimal
convergence is not assured.
Optimal convergence of a probabilistic planner was first proven in [52], where RRT*

was proposed. This planner is found to be both probabilistic complete and asymptotically
optimal. The basic RRT* algorithms uses interpolation in the extend procedure. The use
of this planner in Control Space is not straightforward. However, one approach obtained
by linearizing the system in the surroundings of qnew can be found in [53].

2.4.5 Parallelization

In recent years, the multi-core capabilities of new processors have encouraged the paral-
lelization of the path planning techniques. The most interesting procedure is found by
generating more than one tree at the same time; that is, generating a forest of trees between
qinit and qgoal . The approach proposed in [54] claims to achieve super-linear speedup to
the original RRT* algorithm, i.e. the profit of using multiple cores is greater than the
number of cores used. It is achieved by sharing the best paths between the different trees,
focusing the sampling to the interesting regions when a valid path has been found and
performing tree pruning according to the length of the best path.

2.5 Reactive Methods

These methods share in common that even though they have been designed at first in order
to solve the trajectory planning problem, they have been applied with more successful
results in order to solve the reactive CA problem. This fact can be explained for two main
reasons. First, they both are likely to fall into a local minimum, which could prevent the
algorithm to find a path from qinit to qgoal . On the other hand, they are very fast to compute
and therefore they can be integrated in a reactive CA block.

2.5.1 Velocity Obstacles

They map the obstacles in the environment into the velocity space of the robot. For this
reason, they are classified as first order trajectory planners. In contrast, the planners
detailed in the previous section are zero order planners. The main advantages of the
formulation in the velocity space is that it allows the method to easily take into account
dynamic and kinematic constraints in the motion of the vehicle [55].
The main concept of these methods is the velocity obstacle (VO) that one obstacle in

the environment or another vehicle infers in the velocity space of the vehicle. This velocity
obstacle is defined as the set of velocities of the vehicle that would lead to a collision with
the other object in a time horizon (τ), assuming that this object maintains its velocity.
Even though this technique was originally introduced as a trajectory planning method,

it has recently become more popular in its collision avoidance application for multi-
vehicle systems due to its low computational requirements, its capability of easily take
into consideration moving obstacles and constrains in the motion of the vehicles. In
particular, two methods for coordinating several moving agents had arisen in the late
2000’s: the Optimal Reciprocal Collision Avoidance (ORCA) [56] and the ClearPath [57].

2.5 Reactive Methods 31

The main idea is to perform the calculation of the velocity obstacles in a neighboring
area surrounding the vehicle at a high frequency (usually tenths of Hz) and to share
the responsibility of avoiding a potential collision equally when cooperating robots are
considered. Additionally, more developed methods based on this algorithms can be found
in the literature. In [58] the ClearPath algorithm is used while taking into account bounded
localization uncertainties. In [59] the ORCA algorithm is adapted taking into account
an explicit model the non-holonomic constraints of a UGV. Moreover, [60] considers
non-instantaneous changes in the velocity of the vehicle, modifying the VO to take into
account this fact.

2.5.2 Potential Field Methods

Multitude of methods based on Potential Fields (PFs) applied to path planning can be
found in the Literature. They have reached their peak of popularity from the late 80s
until the early 00s. The main idea is to introduce artificial forces in the vehicle which are
repulsive when generated by obstacles and attractive when generated by the goal to be
reached.

There exist a lot of possible potential functions which are of interest in order to generate
the artificial field. These can be highlighted:

• Functions that accomplish the Laplace equation: ∆ f = 0. These are the most
common that can be found in the Literature.

• Generalized potential functions. In this case, the potential is expressed as a function
of not only the position of the robot but also of its velocity. For this reason they can
also be classified as first order planners.

• Navigation functions. The concept of navigation function is introduced in [72] in
order to solve the problem of local minima. Basically a navigation function is an
artificial potential function that meets the following requirements:

– Is smooth
– Polar: Has a unique minimum on qgoal .
– Admissible: is uniformly maximal in the boundary of C

– Is a Morse function: its critical points are not degenerate.

These methods have been applied to UAV guidance in [73] in which PFs are used to
improve the WLAN communications. Also, a method for formation control is proposed in
[74].
However the methods based on this approach have found to be prone to present non

desired behaviors in practice, including trap situation due to the presence local minima in
the potential function, failure to found a passage between closely spaced obstacles and
most importantly oscillations in the presence of obstacles and in narrow passages as stated
in [75]. The local minima problem can be solved by several techniques such as carefully
designing a navigation function, changing to random walk when a trap situation is found
[76], and construct a complex navigation function which is tuned by using Evolutionary
Algorithms (EAs) [77]. In contrast, the oscillatory behavior in narrow corridors have not
been solved, discouraging the use of this technique in cluttered environments.

32 Chapter 2. State of the art in UAV planning

2.6 Optimal Methods

As seen in Section 2.1, the problem of robot path planning for multiple vehicles is NP-Hard.
This implies that no exact algorithm with polynomial complexity can be found to solve the
problem. EAs and swarm intelligence algorithms can return a quasi-optimal solution to
these problems. In this section, the state of the art of the application of these algorithms
to solve the path planning problem is discussed. On the other, the problem could also be
discretized and then modeled as Mixed Integer Linear Programming (MILP), QP or NLP
problems.

2.6.1 Evolutionary Optimization Applied to Path Planning

EAs include a huge set of general purpose optimization algorithms that are based on the
evolution theory of the species that was first proposed in [61]. This set includes Genetic
Algorithms (GA), Genetic Programming (GP), Evolutionary Programming and many
more.
Some effort on developing genetic path planning algorithms has already been carried

out. One of the first approaches to the problem, as well as an almost mandatory reference
book, can be found in [26]. In [62], the convenience of the GA optimization to solve the
path planning problem is deeply discussed. However, only simple results on discretized
2D space with no experimental results are presented. Besides, the computational power
available in those days was not enough to make it possible to develop a planner with
reasonable running time. In [63] a novel 2D path planner is presented. The aim of this
approach is to generate a continuous path in the search space that will be obtained bymixing
sinusoidal and semi-sinusoidal paths. However, no realistic simulations nor experimental
work are presented in the paper. Yet another planner is presented in [64] with the addition
of a post processing step that smooths the path with bezier curves. However, no extension
to 3D trajectories is shown in the paper and no relevant simulation studies nor experiments
are given.
Finally, several mixed approach to GA-path planning can be found in the literature.

In [65] fuzzy logic is used in the representation of the genome. Also, some indirect
approaches can be found. For example, in [62] it is proposed to use the GA in order to
tune the parameters of a planner based on Artificial Fields.

2.6.2 Swarm Optimization Applied to Path Planning

Swarm intelligence algorithms include a huge set of general purpose optimization algo-
rithms that are inspired in the behavior of natural swarms such as ants, birds, bees and
many more. This set includes PSO, Ant Colony Optimization (ACO), Cuckoo Search
Algorithm and Artificial Bee Colony amongst other. All of these algorithms share in
common that are biologically inspired and that they have found to be able to solve complex
global optimization problems.
Methods based on ACO algorithms have been proposed [66]. In [67], the application

of a game theory approach to airborne conflict resolution is presented. These techniques
present a disadvantage: they are not well suited for applications that require a high level of
scalability for their application in systems of many UAVs.

2.7 Optimal Control Methods 33

On the other hand, PSO application to path planning algorithm is still underdeveloped.
An application for space vehicles path planning is presented in [68]. In addition, some
efforts a planner with efficient re-planning capabilities is presented in [69] and applied
to mobile robots in dynamic environments. However this approach is only shown in
simulation and no significant studies about its optimality and safety are given. One mixed
approach that uses PSO to optimize the graph generation of a standard PRM algorithm can
be found in [70]. Finally, Multi-vehicle applications for ATM conflict resolution [11] and
UAV trajectory planning [71] take advantage of the anytime properties of the evolutionary
algorithms.

2.6.3 Linear and non-linear Programming methods

The conflict detection and resolution problem can be modeled as a MILP, QP or NLP.
These problems consist in finding the minimum or maximum of a objective function
(linear, quadratic or non-linear) which variables are linearly constrained. Usually both
position and velocity of the vehicles are taken into consideration; and the most common
cost function will penalize the longest trajectories and the trajectories that are less similar
with respect with the originally planned in the deconfliction problem.

A method based on MILP is presented in [78]. It resolves the conflict by changing
speed to a large number of aerial vehicles subject to velocity change constraints, but some
conflicts cannot be solved. Other method resolves pairwise conflicts [79] but it does not
consider more than two UAVs. More methods based on MILP to avoid collisions are
presented in [80] and [81]. The method for multiple-UAV conflict avoidance proposed in
[82] assumes that UAVs fly at constant altitude with varying velocities and that conflicts are
resolved in the horizontal plane using heading change, velocity change, or a combination
of both maneuvers.

2.7 Optimal Control Methods

The goal of OC theory is to determine the control input that will cause a system to achieve
the control objectives, satisfying the constraints, and at the same time optimize some
performance criterion. The trajectory planning problem is in general solved following
an open loop terminal control problem. This strategy allows all the constraints acting
on the dynamical system, including the dynamic constraints, to be taken into account
in such a way that the resulting trajectory is admissible. However this problem has an
infinite number of solutions. To eliminate this redundancy OC techniques can be used to
select only one of them, the trajectory that optimize a given criterion. Once an admissible
trajectory or the optimal one has been found, a closed loop tracking control strategy is in
general used to follow it. However, it is very difficult to solve analytically OC problems
even for the simplest cases. So numerical methods should be employed.
There are three main approaches to numerically solve continuous time OC problems:

1. Dynamic Programming (DP) methods: The optimality criteria in continuous time
is based on the Hamilton-Jacobi-Belman partial differential equation [83].

34 Chapter 2. State of the art in UAV planning

2. Indirect Methods: The fundamental characteristic is that they explicitly rely on
the necessary conditions of optimality that can be derived from the Pontryagin’s
Maximum Principle [84]. Bryson and Ho [85] provide a thorough and comprehensive
overview of necessary conditions for different types of unconstrained and constrained
OC problems. Betts, in [86] notes that indirect shooting is best used when the
dynamics are benign due to this high initial condition sensitivity. An example of
benign dynamics is a low-thrust orbit trajectory where the states evolve slowly over a
long time period. Finally, the indirect shooting method requires a good initial guess
which can be difficult to obtain.

3. Direct Methods: They can be applied without deriving the necessary condition
of optimality. Direct methods are based on a finite dimensional parameterization
of the infinite dimensional problem. The finite dimensional problem is typically
modeled as a NLP problem. NLP problems can be solved to local optimality relying
on the so called Karush-Kuhn-Tucker conditions, which give first-order conditions
of optimality. These conditions were first derived by Karush in 1939 [87], and some
years later, in 1951, independently by Kuhn and Tucker [88].

• Direct Shooting: The direct shooting method integrates the trajectory during
the optimization. The controls are piecewise between each point and can be
piecewise constant, piecewise linear, etc. The integration is performed by using
the piecewise control and the constraints are then evaluated. Based on some
function of the constraints, the initial conditions are adjusted and the process
iterates until convergence [86]. A problem with direct shooting is the sensitivity
of the final state to minute changes in the initial state. In order to overcome
this, the integration can be restarted at intermediate points, thus breaking the
trajectory into smaller segments to which the direct shooting method can be
more easily applied successfully. Direct shooting has been widely used and was
originally developed for military space applications [86], and general trajectory
optimization [89].

• Direct Collocation: Direct collocation was introduced by Dickmanns [90] as a
general method for solving OC problems. Direct collocation differs slightly. It
similarly discretizes the state trajectory into a series of points and approximates
the segments between the points with polynomials. However, the difference
between the first derivative of the interpolating polynomial at the midpoint of
a segment and the first derivative calculated from the equations of motion at
the segment midpoint is used as the defect. If this defect approaches zero, the
interpolating polynomials are ensured to be a good approximation of the actual
states. Later papers focus on trajectory planning for unmanned vehicles. In
[91] is present a problem of multiple UAVs with different time to arrival. In
[92] a path planning method for camouflage application is presented. And in
[93] , an optimal trajectory planning method for a guided projectile is presented
considering 4 phases of flight.

• Pseudospectral Methods: Pseudospectral methods are a class of direct meth-
ods that discretize the states and controls of a trajectory optimization problem

2.8 Conclusions 35

with unevenly spaced nodes. High-order (order equal to the number of nodes)
polynomials of the Lagrange interpolating form are used to approximate the
states and controls over the interval of interest. These methods offer increased
accuracy with fewer nodes compared to direct methods due to the uneven dis-
cretization scheme. Razzaghi and Elnagar [94] were among the first to apply
these methods to control of dynamic systems. Later papers present optimal
trajectory planning applications like in [95] in which a method based on a
Legendre-Gauss-Lobatto (LGL) distribution of points is presented using UAVs
and UGVs. As well as in [96] it is proposed another LGL implementation
focus on optimal trajectories planning for an Eco-Driving System for automated
vehicle. In [97] is presented a trajectory planning for autonomous landing for
multiple UAVs.

2.8 Conclusions

In this chapter, the basic concepts regarding UAV and multi-UAV trajectory planning have
been presented. It is shown that is a very complex problem NP-hard so exact methods to
solve it can be computationally prohibitive with increasing dimensionality of the problem.
For this reason evolutionary, swarm intelligence and probabilistic methods are proposed
in this thesis in Chapters 3, 4 and 6, respectively; arise as valid and convenient options for
trajectory planning in systems involving multiple UAVs.

Another key concept that has been introduced in this chapter is the classification of the
planners into continuous and discrete planners. Continuous planners generate a continuous
trajectory in the C-space of the vehicles while discrete planners generate a finite sequence
of high level commands that will be executed by the autopilot onboard the UAV.

Also, a deep study of the state of the art of trajectory planning available in the literature
has been performed, taking special emphasis in the methods related to the ones proposed in
this thesis and also other relevant methods such as OC based methods and PFs. Table 2.2
presents the most relevant features of the most relevant methods that have been described
throughout the chapter.
The next chapter will propose several trajectory planner based on GA which can be

classified as a tactical discrete planner. It will generate a flight plan with basic directives
that can be directly sent to a standard autopilot in order to find collision-free trajectories
of one UAV in the presence of static and dynamic obstacles and coordinate more than one
UAV in the presence of obstacles. Also, an uncertainty analysis will be carried out.

Ta
bl

e
2.

2
Su

m
m
ar
y
of

th
e
m
ai
n
ch
ar
ac
te
ris

tic
of

th
e
m
os
tr
el
ev
an
tt
yp
e
of

tra
je
ct
or
y
pl
an
ne
rs
.

Ty
pe

M
et
ho
d

Co
m
pl
et
e

O
pt
im

al
Co

nt
in
uo
us

D
im

en
sio

n
Bu

rd
en

Re
so
ur
ce

O
rd
er

M
ul
ti-
UA

V
Q
ue
ry

Classical
A
*

Re
so
lu
tio

n
Ye

s
N
o1

2,
3

Lo
w

H
ig
h

Ze
ro

N
o

M
ul
t.

EC
D

Ye
s

N
o

Ye
s

2,
3

Lo
w

Lo
w

Ze
ro

N
o

M
ul
t.

Probabilistic

PR
M

Pr
ob
.

N
o

Ye
s

H
ig
h

H
ig
h

H
ig
h

Ze
ro

Ye
s

M
ul
t.

RR
T

Pr
ob
.

N
o

Ye
s

H
ig
h

H
ig
h

M
ed
iu
m

Ze
ro

Ye
s

Si
ng
le

RR
T*

Pr
ob
.

A
sy
m
.

Ye
s

H
ig
h

H
ig
h

M
ed
iu
m

Ze
ro

Ye
s

Si
ng
le

Optimal

G
A

Pr
ob
.

A
sy
m
.2

N
o

H
ig
h

H
ig
h

Ze
ro

Ye
s

Si
ng
le

PS
O

Pr
ob
.

A
sy
m
.2

N
o

M
ed
iu
m
-H

ig
h

H
ig
h

H
ig
h

Ze
ro

Ye
s

Si
ng
le

Reactive

VO
Ye

s
Ye

s
Ye

s
2,
3

Lo
w

Lo
w

O
ne

N
o

Si
ng
le

PF
N
o

Lo
ca
l

Ye
s

2,
3

Lo
w

Lo
w

Ze
ro

3
Ye

s
M
ul
t.

OC

D
P

Ye
s

Ye
s

Ye
s

2,
3

M
ed
iu
m

M
ed
iu
m

Ze
ro

N
o

Si
ng
le

In
di
re
ct

Ye
s

Lo
ca
l

Ye
s

2,
3

M
ed
iu
m

M
ed
iu
m

Ze
ro

N
o

Si
ng
le

D
ire

ct
Ye

s
Lo

ca
l

Ye
s

M
ed
iu
m

H
ig
h

H
ig
h

Ze
ro

Ye
s

Si
ng
le

1
Th

e
A
*
al
go

rit
hm

is
co
ns
id
er
ed

as
a
di
sc
re
te
al
go

rit
hm

sin
ce

th
e
m
os
tc
om

m
on

re
pr
es
en
ta
tio

n
fo
rt
he

sta
te
sp
ac
e
is
ba
se
d
on

a
gr
id
.

2
Th

e
ev
ol
ut
io
na
ry

al
go

rit
hm

ss
uc
h
as

G
A
an
d
PS

O
ar
e
th
e
on

ly
ca
pa
bl
e
of

pe
rfo

rm
in
g
m
ul
ti-
ob

je
ct
iv
e
op

tim
iz
at
io
n
an
d
th
us

es
tim

at
in
g
th
e
sh
ap
e
of

th
e
Pa
re
to

Fr
on

tt
ha
t

co
nt
ai
ns

th
e
se
to

fP
ar
et
o-
op

tim
al
so
lu
tio

ns
.

3
G
en
er
al
iz
ed

Po
te
nt
ia
lF

ie
ld

m
et
ho

ds
al
so

co
ns
id
er

th
e
ve
lo
ci
ty

of
th
e
ro
bo

ts.
Th

er
ef
or
e,
th
ey

ca
n
al
so

be
co
ns
id
er
ed

as
fir
st-
or
de
rp

la
nn

er
s

2.8 Conclusions 37

3 Evolutionary multi-UAV planning

This survival of the fittest, which I have here sought to express in
mechanical terms, is that which Mr Darwin has called ’natural
selection’, or the preservation of favoured races in the struggle
for life.

H. Spencer, The Principles of Biology (1864).

In this chapter, evolutionary algorithms are applied in order to solve the discrete path
planning problem in order to be applied as a tactical CDR module.

First, a brief introduction to GA an their uses can be found in Section 3.1. Then, a
non-collaborative discrete quasi-optimal planner based on GA is designed and tested in
simulation in Section 3.2. This algorithm is non-collaborative as the other UAVs in the
system are considered as static obstacles. Therefore, a new trajectory is only computed
for one controlled UAV. Section 3.3 presents an algorithm that takes into account the
uncertainties related to the prediction of future trajectories. They should be taken into
account in outdoor experiments specially.

Later, GA are also applied to solve the collaborative case in which a trajectory is
computed for each UAV involved in a conflict. Furthermore, a novel technique for bench-
marking multi-UAV algorithms is then presented. This technique is then applied in Section
3.4.2 in order to demonstrate the effectivity and reliability of the proposed algorithms.

Several experiments are presented in Section 3.5. In these experiments the collaborative
GA planner has been successfully applied to multi-UAV with the presence of up to 3 UAVs.
Finally, Section 3.6 presents the conclusions obtained in this chapter. They include the
lessons learned when implementing the planners and some future steps to be carried out
in this thesis.

39

40 Chapter 3. Evolutionary multi-UAV planning

3.1 Introduction

Evolutionary algorithms include a huge set of general purpose optimization algorithms.
This set includes GA, GP, Evolutionary Programming amongst others. All of these
algorithms share in common that are biologically inspired, they have found to solve
complex global optimization problems by using a strategy that resembles one approach
found in the nature such as evolution and natural selection.
GA is a global optimization technique that, under the proper conditions, is able to

converge to the global optimal of a criteria function under arbitrary constraints [26].
This algorithm has been widely used for solving complex optimization problems such
as computer-automated design, control engineering, training artificial neural networks,
vehicle routing problem; to name a few.

The proposed approach in this chapter is to generate a sequence of waypoints (WPs) to
be visited for each UAV involved in a conflict situation in such a way that the generated
plans are safe, i.e. no collisions can be produced during the execution of the plans.

3.2 Non-collaborative Genetic Algorithm Path Planner

In this section, the collision-free path planning for an UAV entering an airspace with other
UAVs and static obstacles or forbidden regions is considered. These objects can be a threat
to the UAV so a technique that ensures a minimum separation between the UAV and them
is necessary. The problem to solve is to make one UAVmove from one initial configuration
q0 to another configuration qG. The trajectories of each other UAV are assumed as known
and static. That is, the trajectory will not change over time. This situation is inspired in
a usual ATC situation which is found when an aircraft is going to enter in an ATC area
which already has air traffic whose trajectories have been already contracted with the ATC
and thus should not be changed.

Some assumptions are introduced in order to make the problem more tractable. First, the
proposed algorithm has been designed to act as a discrete planner. Therefore, the solution
is obtained by adding Intermediate Waypoints (IWs) to the initial flight plan. Second, it
is also assumed that velocity changes are not allowed, so the UAVs in the system travel
at cruise speed in the whole conflict resolution maneuver. Last, altitude level changes
are neither allowed, resulting in planar motion. This is a common restriction in air traffic
models, as each aircraft is assigned to fly at a given FL (see Section 1.2). Also, in UAV
problems, altitude is often determined by mission constraints, such as sensor resolution or
radar visibility, resulting in a 2-D guidance problem only.

Figure 3.1 represents a basic GA flow diagram. It starts by generating a random popula-
tion of individuals. Then, these individuals are sexually combined and mutated in order to
create a new generation of individuals. The individuals generated from one generation
are usually called offspring. Next, a part of the individuals of the last generation and its
offspring are selected so the population is reduced to its original size. This procedure of
generating new population and selecting the best individuals is repeated until some final
condition, such as reaching a given number of generations, is met.

3.2 Non-collaborative Genetic Algorithm Path Planner 41

Figure 3.1 Basic flow diagram of GA.

Each individual of the genetic algorithm represents a possible flight plan that could
be flown by the UAV. The staring and goal points of the plan are the same for all the
population, so they are not coded in the genome data. So only the desired number of IWs
are specified in the genome. Let us consider one UAV that begins at position (0,0,1) and
has to go to (5,0,1) and two IWs. For simplicity sake, let us only allow lateral changes
in the path are allowed, so level changes and speed changes are not allowed. In this case,
each individual will be represented with a vector v ∈ℜ

4. For example, let A = (1,1,3.5,2)
and B = (1.5,1,2.5,−1) be two individuals, then we can represent its related flight plan
as in figure 3.2.

In this section, we will refer to the complete information of each individual as its genome.
A minimal part of information of the genome, in this case each component of the vector,
is referred as a gene. The number of genes a genome is composed of is called genome
length and is represented with L.

In the following sections each stage of the algorithm is explained in more details.

42 Chapter 3. Evolutionary multi-UAV planning

0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

X(m)

Y
(
m
)

Figure 3.2 Example of problem that will be solved by applying GA. The starting point is
marked in a black circle, and the goal point in a green cross. Two paths A, in
red, and B in blue are represented.

3.2.1 Initialization of the population

The first step of the algorithm is to generate an initial population. This is done by sampling
the search space. In the example case the search space will be contained in ℜ

4. How-
ever, some bounds are useful in order to focus this search. For example, we could set
Lo = (0,−2.5,0,−2.5) and U p = (5,2.5,5,2.5) as lower and upper bounds, respectively.
Additionally, we could introduce some constraints to each individual depending on the
problem, such as discard the individuals that lead to a flight plan that has a course change
of more than a given angle, discard paths with too much ascending or descending rates
when dealing with 3D WPs and many more.

There are several ways of sampling this search space. One of the most common ap-
proaches is to take uniform random samples of the space. In theory, with a number of
individuals high enough, the population will cover most of the search space. Another
possibility is to use different distributions for each WP in such a way that the associated
flight plans have more sense a priori. For example, we could divide the segment qIqG

in n+ 1 subsegments of the same length, in our example it would be 3 and then use a
bi-dimensional normal distribution to sample the IWs with a standard deviation of one, this
is called the normal sampling. In the example, we could have D1 ∼ N((5

3 ,0),(1,1)) and
D2 ∼ N((10

3 ,0),(1,1)) as sample distributions. Figure 3.3 represent these distributions.
However, some works [8] point out that some deterministic samplers such as laticce and

sukariev grids and other interesting sequences of points such as Hammersley sequence can
give better results than random sampling in certain situations. As a matter of fact, there is
an interesting discussion in [98] in which several sampling strategies are applied to the
PRM algorithm and their results are then compared. The main results are that there are
no significant improvements of random sampling strategies over deterministic strategies

3.2 Non-collaborative Genetic Algorithm Path Planner 43

−1
0

1
2

3
4

5
6

−3
−2

−1
0

1
2

3
0

0.05

0.1

0.15

0.2

x
y

P
r
o
b
a
b
i
l
i
t
y

D
e
n
s
i
t
y

−1
0

1
2

3
4

5
6

−3

−2

−1

0

1

2

3
0

0.05

0.1

0.15

0.2

xy

P
r
o
b
a
b
i
l
i
t
y

D
e
n
s
i
t
y

Figure 3.3 Probability functions of normal sampling for the proposed problem. On the left
side the probability function of WP1 is plotted, on the right side the probability
function of WP2 is also plotted.

like using Halton sequences. Indeed, deterministic samplers performed better in many
scenarios.
In this chapter, if no sampling technique is specified, the uniform random sampling of

the search space will be applied.

3.2.2 Selection

The underlying principle of evolution is that of ‘survival of the fittest’. In nature this occurs
in a great variety of ways, including competition between members of a specie for mating
purposes and competition between different species battling for the same resources or
being one the feeding of the other.
Evolutionary computing has been inspired by this principle. In this case, the selection

of individuals to participate in the genetic operations is made according to an algorithm
which considers the fitness of the individuals in the GA population.

Each time we have a new generation of individuals is computed, a selection procedure
is used to define the individuals that will generate a new offspring. This can be naively
carried out by selecting the best n individuals. However, this implementation of selection
usually can make the population to converge into a local minimum, so other selection
operators have been proposed in the literature.
One of the most common approaches is usually referred as Roulette Wheel Selection

(RWS) or proportional fitness [26]. In this case, a weight wi is associated to individual
i according to its fitness. The new population is generated by randomly selecting n
individuals with a probability function given by:

f (i) =
wi

N
∑
j=1

w j

(3.1)

, where N is the number of individuals.
Another method to perform the selection is the so called Tournament Selection (TS) that

was first introduced in [99]. It bears similarities with the type of competition occurring
in nature where two or more animals will fight for the right to mate. The procedure to
obtain one individual is detailed in algorithm 1. In this case k individuals are selected at
random with an uniform distribution (step 1). These individuals are then ranked according

44 Chapter 3. Evolutionary multi-UAV planning

to their fitness. Then, the best individual is selected with a probability p, the second with
p(1− p), the third with p(1− p)2 and so on. Note that if p = 1 we have deterministic
tournament selection in which the best of the group is automatically selected.

Algorithm 1 Tournament Algorithm
Select a random group G of size k from the population
Arrange G according to the fitness of the individuals
ret_index← 1
r← rand(0,1)
while r > p∨ ret_index < k do

r← r−p
1−p

ret_index← ret_index+1
end while
return G(ret_index)

TS has several benefits: it is efficient to code, works on parallel architectures and allows
the selection pressure to be easily adjusted.

Several more selection algorithms have been proposed in the literature. For example,
Fitness Uniform Selection is presented in [100], where an interesting comparison with the
tournament selection and the proposed selection algorithm is given. Also, reward-based
selection operators can be useful when dealing with multi-objective problems [101].

3.2.3 Crossover algorithm

The first way of generating new individuals is done by selecting two individuals of the
population, the parents, and mixing the genomes of each parent.

There are several crossover operators in the literature. The most basic is the One Point
Crossover (1-PC) operator (see Figure 3.4). The crossover point is defined as an uniform
integer random number between 1 and the genome length minus one: cp ∼U(1,L−1).
Then, a new individual will copy the first cp genes of one parent and the rest from the
other parent. Another individual can be obtained by interchanging the roles of the parents.
Following the proposed example, let us make a one point crossover of A and B with cp = 2.
Two new individuals are obtained which are C = (1,1,2.5,−1) and D = (1.5,−1,3.5,2).

This simple crossover can be generalized to the n-Points Crossover operator (n-PC).
In this case the genome information of the parents is decomposed into n chunks that are
mixed together alternatively in two possible ways: one starting from the first parent and
the other from the second. The two-points crossover operator is also depicted in Figure
3.4.

The last crossover operator that has been tested is the Uniform Crossover operator (UC)
(see Figure 3.4). In this case, a new individual is obtained from two parents by randomly
selecting each gen from one of their parents.

3.2 Non-collaborative Genetic Algorithm Path Planner 45

Figure 3.4 Crossover operators that have been tested in this thesis. From left to right: one
point crossover, two-points crossover and uniform crossover.

3.2.4 Mutation

In some situations, generating new population by only making crossovers could lead the
population converge into a local minima. Also, if the population is similar, the crossover
is not capable of generating new individuals with different characteristics. For this reason,
maintaining diversity in the population is important. Additionally, the mutation operator
is designed in order to produce a new individual from one parent by introducing some
changes into the genome of the parent.

Therefore, the mutation operator is proposed by resembling the way of the asexual
reproduction is made. In this case, a new individual is obtained by copying the genome of
one individual and introducing some noise (usually modeled with a normal distribution
with mean in the original value of the gene) to one or more of its genes. Figure 3.5
represents an example of modification of the second gene of genome G (in blue), the new
genome Gmutation is represented in red.

3.2.5 Evaluating the fitness of the individuals

It is necessary to rank the individuals according to their convenience of their related
flight plans. By doing this, we can obtain the best individual in each iteration that will be
returned as the result of the optimization if the termination condition is met. The following

46 Chapter 3. Evolutionary multi-UAV planning

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

X(m)

Y
(
m
)

Figure 3.5 Mutation of the second gene of the genome G (blue line) yields to a new genome
Gmutation = (1,1.57,3.5,2) (red line)..

objective function to be optimized related to each individual is considered:

J = ω1L+ω2S+ω3

M

∑
i=1

θi +ω4C (3.2)

where L is the length of the path, S j is the separation between the ith path and the jth

static obstacle, and C is a variable that is set to 1 if a collision occurs with another UAV or
the static obstacles; or to 0 if no collision has been found. ωi∀1≤ i≤ 4 are the weights. A
collision with a static obstacle or another UAV occurs when d j is less than the required
safety distance, dreq, where d j is the separation between an UAV and the jth static obstacle.
θi is the turn radius associated to WPi
Equation 3.2 evaluates the optimality of the path in terms of length but without con-

sidering safety issues. On the other hand, the weighted part of the equation evaluates the
assumed risks. These objectives are in most cases confronted, so the GA has to reach a
trade-off solution between them.
A problem with multiple objectives gives rise to a set of optimal solutions, known

as Pareto-optimal solutions. Genetic algorithms have been recognized to be well suited
for multi-objective optimization because of their capability to evolve a set of solutions
distributed along the Pareto front [27]. However, this estimation is usually computationally
demanding and therefore, in the context of this thesis, a scalar cost function is calculated
as the weighted sum of each different objective. This approach has the advantage of being
very intuitive. On the other hand, the algorithm can reach very different solutions with a
small variation of the weight vector and the tuning process of this vector is usually based
on trial and error.
The drawback of the cost function proposed in Eq. 3.2 is that has a local minima. Let

us consider that all the population is found to be in collision. Then, the algorithm could
converge into a solution that is the shortest of all paths that lead to collision unless a

3.2 Non-collaborative Genetic Algorithm Path Planner 47

mutation or crossover operation generates a collision-free individual. Eventually, this
should occur; but it will waste a lot of computational effort. Another drawback of this cost
function is that the C flag can be very expensive to be obtained as a simulation of the the
system is necessary.

In order to overcome the local minima problem, another cost function that is proposed.
Instead of raising the flag C if a collision has been found, the maximum penetration pmax
inside an obstacle or another UAV is computed. This will help the algorithm to distinguish
between critical collisions or merely brushes. Equation 3.3 proposes this new criteria.

J2 = ω1L+ω2S+ω3

M

∑
i=1

θi +ω4 pmax (3.3)

The main advantage of this criteria is that it solves the problem of the local minima.
However, it has some drawbacks. A simulation of the behavior of the UAV is necessary
when computing both costs in order to check for collisions and to add the proper penalty.
However, in the cost given by Eq. 3.2 the simulation can be stopped when a collision is
detected. In contrast, the simulation has always to be completed when calculating the cost
of Eq. 3.3 in order to calculate the maximum penetration pmax. For this reason, a mixed
approach named adaptive cost has been designed. This approach uses the cost of equation
3.2 in the first iteration. Then, the cost of equation 3.3 is only used when no collision-free
trajectories have been found yet. The algorithm switches back to 3.2 when a collision-free
solution is found.

Aligned Bounding Boxes Detection

The detection algorithm is based on axis-aligned minimum bounding box presented in
[13]. This technique presents as advantages its low execution time and the need of few
parameters to describe the system.
A security envelope is defined around each UAV in order to avoid collisions between

them. Each UAV security envelope is approximated by two boxes joined together: a
horizontal box and another vertical box that covers the aerial robot and its rotors (see
Figure 3.6). Each box is defined by the intersection of three intervals, one by axis. The
measurement of the horizontal box is related to the minimum horizontal separation between
UAV and the vertical box is related to the vertical separation. Therefore, the minimum
separation, S, between two UAVs is defined by the dimension of both joined boxes. A
collision is detected when there is an overlapping between the intervals that define each
box. Thus, the 3D problem is reduced to three problems of interval overlapping, one
for each coordinate axis. Let us consider the intervals in one coordinate A = [Ai,Ae] and
B = [Bi,Be]. The condition of overlapping for this coordinate is given by:

(Ae > Bi) Λ (Ai < Be) (3.4)

Continuous collision detection

It is important to consider the computational load of the detection algorithm because the
evaluation of the possible solution trajectories takes a lot of time. The typical collision
detection strategy includes the simulation of the trajectories of each UAV with a given

48 Chapter 3. Evolutionary multi-UAV planning

Figure 3.6 Left: (a) an example of collision detection envelopes based on aligned bounding
boxes; two boxes are added for each UAV. Right: (b) an example of collision
detection.

sample rate. Then, a punctual collision detection is performed in each sampled instant.
However, this approach presents two strong drawbacks. First, a detailed simulation of
the motion of a UAV can be very costly as it involves a system of several coupled differ-
ential equations. Second, the sample rate parameter has to be carefully tuned because
higher values will require a prohibitive computational effort whereas lower values could
leave some collisions undetected. In contrast, a continuous collision detection algorithm
based on axis-aligned minimum bounding box has been developed in order to reduce the
computational load of the proposed algorithm.
Each UAV is assumed to follow a 2D Dubins path with constant velocity which is

inferred from the flight plan (see Figure 3.7). Let dmin be the distance to WP at which the
vehicle should start the turn; and α be the angle related to WP. Considering the triangle
O−A−WPi, dmin can be calculated as follows:

dmin = R · cotg(
α

2
) (3.5)

One collision detection is performed for each pair of UAVs. The motion of each UAV
can be described in each straight or circular segment with a linear uniform motion (LUM)
and a circular uniform motion (CUM). So the first stage of the procedure is to detect the
instants of time in which each UAV changes its motion, from straight line to circular or
vice versa, and arrange them chronologically. With this procedure, we have divided the
relative motion of the UAVs into several segments which can be LUM vs LUM, CUM vs
LUM or CUM vs CUM. The collision detection procedure is then performed separately in
these segments.
The main idea when performing a collision detection in each segment is to calculate

the distance between the UAVs for each coordinate separately and then calculate the time
intervals where this distance is less than half the averages of the bounding box size in that
coordinate. Once, we have the time intervals of all coordinates, by intersecting them we

3.2 Non-collaborative Genetic Algorithm Path Planner 49

WP
i

WP

i-1
WP

i+1

Figure 3.7 Calculus of the Dubins path related to a trajectory described by WPi−1, WPi
and WPi+1.

get the time interval in which a collision has been produced. If the interval is empty, the
trajectories are collision-free in the considering segment.
This procedure is repeated for each segment until a collision segment is found or all

segments have been checked.

3.2.6 Control Parameters

Besides the objective function, the termination condition, the contents of the genome and
the genetic operators to be applied, we have to tune more numerical parameters in order
to define the behavior of the GA algorithm. The tuning process is not easy and several
simulations should be performed in order to obtain good enough values for these parameters.
For this reason, multiple automatic tuning process are available in the literature.
At last, the basic control parameters that modify the behavior of the GA algorithm is

listed here.
The crossover and mutation probabilities, respectively noted pc and pm, will adjust the

frequency in which the mutation and the crossover will happen. In many GA manuals the
values of pc = 0.9 and pm = 0.05 are recommended. Note that the probability of mutation
is not the probability of one individual to have a mutation but rather the probability of a
gene to be mutated.
The second control parameter is the population size p. This parameter is extremely

important in the running time of the algorithm. A low value will lead to population with
no diversity that would not be capable of evolving to the global minima. On the other
hand, a high value of this population will encourage the random search to the genetic
evolution because most of the time will be expended in generating and evaluating the

50 Chapter 3. Evolutionary multi-UAV planning

initial population. In this thesis, a population of 100 individuals has been used by default.
However, the population size can be adapted depending on the size of the search space in
order to generate a diversified enough population.

3.3 Uncertainty considerations

In this section, the initial flight plans of each UAV are assumed as known and given by a
set of WPs. Then, an algorithm based on the Monte-Carlo method is used to compute the
uncertainty of the trajectories of each UAV, considering the atmospheric conditions, the
UAV model used for prediction, and the limitations of the sensors and on board control
system.

In case of small UAVs, the most important source of uncertainty during the flight is the
change in the atmospheric conditions, mainly the wind. So a collision-free path planning
algorithm, based on GA, that includes the uncertainty information from a Monte-Carlo
analysis is presented in this section.

3.3.1 Overview of the system

Figure 3.8 illustrates the proposed collision-free path planning algorithm. It starts with
an evaluation of the current trajectories simulated by Monte-Carlo checking for possible
collisions. If a collision is detected from the predicted trajectories, then an iterative
planning loop starts and will end when the detected collisions are avoided. The planning
loop involves the generation of a plan using GA and a later evaluation of the plan by using
the Monte-Carlo method.

Note that trajectory prediction with uncertainty analysis is not included in the GA due
to the computation time requirements. The security distance between each pair of UAVs
will depend on the predicted uncertainty, enhancing the chances that the plan will meet
the criteria after evaluation.

3.3.2 Monte-Carlo analysis

The near-optimal trajectory obtained from the GA as explained in section 3.2 fulfills the
constraints without taking into account the uncertainties. To solve this, the resulting flight
plan is simulated by using the Monte-Carlo method in order to obtain the most probable
trajectory and estimate its uncertainties.
Algorithm 2 shows the implemented Monte-Carlo method. It starts by generating an

initial set of possible states of the UAV. Then, a simulation is started for each possible
state using the stochastic model detailed in Section 3.3.3. This procedure is then repeated
for each UAV.
Thus, the sources of uncertainty are considered to evaluate the trajectory. In the next

iterations, the maximum deviation obtained in this stage for all UAVs (dmax) is used in
other stages for collision detection.

3.3 Uncertainty considerations 51

Figure 3.8 Flow diagram of the GA path planner with uncertainty considerations.

Algorithm 2Monte Carlo Analysis
Generate a set of possible initial states S = xi(0)∀i ≤ n of size n according to the
estimated state and its uncertainty
dmax← 0
for j =1 to prediction horizon do
for i = 1 to n do

xi(j)← model(xi(j−1))
end for
Evaluate the mean state x(j)
Evaluate the maximum deviation to the mean state dmax(j)
if dmax(j)> dmax then

dmax← dmax(j)
end if

end for

3.3.3 Stochastic Model

The Monte-Carlo method is used to represent the state of the UAV by maintaining a set
of its probable states. By using this sampling-based representation, a prediction of the
trajectory is obtained which can be generated including multiple sources of uncertainty
in the model and perturbations with arbitrary distributions. Note that each source of
uncertainty is applied independently to each different particle in each simulation step.
The application of this method requires a stochastic model of both the UAV and the

atmosphere. In order to decrease the computation load for real time implementation and to

52 Chapter 3. Evolutionary multi-UAV planning

carry out the simulations and experiments, we have used a simple kinematic UAV model
based on the unicycle vehicle:

ẋ = vicos(ψ)+ωρ cos(ωφ) (3.6)
ẏ = visin(ψ)+ωρ sin(ωφ) (3.7)

ψ̇ = αψ(ψ
c−ψ) (3.8)

where (x,y) represent the 2D coordinates and ψ is the heading of the vehicle. αψ is a
parameter that depends on the characteristics of the vehicle. ψ

c is the heading reference
to the control system. Additionally, the following constraint with regard to ψ̇ is used:

−ψ̇max ≤ ψ̇ ≤ ψ̇max (3.9)

where ψmax is a positive constant that depends on both the dynamics of the vehicle
and the behavior of the path controller. Nevertheless, it is also possible to use models of
arbitrary complexity.
The atmospheric model includes the wind vector speed modulus, ωρ , and direction,

ωψ . As the nature of wind direction strongly depends on local terrain, mesoscale and
large scale considerations, and is usually forecast using sophisticated numerical models, it
will be modeled without loss of generality as a Normal distribution of mean and standard
deviation ωφ and ω

σ
ψ , respectively. On the other hand, wind speed distribution is known

to fit well with a Weibull distribution at low altitudes [102]:

f (x;k,c) =
k
c

(x
c

)k−1
e−(x/c)k∀x≥ 0 (3.10)

which is determined by the shape factor, k, and the scale factor, c. Therefore, wind
speed will be modeled using a Weibull distribution. In section 3.3.5, nevertheless, wind
speed mean ωρ and standard deviation ω

σ
ρ will be shown for clarity, as they are more

understandable parameters than shape and scale factors. An approximate relationship
between the mean and standard deviation of the velocity of the wind can be obtained by
using the empirical method detailed in [103], which is a particular simplification of the
method of moments:

k =

(
ω

σ
ρ

ωρ

)−1.086

(3.11)

c =
ωρ

Γ
(
1+ 1

k

) (3.12)

Γ(x) =
∫

∞

0
tx−1e−tdt (3.13)

, where Γ(x) is the Gamma function.

3.3 Uncertainty considerations 53

Due to the stochastic nature of this model, each specific simulation is affected by different
wind disturbances, i.e. different samples of the direction and speed distributions above
will replace ωρ and ωφ in equations 3.6.

Equations 3.6 model the behavior of the UAV taking into account the heading references
and the uncertainty of the wind. The parameters of the model can be estimated using real
flight data. The full model takes into account not only the above parameters and equations
but also high level control considerations about the WP tracking control that will generate
the reference ψ

c.

3.3.4 A simple test case

In this section, the results obtained in the execution of the proposed algorithm in a relatively
simple test case are shown in order to better illustrate its behavior.
Figure 3.9(a) represents a simple scenario with four UAVs and three static obstacles.

The average and deviation of the wind speed and wind direction are given by (ωρ = 10m/s
ω

σ
ρ = 3m/s) and (ωφ = 1.57rad, ω

σ
φ = 1rad) respectively. Initially, the parameters of the

GA are set as: ω1 = 1, ω2 = 1, ω3 = 1, ω4 = 0.1, ω5 = 1, and dsa f e = 500m.
The CD block detects a collision which is represented in Figure 3.9(b). The evolution of

the flight plans generated by the GA algorithm is depicted in Figure 3.9(c), where the best
solution is represented in a thicker line. The GA algorithm generates 5 IWs. Then, the
proposed solution is sent back to the CD in order to check for collisions while taking into
account the uncertainties of the system. If no collision are found in this step, the proposed
trajectory is saved as the best solution obtained so far, as shown in Figure 3.9(d).
These simulations show how the algorithm iterates in order to achieve a collision-free

trajectory taking into account the uncertainties due to the wind. As seen in Figure 3.9(b)(d),
the MonteCarlo analysis of the system provides a cloud of particles at each instant (in the
Figure consecutive clouds are separated by 20s) whose dispersion growths over the time.
In other words, the farther the simulation goes, the more uncertain the prediction becomes.
To be precise, the uncertainties across the track of the trajectory spread in a lesser extent
when compared to the uncertainties along the track.

3.3.5 Simulation batch

All tests performed in this thesis have been executed in the same computer, unless otherwise
specified. Its main characteristics are: PC with a CPU Intel Core i7-3770@3.4GHz
equipped with 16 GB of RAM. Kubuntu OS 14.04. The code has been written in the C++
language and compiled with gcc-4.8.2.
In the simulations and experiment the UAV model described in section 3.3.3 is used.

Different scenarios with up to 10 UAVs (UAV1-UAV10) and up to 8 obstacles have been
considered. The scenarios are defined from the UAVs and obstacles shown in figure 3.10:

• Scenario 1 (S1): UAV1-UAV5 and OBS1.

• Scenario 2 (S2): UAV1-UAV5 and OBS1, OBS2.

• Scenario 3 (S3): All UAVs and all obstacles.

54 Chapter 3. Evolutionary multi-UAV planning

Figure 3.9 From left to right and top to bottom: a) Simulation scenario. b) First CD call.
A collision has been detected. c) Proposed solution in a iteration of GA. d)
Second CD call. The CA algorithm has achieved a valid solution .

The number of simulations in each analysis is fifteen. In sections 3.3.5 and 3.3.5, the
data associated to the wind is: ωρ = 6m/s,ωσ

ρ = 1m/s,ωφ = 0rad,ωσ
φ = 0.5rad.

The simulation results are analyzed in the next sections as follows.

Dependency of the criteria with the number of GA iterations

In this section, the value of the cost of Eq. 3.2 with respect to different number of iterations
in the GA algorithm is analyzed. Lower cost values indicate that the solutions are better;
that is, the deviation from the initial trajectory is smaller.

The main goal is to estimate the number of iterations in the GA algorithm that provides a
solution trajectory with minimum cost. Note that the execution time grows with the number
of iterations and thus a high value of this number could eventually make the algorithm
not suitable to real-time applications. Therefore, it is relevant to calculate the number of
iterations needed to obtain an acceptable solution. On the other hand, a small number of
iterations can lead to solutions not properly optimized; that is, with higher costs.
Figure 3.11 shows the cost values associated to the solution obtained by the algorithm

for different number of GA iterations in S1 and S2. Note that the cost does not decrease
in a significant way after 30 iterations. Therefore, this number of iterations will be used

3.3 Uncertainty considerations 55

X(m)

-2000 0 2000 4000 6000 8000 10000 12000

Y
(m

)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000
UAV 1
UAV 2
UAV 3
UAV 4
UAV 5
UAV 6
UAV 7
UAV 8
UAV 9
UAV 10

1

3

4

7
5

8

2

6

Figure 3.10 Complete scenarios considered in simulations with uncertainty considerations.
UAV 1 must travel from (0,0) to (10000,10000). A solution obtained with
the proposed method is depicted. Static obstacles are represented in circles
with their actual size.

in the following simulations. In particular, the GA algorithm will be executed 5 times,
generating 6 generations in each execution.

Figure 3.11 Cost value for different number of GA iterations in S1 and S2.

56 Chapter 3. Evolutionary multi-UAV planning

Dependency of the execution time with the number of UAVs and obstacles

Figure 3.12 shows the dependency of the mean execution time with the number of UAVs
and obstacles. The considered scenario is S3.

Note that the mean execution time increases almost linearly with the number of UAVs.
On the other hand, the number of obstacles practically has not effect on the execution time.

Figure 3.12 Mean execution time of the algorithm when varying the number of UAVs and
number of obstacles in S3.

Different wind conditions

The behavior of the algorithm in terms of execution time and goodness of the obtained
solution when the wind conditions vary (ωρ and ωφ) in S1 is analyzed in this section.
First, Figure 3.13 shows the mean execution time of the algorithm with different val-

ues of ωρ . Note that, in general, this time has an increasing tendency with increasing
ωρ . However, differences are barely noticeable as the execution time is inside the range
[16.1,16.9]s.

Second, Figure 3.14 represents the mean execution time of the algorithm with different
values of ωφ . Note that, in general, the execution time is almost independent of the wind
direction. In fact, all the results are confined into the [15.1,16.9]s range. As a remark,
the execution time is slightly higher in two angles: ωρ = −45,135deg). This may be
produced because of the difficulty to perform collision avoidance in this particular cases.
In any case, the differences are not very noticeable.
Execution time distribution

The results regarding the execution time presented so far includes the efforts of both CD
and CR blocks. In this section, the execution times obtained at each stage of the algorithm
are separated in order to provide a detailed analysis of their complexity.
Figure 3.15 represents the mean timeline which specifies the sequence in which the

algorithms are executed and the duration of each stage. These results have been obtained
by taking the mean execution time obtained in ten executions of S3 with obstacles OBS1
and OBS2 for each indicated number of UAVs in the system. The wind conditions are the
ones specified for S1 and S2.

3.3 Uncertainty considerations 57

Figure 3.13 Mean execution time of the algorithm when varying the module of the wind
in S1.

Figure 3.14 Mean execution time of the algorithm when varying the direction of the wind
in S1.

Figure 3.16 shows the percentage of time spent in collisions checks with the MonteCarlo
analysis. This percentage has a decrasing tendency with increasing number of UAVs in
the system, as expected due to the increasing number of computations that have to be
performed when evaluating individuals in the GA algorithm.
On the other hand, the first CD call is much computationaly expensive than the sub-

sequent calls and its execution time depends on the number of UAVs in the system in a
great deal. In contrast, the next calls to the Montecarlo method have execution times that
do not depend on the number of UAVs. This makes sense taking into account that not all
trajectories are modified. Therefore, the whole system has only to be simulated in the first
call. In the other CD calls only the trajectory of UAV 1 has to be calculated.
Regarding the CR block, it is executed 5 times, performing 6 GA iterations each time

the method is executed. The execution time of this block in the first call is noticeably

58 Chapter 3. Evolutionary multi-UAV planning

Figure 3.15 Sequence of execution of the proposed method with varying number of UAVs
in the system.

Figure 3.16 Percentage of time spent doing CD over the number of UAVs in the sytem.

higher than in the next calls. This fact can be produced by the amount of time performing
the GA initialization with the data associated to the problem, memory management and
the population initialization and first evaluation. On the other hand, the GA execution time
remains moreorless constant in the subsequent calls. Last, the increase of the execution
time of the algorithm with the number of UAVs is produced most importantly by the
increase in the execution time of GA, as CD become less and less important in terms of
relative execution time with increasing number of UAVs in the system.

3.4 Collaborative GA planner 59

3.4 Collaborative GA planner

In this section, the collaborative CDR problem between multiple UAVs in a common
airspace is considered.
The UAVs can fly are assumed to flight at the same FL and their horizontal separation

among them should be greater than a given safety distance. It is also assumed that velocity
changes are not allowed. The solution only considers the addition of IWs. Therefore, after
a possible collision is detected, the problem is solved when a collision-free trajectory for
each UAV is computed, where the trajectory is defined by a sequence of WPs. All UAVs
cooperate to solve the problem changing their initial trajectory.
The information needed to solve the problem is the following:

1. Sequence of WPs that each UAV will follow

2. Parameters of the model of each UAV in the airspace

3. Initial configuration of each UAV

The objective is to find collision-free trajectories while minimizing the changes of the
trajectory of each aerial vehicle. The initial and solution trajectories should have the same
initial and goal locations. Note that the algorithm is centralized: it needs the information
of the whole system and makes decisions that also affect it.

3.4.1 Main Changes in GA

In this section, the modifications of the GA algorithm with regard to the algorithm in
section 3.2 are listed.
Figure 3.1 represent the diagram of GA. The reader is referred to section 3.2 in order

to see a detailed description of each part because the main parts of GA have little or no
changes at all in both approaches.

Note that the main difference between the two algorithms is that now the algorithm can
modify the trajectory of all UAVs in the system, while the one proposed in section 3.2 can
only modify the trajectory of one UAV. For this reason, the dimension of the search space
will grow linearly with the number of the UAVs.

Initialization

The initialization methods do not vary of those detailed in section 3.2.1. The most signifi-
cant change is found in the meaning of the genome. In this case the information about the
trajectories of all UAVs is contained in one genome and is distributed as shown in figure
3.17. Additionally, the bounds used in the initialization can vary for different UAVs and
even in different WPs of one UAV.

Crossover

The crossover operators do not vary. However, since the number of genes is greater,
the uniform crossover is more convenient because it generates the offspring with more
diversity.

60 Chapter 3. Evolutionary multi-UAV planning

Figure 3.17 Structure of the genome when solving a cooperative multi-UAV problem.

Evaluation

In this case the cost function must evaluate the length of the trajectories of each UAV and
check for collisions in between all pairs of UAVs. The other terms that considered the
course changes, the difference with the initial trajectory are not considered for the sake of
simplicity. Hence, the cost function is a bit less complex:

J =
N

∑
i=1

Li +ω2C (3.14)

Where N is the number of UAVs in the system and Li is the length of ith flight plan. All
considerations about the cost can also be applied in the cooperative case.

3.4.2 Simulations

In order to check the properties of the proposed CDR method, a comprehensive set of
tests has been carried out. This section is divided into three subsections. The first one
justifies the election of the crossover operator. The second subsection is devoted to the
explanation of the design of the set of tests. The second one shows the results of the tests
and an analysis of the method. The aim is to know the characteristics of the proposed CDR
method with respect to time of execution, cost and number of iterations needed to compute
a particular level of optimality. Thus, these parameters can be configured depending on
the specifications of the problem.

Crossover operator selection

In this section the problem depicted in Figure 3.18 is solved with different crossover
operators. The safety distance dxy is set to 1m the population size and the generations
in the algorithm have both been set to one hundred. Due to the stochastic nature of the
algorithm, each problem is solved one hundred times with each operator in order to sample
the distribution of the results.

Figure 3.19 shows the cost results of the problem considering UAVs 1 and 2. Note that
the obtained cost with the three operators is very similar and not noticeable differences
can be found. The execution time results are represented in Figure 3.20. In this case, UC
operator performs a little bit better than the other two.

Figure 3.21 shows the cost results of the problem considering UAVs 1, 2 and 3. Again,
the obtained cost with the three operators is very similar and not noticeable differences
can be found. However, it seems that UC evolves the best in the first half of the evolution.

3.4 Collaborative GA planner 61

Regarding to the time, UC operator still outperforms the other two as depicted in Figure
3.22.

Figure 3.23 shows the cost results of the problem considering all UAVs. In this case,
1-PC evolves better in the first half of the evolution. Also, Figure 3.24 shows that UC
operator and 2-PC perform similarly while one point is a bit slower.

In conclusion, as no noticeable differences with regard to the cost have been found and
taking into account that the Uniform crossover operator is a little bit faster than the others,
has been selected as the default operator. Therefore, UC will be used during the thesis
unless another operator is specified.

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

X(m)

Y
(
m
)

UAV1

UAV2

UAV4

UAV3

Figure 3.18 Configuration of the problem that has been proposed in order to select the
best crossover operator.

62 Chapter 3. Evolutionary multi-UAV planning

0 10 20 30 40 50 60 70 80 90 100
20.5

20.55

20.6

20.65

20.7

20.75

20.8

20.85

20.9

Number of iterations

M
e

d
ia

n
 o

f
th

e
 m

in
im

u
m

 c
o

s
t

(m
)

UNIFORM
ONE POINT
TWO POINTS

Figure 3.19 Cost results obtained in the simulation with UAVs 1 & 2. The median of the
cost obtained in one hundred executions is represented.

30

32

34

36

38

40

42

One Point

E
x
e
c
u
ti
o
n

ti
m

e
a
ft
e
r
1
0
0

it
e
ra

ti
o
n
s

(s
)

Two Points Uniform

Figure 3.20 The distribution of the execution time obtained when performing one hundred
of test cases with UAVs 1 & 2 is represented. The median is represented with
red line, while the limits of the box are the 25th and 75th percentiles. Extreme
values are represented with the outer segment.

3.4 Collaborative GA planner 63

0 10 20 30 40 50 60 70 80 90 100
31.2

31.4

31.6

31.8

32

32.2

32.4

32.6

Number of iterations

M
e

d
ia

n
 o

f
th

e
 m

in
im

u
m

 c
o

s
t

(m
)

UNIFORM
ONE POINT
TWO POINTS

Figure 3.21 Cost results obtained in the simulation with UAVs 1, 2 & 3. The median of
the cost obtained in one hundred executions is represented.

38

40

42

44

46

48

50

One Point

E
x
e
c
u
ti
o
n

ti
m

e
a
ft
e
r
1
0
0

it
e
ra

ti
o
n
s

(s
)

Uniform Two Points

Figure 3.22 The distribution of the execution time obtained when performing one hundred
of test cases with UAVs 1, 2 & 3 is represented. The median is represented
with red line, while the limits of the box are the 25th and 75th percentiles.
Extreme values are represented with the outer segment.

64 Chapter 3. Evolutionary multi-UAV planning

0 10 20 30 40 50 60 70 80 90 100
43

43.5

44

44.5

45

45.5

46

Number of iterations

M
e

d
ia

n
 o

f
th

e
 m

in
im

u
m

 c
o

s
t

(m
)

UNIFORM
ONE POINT
TWO POINTS

Figure 3.23 Cost results obtained in the simulation with all UAVs. The median of the cost
obtained in one hundred executions is represented.

36

38

40

42

44

46

48

50

52

Uniform One point Two points

E
x
e
c
u
ti
o
n

ti
m

e
a
ft
e
r
1
0
0

it
e
ra

ti
o
n
s

(s
)

Figure 3.24 The distribution of the execution time obtained when performing one hundred
of test cases with all UAVs is represented. The median is represented with red
line, while the limits of the box are the 25th and 75th percentiles. Extreme
values are represented with the outer segment.

3.4 Collaborative GA planner 65

Test set design

Whenever a new collision-free path planning algorithm is studied, a problem of the method
arises: the definition of a metric to evaluate the results. In cases of difficult path or motion
planning problems for one only mobile object, there are some de facto benchmark standards
in the academic context, such as the bug trap or the alpha test [104]. Unfortunately, this is
not the case when dealing with multiple object trajectory planning.
Therefore, a test set has been developed in a given scenario to validate the proposed

method. This set provides a way to measure the properties of the method regarding time
of execution, optimization and level of scalability with number of UAVs. Furthermore,
the test set and the design methodology can be useful for comparison with other methods.

The scenario has a base of 20×20 dimensional units and 10 dimensional units of height.
Different problems are defined considering the same scenario, as well as the same random
problem generation process.

Each problem is formulated as a set of entry and exit points located in one of the lateral
faces of the scenario. The faces are sampled into a discrete grid in order to have a finite
set of allowed entry and exit points.
The adopted strategy is regressive: random candidate solutions are generated and the

problem is defined using them when they are found. The random generation process of
the tests is performed following the Random Test Generation Algorithm 3. For each UAV,
an entry face is randomly chosen, selecting an uniformly random number between 1 and 4
(line 4). Then, the exit face is randomly selected from the resting 3 faces (line 5). Entry
and exit points are randomly selected from the corresponding face grid (line 6). A certain
number, M, of IWs inside of the scenario along with the entry and exit points define the
flight plan. The line 8 of the algorithm should ensure the following:

• The solution is valid, i. e. UAVs do not collide.

• The initial plans generate a conflict, i. e. at least two UAVs in the system collide
with the initial plans.

Algorithm 3 Random Test Generation Algorithm
while The test is not valid do

for each UAV do
Choose an entry face
Choose a different random exit face
Choose an entry and exit point from its corresponding face
Add M IWs

end for
Check for the test validity

end while

The test set consists of 7,000 different problems grouped by the number of UAVs
involved, from 2 to 8, in subsets of 1,000 tests. This classification, using the number of
UAVs, is useful to study the scalability characteristics of the method. This study is detailed
in section 3.4.2.

66 Chapter 3. Evolutionary multi-UAV planning

Simulation results

Next a summary of the characteristics of the executed set of tests is given:

1. The dimensions of the scenario are 20m×20m.
2. The number of IWs, M, is set to 1.
3. 200 tests have been performed for each subset.

Figure 3.25 shows the execution time with the number of UAVs involved. Each box of
the figure depicts statistics of the 200 tests performed for a given number of UAVs. The
central mark is the median, the edges of each box are the 25th and 75th percentiles, and the
whiskers extend to the extreme data points. As expected, the time of execution increases
when the number of UAVs in the system goes from 2 to 5. On the other hand, times
start to shorten in the range from 6 to 8 UAVs, although the dispersion of the obtained
results increases. One possible answer to this observed behavior is that a lesser number of
simulations are executed entirely when the number of UAVs becomes greater because a
collision is detected earlier and unflyable flight paths are more likely to appear.

0

20

40

60

80

100

1 2 3 4 5 6 7 8

Number of UAVs

E
x
e

c
u

ti
o

n
 t

im
e

 a
ft

e
r

1
0

0
 i
te

ra
ti
o

n
s
 (

s
)

Figure 3.25 Distribution of the time of execution over the number of UAVs after 100
iterations in 200 different simulations in GA.

Figure 3.26 represents the median of the execution time of the algorithm over the number
of GA iterations and the number of UAVs in the system. This relation should be almost
linear and increasing, showing that each iteration has a similar computational cost. On
the other hand, the slope will usually depend on the number of UAVs. In particular, when
considering the cases with 2 to 5 UAVs, the computation time increases with the number
of UAVs as expected. However, the computation times with 5 and 6 UAVs are similar and
more surprisingly, the computation times begin to shorten with 7 and 8 UAVs. This fact
can be explained by taking into account the median of the costs which is represented in
Figure 3.27. In the case of 8 UAVs, the median of the cost is above the collision penalty

3.4 Collaborative GA planner 67

(1000) in the first iterations. This indicates that in most cases, the algorithm is not able to
find any solution at the first stages. As the cost indicated in Equation 3.14 is being used,
the simulations are stopped before reaching the final WPs in all cases (see Section 3.2.5
for a more detailed explanation). Therefore, the computations to calculate the cost of the
individuals are reduced. This situation is also found, although in a lesser extent, in the
case of 7 UAVs.

0 20 40 60 80 100

M
e

d
ia

n
 o

f
th

e
 e

xe
cu

tio
n

 t
im

e
(s

)

0

10

20

30

40

50

60

70
2 UAVs

3 UAVs

4 UAVs

5 UAVs

6 UAVs

7 UAVs

8 UAVs

Iterations

Figure 3.26 Time of execution over the number of UAVs after 100 iterations with GA
algorithm.

The aim of the proposed method is to find a better solution as time passes, i.e. a
smaller cost each iteration. Figure 3.27 shows the evolution of the minimum costs with
the iterations. The median of the minimum costs computed in the population of all the
tests has been chosen as statistical indicator. Note that the decreasing rate of the cost is
higher on early iterations and becomes almost zero in the last iterations (90-100). There is
a particular case when considering problems of 8 UAVs that is worth a special remark. As
stated previously, the cost is above 1000 in the first iterations in this case. This reflects
that a solution is not obtained in most cases (more than 50%).

The minimum cost is an indicator that depends on a great deal on the number of UAVs.
In order to overcome this issue, the normalized cost C∗ is proposed. It relates the cost in a
given iteration with the minimum cost obtained in the problem. This cost can be obtained
by applying a bilinear transformation of the original cost C 3.2, taking into account the
maximum and minimum costs, Cmax and Cmin respectively. Thus, the normalized cost of
iteration i can be calculated by using the equations 3.15-3.17.

68 Chapter 3. Evolutionary multi-UAV planning

Number of iterations

0 20 40 60 80 100

M
e
d
ia

n
 o

f
th

e
 m

in
im

u
m

 c
o
s
t
(m

)

0

200

400

600

800

1000

1200
2 UAVs

3 UAVs

4 UAVs

5 UAVs

6 UAVs

7 UAVs

8 UAVs

Figure 3.27 Median of minimum cost of the population throughout successive iterations
with GA algorithm.

C∗i = aCi +b (3.15)

a =
1

Cmax−Cmin
(3.16)

b =
Cmin

Cmin−Cmax
(3.17)

This indicator (C∗) can be useful to have a measure of how much time it would cost to
achieve a certain level of optimality. Basically, it relates the cost in a given iteration to the
obtained minimum cost in the corresponding problem. Figure 3.28 shows the normalized
costC∗ over the number of iterations. As an example, a line that marks the required number
of iterations to compute for a 90% level of optimality is drawn. If the test set is executed
in the same computer where the user has installed the proposed method, Figure 3.26 will
provide an estimation of the time needed for that number of iterations, and therefore, that
level of optimality.
Last, a particular case of CDR problem is presented in order to illustrate the behavior

of the proposed algorithm. Figure 3.29 shows the evolution of the flight plans of 4 UAVs.
The flight plan of each UAV in a given iteration (6, 12, 18 and 25) is shown. The flight
plans obtained in the same iteration are represented with the same line style. Note that this
algorithm leads to shorter and thus more optimal flight plans as the evolution goes on.

3.5 Experiments

Several experiments with the Hummingbird quadrotors (see Figure 3.30) in the CATEC’s
indoor testbed have also been performed to validate the method. In particular experiments
with up to three quadrotors flying at the same time in a useful volume of 10×10×3m3 are

3.5 Experiments 69

0 20 40 60 80 100

M
e

d
ia

n
 o

f
th

e
 n

o
rm

a
li
z
e

d
 c

o
s
t

0

0.2

0.4

0.6

0.8

1
2 UAVs

3 UAVs

4 UAVs

5 UAVs

6 UAVs

7 UAVs

8 UAVs

Number of iterations

Figure 3.28 Normalized cost through successive iterations with GA algorithm. The line
marks the 90% optimality.

X(m)

3 4 5 6 7 8 9 10 11

Y
(m

)

3

4

5

6

7

8

9

10

11

UAV3

UAV4

UAV1

UAV2

Figure 3.29 Evolution of the solution trajectories with 4 UAVs in simulation I: 7th in dotted
line, 15th in dash dotted line, 23th in dashed line and 30th iteration in solid
line.

presented. Please refer to Appendix A for an in-depth description of the afore mentioned
testbed.

Experiment I consists of two quadrotors flying with constant speed, v = 0.5m and at the
same flight level. Figure 3.31a shows the initial trajectories in Experiment I.

A possible collision is detected and therefore the proposed method is applied in order to

70 Chapter 3. Evolutionary multi-UAV planning

Figure 3.30 Multi-UAVs testbed of CATEC’s facilities and initial configuration of the
UAVs in Experiment II.

compute new trajectories to avoid the conflict. Therefore, each aerial vehicle will change
its initial trajectory to avoid the conflict in a cooperative way while minimizing the total
cost. Figure 3.31b shows the trajectories computed in the Experiment I with one IW. The
simulated trajectory can be compared with the real one.

Figure 3.31 a) Left: initial trajectories of Experiment I; all UAVs fly with the same height.
b) Right: Trajectories computed by the GA method for each aerial vehicle in
Experiment I. Simulated trajectory (in dotted line) and actual trajectory (in
solid line) .

Experiment II considers three aerial vehicles. The initial trajectories of each UAV are
shown in figure 3.32a.

3.6 Conclusions 71

Several possible collisions are detected when the separation between aerial vehicles is
less than the minimum horizontal separation, Sxy = 1.5m. The proposed method compute
new trajectories to solve the conflicts cooperatively (see Figure 3.32b) while minimizing
overall cost.

Figure 3.32 a) Left: initial trajectories of Experiment II; all UAVs fly with the same height.
b) Right: Trajectories computed by the GA method for each aerial vehicle in
Experiment II. Simulated trajectory (in dotted line) and actual trajectory (in
solid line) .

3.6 Conclusions

In this chapter, GA have been successfully applied to multi-UAV path planning with two
different approaches. First, we have solved the non cooperative problem in which one
UAV enters to a scenario with other UAVs and then the cooperative multi-UAV problem.
In addition, a method that includes uncertainty analysis due to different sources (mainly in
the state estimation and due to the presence of wind) is presented.
The proposed methods change the initial flight plan of each UAV by adding IWs to

define the solution flight plan while maintaining their velocities and flight level in order to
avoid the detected conflict.
Moreover, the proposed algorithms have been validated with the execution of many

simulations, including the design and execution of a test battery of almost 10000 tests.
Also two experiments have been performed in the CATEC multi-UAV aerial testbed.

However, the main drawbacks of the algorithms are their execution time and scalability.
The proposed algorithms improve the solution as time passes, so they can be adapted
to different applications that require different response times. The 90% of optimality is
reached in less than half a minute in problems that involve up to 4 UAVs when using a
Intel Core i7-3770@3.4GHz processor with 16GB of RAM memory, as shown in Section
3.4.2.

In the next chapter, another optimization technique is applied in order to solve the same
trajectory planning problem and its extension when enabling flight level and speed changes.
A comparison of the execution time of both approaches will be presented, showing the
convenience of the new method. In addition, an anytime approach is presented in which a
solution is ensured even with very low available computational time and then the remaining
available computational time can be profited by improving the first solution.

4 Multi-UAV planning with Particle
Swarm Optimization

Necessity is the mistress and guardian of Nature.

L. da Vinci.

In this chapter, swarm intelligence algorithms are applied in order to solve the discrete
path planning problem. First, a collaborative discrete quasi-optimal planner based

on PSO is proposed and analyzed. Then, the results of this algorithm are compared with
the ones of the GA approach (see Chapter 3). Next, this algorithm is adapted in order to
reduce its computation time and ensure that a solution can be extracted as fast as needed
with the anytime approach. At last, several experimental results are detailed in Section 4.5.

The choice of PSO is based on its low computational overheads and faster convergence
when compared to GA and other evolutionary algorithms [105]. To sum up, while GA
consists of several phases each one involving different operators, the PSO algorithm can be
summarized in three stages: Initialization, Evolution and Finalization. Moreover, only two
parameters have to be tuned up in the Evolution phase of PSO, in contrast to the multitude
of operators available with associated parameters in the Evolution phase of GA. All of
these algorithms share in common that are biologically inspired and as the evolutionary
algorithms, and that they have also found to solve complex global optimization problems.
In particular, the PSO algorithm is inspired in the behavior of bird flocks when searching
for food.

One of the main contribution of this thesis is the proposal of a complete 4D quasi-optimal
trajectory planner based on PSO. That is, changes on flight altitude level, speed and lateral
trajectory are allowed in the planners proposed in this chapter. Obviously, a planner that
deals with this problem has to find an optimal in high dimensional spaces, which requires
great computational efforts. In order to reduce the complexity of the problem to be solved,
methods to decrease its dimensionality are also proposed in Section 4.4.2. The drawback

73

74 Chapter 4. Multi-UAV planning with Particle Swarm Optimization

of these methods is that they usually involve reducing the completeness of the planner
because less combinations of maneuvers are allowed.

Experimental results of the application of the aforementioned trajectory planning meth-
ods are presented and discussed in Section 4.5.

4.1 Collaborative PSO planner

In this chapter, the initial and goal configurations (qinit qgoal) of each UAVs are assumed
as known, and the goal state is not allowed to change as in Chapter 3. In contrast, not
only lateral changes but the complete multi-UAV trajectory planning will be considered.
Moreover, the Estimated Time of Arrival (ETA) to the final WP should be met. Therefore,
the goal of this algorithm is to obtain collision-free 4D trajectories by adding one or
more IWs in the trajectory of each UAV and changing the speed to meet the ETA while
minimizing the following cost function:

J =Cωc +
N

∑
i=1

(
Li + k1

M+1

∑
k=2

(
vi,k− vi,k−1

)2

)
+ k2|ETA−ETA0| (4.1)

where N is the total number of UAVs in the system, M is the number of IWs, Li is the
length of ith trajectory, vi,k is the speed of the ith UAV in the sector k (note that there are
M + 1 different sectors), k1 and k2 are weighting factors, ETA and ETA0 are the ETA
of the new and original flight plans, respectively; and ωc is the collision penalty and C
is set to one if the new trajectories still lead to collisions in the system or if at least one
unfeasible plan is generated and to zero otherwise. This function can be easily modified in
order to take into account energy analysis and other operational costs.
The implemented algorithm is based on [106]. Let S be the number of particles in

the swarm, each particle is defined by a state vector xi in the search-space and a velocity
vector vi. This state vector contains the information about the location of the IW(s) and
the velocity in each sector of the trajectory of each UAV as indicated in Figure 4.1. Note
that the speed in the last sector is calculated so the ETA to the final WP is the same as in
the original trajectory. Thus, it is not included in the state vector.

x
1

y
1

z
1

... x
M

y
M

z
M

v
1

... v
M

UAV
1

UAV
M

x
1

y
1

z
1

... x
M

y
M

z
M

v
1

... v
M

Figure 4.1 Information contained in the state vector of the PSO algorithm.

In first place, the swarm is initialized by randomly assigning initial locations and
velocities with an uniform distribution, though different distributions could be applied
such as the mentioned in Section 3.2.1.

4.1 Collaborative PSO planner 75

Let pi be the best known state vector of particle i and let g be the best known state vector
of the entire swarm. These are recalculated whenever a new iteration is obtained.

Then the exploration loop is executed. In each iteration, both the state vector and the
velocity of each particle are updated by applying the expressions indicated in steps 10 and
11 (see Algorithm 4).

The most important parameters in this formula are the social weight, φg, and the local
weight, φp. ω is the inertia weight. rg and rp are vectors where each component is
generated at randomly with an uniform U(0,1) distribution. Local and global best state
vectors are also updated if necessary (steps 13-15).

The exploration loop can be finished by using many different termination criteria.
Among these criteria a timeout condition and a convergence condition (most of the indi-
viduals lay into a tight region of the search space) are the common approaches. In this
thesis, the algorithm will conclude when a determinate number of iterations have been
computed.

The parameters φg and φp have been tuned by performing several tests with the same
conditions and changing only one parameter at a time. These parameters are usually
selected in the interval [0,1]. In our case, the best values found were φg = 0.9 and φp = 0.1.

Algorithm 4 Basic PSO algorithm
1. for Each particle do
2. Initialize each particle’s state vector xi with the desired probability function
3. Initialize particle best state vector pi← xi
4. If f (pi)< f (g) update the swarm best state vector g← xi
5. Initialize each particle’s velocity vector vi. An uniform distribution is usually

used.
6. end for
7. repeat
8. for Each particle do
9. Pick random numbers rg rp with U(0,1)

10. Update the particle’s velocity:
vi← ωvi +φprp(pi− xi)+φgrg(g− xi)

11. Update the particle’s state vector: xi← xi + vi
12. if f (xi)< f (pi) then
13. Update the particle’s best known state vector
14. if f (xi)< f (g) then
15. Update the swarm’s best known state vector g← xi
16. end if
17. end if
18. end for
19. until A termination criterion is met

76 Chapter 4. Multi-UAV planning with Particle Swarm Optimization

4.1.1 A simple example

In this section, the PSO will be applied in order to solve a potential collision between two
UAVs in order to illustrate how PSO algorithm converges to the optimum.

Figure 4.2 represents the initial situation to be handled by the PSO algorithm where two
UAVs flying at the same speed (1m/s) are on a collision course. In order to reduce the
complexity of the problem to be solved, the only allowed maneuver is speed change. This
can be achieved by splitting the trajectory of each UAV into 2 pieces as shown in figure
4.2. The speed of the first part of the trajectory will be tuned by the PSO algorithm, while
the speed of the second part is calculated in order to meet the ETA in the final WP or, if
not possible, minimize the difference between the initial ETA and the ETA obtained by
PSO method. Each UAV is capable of flying in the speed range of [0.1,1.9]m/s.

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

X(m)

Y
(
m
)

UAV 1

UAV 2

Figure 4.2 Initial situation to be solved by changing speeds in the simple example. The
intersection point of the two trajectories will be the point where the speed of
the UAVs will change in the PSO algorithm.

The considered cost is the one indicated in Equation 4.1. However, as the length of the
flight paths is constant, it is not calculated in order to alleviate the computation of the cost.
In the proposed simulation, the swarm is composed by 100 particles that have been

randomly initialized with an uniform distribution over the search space. Figure 4.3 repre-
sents several snapshots of the swarm of the PSO algorithm in different iterations. The first
snapshot corresponds to the initial population. The next figures depict the swarm at the
iterations 2−12,14,16,18 and 20, respectively. As expected, the swarm has iteratively
converged to the global optimum of the problem, which is located in the point (0.88,1.26).
The execution time expended in generating the first 20 iterations was 3.69s.

4.2 GA and PSO Comparison

In this section both GA and PSO algorithms will be compared in terms of computational
effort and quality of the solutions. For this purpose, several simulations generated with

4.2 GA and PSO Comparison 77

Figure 4.3 Evolution of the PSO algorithm when solving a simple speed planning problem
with 2 UAVs. The represented iterations are, from left to right and up to bottom,
1-12, 14, 16, 18 and 20.

78 Chapter 4. Multi-UAV planning with Particle Swarm Optimization

Algorithm 3 have been solved in the same machine by using PSO and GA. Note that in
this case, only WPs changes in 2D are allowed while neither speed changes nor flight level
changes are allowed.

Theminimum horizontal separation between aerial vehicles is Sxy = 1m. The dimensions
of the scenario are 20m× 20m. The number of IWs, M, is set to 1. Two hundred tests
have been performed for each subset, that is, for each different number of UAVs. Note that
the configuration is the same as the one presented in Section 3.4.2 and the test batch is
executed in the same machine and with the same simulation code. Therefore, the results
obtained with these two methods can be directly compared. This comparison is carried
out in the next sections.

4.2.1 Time of execution against the number of UAVs

First, the relationship between the time of execution and the number of iterations performed
and the number of UAVs is analyzed. The main idea is to compare the results obtained
with the two proposed methods.

Figure 4.4 shows the execution time with the number of UAVs involved. Each box of
the figure depicts statistics of the 200 tests performed for a given number of UAVs. The
central mark is the median, the edges of each box are the 25th and 75th percentiles, and the
whiskers extend to the extreme data points. The evolution of the time over the number of
UAVs has several similaryties with the GA case (see Figure 3.25). In this case, the time of
execution increases when the number of UAVs in the system goes from 2 to 6. Thus is a
bit more regular behavior when compared with the obtained with the GA method. On the
other hand, times start to shorten in the range from 6 to 8 UAVs, although the dispersion
of the obtained results increases. One possible answer to this observed behavior is that a
lesser number of simulations are executed entirely when the number of UAVs becomes
greater because a collision is detected earlier and unflyable flight paths are more likely to
appear.

Figures 4.5 represents the median of the execution time obtained in the 200 tests when
the evolution goes by. This figure can be directly compared with the GA results in Figure
3.26. As occurred with GA, the slope depends on the number of UAVs and the relation is
linear and additive in both methods, with the exception of the cases of 7 and 8 UAVs in GA
and 8 UAVs in PSO. Therefore, in this case the dependency of the execution time with the
number of UAVs is more regular in PSO. In comparison, presents better time of execution
than the GA for each number of UAVs except with 8 UAVs. This can be explained because
of the better convergence properties of the PSO when solving the trajectory planning
problem, which will be studied hereafter in section 4.2.2. This better convergence will
bring more collision-free population which will imply the computation of more complete
simulations. To sum up, PSO is more efficient computationally than GA in most cases, but
not in a great deal.

4.2.2 Optimality comparison

In this section, the quality of the solutions obtained with each method will be compared.
Figure 4.6 shows the evolution of the minimum costs with the iterations when using

PSO method, while the results of GA algorithm are shown in Figure 3.27. Both methods

4.2 GA and PSO Comparison 79

0

20

40

60

80

100

1 2 3 4 5 6 7 8

Number of UAVs

E
x
e

c
u

ti
o

n
 t

im
e

 a
ft

e
r

1
0

0
 i
te

ra
ti
o

n
s
 (

s
)

Figure 4.4 Distribution of the time of execution over the number of UAVs after 100 itera-
tions in 200 different simulations in PSO.

0 20 40 60 80 100

M
e
d
ia

n
 o

f
th

e
 e

x
e
c
u
ti
o
n
 t
im

e
(s

)

0

10

20

30

40

50

60

70
2 UAVs

3 UAVs

4 UAVs

5 UAVs

6 UAVs

7 UAVs

8 UAVs

Iteration

Figure 4.5 Time of execution vs. number of iterations depending on the number of UAVs
with PSO algorithm.

find a better solution as time passes, i.e. a smaller costs are obtained in each iteration.
The median of the minimum computed costs in the population of all the tests has been
chosen as statistical indicator. Again, the PSO presents advantages over the GA because
the solutions obtained are better during the computation through the iterations.

This indicator indicates how much time it would cost to achieve a solution with certain

80 Chapter 4. Multi-UAV planning with Particle Swarm Optimization

0 20 40 60 80 100

M
e

d
ia

n
 o

f
th

e
 m

in
im

u
m

 c
o

s
t

(m
)

0

200

400

600

800

1000

1200
2 UAVs

3 UAVs

4 UAVs

5 UAVs

6 UAVs

7 UAVs

8 UAVs

Figure 4.6 Median of minimum cost of the population throughout successive iterations
with PSO algorithm.

level of optimality. This relates the cost in a given iteration to the obtained minimum cost
in the corresponding problem.
As summary and in order to give information about the variability in the cost and

execution time distributions, Table 4.1 shows the mean time of execution and its standard
deviation when using both methods. Also, the mean cost computed and its standard
deviation after 100 iterations and depending on the number of UAVs.

Table 4.1 Mean time of execution and mean cost considering 200 simulations for each
number of UAVs when using PSO and GA methods.

Number of GA PSO
UAVs Time (s) Cost (m) Time (s) Cost (m)
2 34.2 ± 3.9 38.5± 8.6 29.1± 6.7 38.4± 8.6
3 48.6 ± 5.0 55.0± 10.1 40.4± 8.0 54.7± 10.2
4 59.0 ± 6.3 72.6± 10.9 47.2± 8.7 71.8± 11.0
5 67.5 ± 8.2 90.5± 13.6 54.0± 9.9 89.0± 13.6
6 67.3± 11.7 110.5± 13.1 58.6± 11.6 108.3± 12.9
7 60.1±15.7 127.7± 15.7 60.5± 14.5 125.6± 15.2
8 46.3±17.9 162.7± 126.4 59.5± 17.1 148.7± 20.6

Table 4.1 shows that PSO outperforms GA algorithm in terms of both time of execution
and lower cost of the final solution. Moreover, the standard deviation in both indicators is
lower than in the GA. Therefore, taking into account these results, we can conclude that
PSO is more adequate for solving the trajectory planning problem than GA algorithm.

4.3 Anytime approach 81

4.2.3 Time for 90% of optimality

Finally, this section will show the required time for computing a solution with 90%
of optimality in both GA and PSO approaches. In this section we will work with the
normalized cost that had been introduced in Section 3.4.2 and that can be calculated from
the cost by using equations 3.15.

Figure 4.7 shows the normalized cost (C∗) calculated with equations 3.15-3.17 against
the number of iterations for PSO. A similar plot with the results obtained with GA method
is represented in Figure 3.28. The line that marks the required number of iterations to
compute for a 90% level of optimality is drawn in red. For clarity sake, Table 4.2 represents
the time for obtaining the 90% of optimality in both GA and PSO approaches. This table
indicates that PSO achieves the 90% of optimality earlier than the GA method in all cases
with the exception of the 8 UAVs. This exception appears since in this case the methods
are not able to find a solution in the beginning of the evolution and thus the 90% of the
evolution is achieved in the iteration 11. In contrast, the 90% is achieved much latter in
the case of 2-7 UAVs. In summary, the PSO is a more convenient algorithm in the context
of trajectory planning with multiple UAVs when compared with the GA method.

0 20 40 60 80 100

M
e

d
ia

n
 o

f
th

e
 n

o
rm

a
li
z
e

d
 c

o
s
t

0

0.2

0.4

0.6

0.8

1
2 UAVs

3 UAVs

4 UAVs

5 UAVs

6 UAVs

7 UAVs

8 UAVs

Figure 4.7 Normalized cost throughout successive iterations with PSO algorithm. The
line marks the 90% optimality.

4.3 Anytime approach

In this section, a novel collision-free 4D trajectory planning algorithm is presented. The
main contribution is the division of the algorithm in two stages. In the first stage, a feasible
initial solution is obtained with a non-optimal but easy to compute method. Then, this
obtained solution is optimized by using the PSO method, which will obtain a solution
whose quality will improve over the time. Thus, it is guaranteed that a feasible solution is

82 Chapter 4. Multi-UAV planning with Particle Swarm Optimization

Table 4.2 Median time of execution and standard deviation in order to reach the 90% level
of optimality. Two hundred simulations have been considered for each number
of UAVs.

Number of GA PSO
UAVs Iteration Time (s) Iteration Time (s)
2 41 14.76 ± 1.28 25 8.83 ±1.42
3 36 17.52 ± 1.56 24 11.75 ±1.67
4 33 18.01 ± 1.95 22 12.02 ±1.83
5 30 17.05 ± 2.40 21 11.75 ±2.28
6 33 17.38 ± 4.04 22 11.36 ±2.39
7 35 15.59 ± 4.75 24 11.51 ±2.61
8 11 3.59 ± 1.04 11 7.71 ±4.69

available at any time, and that this solution will be improved in the remaining computation
time.

In the following sections, two methods that will obtain the initial non-optimal solution
(and sometimes far from optimal) with little computational burden are described.

4.3.1 One at a time strategy

The initial solution can be obtained with a simple one-at-a-time strategy: when there is a
possible conflict between several UAVs, one of them moves to its destination point while
the others stay hovering at the initial position, then the next UAV goes to its target position,
and so on. By moving only one UAV at a time, the conflict is avoided. On the other hand,
the solution is far from the optimum since the total time will be much higher than the
original ETA.

The proposed strategy is first to analyze the conflicts present in the system and then to
make the UAVs pass through the conflicts in order while the rest await the previous UAVs
to pass. The method to analyze the conflicts in the system will be described in Section
5.3. The proposed order is to make the UAV with lowest ETA to the conflict past it in first
place. Then, the following UAVs will be also ordered according to their ETAs.

The main drawback of this strategy is that it is required to have a vehicle that is capable
of hover in a determinate position, or at least fly at very low velocities. This is the case
of rotary wings UAVs such as quadrotors and helicopters. However, although fixed-wing
UAVs cannot directly use this approach, it could be accomplished by making them follow
a circular trajectory centered in the desired hovering point. An increment of the safety
radius is necessary in order to ensure collision free trajectories as shown in Figure 4.8.
This procedure is often used in ATM when an aircraft is waiting for the authorization to
land that has to be granted by an ATC controller.
Although it is the simplest strategy to coordinate the UAVs, other velocity planning

methods to quickly compute initial solutions have been also implemented such as the two
velocities and the greedy approaches that are described in Chapter 5.

4.3 Anytime approach 83

Figure 4.8 Extending the one at a time strategy to fixed-wing UAVs. RD is the safety radius
and RT is the turning radius.

Inserting the solution into the population

Once we got a solution with this method, this solution has to be translated into an individual
in order to be introduced into the PSO algorithm
Let us illustrate it with an example that hopefully will clarify the behavior of the one

at a time strategy and its inclusion into the PSO. Figure 4.9 represents a situation where
3 UAVs are on a collision course. A conflict that would lead to a potential collision is
detected (it is marked in Figure 4.9 in a red circle). Then, the order of pass through the
conflict is calculated taking into account their ETA. Assuming that they fly at the same
speed, it will be the same that arranging them taking into account the distance to the
conflict zone. If the difference is not noticeable, a priority table can be defined, or simply
the ID number of the UAVs in the system can be used to arrange them. The arrangement
in the proposed example corresponds to the ID numbers of each UAV.

Figure 4.9 Left: Conflict zone in a system with 3 UAVs. Right: IWs which have been
obtained by applying the one at a time technique. A WP is added for each UAV.

Once the order of pass is calculated, the solution is translated into a genome with the
following procedure, adding one WP for each UAV.

• In the first UAV, one WP with the UAV traveling at maximum speed is added in the
end of the conflict. The ETA of this WP is calculated and saved as (ETA1). Then,
the remaining path is performed at cruise speed.

84 Chapter 4. Multi-UAV planning with Particle Swarm Optimization

• In the second UAV, one WP in the beginning of the conflict is added and its speed is
calculated to meet ETA1, which has been obtained previously. Then, the remaining
flight path is traveled at cruise speed and the ETA to its last WP is obtained ETA2.

• The next UAVs in the system, passing through the Conflict Zone, will use the same
procedure as UAV 2. Their ETA will be the same of the final ETA of the preceding
UAV and their final ETA will be used by the next UAV.

4.3.2 Virtual roundabouts

There are some situations in which the conflict cannot be solved by changing the speeds of
the involved UAVs exclusively (please refer to Section 5.1 for a complete analysis). This is
the case when a frontal collision is detected, for example. In this case, the path should
be changed in order to solve the potential collision. This can be achieved by using the
roundabout technique, which provides a non-optimal but easy to implement and fast to
compute solution. This technique has been applied to the ATC problem in both centralized
and distributed [107] fashions.
Again, the algorithm starts with an analysis of the conflicts in the system. The main

idea is to make the involved aircrafts in a conflict circle it in the same direction. The radius
of the circle should be long enough to ensure collision-free trajectories and to provide
flyable trajectories.

Figure 4.10 represents an example of potential collision that is solved by applying virtual
roundabouts. The trajectory has been designed following the instructions detailed in [108]
in order to ensure flyable trajectories. The number of WPs that are necessary in order
to emulate the roundabout depends on the sectors that the UAV will stay in it. The most
common case is that the entry and exit point of the roundabout are located in opposite
points of the roundabout. In this case, we could emulate the roundabout behavior by
adding three WPs to the trajectory. In the example in Figure 4.10, the first IW added to
the trajectory of UAV 1 is located in the place when the UAV will start the turn to entry
the roundabout. IW2 is located in the entry point of the roundabout. At this point, the
UAV will turn in the opposite direction. The last IW in the exit point of the roundabout.
Basically the roundabout of UAV 1 starts in IW1 where the UAV begins to turn with radius
R1. Then in IW2 the UAV is directed to the initial goal. Thus, two WPs are added to the
original trajectory of UAV 1.

However, the behavior of the roundabout technique can be more roughly approximated
by only placing one WP at the middle point point of the roundabout that lies between the
entry and the exit points. This can be very useful in order to reduce the dimensionality of
the PSO problem to be solved, but the radius of the roundabout should be overestimated in
order to achieve the similar results to the aforementioned strategy.

4.3.3 Simulations

Several set of simulations have been carried out from the test set to check the properties of
the proposed system. The tests have been performed in the same computer and under the
same conditions.

4.3 Anytime approach 85

Figure 4.10 Conflict of 2 UAVs solved by applying the virtual roundabout technique. The
generated WPs of UAV 1 are labeled as IW1, IW2 and IW3.

The algorithms have been run in a PC with a 2GHz Dual Core processor and 2 GB of
RAM. The operating system used was Kubuntu Linux with kernel 2.6.32. The code was
written in C++ language and compiled with the gcc-4.4.1.

The minimum horizontal Dxy and vertical Dz separations between UAVs have been
calculated taking into account the dimension of each vehicle and their localization and
control errors. In this case Dxy = 1.2m, Dz = 0.5m.

The dimensions of the scenario are 10m×10m. Two hundred tests have been performed
for each subset. The number of IWs, M, is set to 1. Therefore, each solution trajectory is
composed of two segments. Each UAV should meet its ETA to perform the coordinated
mission. The allowed speed for each UAV is between 0.3m/s and 2m/s, and k = 5. The
speed in the first segment is chosen randomly and in the second one is computed to meet
the ETA. If a particle does not meet the ETA, it is penalized.
Table 4.3 shows the mean time of execution and the mean minimum cost considering

two hundred tests and one hundred iterations in each test. The relation between the time of
execution and the number of iterations performed is shown in Figure 4.11. The dependence
with the number of UAVs shows the scalability characteristics of the method.

Figure 4.12 shows the evolution of the median of the minimum cost with the number
of iterations considering different number of UAVs. The proposed system finds a better
solution as time passes, but not very noticeable improvement is found after iteration 30.

The speed should be changed in order to meet the ETA of each UAV. Figure 4.13 shows
the information on the speed of each UAV involved. Each box of the figure depicts statistics
of the two hundred tests performed for a given number of UAVs. The central mark is the

86 Chapter 4. Multi-UAV planning with Particle Swarm Optimization

Table 4.3 Mean and standard deviation of the time of execution and the cost considering
200 simulations for each number of vehicles.

UAVs Mean Time (s) Mean Cost (m)
2 13.843±2.104 19.935±2.907
3 23.603±3.385 28.082±4.244
4 32.599±4.691 37.092±4.934
5 38.925±7.231 46.063±6.467

0 20 40 60 80 100

M
e

d
ia

n
 o

f
th

e
 e

x
e

c
u

ti
o

n
 t

im
e

(s
)

0

5

10

15

20
2 UAVs

3 UAVs

4 UAVs

5 UAVs

Figure 4.11 Time of execution vs. number of iterations depending on the number of
vehicles in the system.

median, the edges of each box are the 25th and 75th percentiles, and the whiskers extend
to the extreme data points.

Note that the mean change of speed of each UAV is low and it increases as the number
of UAVs increases. Moreover, the mean change of speed of each UAV involved in a test is
similar.

The median of the minimum costs computed in all the tests has been chosen as statistical
indicator. This indicator indicates how much time it would cost to achieve a solution
with certain level of optimality. This relates the cost in a given iteration to the obtained
minimum cost in the corresponding problem.
Figure 4.14 shows the value of the cost of Eq. 4.1 over the number of iterations. As

expected, the value of this cost increases as more UAVs are considered in the system.
Furthermore, the solution is improved in a greater deal when more UAVs are taken into
account.

4.3 Anytime approach 87

0 20 40 60 80 100

M
e

d
ia

n
 o

f
th

e
 m

in
im

u
m

 c
o

s
t

(m
)

20

30

40

50

60

70

80
2 UAVs

3 UAVs

4 UAVs

5 UAVs

Figure 4.12 Median of minimum cost throughout successive iterations.

Figure 4.13 Distribution of the speed changes with two to five UAVs considering 200 tests.

Estimating the quality of the solution

Another parameter can be calculated in order to give a measure of the quality of the
solution. This parameter is the Quality (Q) and can be calculated as indicated in Eq. 4.2.

Q = (1−C)∗100% (4.2)

Depending on the number of UAVs, a solution of great quality, 90%, is computed
between 20 or 47 iterations. This means that this kind of solutions can be computed between

88 Chapter 4. Multi-UAV planning with Particle Swarm Optimization

0 20 40 60 80 100

M
e
d
ia

n
 o

f
th

e
 n

o
rm

a
li
z
e
d
 c

o
s
t

0

0.2

0.4

0.6

0.8

1

1.2
2 UAVs

3 UAVs

4 UAVs

5 UAVs

Figure 4.14 Normalized cost throughout successive iterations. The dashed line marks the
90% optimality.

three and sixteen seconds by depending on the number of UAVs. This characteristic
is important to apply this collision-free 4D trajectory planning algorithm in real-time
applications.

Next, the anytime capabilities of the proposed method is further demonstrated. Figure
4.15 shows how the quality of the solution improves as the time increases by using PSO.
Two hundred simulations are considered for each number of UAVs. In each iteration, the
median quality of the solution is estimated taken into account the normalized cost (C∗)
and plotted over the median of the execution time in that iteration. The advantage of
this approach can be noted because a solution with quality of 75% is achieved on two or
six seconds for all cases. The anytime properties are evident because the quality of the
solution given by PSO method improves as the expended execution time increases.

4.4 Reducing the dimensionality problem

The main drawback of the methods proposed so far is that the dimension of the problem
to be solved becomes higher and higher with increasing number of UAVs and/or IWs.
This could make the PSO converge to a suboptimal solution or even do not converge in a
desired amount of time. More precisely, the dimension of the search space of the full 4D
trajectory planning problem is 4NM; where N is the number of IWs and M is the number
of UAVs in the system.
Fortunately, several methods can be applied in order to reduce the dimension of the

problem. For example, the z coordinate can be selected only from few altitude levels, so
the search is performed in a discretized space. This approach is usually named as 2.5D
instead of the fully 3D problem and it is currently being used in ATC (see Section 1.2).
This can also be applied to the horizontal coordinates and the speed commands reducing

4.4 Reducing the dimensionality problem 89

0 5 10 15 20

O
p

ti
m

a
lit

y
 (

%
)

-20

0

20

40

60

80

100
2 UAVs
3 UAVs
4 UAVs
5 UAVs

Figure 4.15 Anytime approach with systems from two to five UAVs.

considerably the search space. In addition, we can make the UAVs only flight at one
altitude level, so only a z value is necessary in spite of the number of IWs, this could
reduce the dimension to (3N +1)M. Further reductions will imply not considering a type
of maneuvers such as speed changes, etc.

4.4.1 Course change

Another interesting way of reducing the dimension of the problem is to introduce course
changes rather than 2D IWs. This can be useful when the number of IWs is high as the
dimension is reduced to 3NM, where N is the number of IWs that will be added to the
original plan and M is the number of UAVs in the system.

The associated WP to each change can be calculated as indicated in figure 4.16, and its
procedure is as follows.

The original trajectory is divided into as many IWs as desired, in Figure 4.16 there are
two IWs. Each straight line that divides the original trajectory is a separator.
In each WP, the current course is deviated as indicated in the variable course change,

which is codified into the genome. Positive course changes will deviate the UAV towards
the left, while negative changes will deviate it towards the right.
Each WP is the intersection between the straight line that passes through the previous

WP and has the desired course and the current separator. In particular, each vector vvvi
which has course θi and modulus |vvvi| can be calculated as follows:

θi = θi−1 +∆θi (4.3)

|vvvi|=
www

(N +1)cos∑
i
k=1 ∆θk

(4.4)

90 Chapter 4. Multi-UAV planning with Particle Swarm Optimization

, where ∆θi is the course change of the ith WP; θ0 is the original course; N is the number
of IWs; and www is the original segment that the UAV was planned to follow. In particular,
in the Figure 4.16 www is the vector from WP0 to WP1. The obtained WPs are represented
by IW1 and IW2.
The last course change is calculated in such a way that the final WP is kept.

Figure 4.16 IW calculation when applying course changes in PSO. ∆θ1 and ∆θ2 are the
codified variables that store the course changes. θ0 is the original course for
traveling from WP0 to WP1. The obtained WPs are IW1 and IW2.

4.4.2 Maneuver selection

The strategy of Maneuver Selection (MS-PSO) proposes the addition of the maneuver
selection variable s for each UAV. As long as three types of maneuvers are usually con-
sidered (course, speed and altitude changes), this variable will be randomly generated
and accomplish that s ∈ [0,1]. The maneuver will be selected by using the lookup table
described in Table 4.4.

Table 4.4 Lookup table of the MS-PSO Algorithm.

Maneuver s Range of parameter
Speed 0≤ s < 1

3 v ∈ [vmin,vmax]
Course 1

3 ≤ s < 2
3 θ ∈ [−θmax,θmax]

Altitude 2
3 ≤ s < 1 z ∈ [zmin,zmax]

4.4 Reducing the dimensionality problem 91

Then, the meaning of the numbers associated to each IW in the state vector will vary
depending on the type of the maneuver. If the speed change maneuver is selected, then
each number in the state vector related to the magnitude of the change will represent the
speed in each segment, Ci j, where i is the number of UAV and j the number of segment.
However, when the course change is selected, each number will mean the heading change
in each segment. In the last case, each number will represent the altitude change or flight
level in each segment. The information of each case should be normalized into the [0,1]
range in order to ensure that a change of the selected maneuver during the evolution will
lead to flyable trajectories. Once the maneuver is selected, this normalized range should be
adapted by performing a simple linear transformation to the actual range of the maneuver.
By using this strategy, the dimension of the problem is reduced to N(M+1), that is,

up to the fourth part of the original problem if the number of IWs is high enough. In a
practical example, when MS-PSO algorithm is applied to a system with five UAVs by
adding two IWs to the original trajectory, the dimension of the problem to be handled, that
is the state vector, would be 15 (s1,C11,C12, s2,C21,C22, s3,C31,C32, s4,C41,C42, s5,C51,C52).
In contrast, with the original PSO method, the dimension of the search space would be 40.
However this reduction in the dimensionality of the problem takes its costs. The main

drawbacks of MS-PSO is that the objective function will be non-linear and even non-
convex, making the search of the global optimum harder. Furthermore, the method is not
complete as it does not consider mixed maneuvers (such as changing both the speed and
course of one UAV).

Note that his strategy can be adapted when dealing with two-dimensional problems by
only considering speed and course changes. Similarly, it is also convenient when only
altitude or course changes have to be considered.

A comprehensive set of tests have been executed out to check the properties the proposed
system and to compare its results to the ones obtained by the algorithms already presented
in the thesis: the GA of Section 3.4 and the basic PSO of Section 4.1.

4.4.3 Simulations

In this section, the proposed algorithms are compared. It has been tested in several
scenarios that share the following characteristics:

• The dimensions of the scenario are 10m×10m×10m.

• The minimum horizontal and vertical separations between UAVs are set to 1.2m
and 0.7m, respectively.

• The number of IWs, M, is from 1 to 3.

• The allowed speed vi for each UAV satisfies 0.3m/s≤ vi ≤ 2m/s, and the cruise or
desired speed is vi

cruise = 1m/s.

The cost function that has been used is represented by Equation 4.1. However, the
procedure used to detected a collision and thus to generate the variable C is different that
the one being used so far. In the previous simulations, the system had been simulated
each time the variable C had to be calculated as specified in Section 3.2.5. In contrast,
a geometric approach has been used in this simulation set: the behavior of the UAV is

92 Chapter 4. Multi-UAV planning with Particle Swarm Optimization

approximated by generating a Dubins path and then a Continuous Collision Detection has
been carried out for each segment of the trajectory, as indicated in Section 3.2.5. Hopefully,
this would yield to much lower execution times.

A simple case

Just to fix ideas, a case with 3 UAVs which are going to collide at the origin of coordinates
is presented in Figure 4.17. Two IWs are added to the initial flight plans. The solution
obtained by using the MS-PSO algorithm with 100 individuals and after 100 iterations is
also represented in Figure 4.17. In addition, the solution obtained in the iteration number
10, which is obtained in less than a second, is represented in Figure 4.18. Note that in
the earlier solution (iteration 10), the selected maneuver consists of altitude level changes,
because it is the easiest way to perform the collision avoidance. However, as the evolution
goes on, the best maneuvers are selected because they minimize the cost.

0 1 2 3 4 5 6 7 8 9 10

Y
(m

)

0

1

2

3

4

5

6

7

8

9

10

UAV 1

UAV 2

UAV 3

Figure 4.17 Simple scenario with three UAVs and solution after 100 iterations to avoid
collisions.

10

8

6

4

2

010

8

6

4

2

0

4

4.5

1.5

1

3.5

3

2.5

2

UAV 2

UAV 1

UAV 3

Figure 4.18 Solution of the simple scenario after 10 iterations. In this case, all UAVs
selected altitude maneuvers.

4.4 Reducing the dimensionality problem 93

In the next sections, the basic GA and PSO planning algorithms are compared with the
MS-PSO in order to analyze their performance.
The algorithm is capable of adding a configurable number of IWs in order to obtain a

solution. In first place, the comparison considering the addition of one IW is presented.
By adding only one WP, only the simpler maneuvers are taking into consideration and this
allows a direct comparison with the work presented in Chapter 3 and Section 4.1 and [13].
Then, a study of the results of the algorithms with more than one IW is provided.
Test set

A comprehensive set of simulations have been carried out to check the properties the
proposed system and comparing it to the GA based algorithm of Chapter 3 and PSO based
algorithm detailed in Section 4.1. The random generation algorithm detailed in Section
3.4.2 has been used to automatically generate the test set used in this section.

The definition of a metric plays an important role to evaluate the results. In this chapter,
a test set has been developed in a given scenario to validate the system. The considered
scenario has a base of 10x10 m2. The design methodology and the metric is based on [13].
The scalability is studied by considering from 2 to 5 vehicles.

Two hundred of random tests have been solved using each method for each number
of UAVs in the system. Each algorithm has been executed for 100 iterations and with a
population of 100 individuals. Regarding to the cost function, the collision penalty ωc
has been set to 100 and the weight ω has been set to one. Note that it is important to set
the collision penalty greater than the typical values of the other part of the cost function
in order to make collision-free trajectories have lower cost values than trajectories with
collisions.
One intermediate waypoint
Table 4.5 represents the mean and standard deviation of the execution time of the three

algorithms in iterations 10 (early stage) and 100. Note that the in the first stages of the
evolution (up to iteration 10) the GA is faster but the differences in the execution time
are not noticeable. These differences become more significant at the end of the evolution
(iteration 100), where GA is significantly faster than PSO and MS-PSO.

Table 4.5 Mean time and standard deviation (in seconds) of the execution time of GA,
PSO and MS-PSO algorithms in iterations 10, t(10), and 100, t(100) when one
IW is added.

GA PSO MS-PSO
UAVs t(10) t(100) t(10) t(100) t(10) t(100)
2 0.25±0.06 2.68±0.48 0.37±0.07 3.23±0.59 0.33±0.08 2.94±0.73
3 0.54±0.21 6.61±1.43 0.67±0.15 7.07±1.82 0.68±0.24 6.45±2.35
4 0.43±0.20 9.35±2.39 0.84±0.21 6.32±1.77 1.03±0.44 10.44±4.60
5 0.83±0.36 11.93±3.13 0.92±0.18 18.44±5.24 1.37±0.6 14.03±7.12

Figure 4.19 show the evolution of the cost of the solutions obtained by GA, PSO and
MS-PSO when performing up to one hundred of iterations. Note that the in the earliest
stages of the execution (iterations 1 to 10) the results obtained from the MS-PSO algorithm
notably outperform the PSO and GA ones. In fact, costs above 100 in the cost obtained by
GA in this stage show that it has not obtained any solution in most cases (more than 50% of

94 Chapter 4. Multi-UAV planning with Particle Swarm Optimization

the cases) because the collision penalty, ωc, has been added. On the other hand, in the last
stages of the algorithm, the PSO and GA algorithms are able to find more optimal solutions
than the MS-PSO method. This is an expected result, as the cost function becomes more
complex: a change in the maneuver will result on trajectories that will be associated with
totally different cost values.

Dependency with the number of intermediate waypoints
In this section, the dependency of the performance of the algorithms with increasing

number of IWs is analyzed. Note that the addition of more IWs increases the complexity
of the problem, but it can be useful when dealing with problems in cluttered environments
or involving a great number of UAVs.
Figure 4.20 show the evolution of the cost of the solutions obtained by GA, PSO and

MS-PSO when solving a problem with 5 UAVs and considering one hundred of iterations.
As expected, the convergence of the methods is slower, and they are prone to converge
into a non-optimal solution. Moreover, as the dimension of the problem grows faster for
GA and PSO methods than for MS-PSO method. So the addition of more IWs affects
the evolution of the algorithm in a lesser extent the results of MS-PSO algorithm when
compared with GA and PSO algorithms.

Finally, the most important characteristic of the MS-PSO algorithm is that it always gets
a collision-free solution of the problem from the first iteration in all the cases explored (see
Figure 4.20 bottom). Thus, the execution times where a solution is ensured when adding
one IW range from 0.07±0.02s to 0.29±0.10s in the cases of 2 and 5 UAVs, respectively.
Conversely, PSO algorithm does not find a solution during the whole execution when
considering three IWs, while GA algorithm finds the solution in the iteration fifty. This
fact makes no longer necessary the introduction of simple collision avoidance maneuvers
such as the presented in Section 4.3 into the initial population in order to guarantee the
existence of a solution in the initial population of the MS-PSO algorithm.

4.5 Experiments

Several experiments with the Hummingbird quadrotors in the indoor testbed of the CATEC
have been performed in order to validate the method. For details of this testbed, please
refer to Appendix A.

4.5.1 Objectives of the Experiment

The objective of the experiments presented in this chapter was to demonstrate both a mono-
UAV trajectory planning tool, which is out of the scope of this thesis, and the coordination
method based on PSO which has been presented in this chapter.

The planification tool provided each UAV with an initial trajectory that did not collide
with the obstacles in the environment. These trajectories were calculated off-line by using
a t-RRT based planner [51]. Note that no coordination between UAVs was made in this
stage.
In the PSO implementation, static obstacles were not considered. Therefore, in order

to prevent collisions with these static obstacles while performing the coordination, the
original spatial paths is not modified by the PSO algorithm. PSO is thus only able to

4.5 Experiments 95

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

Number of iterations

M
e
d
i
a
n

o
f

t
h
e

m
i
n
i
m
u
m

c
o
s
t

(
m
) UAV 2

UAV 3
UAV 4
UAV 5

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18

Number of iterations

M
e
d
i
a
n

o
f

t
h
e

m
i
n
i
m
u
m

c
o
s
t

(
m
) UAV 2

UAV 3
UAV 4
UAV 5

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

Number of iterations

M
e
d
i
a
n

o
f

t
h
e

m
i
n
i
m
u
m

c
o
s
t

(
m
) UAV 2

UAV 3
UAV 4
UAV 5

Figure 4.19 Evolution of the median of the cost obtained with GA, PSO and MS-PSO
methods with different number of UAVs. A value of the cost greater than ωc.
means that the solution trajectories are not free of collisions due to the added
penalty ωc.

modify the speed profile of the UAVs to avoid collision between them. This strategy is
similar to the presented in Section 4.1.1. In this case, the trajectories were divided into 11

96 Chapter 4. Multi-UAV planning with Particle Swarm Optimization

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

160

180

Number of iterations

M
e
d
i
a
n

o
f

t
h
e

m
i
n
i
m
u
m

c
o
s
t

(
m
) Intermediate waypoints: 1

Intermediate waypoints: 2
Intermediate waypoints: 3
Collision Penalty

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

Number of iterations

M
e
d
i
a
n

o
f

t
h
e

m
i
n
i
m
u
m

c
o
s
t

(
m
) Intermediate waypoints: 1

Intermediate waypoints: 2
Intermediate waypoints: 3
Collision Penalty

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Number of iterations

M
e
d
i
a
n

o
f

t
h
e

m
i
n
i
m
u
m

c
o
s
t

(
m
) Intermediate waypoints: 1

Intermediate waypoints: 2
Intermediate waypoints: 3
Collision Penalty

Figure 4.20 Evolution of the median of the cost obtained with GA, PSO and MS-PSO
methods, from top to bottom, with increasing number of IWs. Values above
the collision penalty indicate that no collision-free solutions have been found.

sections, allowing up to 10 speed changes for each UAV.

4.5.2 Experimental scenario

In this section, one experiment with three quadrotors is presented. The considered scenario
is shown in Figure 4.21. The minimum horizontal separation between quadrotors in XY
plane was Sxy = 1.0m, and the vertical separation in Z axis, Sz = 0.45m. The quadrotors

4.5 Experiments 97

fly with constant velocity, v = 0.5m/s.

Figure 4.21 Scenario where the experiments presented in this Chapter have been carried
out. This picture is a snapshot an actual experiment.

Figure 4.22 shows the initial trajectories of each quadrotor. The method checks if
conflicts are detected. Figure 4.23 shows the separation between quadrotors. Two collisions
are detected between QR0-QR1 and QR0-QR2. Therefore, the proposed method should
compute collision-free trajectories.

98 Chapter 4. Multi-UAV planning with Particle Swarm Optimization

2

4

6

8

10

12

2
4

6
8

10

0.2

0.4

0.6

0.8

1

1.2

X(m)

Y(m)

Z
(
m
)

Initial
position

Initial
positionInitial

position

2 3 4 5 6 7 8 9 10 11 12
3

4

5

6

7

8

9

10

X(m)

Y
(
m
)

QR0

QR1

QR2

Initial
position

Initial
position

Initial
position

Figure 4.22 Initial trajectories of each quadrotor in the experiments.

4.5.3 Solution and results

Figure 4.24 shows the solution trajectories computed by the system. The final trajectories
flown by each UAV taking into account the velocity profiles generated by PSO method
for each UAV changes are represented in Figure 4.24. These trajectories are sampled at a
constant rate, so the separation between consecutive spots in the trajectories is directly
proportional to the speed of the UAV in this sector: closest spots indicate less speed and
farther spots indicate more speed.

Finally, the solution trajectories were successfully flown. Figure 4.25 represent the real
data from VICON system and Figure 4.26 shows the horizontal and vertical separation
between quadrotors. Note that the horizontal minimum separation QR0-QR1 is not met in
the interval [26.45,28]s, but the vertical separation meets the vertical minimum separation
in this interval. Therefore, the PSO method was able to generate trajectories collision-free
trajectories for the UAVs in the system.

4.6 Conclusions 99

Figure 4.23 Separation between the QR trajectories with the planned trajectories without
coordination.

Figure 4.24 Trajectories computed by the proposed system for each quadrotor in the exper-
iment.

4.6 Conclusions

In this chapter, a system to plan collision-free 4D trajectories based on an anytime stochastic
optimization approach has been presented. The proposed system detects conflicts in
trajectories of multiple UAVs using an algorithm based on axis-aligned minimum bounding
box as seen in Chapter 3. Then, a CDR problem for multiple UAV considering all possible

100 Chapter 4. Multi-UAV planning with Particle Swarm Optimization

Figure 4.25 Trajectories flown by each quadrotor in the experiment.

Figure 4.26 Horizontal (up) and vertical (down) separation between the QR trajectories
from the real data. Green dashed line shows the horizontal or vertical minimum
separation.

types of maneuvers has been described mathematically and solved by using the PSO
method. This approach and the one presented in Chapter 3 has been compared in Section
4.2.

In addition, a quick solution can be obtained almost immediately by using one of the
two simple approaches detailed in Section 4.3. These solutions are not optimal in general,
but can be inserted into the PSO population to ensure that the initial population includes
at least one solution. Then, PSO will improve incrementally the initial solution in the

4.6 Conclusions 101

available computational time, although a sub-optimal solution will be obtained. Thus, the
proposed system is well suited to situations with variable available computation times,
depending on the number of UAVs and the distance to potential conflicts. So evident
advantages of the proposed algorithm over other in literature such as [109] are: it considers
multiple vehicles in the space and it can be applied to solve the real-time tactical CDR
problem.
The PSO method has been validated with many simulations performed in different

scenarios and several studies have been presented to analyze the characteristics of the
system. These simulations indicate that the process of finding the global minimum in
these problems is time consuming and that approaches to reduce the dimensionality of the
problem, such as the MS-PSO, are convenient in order to reduce the efforts. In addition,
the parallelization of the search has been found to be also an interesting procedure in order
to reduce the computational time of this approach.
The PSO method proposed in this chapter search for any type of maneuver in order to

solve the trajectory planning. In other words, it is able to perform all speed, course and
altitude changes to the original trajectory. This means that it is straightforward to adapt
the PSO method to solve problems where only the speed of the UAVs can be changed, as
seen in Section 4.1.1. This has been tested experimentally with 3 UAVs as presented in
Section 4.5. However, there are specific methods to solve that can outperform PSO in this
problem or that can be used as initial guesses to the anytime approach. Three of these
algorithms are presented in Chapter 5.

5 Velocity planning: Coordination of
Multi-UAVs Trajectories

Divide each of the problems I was examining in as many parts
as I could, as many as should be necessary to solve them.

R. Descartes, Discourse on Method (second precept).

In this Chapter, a 3D conflict resolution problem for multiple UAVs sharing airspace is
studied. In particular, the methods proposed in this Chapter will maintain the original

path while modifying the speed profile of the UAVs in order to coordinate the different
UAVs of the system. Three different approaches that solve the velocity profile generation
for a system of UAVs: Greedy Algorithm, Discrete set of Velocities, Heuristic Planning
and are presented.

5.1 Introduction

One of the first approaches of the multi-robot CDR problem in robotics was proposed
in [15] and named as “Path-velocity decomposition”. It uses the “Divide and Conquer“
philosophy by separating the multi-UAV trajectory planning problem in several non-
coupled UAV path planning problems. Those independently generated paths will later be
coordinated to ensure collision-free trajectories.

Unfortunately, it is easy to show that this approach is not complete, as shown in Theorem
5.1.1, because the trajectories generated in the first stage might be impossible to coordinate.

Theorem 5.1.1 The path velocity decomposition method is not complete.

Proof. The easiest way to prove this theorem is by proposing a counterexample. Figure
5.1 left represents a straightforward 2D problem where two vehicles are required to
interchange positions in the presence of narrow corridors. In this case, the two independent

103

104 Chapter 5. Velocity planning: Coordination of Multi-UAVs Trajectories

Figure 5.1 Example of multi-UAV path planning problem that could not be solved by
employing the Path-velocity decomposition, but can be solved by means of
a multi-UAV trajectory planning problem. Left: two paths obtained indepen-
dently that are impossible to coordinate. Right: a solution obtained by solving
the whole multi-UAV trajectory problem.

planners could make the vehicles travel along the same corridor making it impossible
to the coordination algorithm to find collision-free speed profiles. On the other hand,
considering the whole multi-vehicle trajectory problem could lead to a similar solution as
the proposed in Figure 5.1 right.

In spite of the lack of completeness of this approach, which is evident when navigating
in cluttered environments, the path-velocity decomposition method can be very effective
in scenarios without static obstacles or limited number of obstacles, named forbidden
regions, that is usually found when performing outdoors experiments above some altitude
level. In this case, this approach is capable of coordinating the UAVs of the system in most
cases, with the exception of frontal conflicts.

This coordination is carried out by generating a velocity profile for each UAV that make
the trajectories of each UAV collision-free. Therefore, new velocity profiles for each UAV
have to be found in such a way that all potential collisions between them are avoided.
Obviously, these speed profiles have to be flyable, so they should fulfill constraints which
will be modeled mainly as minimum and maximum speeds.

5.2 Proposed approaches

Three different methods are presented here. In the first one, the problem is reduced to a
scheduling problem and then a greedy approach is considered in order to find an optimal
solution. In the second method, a discrete velocity allocation (DVA) problem considering
pairs of velocities is implemented to solve the conflicts. In addition, this method can be
extended to considering a discrete set of velocities for each vehicle. Finally, the third
proposed method is based on the technique presented in [110], in which suboptimal
solutions are found. This method presents a key improvement with respect to [110]: it
ensures minimum separation between UAVs.

5.3 Problem Formulation 105

Figure 5.2 Left UAV trajectories in a discretized airspace divided into cells. Right: any
UAV trajectory can be described as a sequence of visited cells.

Finally, the methods proposed in this chapter are validated by simulation in different
scenarios and their results are then compared in order to point out the characteristics of
the proposed methods. Moreover real experimental results of one of the methods are
presented.

5.3 Problem Formulation

The problem considered in this chapter concerns conflict detection and resolution between
UAVs in a common airspace. The detection algorithm is based on the discretization of the
airspace divided into cubic cells, also called the grid model (see Figure 5.2 left). Other
possible way to encode the statement of the problem are [111][112]. The discretization is
chosen in this chapter because the detection algorithm is simpler and faster.
Moreover, a trajectory can be described by the number of cells that the UAV passes

through with entrance and departure time. The size of the cells is a parameter and the safety
distance is given by a number of cells. The resolution algorithm is based on changing the
velocity profile of the UAVs involved in the potential collision. Note that velocity refers to
speed in this problem because changes of velocity direction are not considered.
The time for which each UAV stays in a cell depends on its model. It is assumed that

each UAV knows the trajectories of other UAVs, i.e., the list of cells that other UAVs will
fly across (see Figure 5.2 right). Thus, the cells through which UAV1 passes are: 7, 4, 5,
2, 3. In the case of UAV2 they are: 9, 6, 5, 4, 1. Both UAVs fly at the same flight level.
The method that is used to detect collisions in [110] presents a crucial disadvantage.

A collision is defined to occur when two UAVs lay in the same cell and at the same time.
However, two UAVs that are not in the same cell can be closer than other two ones that
are actually in the same cell (see Figure 5.3). Therefore, the algorithm based on this
definition does not ensure minimum separation between UAVs. A natural idea to cope
with this disadvantage is simply to change the conflict definition. In this chapter two UAVs
are considered to maintain the minimum separation if they are separated vertically and

106 Chapter 5. Velocity planning: Coordination of Multi-UAVs Trajectories

horizontally by a safety distance. If there is an UAV in a cell C, there is a conflict when
there is another UAV in a neighboring cell to C. The following definitions are considered
in this chapter:

Figure 5.3 Disadvantage of the grid model: UAV3 and UAV4 are in conflict while UAV1
and UAV2 are not.

• Neighboring cells to C: is the set of cells whose distance is less than the safety
distance considered (see Figure 5.4 left).

• Conflict: a cell C crossed by an UAV is in conflict if there is another one which
crosses a cell in the neighborhood of C.

• Conflict zone (CZ): set of consecutive cells of two or more UAVs that are in conflict
(see Figure 5.4 right).

• Collision: there are two UAVs crossing a CZ at once.

The VAP addressed in this chapter can be defined mathematically as follows: Let
U =U1, ...,Un be a set of UAVs represented by points in a three-dimensional space moving
with constant initial velocities onto straight lines.

Each UAV has a constrained interval of available velocities and when a collision is
detected, a velocity is assigned to each of the involved UAV. The initial velocities are
modified under the constraints, such that the collision is avoided and the total deviation
from the initial velocities is minimized.
In this model, each UAV Ui has an initial trajectory identified by its initial velocity vi .

These velocities are computed to optimally perform a given mission. The method finds
new velocities such that a given criterion is optimized. The objective function or total
deviation can be modeled as shown in Equation 5.1.

J =
n

∑
i=1

Ci

∑
j=1

(
ti j− t′i j

)2 (5.1)

where n is the number of UAVs of the system, Ci is the number of cells crossed by the
Ui , ti j and t′i j are the stay times of the Ui when crossing the cell number j in the solution

5.4 NP-Hardness Proof 107

Figure 5.4 Left: neighboring cells with different safety cells. Right: Conflict Zone (CZ)
(gray) in a scenario with two UAVs. The safety distance is set to two cells.

and original trajectories respectively. Basically, the objective is to minimize this total
deviation with respect to the initial stay time in each cell.
Some strategies based on velocity planning for the CDR problem of UAVs sharing

airspace are proposed. In particular, three methods are proposed to avoid collisions (see
Section 5.5): (1) the Greedy method (G), (2) the use of a constrained version of the VAP
problem in which pairs of velocities are allocated, and (3) a heuristic approach for velocity
planning (VP) based on [110] with non trivial modifications made in order to improve its
characteristics.

It is worth noting that it is possible to find a solution that avoids the initial collision but
generates a new collision with other UAVs. Therefore, when solving collisions three types
of UAVs can be distinguished: the UAVs that are directly involved in the detected potential
collision, the UAVs whose trajectories collide with the possible solution trajectories of the
directly involved UAVs.

5.4 NP-Hardness Proof

In this section the demonstration of the NP-Hardness of VAP is given as shown in [17].
This means that a polynomial time algorithm that solves this problem is not possible

unless P = NP [113]. Although it is generally assumed that this problem is NP-hard, to
the best of our knowledge it was first proven in [17].
The NP-hardness is shown by considering a reduction from one of the so-called one-

machine scheduling problems (see [114] for a comprehensive survey). The problem that is
reduced in this case is the “Sequencing with Release Times and Deadlines” (SRD), which
is strongly NP-complete [113][114].
SRD problem can be defined as follows: Given N jobs, each associated with a release

time, a deadline, and a processing time, decide whether there is a non-preemptive schedule
of these N jobs on a single machine such that all jobs meet their deadlines.

108 Chapter 5. Velocity planning: Coordination of Multi-UAVs Trajectories

In other words, the SRD asks for a sequence of execution of the N jobs so that no
execution of any job is interrupted to execute any other job, no two jobs are executed at a
same time, and every job starts not before its release time and finishes not after its deadline.
By exploiting the similarity between jobs which are to be non-preemptively scheduled on
a single machine, and UAVs that should pass one after another through a single cell of the
discretized space, the theorem can be proven as in Algorithm 5.4.1 [17].

Theorem 5.4.1 The VAP is NP-hard.

Proof. Let ISRD be an instance of the SRD consisting of N jobs j1, j2, . . . , jn. Each job
ji has release time tmin(i), processing time D(i), and deadline tmax(i). We reduce this
instance ISRD to the following instance of the VAPSRD of the VAP:

• All aerial vehicles UAV1,UAV2, . . . ,UAVn pass at the same time through a same cell
C of the discretized space.

• Once a vehicle enters C, it increases its speed to the maximum possible value in
order to lie inside C the minimum amount of time. This gives the other vehicles
more chances of entering in C.

• The speed range of each vehicle allow UAVi enter C at least at time tmin(i) and at
most at time tmax(i)−D(i), where D(i) is the amount of time in whichUAVi is inside
C moving at its maximum speed.

Let t(i) denote the time in whichUAVi entersC. If instanceVAPSRD has any feasible solu-
tion, thenwe can obtain a sequenceUAVπ1,UAVπ2, . . . ,UAVπn of the UAVs so that they enter
C in this order. Furthermore, for all 1≤ i≤ n, UAVπi satisfies both tmin(πi)≤ t(πi) and
t(πi)+D(πi)≤ tmax(πi). Then, jobs j1, j2, . . . , jn can be scheduled as jπ1, jπ2, . . . , jπn,
where job jπi starts at time t(πi), giving a solution to instance ISRD.

Proving that instance ISRD has a solution implies that instance VAPSRD has a feasible
solution is similar. Therefore, there exists a solution to ISRD if and only if VAPSRD has a
feasible solution.

Then, deciding if the VAP has a feasible solution is NP-complete and the result follows.

In subsequent research, the use of heuristics for scheduling problems can be explored.
For example, a related problem is the following one: Given N tasks with release times,
durations and deadlines, find a non-preemptive schedule such that all tasks meet their
deadlines and the number of machines used to process all tasks is minimum. This is
known as the “Scheduling with Release Times and Deadlines on a Minimum Number of
Machines” and it is NP-hard [114]. In the same paper some approximation algorithms and
heuristics were also proposed.

It should be noted that if one is able to modify not only the speed but also the altitude of
the UAVs in the cell of the space through which they pass at the same time, the cell could
be considered a multiprocessor. Each processor of the cell will correspond to a different
altitude, in charge of scheduling the entrance and departure times of the UAVs.

5.5 Proposed Methods 109

Figure 5.5 Greedy algorithm. UAV1 passes through cells 3, 5, 1, 2 y 7. When t = t1
the velocity of UAV2 is decreased delaying its stay on cell 5 for avoiding the
collision with UAV1 in cell 3.

5.5 Proposed Methods

In this section, three CDR methods for UAVs, all based on speed planning, are presented.
When the trajectories are computed, our methods check whether there are some UAVs
whose trajectories could be in conflict. When such a case is identified, a further computation
decides whether there would be a collision. A potential collision is solved by changing the
stay times of each UAV in each cell; that is, by assigning a velocity profile to each UAV.

The proposedmethods are centralized. Therefore, scalability is one of themost important
advantages of decentralized methods have, while centralized methods could present a
disadvantage for being prone to failures in the central system. Fortunately, scalability can
be achieved in centralized methods by applying it not to the whole system but to a subset
composed only by the UAVs involved in a conflict (see Section 5.3).

5.5.1 Greedy Method

The Greedy method (G) works as an on-line algorithm in which the decision concerning
some UAVs in conflict, whose speed should be modified, does not use any information
related to future conflicts. The problem can be reduced to an on-line scheduling problem
[115].

Let UAV = {UAV1,UAV2,...,UAVn} be the UAVs and assume that their initial speeds are
the possible maximum ones, respectively. It is also assumed that the cells of the space are
enumerated. Let us consider that each UAVi flies from time t = 0 to time t = t f passing
through some cells of the space. Then, for eachUAVi we partition its flight time-line [0, t f)
into intervals, where each interval corresponds to the period of time in which UAVi passes
through a cell. In other words, each time-line of any UAV is a consecutive sequence of
labeled intervals, meaning the sequences of cells UAVi passes through (see Figure 5.5).

Suppose that at instant t in the sweep, UAVi is in cell k, and UAVj and UAVp enter cell k.
It should be decided whether UAVj or UAVp is more retarded. This case is called decision

110 Chapter 5. Velocity planning: Coordination of Multi-UAVs Trajectories

situation and the decision taken might cause new conflicts for future instants of time, or
possibly lead to a point in which there is no way of avoid collisions between the UAVs.

The Greedy method described above has been implemented as a first or preprocessing
step, working as described in Algorithm 5. If no decision situation is found then an optimal
solution for the VAP problem is obtained. Otherwise, the Greedy method is stopped
because it cannot guarantee to obtain an optimal solution. At this point any approximation
method (e.g. any of those proposed in following sections) can be applied.

Algorithm 5 The Greedy Approach
repeat

Let e = 〈Ai,te,ce〉 the triple (event) in Q with the minimum value of time
if there exists in Q another triple with the same instant of time and with the same cell
(or any in the neighborhood of ce) then

Stop the simulation because a decision situation has been found.
end if
if there is not an AV A j (j 6= i) such that A j(te) = ce and A j does not leave ce at te
(i.e. there is not a collision) then

Remove e from Q
Compute the next event e′ for Ai
Insert e′ in Q

else
if the velocity of Ai can be decreased such that Ai leaves its current cell at the
instant of time t ′ corresponding to the event in Q associated to A j then
Decrease the velocity of Ai.
Remove e from Q.
Insert the event 〈Ai,t

′,ce〉 in Q.
else
Stop the simulation.

end if
end if

until The simulation is stopped
return IL∪ IR

5.5.2 The discrete allocation problem

In this section, the VAP subject to a discrete set of velocities is considered. For each
UAV a velocity among (v1,v2 . . . ,vm) should be selected in such a way that no collision
are detected between the UAVs as they move constantly with the selected speed. First,
deal with an easier problem, called the Two Velocity Assignment (2-VA) in which two
velocities v0 and v1 are only considered. Let UAV1,UAV2, . . . ,UAVn be the n UAVs. The
following theorem was proposed in [17].
Theorem 5.5.1 The 2-VA can be solved in O(n2) time in the worst case.

Proof. Consider n logic variables x1,x2, . . . ,xn, where xi = 0 if UAVi is assigned velocity
v0, and xi = 1 otherwise. For each pair UAVi,UAVj of UAVs a test is performed for each

5.5 Proposed Methods 111

Figure 5.6 Left: Fi j means thatUAVi andUAVj do not collide if they have the same velocity,
either v0 or v1. Right: The graph GF corresponding to F = (x̄1∨ x2)∧ (x̄2∨
x3)∧ (x1∨ x̄3)∧ (x2∨ x3).

possible assignment of velocities (i.e. assignment of 0’s and 1’s to xi and x j) in order to
verify whether they do collide or not. Then, a logic formula Fi, j can be obtained, with
variables xi and x j, such that all its positive interpretations imply that both vehicles do not
collide. Each Fi, j can be rewritten in Conjunctive Normal Form with two variables per
clause (i.e. xi and x j) (see Figure 5.6 left).
Therefore, our problem is reduced to assigning 0’s and 1’s to x1,x2, . . . ,xn such that

F =
∧n

i=1 Fi, j = 1, where F is also in Conjunctive Normal Form with two variables per
clause. This is an instance of the 2-SAT which can be solved in polynomial time as
follows [116]: let GF = 〈V,E〉 be a directed graph, where V = {x1,x̄1,x2,x̄2, . . . ,xn,x̄n} and
(α,β) ∈ E if and only if there exists in F a clause logically equivalent to ᾱ ∨β (see Figure
5.6 right).
It holds that F is unsatisfiable if and only if for some xi there exist in GF a path from

xi to x̄i and a path from x̄i to xi. Thus, polynomial time algorithms on path searching in
graphs can be applied. A refined algorithm running in O(n+n′) time is possible [116],
where n′ is the number of edges of GF . Since n′ is O(n2) in the worst case, the result
follows. �

It is worth noting, using arguments similar to the above ones, that whenever three or
more velocities are used instead of two, the problem can be reduced to an instance of the
k-SAT (k ≥ 3), which is NP-complete [113].

By using the above algorithm to solve the 2-VA, the discrete version of the VAP can be
solved approximately. Let us assume that each UAV can select its cruise velocity from
a set of m different velocities. Then, one 2-VA for each pair of velocities is solved. The
solutions obtained when solving each different problem are then compared in order to
select the solution that minimizes the deviation from the initial trajectory. By applying this
approach, a velocity is assigned to each UAV from a finite set of velocities. Since O(m2)
pairs of velocities are tested. The time complexity of this approximation is O(m2(n2 + t))
in the worst case, where t is the time spent in computing the deviation from the initial
trajectory.

112 Chapter 5. Velocity planning: Coordination of Multi-UAVs Trajectories

This algorithm is very efficient in dense airspace although the solution is an approxima-
tion to the optimal deviation. Therefore, the use of this algorithm involves considering a
trade-off between computation time and flight plan deviation.

5.5.3 Heuristic velocity planning with optimization phase

This method can also be applied if the Greedy method does not solve the avoiding collision
problem. The method, that will be called VP, is an adaptation of the algorithm presented in
[110]. The method has two steps: (i) the search tree step, which finds a solution if it exists
by exploring all possible arrival orders to each conflict zone, and (ii) the optimization step,
which minimizes a cost function.

In this method each UAV trajectory is decomposed into zones that consist of groups
of cells (see Section 5.3). In contrast, the method proposed in [110] considers each cell
separately.

Search tree step

This step asks if the CR problem can be solved by changes in the velocity profiles of the
UAVs. The goal of the search tree algorithm is to obtain arrival orders to each CZ that
provide a valid solution. In this step, all the vehicles are assumed to travel at their maximum
velocity. Hence, it is only possible to decrease their velocities to avoid a collision.

One conflict zone problem

Let us consider a scenario with two UAVs and only one CZ described in Figure 5.4 right.
The building of a tree is described in Algorithm 1. Each node of a tree represents a visited
cell for the UAV. Let us consider two nodes, Ni and Ni+1, that are related to neighbor cells,
C(i) and C(i+1). The corresponding edge between them has assigned a weight w. This
weight is calculated according to the following formula and considering maximum speed
of each UAV (see step 7):

w(Ni,Ni+1) = tin(C(i+1))− tin(C(i)) (5.2)

where Ni is the root node and Ni+1 is the child node. tin(C(j)) represents the entrance
time to a cell C(j).

Let us also define the arrival order to a CZ as the order in which the UAVs pass through
it. This order is determined by the estimated arrival time to the CZ of each UAV (see
step 2) and influences the building of each tree in order to decide if the building stops or
continuous by comparing the arrival time to the CZ with the time of the UAVs preceding.
Therefore, for n vehicles, a CZ has n! different arrival orders. All the possible arrival
orders are explored until a solution is found. In the scenario showed in Figure 5.4 right,
there area two arrival orders and the first one to be tested is UAV2-UAV1 because UAV2
arrives before.
First, the tree is built for UAV1, then for UAV2 and so on when there are more UAVs.

Whenever a CZ is reached, the tree only calculates its following weight if all UAVs that
precede the UAV which is building its tree, given by arrival order, have already calculated
the weights of the edges related to that CZ (steps 8 and 9). Figure 5.7 represents the
complete trees in the proposed example. Note that the horizontal length of each edge is

5.5 Proposed Methods 113

Algorithm 6 The Greedy Approach
repeat
Get the arrival order to all conflict zones to be checked.
Start the trees of all UAVs.
while there are some trees not completed and there are not any unavoidable collision.
do
for each tree do

if the tree is not completed then
Calculate the minimum weights of the next edges up to the next conflict node.

if the end was not reached and all previous vehicles have calculated the
weights of their conflict edges then

Calculate the weight of the conflict edge.
if a collision has been detected then

Go back and create new branches that solve the collision. Backtrack also
related trees.
if the beginning of the tree is reached then
An unavoidable collision has been detected

end if
end if

end if
end if

end for
end while

until A solution is found or all arrival orders have been unsuccessfully checked.
return The arrival order of the solution, or an error if not found.

proportional to its weight. In this case, when UAV1 comes in CZ (t1) it does not continuous
building its tree because the UAV before it, UAV2, has not calculated its weights of the
edge related to that CZ, so the UAV1 tree is stopped and the UAV2 tree is started and
completed. Otherwise the algorithm will continue with the tree of the UAV1.

Whenever a weight related to the CZ is calculated, the algorithm checks if the arrival
time to that conflict leads or not to a potential collision with regard to the UAVs preceding.
In this case, when the weight associated to the CZ of UAV1 tree is calculated in the
upper branch, a potential collision is detected with UAV2 (t1,t2). If a potential collision is
detected, then the algorithm creates a new branch in the tree, assigning greater weights
(that is, the time increases and speed decreases) in as fewer edges as necessary in order to
avoid that potential collision (step 11). The lower UAV1 branch represented in Figure 5.7
is generated and the potential collision is avoided because UAV1 comes in CZ in t2, that
is, when UAV 2 is leaving the CZ. If the collision cannot be avoided considering the speed
constrains of the UAV, the algorithm fails with the proposed arrival order and another
arrival order has to be checked (steps 12 and 13).

114 Chapter 5. Velocity planning: Coordination of Multi-UAVs Trajectories

Figure 5.7 Trees generated in the example scenario. UAV2 tree only has one branch
because is the first UAV that passes through CZ1. UAV1 has two branches
because a collision has been detected in CZ1 so a backtracking process starts.

More than one conflict zone

The complexity of the algorithm grows as the number of CZs increases. Let us assume
that there are m CZs with n UAVs where ni of them are involved in the ith conflict. So, a
total of n1!...nm! different orders should be checked.

The first arrival order is determined by the estimated arrival time to a CZ of each UAV.
Then, each tree is built considering the arrival order to detect potential collision. If no
solution is found with the first arrival order, a new order should be checked. The algorithm
permutes the arrival order to the CZ from the cost function J. The CZ with highest cost is
chosen to define the arrival order. This cost is defined as:

Ji = µi−σi (5.3)

where µi and σi are the mean and standard deviation of the set of estimated arrival times
of each UAV to the CZ. The mean of the arrival times to a CZ is considered because a
change in earlier CZs can affect the following CZs. The standard deviation is included in
order to take into account the differences between the arrival times of the different UAVs
to a CZ. In order to find a solution, it is advisable to change the arrival order to a conflict
where all the estimated arrival time of the vehicles involved in it are similar.

The backtracking process takes place when a collision is detected and a new tree should
be built for one o more UAVs. In this case, the backtracking process can become more
complex than the previous case considering one CZ. Note that the backtracking process is
only done for the UAVs which arrive to the corresponding CZ later.

QP-problem

When the search tree algorithm finds a solution, a valid arrival order for all the CZs in
the collision avoidance problem has been found. At this point, an improvement on the
objective function can be done by solving a QP-problem. The QP-problem minimizes a

5.5 Proposed Methods 115

quadratic cost function with linear constraints. Let us consider a cost function in order to
obtain the most similar trajectory to the initial one. The considered cost function is:

JQP =
n

∑
i=1

Mi

∑
k=1

(
tik− tre f

ik

tre f
ik

)2

(5.4)

where tik is the stay time in the kth CZ visited by the UAVi and tre f
ik is the stay time in

the initial trajectory. n represents the number of UAVs of the system and Mi the number of
CZs crossed by the UAVi.
It should be noted that a new denominator term has been introduced with respect to

(5.1). This is necessary in this method because the optimization is computed CZ by CZ
instead of cell by cell. The stay time in each CZ can be very different, so without this term
very large variations in the stay time in small CZs can be produced, leading to saturations
in the velocity control signal.
The constraints of the model are:

tik−aikvik−bik ≤ 0 (5.5)
cik +dik− tik ≤ 0 (5.6)

The maximum and minimum stay time in each cell depends on the initial velocity at
those cells, vik. This dependence is in fact non linear, therefore a linearization has to be
made it in order to formulate the QP-problem. This is achieved by interpolation with
aik, bik, cik and dik as the interpolation coefficients. Moreover, the following constraints
regarding vik are considered:

vik− vmax ≤ 0 (5.7)
vmin− vik ≤ 0 (5.8)

|vi,k− vi,k−1| ≤
ai,maxdi,k−1

vre f
(5.9)

∀i = 1...N,k = 1...Mi

The first two constraints are given by the UAV model, and the third one relates the initial
velocity in one cell with the other in the previous cell because of the maximum acceleration
constraint. In the third equation, ai,max represents the maximum desired acceleration of
the UAVi and di,k represents the distance traveled by the UAVi in the kth CZ.
Finally, in order to avoid collisions for each CZ and each UAVi that has to cross that

zone immediately before than an UAVj, these constraints should be considered:

Q

∑
k=1

tmk−
P−1

∑
k=1

tlk ≤ 0 (5.10)

116 Chapter 5. Velocity planning: Coordination of Multi-UAVs Trajectories

where P indicates the entry cell in the CZ of the UAVj and Q indicates the leaving cell
of the UAVi.

The above optimization problem can be solved by means of the QP-solver implemented
in the Computational Geometry Algorithms Library (CGAL) [117].

5.6 Simulations

The three methods have been implemented and several simulations have been carried out.
The results obtained by these methods in simulation are detailed and discussed in this
section.
In order to compute the trajectories it was necessary to model the behavior of the

aerial vehicles. The simple model for a controlled UAV proposed in [118] was used in
the simulations. This model allows us to reduce the computational time expended in
simulations. Nevertheless, in the proposed methods it was also possible to use models of
arbitrary complexity.

Three different scenarios (S1, S2 and S3) were considered to perform the following four
studies:

1. To describe the changes of speed required to solve conflicts by considering non-
cooperative UAVs. S1 shown Figure 5.8 left is used.

2. To analyze how the computing time of each method depends on the considered
scenario (see Figure 5.8 right and Figure 5.8 down).

3. To obtain values of the cost (Equation 5.1) introduced in Section 5.3 in order to
compare the kindness of the solutions obtained by each method. The lower criteria
obtained, the better the solution is; i. e., the solution is closer to the initial trajectory.

4. To check how the computing time depends on the safety distance, i. e., the minimum
number of cells between two UAVs.

In S1 the size of the cell is 150m and the safety distance is 4 cells. In S2, the size is
150m and the safety distance 3 cells, and in S3, 100m and 6 cells.

5.6.1 Velocity profile calculation

In the first study, the goal is to show how the detected conflicts can be solved by changing
the speed of each UAV when there are non-cooperative UAVs. In this simulation five UAVs
fly on a circular scenario sharing airspace (see Figure 5.8 left). UAV1 is non-cooperative so
the speed cannot be changed. Therefore,UAV2,UAV3,UAV4 andUAV5 should change their
speed profiles to avoid the detected conflicts in the center of the circle. The speed profiles
computed for each cooperative UAV are shown in Figure 5.9. Firstly, all cooperative
UAVs decrease their speed before entering the CZ. When an UAV comes into the CZ
it increases its speed in order to exit more rapidly. The order of entry in this case is:
UAV1,UAV3,UAV4,UAV2,UAV5. Finally, each UAV returns to its initial speed. It has been
shown how several changes of speed for each UAV can solve the conflicts. Thus, the
deviation from the initial trajectory is smaller.

5.6 Simulations 117

Figure 5.8 Up-Left: First simulation scenario (S1). Up-Right: Second simulation scenario
(S2). Down: Third simulation scenario (S3).

5.6.2 Greedy results

Regarding the second study, the results obtained in the Greedy method in S2 and S3 are
shown in Table 5.1 for different numbers of UAVs. In all cases, the solution is found. The
initial speed has been set to the cruise speed (53.5m/s). The computational time used
in this method, T (s), is low and grows almost linearly with the number of UAVs. This
method is good when a solution is needed in a short time (few seconds at most). Finally,
taking into account the comparison criteria J, the values obtained are quite low and in
most cases are also the lowest of the three methods.
The results obtained with the 2-VA method are shown in Table 5.2 for v1 = 45.0m/s

and v2 = 55.0m/s. The execution time is very low but, but comparatively higher than
the obtained with the Greedy approach. However, this method can also be used when a
solution needs to be computed in few seconds.
An important characteristic of this method is that the computing time and the number

of solutions do not depend on the scenario considered. This method recalculates the stay

118 Chapter 5. Velocity planning: Coordination of Multi-UAVs Trajectories

Figure 5.9 Speeds computed for UAV2, UAV3, UAV4 and UAV5 to avoid the detected
conflicts with the VA method in S1.

Table 5.1 Results obtained from the Greedy approach considering S1 and S2.

UAVs Scenario 2 Scenario 3
T(s) J(s2) T(s) J(s2)

2 0.012 3.91 0.042 2.32
3 0.017 3.92 0.126 8.19
4 0.025 3.92 0.162 8.19
5 0.029 4.64 0.179 22.35
6 0.039 4.64 0.215 22.35
7 0.228 4.64 0.248 22.35
8 0.263 4.65 0.316 22.35
9 0.299 4.65 0.353 22.35
10 0.326 4.65 0.403 22.36

times of each UAV in all visited cells for both low and high speeds. This method usually
provides more than one possible solution, whenever this happens the one that gives the
lowest value of J is chosen.

5.6.3 2-VA Results and Generalizations

When the number of UAVs is low, most of the time is spent in simulating the trajectories
of each UAV. Only one simulation is done for each UAV and thus a complexity of approx-
imately O(n) is obtained, where n is the number of UAVs in the system. However, it is

5.6 Simulations 119

Table 5.2 Results obtained from the problem with DVA method (2-VA): v1 = 45m/s,v2 =
55m/s.

UAVs Scenario 2 Scenario 3
T (s) J(s2) T (s) J(s2)

2 0.395 93.96 0.239 30.44
3 0.668 174.40 0.461 111.50
4 0.916 176.20 0.604 113.10
5 1.08 274.70 0.752 182.10
6 1.24 276.60 0.901 183.90
7 1.56 278.70 1.19 185.40
8 1.88 280.60 1.32 186.70
9 2.05 282.70 1.37 187.50
10 2.30 284.40 1.48 188.40

expected that the time spent in graph search will become dominant as the number of UAVs
becomes greater (maybe hundreds or thousands of vehicles), because of the complexity of
finding a solution in the generated graph is O(n2), as calculated in Section 5.5.2.

More generally, the 2-VA method can be used iteratively in order to solve the discrete
velocities allocation problem. Table 5.3 shows the results obtained when using the DVA in
order to check a set composed by more than two velocities (see Section 5.5.2). In these
simulations, a set of five velocities V = {45.0,47.5,50.0,53.5,55.0}m/s has been consid-
ered, therefore a Five Velocity Assignment (5-VA) Problem is being solved. Considering
more velocities, better solutions are obtained, i.e. lower values of J. On the other hand,
the computing time becomes greater in a very noticeable way because five simulations are
necessary for each vehicle and also the 2-VA problem has to be solved

(5
2

)
times. Therefore,

the computational time grows faster with the 5-VA than with the 2-VA as the number of
UAVs increases.

Table 5.3 Results obtained from the problem with DVA method (5-VA): V =
{45,47.5,50,53.5,55}m/s.

UAVs Scenario 2 Scenario 3
T (s) J(s2) T (s) J(s2)

2 0.56 1.97 0.42 1.61
3 1.20 3.56 0.77 12.7
4 2.26 14.74 1.69 14.2
5 5.54 28.6 3.10 42.0
6 7.71 30.5 7.47 42.0
7 14.9 32.6 11.9 42.0
8 22.7 34.5 14.0 42.0
9 31.9 36.1 23.9 42.0
10 51.2 37.6 32.4 42.0

120 Chapter 5. Velocity planning: Coordination of Multi-UAVs Trajectories

Table 5.4 Computational time spent in all phases of the algorithm and criteria results of
the solutions obtained in S2 from the heuristic VP method.

UAVs Conflict(s) S. T.(s) QP(s) T (s) J(s2)
2 0.018 0.000 0.006 0.023 0.857
3 0.089 0.001 0.045 0.135 0.859
4 0.337 0.002 0.293 0.633 0.861
5 0.813 0.004 0.914 1.73 0.894
6 1.88 0.010 2.94 4.83 0.896
7 3.60 0.016 6.92 10.54 0.967
8 6.45 0.025 17.21 23.68 0.969
9 10.86 0.037 38.08 48.98 1.105
10 17.52 0.047 51.314 68.88 1.109

Table 5.5 Computational time spent in all phases of the algorithm and criteria results of
the solutions obtained in S3 from the heuristic VP method.

UAVs Conflict(s) ST(s) QP(s) T (s) J(s2)
2 0.015 0 0.016 0.032 5.95
3 0.140 0.001 0.029 0.171 69.97
4 0.500 0.003 0.226 0.728 69.97
5 1.16 0.006 0.604 1.77 217.30
6 2.73 0.012 4.90 7.64 223.20
7 4.29 0.019 11.12 15.43 223.20
8 6.01 0.019 11.63 17.66 223.20
9 7.97 0.023 13.88 21.87 223.20
10 10.55 0.026 20.71 31.28 223.20

5.6.4 Heuristic VP results

The computing times obtained with the heuristic VP method in S2 and S3 are shown in
Table 5.4 and Table 5.5, respectively. This method finds good solutions but the computing
time is higher than that for the Greedy and DVA methods and it significantly increases with
the number of UAVs considered. Despite of this, this method can be efficiently applied
in real-time to a system composed of a maximum of 6 UAVs when the solution has to be
computed in few seconds.

Note that the computing time required to detect conflicts also increases with the number
of UAVs because more CZs are detected. The computing time for a QP-problem increases
because new CZs appear, thus adding constraints to the system. Similarly, the number of
variables considered in the QP-problem also increases when new UAVs are added to the
system. Two variables are needed for each CZ that is crossed by an UAV.

The computing time for each method in S2 and S3, can be compared from the results in
Tables 5.1, 5.2, 5.3, 5.4 and 5.5. The strong dependency of the computing time needed by
both 5-VA and the VP method with the number of UAVs is very significant. On the other
hand, this dependency is less significant for the 2-VA and Greedy methods and the growth

5.7 Experiments 121

of their execution time is almost linear. However, the differences in time required are not
noticeable if the number of UAVs in the system does not exceed 6.
In terms of optimality of the solution, it is clear that both 5-VA and VA methods

outperform Greedy and 2-VA in most cases.

5.6.5 Comparison with the number of safety cells

The last study will analyze the computational cost of the collision avoidance methods,
when the safety distance (i.e., the number of cells) changes. The results are represented in
Figure 5.10. Note that this factor does not have noticeable effect on the computing time in
the Greedy and DVA methods. On the other hand, the computing time spent in VP method
increases with increasing safety distance. This extra time is spent in the conflict detection
phase of the algorithm and arises due to the growth of CZs, which in turn means that the
conflict database contains more items and it is more expensive to be generated.

1 2 3 4 5 6 7 8 9 10

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

0

1

2

3

4

5

6

7

8

VP
Greedy
2-VA

Figure 5.10 Computing time for each method with different number of safety cells in S2.

5.7 Experiments

Several experiments have been carried out in the indoor multi-UAV testbed of the Center
for Advanced Aerospace Technologies (CATEC) with four Hummingbird quadrotors (see
Appendix A. In the experiments, the VP method has been used to compute collision-free
trajectories by changing the speed profile of the UAVs.
In the first experiment, a circular scenario is considered (see Figure 5.11). The pa-

rameters are: vik = 0.5m/s, vmin = 0.05m/s, vmax = 2m/s, t f light = 16s and tm = 1.5s. A
conflict is detected in the center of the circle, and then the VP method computes the speed
profile for each UAV to avoid the conflict in a cooperative way while minimizing the cost
indicated in Equation 5.1. The speed profile (SP) computed for each UAV and the time
where the speed is changed to the next (T) are shown in Table 5.6. When a UAV comes
into the CZ it increases its speed in order to let the other UAVs enter to the CZ. Moreover,

122 Chapter 5. Velocity planning: Coordination of Multi-UAVs Trajectories

X (m)

2 4 6 8 10 12

Y
 (

m
)

2

4

6

8

10
UAV4

UAV1

UAV3

UAV2

UAV4
UAV3

UAV1

UAV2

Figure 5.11 Scenarios considered in experiments: Experiment I (grey lines) and Experi-
ment II (black lines).

Table 5.6 SPEED PROFILE AND TIME FOR EACH UAV IN EXPERIMENT I.

UAV SP(m/s) T(s) UAV SP(m/s) T(s)
1 0.268 7.609 3 0.945 2.699
1 2.000 9.948 3 1.533 5.321
1 0.228 14.870 3 0.137 14.531
2 0.232 9.772 4 0.425 5.571
2 0.880 13.976 4 2.000 7.714
2 0.627 17.481 4 0.164 14.774

each UAV maintains its initial trajectory and fulfills its ETA because of constraints of
Equation 5.10. The separation between UAVs is shown in Figure 5.12.

The second experiment presents a different scenario (see Figure 5.11). The considered
parameters are: vik = 0.2m/s, vmin = 0.05m/s, vmax = 0.8m/s, t f light = 40s and tm = 1.5s.
The speed profiles are shown in Table 5.7. Also, the separation between UAVs is depicted in
Figure 5.13. This figure shows that the safety distance was also maintained in Experiment
II.

5.8 Conclusions 123

Figure 5.12 Experiment I: Separation between UAVs.

Table 5.7 SPEED PROFILE AND TIME FOR EACH UAV IN EXPERIMENT II.

UAV SP(m/s) T(s) UAV SP(m/s) T(s)
1 0.208 11.091 3 0.127 18.388
1 0.205 18.396 3 0.227 25.287
1 0.166 21.257 3 0.198 27.718
1 0.203 28.767 3 0.256 33.739
1 0.200 39.947 3 0.283 41.312
2 0.188 12.048 4 0.362 6.616
2 0.231 18.679 4 0.263 12.054
2 0.200 21.079 4 0.186 14.470
2 0.229 27.711 4 0.225 21.247
2 0.198 39.093 4 0.128 38.696

5.8 Conclusions

In this chapter, the conflict resolution problem for multiple UAVs in a common airspace is
studied. It has been proved that this problem is NP-hard (see Section 5.4). Three different
methods have been proposed for collision avoidance of UAVs sharing airspace (see Section
5.5). These methods are based on different strategies: the greedy approach, a discrete
velocity allocation (DVA) problem considering pairs of velocities and the velocity planning

124 Chapter 5. Velocity planning: Coordination of Multi-UAVs Trajectories

Figure 5.13 Experiment II: Separation between UAVs.

based on [110] but with some changes made to improve the application conditions.

The proposed methods avoid the conflicts by changing only velocities and maintaining
the space trajectories. Furthermore, the conflicts are solved minimizing the time deviations
with respect to initial trajectories that are assumed to be optimally computed and then
should be maintained as much as possible when avoiding conflicts.

The work described here has led to advances in conflict resolution methods that consider
speed changes under dense airspace. The most important advantages over previous works
are: low computational time; multiple UAVs are considered in different scenarios with
non-cooperative UAV; and the detection of conflicts takes into account several UAVs rather
than just a pair of UAVs as, for example in [78]. Furthermore, the third proposed method
allows the speed profile to be changed in such a way that each UAV can return to its initial
speed the maneuver, so more than one speed change is allowed.

The proposed methods can be integrated into a Conflict Detection and Resolution
system. The first option would be to compute a solution with the Greedy method because
its computing time is lower. This method provides an optimal solution if no decision
situation is found. If the Greedy method does not identify a solution, then the 2-VA
method can be used to compute a solution. The main advantage of the Greedy and 2-VA
method is the low requirements to compute the solution in short time. In addition the
2-VA method can be extended for approximately solving the DVA problem. As a final
option the VP method can be used to compute a near-optimal solution. This method
computes an approximated solution, with a small deviation from the initial trajectory, but
the computing time is higher and then its application is constrained by the computational
resources required to obtain the solution within the time constraints.

5.8 Conclusions 125

All implemented methods have been validated for different numbers of UAVs and in
different scenarios. Therefore, the proposed methods are suitable for real-time applications.
In addition, Section 5.7 gives the results of two experiments. These results show the

validity of the VP method in a multi-UAV system composed by 4 quad-rotors. The
experiments show that the system is able to re-plan their original trajectories by assigning
speed profiles to the UAVs. The safety of the generated trajectories is shown because the
distance of each pair of UAVs never goes below the safety distance in the whole experiment.
Future efforts will involve the design of new cost functions that also consider other

interesting objectives for UAVs such as minimum fuel consumption, minimum arrival
time, maximum clearance, etc.
In the next chapter, a complete system that has been designed to harvest the resources

in the atmosphere in order to extend the flight endurance of powered gliding aircraft is
designed. This system integrates a CDR system based on RRT* method which is also
detailed.

6 A Distributed System for Cooperative
Static Soaring

If birds can glide for long periods of time, then. . . why can’t I ?

O. Wright.

This chapter discusses the problem of cooperative identification of the vertical wind in
an area in order to efficiently harvest the wind energy with fixed-wing gliding UAVs,

known as soaring. Moreover, a cooperative system with multiple gliding fixed-wing UAVs
is presented for long endurance missions. This system is composed by three main blocks
that include wind map estimator, optimal trajectory generation and cooperative CDR.

The main advantage of the proposed approach is its low computational load, making it
suitable for real time applications. Extensive simulation results in several scenarios are
given to test the complete system. In addition, several real experiments have been carried
out with real gliding aircrafts of the GRVC of the University of Seville in the airfield of
La Cartuja (Seville). The results of these experiments show the interest of the proposed
method.

6.1 Introduction

A common problem that reduces the effectivity UAVs is the short flight endurance of the
vehicles, as seen in Section 1.1. For this reason, they have to land in order to refuel or
recharge batteries. Therefore, extending the flight endurance of UAVs for long endurance
missions arises as a critical issue in many applications.
New ideas such as the so-called autonomous soaring have been proposed to extend

the flight endurance of a single glider aerial vehicle [119]. Soaring could be defined as
flight in which a propulsion system is not used and favorable wind conditions are exploited
to extend flight duration. This phenomenon was noticed in some birds by observing

127

128 Chapter 6. A Distributed System for Cooperative Static Soaring

how they are able to fly without flapping their wings [120]. The clearest example is the
Wandering Albatross that covers large areas with minimal energy consumption [121]. In
1885, I. Lancaster [122] published a work on soaring of birds. Thus, soaring flight became
an important research area. There are two types of soaring, static and dynamic soaring.
The first one uses rising air to gain energy and the second one uses wind gradients or
distributions.
Aerial vehicles should be capable of extracting energy from the atmosphere to gain

altitude in order to stay aloft [123]. This energy can be extracted from different sources
such as wind gusts over surfaces (such as the ocean), shear generated by flow around
geographic obstacles, and meteorological shear from temperature inversions. This work
will consider vertical movements of the atmosphere, also so-called thermals. Thermals
are caused by convection in the lower atmosphere and could be exploited to increase the
altitude of multiple UAVs. This process is also known as static soaring where UAV flies
through air which is rising relative to the surrounding air. On the other hand, dynamic
soaring obtains kinetic energy by using trajectories through distributions of wind speed.

This chapter addresses long endurance cooperative missions with multiple gliding UAVs.
The mission is given by a set of places defined by Point of Interest (PoIs) which should be
visited. Existence of thermals in the environment is considered. Thus, the aerial vehicles
should cooperatively visit the PoIs and each aerial vehicle should detect and identify the
thermals present in the environment during the mission in order to exploit their energy
and gain altitude, and so extend the flight duration. Cooperative missions with multiple
vehicles allow faster detection and more efficient exploitation of the thermals, since each
vehicle transmits to the rest of the teams the location of the thermals it has identified. The
guidance and control of an autonomous soaring UAV is not addressed in this work, but
we use the approach in [124]. A path planner is also needed to efficiently carry out the
cooperative mission. The planner has to consider constraints such as energy available
of the UAV at the current instant and locations of the thermals which will influence the
computation of collision-free trajectories.
Moreover, collision avoidance is a critically important aspect in applications with

multiple UAVs to successfully perform the mission. Therefore, a collision avoidance block
should be implemented to ensure the fulfillment of the mission.

experimentation.
In summary, the objectives of the chapter are:

1. Explore all the PoIs without landing and decrease the total time of the mission.

2. Identify the presence of thermals in the environment in order to exploit them and
extend the flight duration.

3. Compute safe trajectories to perform the mission.

A new system made up different blocks is developed in order to meet the objectives.
The Path Planner block considers a method to assign each PoI or Thermal Point (TP) to
a vehicle. A Thermal Detector block is added to detect and identify thermals during the
mission. The Conflict Detection and Resolution block is based on the RRT* (Optimal
Rapidly-exploring Random Trees) planning algorithm. Studies with many simulations
show the performance and advantages of the developed system. Several experiments that

6.2 State of the art 129

have been carried out in the airfield of La Cartuja (Seville, Spain) and in the airfield of
Brenes (Seville, Spain) with the gliding fixed-wing UAV in Figure 6.1 are presented in
order to demonstrate the reliability of the system.

Figure 6.1 Gliding fixed-wing UAV used in the experiments.

The chapter is organized into nine sections. The state of the art regarding to automatic
gliding flight is presented in Section 6.2. The developed system is described in Section
6.3. Section 6.4 presents the thermal model, the features of the environment considered
and the algorithm to detect and identify the thermals. The path planner is explained in
Section 6.5 and the conflict detection and resolution algorithm is described in Section
6.6. A comprehensive simulation set has been executed and its results are presented in
section 6.7. Finally, the experiments performed are detailed in Section 6.8. Finally, the
conclusions are detailed in Section 6.9.

6.2 State of the art

First studies on soaring were based on the flight patterns of birds [120]. Soaring UAVs
capable of extracting energy from the atmosphere to gain altitude in order to stay aloft
have been presented in [123].
The works presented in [125], [119] and [126] show the first analysis on autonomous

thermal soaring. Other results with an autonomous soaring controller are reported in
[127].
The static soaring problem is applied to the Vehicle Routing Problem with Time Win-

dows (VRPTW) in [128]. It develops an exact solution method including preprocessing,

130 Chapter 6. A Distributed System for Cooperative Static Soaring

route optimization and route validation . The total flight time minimization is achieved
and a considerable increase in the level of autonomy of a soaring UAV is attained.
Detection and identification of thermals have also been addressed in the literature

[129][130]. Models of thermals should be considered in the studies and several of them
are presented in [124] and [131].
Energy-constrainted motion planning is done by considering the problem of a gliding

UAV searching for a ground target while simultaneously collecting energy from known
thermal energy sources [132]. Path planning is also addressed in other studies. A graph-
based method for planning energy-efficient trajectories over a set of waypoints is presented
in [133]. A method to generate a spatio-temporal map of the wind and a path planning to
generate energy-gain paths based only on local observations of the wind is presented in
[134]. The trajectory generation for autonomous soaring is also addressed in [135] and
[136].
The coordination of multiple UAVs in order to perform a long endurance mission

considering the detection of thermals and the computation of collision-free trajectories has
been studied in [131]. UAVs communicate to each other the location of potential thermals
in the area but the simulation shown only considers one UAV.

[137] describes a new algorithm for maximizing the flight duration of a group of UAVs
using thermals located in the area. A simultaneous perturbation stochastic approximation
method (SPSA) is used to detect the center of the thermal and the method treats the thermal
center drift effectively. It is assumed that there exists a path planning algorithm that keeps
the vehicles from colliding with each other. This work considers small unmanned powered
glider, so the propulsion system or soaring can be used.

[138] presents a method for distributed mapping of the wind field. The map is discretized
and a Kalman filter is used to estimate the vertical wind speed and associated covariance
in each cell. Flocks of small UAVs are considered to maximize the endurance. [139]
investigates the possible benefits of using a cooperating team of small UAVs to increase
the probability of finding thermal lift. A collision-free trajectory planning algorithm is
not implemented to optimize the search of thermals in [138] and [139]. These works and
[128] consider lifetime and drift of the thermals. Moreover, the proposed system allows
applications in real time because of its low computational needs.

6.3 Overview of the system

This section describes the proposed system for long endurance missions with multiple
gliding fixed-wing UAVs. It assigns the PoI to the UAVs and computes the collision-free
trajectory for each UAV if a collision is detected. During the flight, each UAV should
detect and identify unknown thermals. Figure 6.2 shows the block diagram:

6.3.1 Local Path Planner

The Local Path Planner block (LPP) is responsible for generating the flight plan of the
UAV taking into account the knowledge of the wind map, i.e. detected thermals so far,
and the PoIs to be visited. In order to do this, it should communicate with the Thermal
Manager block and the Mission Manager block.

6.3 Overview of the system 131

On-board

Local Path
Planner

Mission
Manager

Autopilot

Constraints
Thermals

TPs

Flight Plan

UAV State

Thermal
Detector

Detected
Thermals

Ground

Thermal
Manager

CDR

Flight
 Plan

UAV
State

PoIs
 TPs

Flight Plan

Figure 6.2 Block diagram of the system.

This block uses a path planning algorithm called Bounded Recursive Heuristic Search
method (BRHS) [19] which is based on a Depth-First Search algorithm (DFS).

The basic behavior of this block is the following: it periodically generates a new flight
plan taking into account the current state of the UAV (from the Autopilot), position of
the remaining PoIs and Thermal Points (TPs), and minimum flying altitude of the UAV
related to the available energy.
The flight plan is computed every second in order to adapt to unexpected events and

the execution time is below one millisecond. When a new flight plan is generated and is
significantly different of the current flight plan, LPP transmits the new flight plan to the
Autopilot.

The generated flight plan can be defined by one of the following four alternatives:

1. One waypoint: If the altitude of the UAV goes below a minimum flying altitude, the
UAV is commanded to go Home for landing.

2. Two waypoints: Current location and a PoI or TP. UAV does not need a thermal to
gain altitude and can reach a PoI or TP.

3. Three waypoints: Current location, entry point and exit point of the thermal. The
UAV can not reach a PoI or TP and should access to a thermal first to gain energy.

4. Four waypoints: Current location, entry point and exit point of the thermal, and a
PoI. UAV could visit a PoI or TP after gaining altitude in a thermal.

132 Chapter 6. A Distributed System for Cooperative Static Soaring

6.3.2 Autopilot

Each UAV should be equipped with an Autopilot to be capable of following 3D flight plans.
It is also responsible for estimating the state of the UAV (3D position) and providing other
blocks with this information.

In the experimental platforms currently developed in the Robotics, Vision and Control
Group of the University of Seville we have installed an Ardupilot Mega 2.5 of the company
3DRobotics 1. This is an open-source autopilot that is easily configured and gives good
performance. The experimental setup is shown in Figure 6.3.

Figure 6.3 Experimental setup of one of the gliding fixed-wing aircraft UAV.

6.3.3 Thermal Detector

The Thermal Detector (TD) is responsible for detecting new thermals in the environment
from changes of energy of the UAV, that is altitude of the UAV. It is constantly monitoring
the UAV state in order to check for unexpected ascensions. Each UAV has on-board its
own TD.
Whenever an unexpected ascension occurs and it meets some requirements, a new

thermal is added to the system and new points are added and sent to the Mission Manager
in order to actively sense the characteristics of the thermal. The details of these procedures
are given in section 6.4. The characteristics of the new thermal are also sent to the Thermal
Manager (TM) block.

6.3.4 Mission Manager

The Mission Manager (MM) block stores the list of remaining PoI and TPs to be visited
by the UAVs. It is also responsible for assigning and reassigning these waypoints to the
UAVs as requested by the LPP modules.

1 http:// ardupilot.com

http://ardupilot.com

6.4 Thermals detector 133

In the proposed system, two types of points to visit are distinguished: PoIs and TPs.
Both could be considered as an exploration process: PoI to explore some places, and TPs
to explore potential thermals. PoIs are set by the operator and TPs are generated when
the location of a potential thermal is received from TD block. The TPs are computed to
provide a better estimation of the center of a detected thermal.

Initially the list shows all the PoI defined in the environment. The list is updated every
time one PoI is visited or a thermal is detected. The LPP of each UAV proposes visiting
a PoI or TP when generating its flight plan. MM should assign to a UAV a PoI or TP
if its estimated time of arrival (ETA) to it is the lowest one so far. In order to prevent
oscillatory behaviors, whenever an UAVi proposes visiting a PoIk or T Pk that has been
already assigned to a UAVj, the ETA of UAVi not only should to be lower than the ETA of
UAVj but also should decrease this time with a given margin, tvisit . Otherwise PoIk or T Pk
continues being assigned to UAVj.

6.3.5 Thermal Manager

The TM block stores the information on the thermals and manages the access to them. It
communicates to each LPP the existing thermals in the space and the temporal constraints
to access a thermal.
Whenever an UAV needs to gain energy, it should request for access to any thermal

to the TM block. This block checks whether the flight plan proposed by each UAV to
gain altitude is safe or not. A flight plan to access to a thermal is safe when the vertical
separation between two UAVs within the thermal is larger than a safety margin, dsa f ety.
The outputs are temporal constraints to access to the thermal. If a flight plan is not safe,
TM sends the temporal constraints to meet the vertical separation to the corresponding
UAV.

6.3.6 Collision Detection and Resolution block

The CDR block is responsible for ensuring collision-free trajectories between UAVs in the
system outside the thermals. Note that the Thermal Manager block arbitrates the access of
UAVs to the thermals, so the collisions inside thermals should not occur.
This module can be divided into two different blocks: the detection and the resolution

blocks. The first block, takes as inputs the state of the UAVs in the systems and their
current flight plans in order to detect conflicts between their trajectories. The second block
is activated whenever a conflict is detected and will modify the flight plans of involved
UAVs in order to prevent potential collisions.

6.4 Thermals detector

This section describes how the wind map of the environment is generated and the potential
thermals are detected. The parameters that define a thermal are: center of the thermal
(C), vertical wind velocity (w), radius (R), maximum altitude (A) and drift of the thermal,
(Vdri f t). Each UAV will estimate the vertical wind velocity of the thermal from the changes

134 Chapter 6. A Distributed System for Cooperative Static Soaring

of energy. The UAV speed is assumed as constant when performing unpowered gliding
flight, so only changes of altitude are taken into account.

6.4.1 Thermal model

The Convective Boundary Layer (CBL) of the atmosphere is where the updrafts and
downdrafts are produced because of heat and moisture exchanges with the earth surface
[140][141]. In particular, a thermal model based on the one presented in [129] has been
implemented. Two of the main parameters are the convective velocity scale, w∗, which
measures the strength of a thermal and the CBL thickness, zi, which measures the top
height of the CBL. These parameters have a strong dependency on the terrain, the part of
the day (w∗ usually follows a sinusoidal distribution, achieving its maximum at noon) and
the season. These two parameters are usually obtained by performing a meteorological
study of the region (see table 2 of [129]). In particular, in the presented simulations the
values zi = 1400m and w∗ = 2.56m/s which are typically obtained from march to October
in the Desert Rock (Nevada) are considered.
Once zi and w∗ parameters have been obtained, the wind map can be calculated as

follows. In first place, the average wind velocity of one updraft can be obtained:

w = w∗ 3

√
z
zi

(
1−1.1

z
zi

)
(6.1)

The shape of the thermal is assumed as a revolved trapezoid as shown in figure 6.4. The
inner radius (r1), outer radius (r2) and maximum value (wpeak) of the trapezoid can be
calculated as follows [124].

r2 = max
(

10,0.102 3

√
z
zi

(
1−0.25

z
zi

)
∗ zi

)
(6.2)

r1
r2

=

{
0.0011∗ r2 +0.14, r2 < 600m
0.8, else

(6.3)

wpeak =
3w
(
r3

2− r2
2r1
)

r3
2− r3

1
(6.4)

Then, the distribution of the upwind due to the thermal is obtained by using Equation
6.5.

w = wpeak

(1+
∣∣∣∣k1∗ r

r2
+ k3

∣∣∣∣k2
)−1

+ k4

 (6.5)

Where k1−4 are shape constants that are calculated to fit the trapezoidal shape of the
thermal. They can be obtained from Table 6.1.

Moreover, some modifications are performed to compute a more realistic wind map:

• A spatially uncorrelated zero-mean Gaussian noise is added to the wind field.

6.4 Thermals detector 135

Figure 6.4 Trapezoidal shape of the wind distribution.

Table 6.1 Shape constants for bell-shaped vertical velocity distribution.

r1/r2 k1 k2 k3 k4
0.14 1.5352 2.5826 –0.0113 0.0008
0.25 1.5265 3.6054 –0.0176 0.0005
0.36 1.4866 4.8354 –0.0320 0.0001
0.47 1.2042 7.7904 0.0848 0.0001
0.58 0.8816 13.972 0.3404 0.0001
0.69 0.7067 23.994 0.5689 0.0002
0.80 0.6189 42.797 0.7157 0.0001

• The lifetime of the thermal is considered. Thus, the vertical wind velocity distribu-
tion that defines the thermal decreases with respect to time.

• The drift of the thermal is considered. Thus, center of the thermal is in relative
movement to the ground.

In this work, a test set has been generated to validate the proposed system. An algorithm
to randomly generate the wind maps has been implemented. The inputs are: number of
thermals at the start, lifetime of each thermal, drift of each thermal, zero-mean Gaussian
noise considered, size of the environment, probability to generate new thermals during the
mission and separation between the thermals. Thus, different wind maps can be generated.

6.4.2 Thermal detection algorithm

The thermal detection algorithm is implemented in the TD block. Algorithm 7 presents
the thermal detection algorithm which output will be the position of the detected thermal,
thermalorigin. Changes of altitude, ∆h, are considered to detect a potential thermal from
the current altitude, hi and the previous one hi−1. Whenever ∆h > 0 (see line 4), the origin
of a potential thermal is stored when the first increasing of the altitude is obtained (see line
5) or the continuation of the climb is considered (see line 7) when the altitude continues

136 Chapter 6. A Distributed System for Cooperative Static Soaring

increasing. On the other hand, whenever ∆h < 0, two cases are possible: the descent
takes place after a climb (see line 11) or the UAV was already descending (see line 18).
In the first case, algorithm decides if a thermal is detected. A thermal is detected if the
altitude gained during the climb, hgain, is greater than Hthreshold . Otherwise, a thermal is
not detected and values of the thermals are initialized, thermalorigin, hgain and h f inal .

Algorithm 7 Thermal detection algorithm
1. hgain← 0, h0← 0
2. thermalorigin← (0,0,0)
3. for Each aircraft position, pppiii = (xi,yi,hi) do
4. ∆h = hi−hi−1
5. if ∆h > 0 then
6. h f inal ← hi
7. if thermalorigin = (0,0,0) then
8. thermalorigin← pppiii
9. h0← hi
10. end if
11. else
12. if hi > h f inal then
13. if hgain > Hthreshold then
14. Thermal Detected. Estimate the center:
15. thermalcenter←

thermalorigin+pppiii
2

16. end if
17. hgain← 0, h0← 0
18. thermalorigin← (0,0,0)
19. end if
20. end if
21. end for

Once a thermal is detected, the parameters of the thermal are estimated. Center of the
thermal, vertical wind velocity and radius are estimated as those used by Allen [129]. Drift
of the thermal and more precise parameters are estimated when a UAV passes through the
thermal again. Figure 6.5 shows how a thermal is detected when a UAV passes through it.
The drift is computed when an UAV passes through the thermal again by considering that
the center moves with a linear uniform motion (LUM), and making a minimum squares
adjustment.

6.4.3 Computation of the TPs

The computation of the TPs is performed by the TD block from the data of the detected
thermal: estimated center of the thermal and direction of the UAV trajectory passing
through the thermal. Two more waypoints are computed to ensure that the UAV trajectory
will pass through the center of the thermal with a perpendicular direction to the first one
(see Figure 6.6). The steps followed are:

6.4 Thermals detector 137

Figure 6.5 Detection of a thermal when a UAV passes through it by using Algorithm 1.

1. Compute the perpendicular straight line to the first trajectory (dashed black line in
Figure 6.6). This new straight line should pass through the center of the thermal
(solid black line in Figure 6.6).

2. Let us consider a circle whose center is the estimated center of the thermal in the first
pass (dashed red circle in Figure 6.6). Its radius, r, will define the distance between
the TPs and the center of the thermal, it has been empirically set to 100m in order to
make the flight plan flyable by our autopilot.

3. Compute the cross points between the new straight line and the circle. The two
points computed, T P1 and T P2, along with the center of the thermal , T Pc, will be
the set of TPs to explore the thermal.

The TPs computed, the tuple (T P1,T Pc,T P2), are sent to the MM block and each UAV
can apply for passing through PoI or TPs to improve the computation of the parameters of
a thermal.

138 Chapter 6. A Distributed System for Cooperative Static Soaring

Figure 6.6 Computation of the TPs to pass through a thermal again. T P1, T Pc and T P2
are computed from the First pass (estimated center of the thermal and UAV
trajectory).

6.5 Path planner

The proposed path planning algorithm is called Bounded Recursive Heuristic Search
method (BRHS) and is based on DFS [142][143]. A drawback of the DFS is that it may
not finish in certain situations. For example, if it is used in a graph with cycles, it will
expand all nodes in a cycled branch that may not contain the goal node, so it will keep
exploring that branch infinitely. For this reason, a bounded method is chosen in order to
make the execution time finite in all cases. On the other hand, the DFS does not consider
any cost to compute the solution. In our case, the traveled distance is the cost and it is
considered to compute the best successor in each branch and the execution is recursive.
Bounding the exploration also presents some drawbacks. In particular, the method is

not complete because the exploration may end before a goal is reached. In these cases, a
heuristic has to be considered. The proposed heuristic considers the distance to the closest
goal.
The inputs of the algorithm are: current location of the UAV, time, position of the

remaining PoI and TPs, thermals in the space, minimum altitude of the UAV to fly and
maximum depth that BHRS can reach. The output is a flight plan given by a set of
waypoints. Each waypoint is defined by: 2D position of the waypoint, estimated altitude
of the UAV will have when reaching the waypoint (considering the descending angle as a
constant that depends on the characteristics of the UAV), ETA to the waypoint (cost) and
the distance that should be traveled to reach the waypoint from the current location.
Algorithm 8 shows the procedure followed in the BHRS algorithm. This algorithm

starts from the initial node defined by the current localization, altitude and time of the
UAV. It will calculate the reachable nodes from the current node by invoking algorithm
9. If the current node is a goal it will get it if the cost , or the maximum depth has been
reached it stops and estimates the cost of the node if necessary. Else, it will recursively
call the algorithm starting with the current node. according Algorithm 9 calculates the

6.6 Conflict detection and resolution 139

successors that are reachable in an action range (Ar) from a node. The action range of the
UAV is calculated with equation 6.6.

Ar =
h−hmin

tgγ
. (6.6)

Where current altitude h, minimum altitude hmin and the gliding angle ψ (see section
6.6). α is a safety coefficient that is usually set to 1.2. Finally, γs is used to not consider
very distant thermals, reducing the execution time of the algorithm.

Algorithm 8 BRHS Algorithm
Require: initial_node, depth
best← initial_node
successor_list← get_successors(initial_node)
for Each successor in successor_list do

if is_final_node(successor) then
candidate← successor

else
if depth == 1 then
estimate_cost(successor)
candidate← successor

else
candidate← BRHS(successor, depth - 1)

end if
end if
if candidate.cost < best.cost + tvisit then
best← successor

end if
end for
return best

A flight plan could not be computed if all the PoI have already been visited or the rest
of PoIs to visit are not reachable. The goal is to keep flying all the UAVs if a new PoI
is added or a new thermal is detected in the environment and allows visiting some PoI
which have not been visited yet. When an UAV cannot reach any detected thermal, it is
automatically commanded to go to Home in order to land.

6.6 Conflict detection and resolution

UAVs should maintain as much as possible a minimum separation among them for safety
purposes. The proposed system should not let a UAV enter in a thermal if a vertical
separation is violated and should also ensure that the horizontal and vertical separation
are satisfied outside the thermals. Therefore, a collision detection and avoidance system is
necessary when the UAVs fly outside the thermals. In this section a centralized tactical
scheme is adopted as seen in section 1.3.

140 Chapter 6. A Distributed System for Cooperative Static Soaring

Algorithm 9 Get_successors
Require: parent_node

successor_list = /0
Calculate Ar (equation 6.6)
for Each PoI in PoI_list do
near_thermal = get_nearest_thermal(PoI)
if parent_node.distance(PoI) + PoI.distance(near_thermal.location)< Arα then
new_state← get_estimated_state(PoI)
if PoIA.is_available(new_state) then

successor_list.append(new_state)
end if

end if
end for
for Each T in thermal_list do

if parent_node.distance(T.location) < γs then
new_state← get_estimated_state(T.location)
if TM.is_safe(new_state) then
successor_list.append(new_state)

end if
end if

end for
return best

Periodically, the trajectories of the UAVs are estimated by considering their flight plans,
current state and integrating the model described in equation 6.7 in a determinate time
horizon. A potential collision is detected if there exists a time when two cylinders of radius
rxy and height rz, centered in each UAV overlap.

Whenever a potential collision between two or more UAVs is detected in the system, a
collision-free trajectory planning algorithm is executed. It is based on a RRT* planning
algorithm. RRT* makes two main modifications to the original RRT planning algorithm
[144]. In the following subsections the basic concepts of both RRT and RRT* as well as
the modifications to these algorithms that have been developed in the context of the Thesis
are detailed.

6.6.1 RRT

RRT is a planning algorithm first proposed in [49]. The basic RRT algorithm is shown in
algorithm 10. Note that some procedures are necessary for the algorithm to be run. Below
you can find the list of procedures.

• Nearest(G,q). Searches for the closest vertex in the graph G to the configuration q.
• Steer(q1,q2). Obtains the configuration q3 that is the closest to q2 integrating the
model from q1 one step.

• CollisionFree(q1,q2). Returns true if the path that unites q1 and q2 is collision
free.

6.6 Conflict detection and resolution 141

• qrand=SampleFree(). Returns a configuration qrand ∈C f ree.

It starts a tree by creating the root in the starting configuration (qinit) and extends the
tree by generating random samples (xrand) of the configuration space and by making the
tree extend to that new point. When the new sample is generated, the closest node to it is
selected and the tree is extended from this sample and a new node is added (xnew). This
new node is generated by integrating the model proposed in Section 6.6.3 from vnear with
a random control signal. If the path between vnear and qnew is collision-free this node is
added to the tree. This procedure is repeated until the new node is sufficiently near from
the final state qgoal . Note that this algorithm ensures that the generated paths are flyable
because they are generated by integrating the UAV model.

Many different variants of RRT algorithm have been proposed over the years, in particular
the variants that propose the growth of two trees, one starting from the goal point and one
from the starting point claim to outperform basic RRT [8]. These variants are called bi-
RRT. Another common improvement is to make a bias in the sampling procedure towards
the goal, i.e. taking the goal as the sampled stated with a configured probability (usually
10%).

Algorithm 10 Basic RRT algorithm
Require: RRT(qinit ,qs)
1: V ←{xinit}; E← /0
2: repeat
3: xrand ← SampleFree()
4: vnearest ← Nearest(G = (V,E),xrand)
5: xnew← Steer(vnearest ,xnew)
6: if CollisionFree(vnearest ,xnew) then
7: // Add the new vertex and the connection
8: V ←V ∪{xnew}
9: E← E ∪{(vnearest ,xnew)}
10: end if
11: until qs ∈ G = {V,E}
12: return G = {V,E}

6.6.2 RRT*

The main drawback of the RRT algorithm, when applied to mobile robot the basic RRT
yielded to randomized like motions that were not properly optimized and were difficult
to forecast. In order to overcome these drawbacks RRT* planning algorithm makes two
main modifications to the original algorithm [52] as shown in algorithm 11.
First, when a new sample is generated, the algorithm attempts to connect it not only

to the nearest neighbor but also to a set of neighbors that are close enough. Only the
connection that optimizes the path between the new sample and the starting configuration
is added to the tree (steps 9-16).

The other modification is called the rewiring step. In this phase, the current cost of the
neighbors of the new sample is compared to the cost that would be obtained by traveling

142 Chapter 6. A Distributed System for Cooperative Static Soaring

through the new sample. If this new cost is less than the current cost, the graph is rewired
(steps 20-23).

Some extra functions are necessary for RRT* algorithm to work. These are:

• Cost(n ∈V). Associates the node n with its calculated cost.

• c(Path). Gives a cost to a calculated past. In the basic version the cost is the distance
of the path.

• Near(G, q, d). Returns a set of vertices N = {n ∈V\dist(n,q)< d}.

Algorithm 11 RRT* algorithm
Require: RRT(qinit ,qs)
1: G = {V,E}
2: V ←{xinit}; E← /0
3: repeat
4: xrand ← SampleFree()
5: vnearest ← Nearest(G,xrand)
6: xnew← Steer(vnearest ,xnew)
7: if CollisionFree(vnearest ,xnew) then
8: V ←V ∪{xnew}
9: // Connect along a minimum-cost path
10: U ← Near(G,xnew,η)
11: vmin← vnearest ;cmin←Cost(vnearest)+ c(Path(vnearest ,xnew));
12: for all u ∈U do
13: if CollisionFree(u,xnew) and Cost(u)+ c(Path(u,xnew))< cmin then
14: vmin← u; cmin←Cost(u)+ c(Path(vnearest ,xnew))
15: end if
16: end for
17: E← E ∪{(vmin,xnew)}
18: // Rewire vertices
19: for all u ∈U do
20: if CollisionFree(xnew,u) and Cost(xnew)+ c(Path(xnew,u))<Cost(u) then
21: vparent ← Parent(u)
22: E← (E\{(vparent ,u)})∪{(xnew,u)}
23: end if
24: end for
25: end if
26: until qs ∈ G
27: return G

Some improvements of the original versions of RRT and RRT* have been introduced in
order to reduce the computational time of the planning algorithm and to generate paths
with better quality. In first stages of the algorithm, we propose the use of a non-uniform
random distribution in order to explore first some zones in the surroundings of the location
where the conflict has been detected. In this case, a multivariate normal distribution has

6.7 Simulation results 143

been used to produce the new samples. By using this sampling distribution, the explored
space by the tree is much more oriented to the interesting areas. In addition, we bias the
sampling towards the goals in the first stages of the algorithm.
In addition, some improvements proposed in [145] can be applied when a solution

has been found. First, the localbias when using the RRT* algorithm is used. The main
idea is to sample in the surroundings of a random point of the solution path in order to
encourage rewiring steps of the RRT* algorithm. Also, the node rejection technique has
been implemented. In this case, a node is rejected if the sum of its cost and the distance to
the goal node is greater then the cost of the current solution. This technique is inspired in
the A* algorithm [33]. The algorithm with the proposed additions is called RRT ∗i in order
to distinguish it from the basic RRT* algorithm.

6.6.3 Gliding UAV Model

An UAV model should be considered to compute the trajectories. The controlled UAV
model proposed in [118] has been used in order to generate feasible trajectories. The
main modifications to the original model are the constant descent rate, assumption of
constant airspeed and the addition of the vertical wind velocity that is retrieved from the
wind map. The configuration space of this model is composed by three spatial coordinates
(x,y,z) and the heading θ . However, new samples are generated randomly in this space,
but coordinates z and θ are calculated in the interpolation phase in order to ensure that the
final trajectories are flyable. Therefore, the equations that model the behavior of the UAV
are as follows.

ẋ = vicos(θ)

ẏ = visin(θ)

θ̇ = αθ (θ
c−θ) (6.7)

ḣ =−vtanψ +wz

where ψ is the gliding angle of the aircraft. This angle relates the horizontal traveled
distance with the descent of the UAV in the absence of wind and without propulsion.
It is known that the RRT* algorithm is only capable of minimizing the length of the

trajectories [144]. As long as this algorithm is applied only outside the thermals this is a
very fair approximation of energy-efficient trajectories.

6.7 Simulation results

Many simulations with several UAVs have been performed to show the behavior of the
system and how thermals are identified with cooperative gliding fixed-wing UAV. The
configuration parameters are listed below.

• WindMap. Cellsize= 10m, dri f t = 0.5m/s, li f etime= 25min, noise σ = 0.3m/s,
windspeed = 3m/s.

• CDR. rxy = 50m, rz = 25m

144 Chapter 6. A Distributed System for Cooperative Static Soaring

Table 6.2 Comparison of the execution time of the first solution (t) and cost of the best (c)
solution when applying RRT, RRT* and RRT ∗i .

Method |t| σt |c| σc
RRT 1.25 0.42 2301.3 175.1
RRT* 5.14 2.05 1931.4 138.6
RRT ∗i 4.88 2.37 1770 59.7

• Planner. tvisit = 5s, depthmax = 4

• UAV Model. φ = 0.08rad, v = 13.89m/s, hmin = 80m.

In the next subsections a multi-UAV simulation that demonstrates the behavior of the
proposed Collision Detection and Resolution system first and then the behavior of the
whole system are detailed.

6.7.1 Collision Detection and Resolution Simulation

All the proposed algorithms have been implemented in C++ by extending the Open Motion
Planning Library where an implementation of the RRT* algorithm is available in the
contrib folder. A hundred test cases have been used as bench-test.
The proposed simulation scenario is a multi-UAV scenario where two UAVs (UAV1

and UAV2) are on collision course taking into account their initial positions and their next
waypoints (see Figure 6.7). This scenario has been with RRT , RRT∗ and RRT ∗i algorithms.
Figure 6.7 also represents the trajectory obtained with the RRT method in blue line and
with RRT ∗i in red line. The minimum distance between UAV1 and UAV2 is represented
and is greater than the safety distance (Dminxy = 50m).

In the case of the proposed RRT ∗i planner, it starts with uniform sampling until a solution
is found. When this happens, it automatically changes to local sampling. That is, sampling
in the surroundings of a random point of the solution path with a Gaussian distribution
with σ = 5m. Also, the node rejection technique (see section 6.6) is active.

Table 6.2 represents the mean and standard deviation obtained by the three methods in
generating the first solution and the cost of the best solution after 30s of execution. Each
method is applied twenty times. It is noticeable that RRT ∗i outperforms both RRT∗ and
RRT algorithms by a great margin when comparing the cost of the best obtained solution.
However, RRT is the method that generates a faster first solution, while RRT∗ and RRT ∗i
have similar performance when comparing their execution times.

Last, we will compare RRT∗ and RRT ∗i in terms of optimization of the first solution. In
fact, the improvement (final cost minus initial cost) obtained with RRT* has mean 10.0
and standard deviation 12.9. In contrast, the improvement of RRT ∗i has mean 113.2 and
standard deviation 48.4. Note that RRT* does not improve the solution significantly, while
RRT ∗i makes a better job. In addition, no significant improvement is done by RRT* when
t > 10s.

As conclusions, this simulation work shows that the RRT ∗i planner is the one that gives
smoother and shorter trajectories when compared to the RRT* and RRTmethods. However,
RRT planner is able to plan in the control space of the model, so flyable trajectories are

6.7 Simulation results 145

Figure 6.7 Last simulation scenario with WP1 and WP2 to be visited by UAV1 and UAV2
respectively. Comparison between RRT(blue) and RRT ∗i (red) generated tra-
jectories. Static obstacles are represented with black circles. The minimum
distance between UAVs in RRT ∗i is represented.

ensured. And additionally, RRT spends less computational time when searching for the
first solution. For this reason, the proposed RRT as first solution and then optimizing this
solution with RRT ∗i method is the proposed path planner.

6.7.2 Whole system simulation

In this section, the complete system that includes CDR, thermal detection, identification
and exploitation is tested. The UAVs will travel on an unknown wind map and will be able
to complete their missions because of their capability to detect and exploit thermals in the
environment.

Mono UAV simulation

The first proposed scenario has been designed in order to check the behavior of the
system with one UAV. In this case the UAV flies through an area with the presence of
twelve thermals. Figure 6.8 shows the UAV trajectory and the wind map at the instant
t = 600 seconds. The mission lasts 24 minutes and 0.016 seconds (from 10:13:24.772
to 10:37:24.788). In the experiment, the UAV detects and identifies seven thermals in
different times and it exploits one of them. In this scenario the the drift of the thermals
was considered and also estimated by the UAV.

Table 6.3 and Figure 6.10 containes more information about the detection of the thermals.
One thermal is identified when the UAV passes through it twice. After identifying the
sixth thermal, the UAV exploits it and gains approximately 140 meters (see Figure 6.10).

Finally, a study to analyze the behavior of the system with several cooperative UAVs is
presented. A wind map generated randomly is considered. Initially, twelve thermals are
created (thermals 1-12). Five thermals more are created during the mission in different
times (thermals N1-N5) (see Figure 6.9). Each UAV does not have any information about

146 Chapter 6. A Distributed System for Cooperative Static Soaring

Figure 6.8 UAV trajectory to pass through fifty PoI (black points). Thermals 1-12 are
created at the start and N1-N5 are generated during the mission. Wind map
considered corresponding with t=600 seconds.

Table 6.3 Detection and identification of thermals.

Thermal Time (s) Elapsed time (s)
4 10:15:44.899 140.127
1 10:17:58.299 273.527
N3 10:19:09.420 236.468
7 10:20:53.300 448.528
5 10:22:20.337 535.565
10 10:27:18.412 833.640
12 10:31:34.329 1089.557

their location or strength, so the thermals are unknown to the system. Ten simulations are
performed in each case by changing the initial position of each UAV. Table 6.4 shows the
results obtained by considering different number of UAVs. The time of the mission and
the number of detected thermals is shown. Figure 6.9 presents one of the simulations to
show how the exploration is carried out with three UAVs.
It is important to highlight the main advantages of the proposed system. It ensures

the safety of the system. Each UAVs takes into account the estimated drift to exploit the
detected thermals. The mission time is reduced by using cooperative UAVs and more

6.7 Simulation results 147

thermals can be detected. Finally, the flight duration is extended to carry out the mission
while thermals exist in the environment.

Table 6.4 Detection and identification of thermals considering ten simulations.

UAVs Elapsed Time (s) Thermals detected
1 1345.31 ± 57.20 4.63 ± 1.51
2 759.92 ± 42.02 4.81 ± 1.68
3 498.844 ± 36.01 5.75 ± 1.92
4 466.24 ± 44.03 6.89 ± 0.84
5 344.25 ± 31.63 5.73 ± 1.34

Figure 6.9 Mission with three UAVs: UAV trajectories to pass through fifty PoI (black
points). Wind map considered corresponding with t=450 seconds.

In order to show how the detection of thermal is done, Figure 6.10 shows the evolution of
the altitude in a simulationwith anUAV. It identifies seven thermals (thermals 4,1,N3,7,5,10
and 12 of the Figure 6.9) and it exploits the sixth thermal by gaining approximately 140
meters.
In conclusion, the simulations demonstrate the correct performance of the system. To

sum up, the following characteristics of the proposed system can be highlighted:

• RRT* planning algorithm is executed when a collision is detected. This algorithm
ensures the safety of the system.

148 Chapter 6. A Distributed System for Cooperative Static Soaring

Figure 6.10 Vertical profile of the UAV flight. Seven thermals are identified and the UAV
passes through each thermal twice to estimate its parameters.

• Mission Planner block computes the corresponding TPs to pass through a detected
thermal again.

• UAVs take into account the drift estimated to exploit the thermals detected.

• Using cooperative UAVs the mission time is reduced.

• The main benefits of using cooperative UAVs to detect thermals are shown.

• The flight duration is extended to carry out the mission while thermals exist in the
environment.

• The system can be applied in real time.

6.8 Experimental results

In this section, the simulation results in three different scenarios using the a Hardware
in the Loop (HIL) simulation system described in Appendix B are provided. In addition,
experimental results in the same scenarios are also presented. Then, the different outputs
obtained in each case are analyzed. Finally, a real-time experiment with thermal emulation
is detailed.

6.8 Experimental results 149

During the experiments where the multi-UAV system is tested, one will be simulated by
HIL configuration while one real UAV is flying. Both simulation and experiments, are
located in the same place. Three scenarios have been proposed: I) Simple flight test (using
a basic flight plan and without complex flight commands) and II, III) Complex multi-UAV
flight test (with 2 UAVs and thermal column emulation using the automatic path planning
procedure presented in sections 6.5 and 6.6).

6.8.1 Preflight considerations

It is important to carefully check the correct behavior of all the systems before conducting
a field experiment. In particular, a preflight calibration and check of the systems onboard
the UAV is performed before every take-off. This procedure includes the verification of
the different glider sensors such as pitot tube, IMU and GPS fix. Also the correct response
of the servos in stabilized mode is checked. In the performed field experiments the takeoff
and landing maneuvers were carried out manually. Once the UAV is safely flying, a simple
flight-plan which has been uploaded before the takeoff is executed.
In HIL simulation, this procedure is greatly alleviated as the initial conditions of the

aircraft like its altitude can be established as required.

6.8.2 Scenario 1

This test is composed by a simple flight plan which consists of a loop of few waypoints. In
this scenario, no parameters were modified because it is only necessary to perform thermal
emulation, which is not the case. It is interesting to perform a comparison between the
behavior of the system in simulation and in real flight. Firstly, a comparison between the
obtained routes is shown in Figure 6.11.

Note that Figure 6.11 shows that there are notable differences between both modes. This
can be produced because of the weather conditions. In this case, the field experiments
were performed with the presence of little persistent wind but with some gusts that slightly
perturbed the trajectory of the UAV. However, the behavior in the platforms are close
enough for our purposes: the main goal of the HIL simulations is to test the interaction
of both Autopilot and higher automation levels in order to make it easier the transition
between simulation and field experimentation.
Also, the logs can be analyzed with the Google Earth software as indicated in section

B.3.4. This software will provide us with details of the temporal evolution of the route
and with useful graphs of its elevation profile; that is, how altitude changes with respect to
the time (see figure 6.12).
Figure 6.12 shows that the elevation profile in simulation mode is more extreme than

the one in real flight. The main reason for this behavior is that the aircraft model used in
simulation (Rascal110) 2 is slightly different to the gliding UAV used in real flight in terms
of maneuverability and gliding ratio, which is defined as the ratio between the horizontal
and descent distances when performing an unpowered stationary flight.

2 Rascal110 radio-controlled plane. http:// flightgear.org/ legacy-Downloads/ aircraft-2.0.0/ Accessed February
2015.

http://flightgear.org/legacy-Downloads/aircraft-2.0.0/

150 Chapter 6. A Distributed System for Cooperative Static Soaring

Figure 6.11 2D representation of the route obtained when executing the Scenario 1. Up:
Simulated; Down: Real.

Figure 6.12 Elevation profile obtained in Scenario 1. Up: Simulated; Down: Real.

6.8.3 Scenario 2

In this scenario, a more complex flight plan that includes thermal column emulation will
be executed. To emulate the thermal column, the Ardupilot’s flight parameters have to be
changed in real time. In particular, when the glider is outside the thermal columns its engine

6.8 Experimental results 151

Table 6.5 Thermal emulation flight plan automatically generated with the proposed planner.
The coordinates of the waypoints are expressed in latitude (deg), longitude (deg)
and altitude (meters above the sea level).

Command Parameters
0 WAYPOINT (37.5208, -5.8583, 113)
1 SET THR_MAX 0
2 WAYPOINT (37.5205, -5.8571, 95)
3 SET THR_MAX 50
4 COND-CHANGE-ALT 240
5 SET THR_MAX 0
6 DO_JUMP 8, Unlimited times
7 LOITER-UNLIMITED (37.5201, -5.8565, 240)
8 WAYPOINT (37.5213, -5.8548, 220)
9 WAYPOINT (37.5190, -5.8542, 186)
10 DO_JUMP 0, Unlimited times
11 WAYPOINT (37.5190, -5.8542, 186)

will be turned off so unpowered gliding flight is performed. In contrast, the maximum
allowed throttle parameter (THR_MAX) will be set to 50% and the UAV is commanded to
loiter until a desired altitude is reached in order to emulate the behavior of a glider inside
the rising air. The executed flight plan, which had been automatically generated with the
planner described in Section 6.5, is shown in Table 6.5.

Table 6.5 shows the use of several different commands in order to visit some waypoints
while performing thermal emulation. First commands 0-2 show a first unpowered gliding
navigation. When the waypoint 2 is reached, the Autopilot switches to the next navigation
command which is command 7. This command will keep the aircraft performing a circular
trajectory centered in a determinate location. Meanwhile, non navigation commands (which
include do and conditional commands, see section B.4.1) are carried out concurrently.
First, the command 3 will change the THROTTLE to 50. Then, the command 4 will
wait until the desired altitude is reached. Finally, command 5 will bring the UAV back to
unpowered flight and command 6 will switch the current waypoint to 8 and thus will end
the execution of command 7.

Now the trajectories on both real flight and HIL modes are represented in the same way
as previous section (Figure 6.13). In this case, these routes are quite different, which can
be produced because of two main causes. First, when we did the field experiments there
was an important tailwind which affects to aircraft and causes the aircraft gets the altitude
target in thermal column with different orientation in each lap. Second, the radio link
between GCS and the Autopilot used in real flight can be lost for short periods of time.
This could cause a noticeable lag when changing the value of the THR_MAX parameter.

Figure 6.14 represents the elevation profile in the plan with thermal emulation. There
are slight differences in the elevation profile between simulation and real flight. This can
be caused by the previously described communication problems and by the differences
of the real UAV and the used in simulation. Furthermore, we observe different behavior
when the waypoints are reached. On the other hand, these differences are not noticeable

152 Chapter 6. A Distributed System for Cooperative Static Soaring

Figure 6.13 2D trajectory obtained when following the thermal flight plan proposed in
Scenario 2. Up: Simulated; Down: Real.

when dealing with do-commands or condition-commands which are necessary for thermal
emulation. Note that the yellow area in the altitude profile (see Figure 6.14) indicates a
THR_MAX value of 50%. The rest of route is flight with THR_MAX set to zero.

Figure 6.14 Route thermal flight plan. Up: Simulated; Down: Real.

Once the field experiments have finished, the developed system is used in order to
change the flight mode to STABILIZED. This allows the pilot to take the control of the
UAV and perform the landing maneuver.

6.8.4 Scenario 3. Thermal emulation real-time experiment

The final Experiment has been performed with two gliding fixed-wing UAVs in the airfield
of La Cartuja (Seville) in order to test the behavior of the whole system in real-time. One
of them is a real gliding fixed-wing UAV and the other is simulated by using the HIL
simulation system. The thermals are emulated; that is, when the real UAV accesses a
simulated thermal it simulates the gaining of energy by using the propulsion system to gain

6.8 Experimental results 153

Figure 6.15 Thermal flight plan trajectory obtained in real experimentation.

altitude. The rest of the flight is carried out without propulsion. The following variables
of the UAV were set: gliding angle (0.11rad), airspeed (13.89m/s).

Figure 6.16 shows a potential collision and the solution trajectory of the real gliding
fixed-wing UAV in 2D. Both UAVs fly to the PoI2 but real UAV changes its trajectory to
avoid the collision, so it passes through PoI1. Finally, Figure 6.17 presents the trajectories
in the airfield of La Cartuja (Seville).

Figure 6.16 Real and simulated flight in 2D to explore the environment in the airfield of La
Cartuja (Seville). A potential collision is detected (a) and real UAV avoids it
(b). Therefore, the real UAV passes through PoI1 and PoI3, and the simulated
UAV passes through PoI2.

154 Chapter 6. A Distributed System for Cooperative Static Soaring

Figure 6.17 UAV Trajectories and location of thermal represented in the airfield of La
Cartuja (Seville): real gliding fixed-wing UAV (blue), simulated gliding fixed-
wing UAV (red) and thermal (black cylinder).

6.9 Conclusions

The chapter considers long endurance cooperative missions with multiple gliding fixed-
wing UAVs. The goal is to explore an environment as much as possible without landing.
Multiple UAVs can be used in order to decrease the time to perform the mission and
increasing the probability of detecting unknown thermals. A new system has been proposed
to extend the flight duration by harvesting energy that comes from thermals.

A thermal detection algorithm is implemented to identify unknown thermals and exploit
them. First, a potential thermal is detected from the changes of altitude of a UAV. Then an
algorithm computes two extra waypoints to ensure that a UAV will pass through the center
of the thermal with a perpendicular direction to the first one. The thermal parameters are
estimated after the second pass and these parameters are sent to the TM block.
These thermals are considered as a shared resource of the system. A distributed path

planning algorithm (BFRS) that automatically guides the UAVs in the system to visit both
the PoIs and the TPs in the system has also been implemented. This algorithm will ask the
TM block each time an UAV needs to enter in a thermal in order to gain energy.

Moreover, a collision-free trajectory planning algorithm based on the RRT* has been
implemented to solve the collisions detected between UAVs. The RRT* planning algorithm

6.9 Conclusions 155

presented in [145] has been adapted to this problem by considering the energy. This
algorithm is an important contribution with respect to the works presented on multiple
UAV in autonomous soaring [131] [137] [138] [139].
Simulations demonstrate the utility of the system, which is capable of adapting to

changes in the environment while maximizing the endurance of the UAVs in the system.
The experiments that have been carried out on a real platform shows that it can be applied
for real time applications because of its low computational needs. This latter presents an
important contribution with respect to [138] and [139].

6.9.1 Future work

Future work includes an improvement of the thermal model used in order to include the
sinking air column that is usually found in the surroundings of the thermal. Therefore,
new simulations including this feature have to be executed. Besides, constant airspeed is a
natural assumption when flying outside a thermal at cruise speed. On the other hand, when
exploiting a thermal, the windspeed is usually reduced in order to gain maneuverability.
It has to be modeled in order to achieve more realistic results. Finally, experiments that
show the multi-UAV capabilities of the system employ one real UAV, while the rest of
them have been simulated. Multi-UAV experiments with thermal identification have still
to been carried out.

6.9.2 What is next?

Throughout this Thesis, the field of multi-UAV trajectory planning has been deeply studied
in Chapters 3, 4 and 5. Moreover, two additional trajectory planning procedures have been
developed in this chapter and have been integrated and tested exhaustively in simulation,
HIL simulation and real experimentation. All methods proposed in these chapters solve the
centralized problem of coordinating more than one UAV in a shared airspace. These meth-
ods solve the conflict detection and resolution problem in several different ways, including
non-cooperative planning, cooperative planning with course changes, speed planning and
a method for selecting the optimal procedure with the Maneuver Selection technique and
path planning while exploiting the thermal resources available in the environment.
In contrast, the next chapter will study a similar concept, but with a very different

approach: a new distributed method for reactively performing CA in multi-UAV systems
will be presented. It is also a very flexible algorithm that is capable of performing all
possible types of maneuvers, i. e. speed, altitude and course changes.

7 Real-time 3D Collision Avoidance
with Static Obstacles

Simplicity is prerequisite for reliability.

E. W. Dijkstra.

This chapter proposes a new algorithm that solve the problem of real-time reactive CA
in a system of multiple UAVs and in the presence of realistic 3D static obstacles.

Furthermore, the proposed methods are validated with several simulations in complex
scenarios, in the presence of complex 3D-modeled static obstacles and with vehicles
moving at high speeds and thus considering their dynamics.

As seen in section 1.3, the algorithms proposed in this chapter are focused on solving the
reactive CA problem in a decentralized way and with minimal information flow amongst
UAVs.
It is assumed that all possible velocity changes are allowed to solve the conflicts, that

is, changes of the heading, speed and altitude of each vehicle. The information that the
system needs in order to solve the problem is the following:

1. Initial spatial trajectory of each aerial vehicle, which is described as a dense sequence
of waypoints, usually with sample time of 0.01s.

2. Parameters of the model of each aerial vehicle. They include maximum andminimum
velocity and maximum allowed acceleration.

3. Location and velocity of each aerial vehicle in each instant. Note that the relative
position can also be obtained from sensor measurements, although uncertainty
analysis should be added to the algorithm.

4. Description of the static obstacles in the environment by means of a 3D-mesh file.
Again, this information could be obtained and/or enriched with measurements from
onboard sensors such as cameras, lasers, to name a few.

157

158 Chapter 7. Collision Avoidance

7.1 Optimal Reciprocal Collision Avoidance

In this section, the basic concepts concerning the proposed reactive CA system are detailed.
This system is based on the ORCA method, which was first presented in [146]. This
algorithm, as opposed to most approaches in literature, represents the obstacles of the
system in the velocity space of the robot. That is, the set of velocities that would lead one
robot to a collision before time τ are calculated and the more convenient velocity outside
this set is selected. In contrast, other planning algorithm such as A*, RRT, PRM and many
more make the computations in the position space. For this reason the latter are zero order
planner and the earlier are first order planners. It is worth to say that first order planners
allow to take into account dynamic obstacles and cooperative agents in a straightforward
and elegant manner. Moreover, the kinodynamic constraints of each robot can easily be
introduced into the problem [55].
The developed method presents several improvements to the regarding dynamic con-

straints handling, safety volumes and the inclusion of 3D obstacles in the algorithm have
been developed; they are deeply discussed in Section 7.2. In this section, only the basic
ORCA algorithm is described.

Let the system be composed of two robots RA and RB, which are located on pppA and pppB
and with radius rA and rB (see Figure 7.1(a)). Let vvvA and vvvB be the velocity of robots A
and B, respectively. These robots are on collision course, that is, if none of their velocities
is changed a collision will take place before time τ . The VO, VOτ

A|B, is the set of relative
velocities, vvv, that will lead them to collision before τ for robot A, imposed by robot B.

VOA|B

ur

r

r

Figure 7.1 On the left side, a scenario involving three robots (A, B and C) on collision
course is represented. This scenario leads to VOτ

A|B (filled in light grey) which
is represented on the right side. The minimum reaction robot A and B have to
perform in order to avoid collisions is represented by uA|B.

7.1 Optimal Reciprocal Collision Avoidance 159

For convenience, the following variables and symbols are defined:

R = rA + rB (7.1)
pppr = pppB− pppA (7.2)
vvvr = vvvA− vvvB (7.3)

D(ppp,r) = {qqq|‖qqq− ppp‖< r} (7.4)

Note that when computing VOτ
AB the relative position pppr is obtained by subtracting pppA

from pppB, this means how far is robot B from robot A. In contrast, the relative velocity vvvr
is calculated by subtracting vvvA from vvvB; that can be seen as the rate at which robot B is
getting closer to robot A. D(ppp,r) represents an open sphere of radius r centered at ppp.
Then, VOτ

A|B, which is the VO for robot A induced by robot B within time τ , can be
defined as (see Figure 7.1(b)):

VOτ

A|B = {vvv|∃t ∈ [0,τ] :: tvvv ∈ D(pppr,R)} (7.5)

In order to get a collision-free situation, the relative velocity, vvvr, should be outsideVOτ

A|B.
There are a lot of pairs of sets of allowed velocities vvv f ree

r but the pair that minimizes the
differences between vvvA and vvvB with the preferred velocities, vvvpre f

A and vvvpre f
B , should be

chosen. These preferred velocities are given by the navigation modules of robots A and B,
to encourage the minor deviation from the planned trajectories. A reaction takes place
when the current velocities and the preferred velocities have to be different. Let uuuA|B be
the vector from vvvpre f

r to the closest point on the boundary of the VO (see Figure 7.1(b)
), this represents the minimum reaction that robot A has to perform in order to avoid the
potential collision with robot B if this robot does not perform any maneuver. Reciprocally,
robot B should perform a reaction −uuuA|B in order to avoid collision if robot A does not
perform any maneuver.
As collaborative robots are considered, each one of them usually takes a half of this

reaction in order to prevent oscillations due to reciprocal dances [146]. However, in
heterogeneous systems where some vehicles might have more maneuverability than others,
this reaction can be divided not evenly for each because the reaction should be carried out
in a greatest deal by the most maneuverable vehicles. In general,the reaction that robots A
and B have to perform to avoid a collision can be defined as follows:

uuuORCA
A|B = αA|BuuuA|B (7.6)

uuuORCA
B|A = αB|AuuuB|A (7.7)

αB|A +αA|B = 1 (7.8)

uuuB|A =−uuuA|B (7.9)

where αA|B is the reaction weight of robot A when maneuvering with robot B. Different
reaction weights can to be defined for each pair of robots. For example, let us consider

160 Chapter 7. Collision Avoidance

a system composed by three robots A, B and C. Then, its reaction matrix RORCA can be
defined as follows:

RORCA =

 0 αB|A αC|A
αA|B 0 αC|B
αA|C αB|C 0

 (7.10)

Or, more succinctly, the reaction vector εεεA can be defined for each robot as follows:

εεεA = αA|BαA|C (7.11)

, and the other parameters can be calculated by using equation 7.8.
In rest of the chapter, all the robots are considered to have equal reaction to the conflicts

for the sake of simplicity. This yields to:

αA|B = αB|A = · · ·= 0.5 (7.12)

Once the robot A calculates the reaction to be carried out, ORCA defines a half-space
of collision-free velocities ORCAτ

A|B as the set of velocities:

ORCAτ

A|B =
{

vvv|
(

vvv−
(

vvvA +uuuORCA
A|B

))
·uuuORCA

A|B ≥ 0
}

(7.13)

Then, each robot computes the half-spaces of collision-free velocities taking into account
the relative position and relative velocity of the rest of agents (see Figure 7.2). The
intersection of all half-spaces represents the set of collision-free velocities of the robot, a
new collision-free velocity in that set is selected that minimizes the following function:

ORCAτ
A =

(⋂
B6=A

ORCAτ

A|B

)
(7.14)

vvvORCA
A = min

vvv∈ORCAτ
A

‖vvv− vvvpre f
A ‖ (7.15)

This problem can be efficiently solved by using a QP solver. Unfortunately, it can
become unfeasible in some densely packaged situations. In these cases, a new problem is
generated by relaxing the conditions of the ORCA planes. This can be done by decreasing
the time τ until the problem becomes feasible. In this new problem, the minimization
criteria is also different for τ has to be diminished as less as possible.

7.2 Proposed method: Generalized ORCA

In this section the main modifications of the original ORCA algorithm that have been
implemented in the development of the so-called Generalized ORCA (G-ORCA) are given.
These improvements to the original ORCA algorithm are necessary in order to adapt them
to realistic environments. Without them, this algorithm could not be suited for performing
real experiments.

7.2 Proposed method: Generalized ORCA 161

Figure 7.2 The ORCA half-planes ORCAτ

A|B and ORCAτ

A|C that robots B,C induce in robot
A are represented. The region of allowed velocities robot A can take is given
by the intersection of these half-planes. This region is filled in light gray.

7.2.1 Kinematic and Dynamic constraints handling

In real robots, the actuators that are used for guiding and propelling purposes have limited
power. This in practice will limit the maximum acceleration they can infer to the UAV.
In order to handle this dynamic constraints are considered in G-ORCA. A similar

approach as the one proposed in [60] has being used. In particular, a constraint that
considers the current velocity of the vehicle vvv(t) and the maximum acceleration amax
is added to the system. Let Ts be the sample rate of the algorithm, then the following
inequation relating vvvORCA and vvv(t) is given by Equation 7.16.

‖vvvORCA− vvv(t)‖ ≤ amaxTs (7.16)

In addition, kinematic constraints have to be considered when applying the algorithm to
non-honolonomic robots. These type of constraints, when considering robots moving in a
2-dimensional space can be modeled as minimum turning radius constraints and therefore
they can be introduced into the G-ORCA algorithm as depicted in 7.3.

When extending it to 3D kinematically constrained robots, main fixed wing UAVs; the
problem is usually considered in a decoupled manner. The constraints regarding to lateral
maneuvers are modeled as minimum turning radius constraints, as in the 2-dimensional
case, while constraints regarding to movements in the z-axis are usually modeled as
maximum allowed climb and descent rates.
Finally, the maximum and minimum velocities of the robot can also be bounded for

safety or physical reasons.

vA
min ≤ vA ≤ vA

max (7.17)

7.2.2 Considering 3D obstacles

CA maneuvers could lead to unexpected collisions with static obstacles even when the
original trajectories do not lead to collisions with these type of obstacles. For this reason,
they must be included into the formulation of a complete CA method.

162 Chapter 7. Collision Avoidance

0

1

2

3

4

5

6

x 10
−3

3 4 5 6 7 8

Number of quad−rotors

C
o
m
p
u
t
a
t
i
o
n

t
i
m
e

f
o
r

o
n
e

a
g
e
n
t

(
s
)

Figure 7.3 2D Dynamic and Kinematic constraints in a non-holonomic and control-
saturated mobile robot (adapted from [55]).

A 3D-map of the environment is assumed to be known a priori. It has to be saved as a
set of mesh files. However, in real scenarios unexpected or unmodeled obstacles might
appear. For this reason, this information could be enriched with the inclusion of vision or
range sensors in order to detect them. However, this inclusion is beyond of the scope of
this thesis.
Original ORCA static obstacles considerations

In the original ORCA formulation the static obstacles were described only in for two-
dimensional environments. They are represented by polygons such as the depicted in Figure
7.4 (left). Let O be an static obstacle with polygonal shape. Then, the VO associated to it
can be obtained as indicated in Equation 7.18 and represented in Figure 7.4 (right).

VOτ

A|O = {vvv|∃t ∈ (0,τ] :: tVVV ∈ O⊕D(pppO,rA)} (7.18)

Agent A will collide with obstacle O within time τ only if its velocity vA belongs to
VOτ

A|O. The region of permitted velocities for A with respect to O can be defined as the
complement of VOτ

A|O, but as this region is non-convex, a more restrictive region is used
in the ORCA formulation.
Proposed solution

The main contribution of the G-ORCA is the capability of performing CA maneuvers in
complex 3D environments. Its main procedure is to first calculate the closest distance ddd
from the envelope of the agent to each obstacle. For this purpose, PQP library [147] has
been used in order to calculate the distance between the position of the aerial robot and the
static obstacles. This library not only checks for collision between two 3D meshes with
triangular faces, but also returns the distance vector between these meshes, ddd.
Figure 7.4 represents an obstacle, O, and an agent A, which is located at position pA

and has radius rA. The VO is a cone constructed by the union of the position of the robot
and the closest point from the agent to the obstacle. In a similar development as indicated

7.2 Proposed method: Generalized ORCA 163

O

A

px

py

vx

vy

O/

O/ D(O,r)

VOA|O

O
RC
A
A
|O

d

Figure 7.4 VOτ

A|O and ORCA half-plane ORCAτ

A|O induced by obstacle O to agent A in a
two-dimensional environment. ddd represents the minimum distance from A to
O.

in [146], the ORCA half-plane (or half-space in 3D environments) of allowed velocities is
calculated as follows:

ORCAτ

A|O =

{
vvv|
(

vvv− ddd
τ

)
·ddd ≤ 0

}
(7.19)

where ddd is the closest point from the robot A to the obstacle. As indicated in [146], the
constraints due to static obstacles are not relaxed when an unfeasible problem is detected.

This distance ddd can be easily calculated from the distance from the center of the agent
dddA to the obstacle, taking into account the radius of the obstacle (see Figure 7.5) as shown
in Equation 7.20.

ddd =
‖dddA‖−RA

‖dddA‖
dddA (7.20)

Therefore, when applying the algorithm in a determinate time-step, only each obstacle’s
closest point to the agent is considered. This is done for two main reasons: first to decrease
computational load and second to not over-constrain the QP problem. Once this closest
point to an obstacle is calculated, its VO is calculated by only considering this closest
point. In consecutive computations this point seems to be moving slowly (see Figure
7.5), allowing the algorithm to smoothly react to the shape of the obstacle. Besides, it is
a natural approach that resembles the behavior of humans when piloting a vehicle in a
scenario with complex obstacles.

Theorem 7.2.1 demonstrates the safety of this formulation when considering convex 3D
obstacles. First of all, a subset V of an affine space E is convex if:

∀aaa,bbb ∈V, [aaa,bbb] ∈V (7.21)

where [aaa,bbb] = {ccc ∈ E|(1−λ)aaa+λbbb,0≤ λ ≤ 1} is the closed line segment that unites
aaa and bbb. Therefore, if V is convex, the segments that unite each pair of points in V also
belong to V .

164 Chapter 7. Collision Avoidance

Figure 7.5 Minimum distance between one agent A and a box-shaped obstacle O in three
different instants. ddd represent the distance between the A and O, and dA is the
distance between the center of the A and O. Note that the closest point in the
leftmost case is a vertex, in the upper-right case lies in an edge while in the
lower-right lies in a face.

Theorem 7.2.1 Let A be an agent which is navigating in the presence of a convex static
obstacle O as represented in Figure 7.5. Then, the G-ORCA method provides a collision-
free velocity within time τ .

Proof. The proof of this theorem is done by demonstrating that the region of allowed
velocities due to obstacle O (ORCAτ

A|O) does not intersect with the VO generated by the
obstacle (VOτ

A|O).
First, O can be described as a set of in-equations as follows in relative coordinates to

the center of the agent:

O = {xxx ∈ℜ
3|Mxxx≤ b} (7.22)

, where bbb ∈ℜ
n, M is a n×3 matrix and n is the number of faces of the polyhedra. M and

bbb define a polyhedron completely, but not uniquely.
Then, the region ORCAτ

A|O can be also defined as the complement of the VO induced
by a virtual obstacle OORCA, which is a half plane described with:

OORCA = {xxx ∈ℜ
3|(xxx−dddA) ·dddA ≥ 0} (7.23)

ORCAτ

A|O = ℜ
3−VOτ

A|OORCA (7.24)

Therefore, the proof can be reduced to:

ORCAτ

A|O
⋂

VOτ

A|O = /0↔ O⊆ OORCA (7.25)

This can be demonstrated by taking into account three different possibilities: in the first
one, the closest point to the obstacle is located exclusively in a face of O. In the remaining

7.2 Proposed method: Generalized ORCA 165

cases, the closest point of O lies in an edge of O or it is located at one vertex of the obstacle.
All these cases are represented in Figure 7.5.

1. The closest point of O lies in a face. Let fi be the face the closest point is located
at. Then, the virtual obstacle OORCA is the one that fulfills the condition due to the
face fi. Mathematically:

OORCA = {xxx ∈ℜ
3|mmmi · x≤ bi} (7.26)

Therefore, all points that fulfill the constraints that define the polyhedron (see Equa-
tion 7.22) will also fulfill the constraint of OORCA, which implies:

O⊆ OORCA (7.27)

2. Closest point of O in an edge. Let E = V1V2 be the closest edge of O and eee its
associated vector from V1 to V2 to the agent with vertices V1,V2. Let C ∈ e be the
closest point from the obstacle to the agent. As the distance to the edge is minimum,
eee⊥ddd. Let us suppose that there exists one vertex Vc that lies outside the virtual
obstacle defined by OORCA. Assuming that O is convex, the line L =Vc,C will also
belong to the obstacle O. Let α be the angle between L and the plane OORCA, C1
be the closest point from A to L and d1 be the associated distance. Then by basic
triangulation:

d1 = d · sinα → d1 < d (7.28)

Thus, d1 is smaller than the considered minimum distance to the obstacle, which
contradicts with the assumption that d is the minimum distance from A to O. Figure
7.6 represents a planar situation with a concave obstacle for clarity sake.

3. Closest point of O is a vertex. With a similar procedure to the previous point, LetV
be the closest vertex of O to the agent A. Let us suppose that there exists one vertex
Vc that lies outside the virtual obstacle OORCA. Considering the line l = [Vc,V], the
same conclusion as the obtained in the previous point is achieved. �

Dealing with non-convex obstacles

In the previous section, it has been proven that G-ORCA guarantees the computation of
collision-free velocities in a scenario composed merely by convex obstacles. However,
plenty of non-convex obstacles may appear in many scenarios, such as tables, streetlights,
to name a few. Two methods are proposed in this section to handle with this type of
obstacles. The main idea is to apply a pre-processing step to the mesh file in which the
environment is described in order to obtain a mesh file which consist of convex polyhedra.

1. Compute the convex hull of each obstacle. The most conservative approach to
make the obstacles convex is to compute their convex hulls and considered them
instead of the real obstacles. The convex hull of a set of points X , which in our case
will be the vertices of the polyhedron, is the smallest convex set that constraints X .
Figure 7.7 shows an example of convex hull of a concave polyhedron.

166 Chapter 7. Collision Avoidance

ORCA

O

A

O

Vcd

d1

C

C1

Figure 7.6 Only concave obstacles can make O /∈ OORCA, as demonstrated by Theorem
7.2.1.

2. Split the concave obstacles into convex or quasi-convex pieces. A concave ob-
stacle can be considered as composed by several convex pieces (see Figure 7.7).
However, an exact convex decomposition can split the obstacles into thousands of
pieces, which might be impractical as it would make the CA procedure too computa-
tionally expensive. For this reason, approximate methods such as the Hierarchical
Approximate Convex Decomposition (HACD) methods have been developed to re-
duce the number of cluster the decomposition has while ensuring that each cluster has
a concavity below an user defined threshold. An open source C++ implementation
of HACD is available in the HACD Library 1. For more details, please refer to
[148]. By using this procedure more obstacles have to be taken into account, but the
scenario is described in a more accurate and less conservative way.

7.2.3 Non spherical robot

The original 3D-ORCA algorithm assumes that the robots have spherical shapes. However,
the shapes can vary among vehicles. For example, the shapes of the quadrotors that will be
used in the ARCAS project are not well suited with an sphere. In this case, the minimum
horizontal separation distance should be greater than the vertical one. Therefore, a simple
coordinate transform to the distances between aerial robots and between aerial robots and
static obstacles is applied.
1 http:// sourceforge.net/ projects/ hacd/ . Accessed June 2015.

http://sourceforge.net/projects/hacd/

7.2 Proposed method: Generalized ORCA 167

Figure 7.7 Concave obstacles (left) have to be decomposed into one or several convex
obstacles in a preprocessing step. The convex hull of the obstacle can be
calculated (center). A more accurate procedure (HACD) for decomposing the
obstacle into quasi-convex pieces is shown on the right, each convex part is
represented in a different color.

x′← x (7.29)
y′← y (7.30)
z′← αz (7.31)

where α =
rxy
rz
. Figure 7.8 represents the original ORCA volume and the proposed in

G-ORCA. Note that the distances among the z′ coordinate seem larger than the distances
among the z, so the real vehicle shape becomes an ellipsoid.

Figure 7.8 Comparison of spherical shaped region of radius rxy (in blue) and the proposed
region (in red). The proposed region has different horizontal and vertical radius
rxy and rz, respectively.

168 Chapter 7. Collision Avoidance

7.2.4 Safety region

One of the most undesired behaviors that have been detected when using the original
3D-ORCA algorithm, as implemented in RVO2-3D library [149], is that it produces an
oscillatory behavior when a collision (intersection of the safety region of two robots)
situation was detected. The main reason for this undesired behavior is that the reaction in
conflict-free situations and in conflict situations are several orders of magnitude greater.
Let pppr be the relative position of RB from RA, vvvr their relative velocity, and τ and Ts be
the time horizon and sample rate respectively. The original ORCA calculates the reaction
vectors without collision if the velocity is nearer to the truncation of the cone than the
envelope of the cone , which uses to be the case when two robots are close enough, as
follows:

www = vvvr−
pppr

τ
(7.32)

uuu =

(
R
τ
−‖www‖

)
www
|www|

(7.33)

where www is closest from vvv to the boundary ofVO. These expressions can easily be obtained
by simple geometry taking into account the figure 7.9.

Figure 7.9 Calculus of the reaction vector uuu when vvvr is near of the truncation of the cone.

The situation is different when a collision is detected. In this case, the original ORCA
changes the time horizon to the sample time (Ts) of the algorithm and considers the reaction
always with the truncation of the cone not taking into account relative velocity. Thus, the
reaction when a collision situation is detected is always obtained as follows:

7.2 Proposed method: Generalized ORCA 169

www = vvvr−
pppr

Ts
(7.34)

uuu =

(
R
Ts
−‖www‖

)
www
|www|

(7.35)

For example, one typical configuration sets Ts = 0.05s and τ = 5s. Thus, www is in each
case completely different. This can make the algorithm propose two completely different
problems to be solved in consecutive intervals, that is when transitioning from a collision-
free situation to a collision one. Furthermore, in some densely packaged situations ORCA
allowed slight collisions to be produced and this discontinuity generated an oscillatory
behavior.

In order to fix this discontinuity, a Warning region is defined in G−ORCA. In this
region, the reaction vector will linearly grow as the collision approaches. For this reason
in G−ORCA, each agent is surrounded by two security regions: the Warning region and
the Conflict region as represented in Figure 7.10.

Figure 7.10 Safety regions proposed in the G−ORCA algorithm.

As pointed out in section 7.2.2, the constraints generated by static obstacles cannot
be relaxed, while the ones generated between agents can. In G−ORCA the constraints
between the Warning zones of two or more agents can be relaxed, so they might be violated
at some point. In contrast, for the sake of safety, the constraints generated between the
Conflict zones cannot be relaxed. This ensures that the trajectories are collision-free, as
opposed to the original ORCA algorithm. In addition, the commanded velocity of the
UAVs whose conflict areas overlap is also reduced in magnitude gradually. This can be
useful, for example, in situations where one of the UAVs is near one obstacle that makes it
impossible for the UAV to react as assumed in ORCA algorithm.

170 Chapter 7. Collision Avoidance

7.3 Multi-Quadrotor Simulations

In this section, several simulations performed with up to 20 UAVs with static obstacles are
presented. The scenario considered in these simulations is a reproduction of the multi-UAV
testbed located in the CATEC facilities. All the software has been developed in the Robotic
Operating System (ROS) framework 2 with the aid of a multi-UAV simulator developed
by CATEC with minor modifications. This simulator includes a dynamic quadrotor model
which is based on the implemented in the Hector-Quadrotor ROS package [150]. For more
details on the ROS integration and block diagram, please refer to Chapter 8.

This system has been run in a Toshiba™Satellite L-735 equippedwith an Intel®Core™i5-
2410M CPU @ 2.30GHz processor, 4 GB of RAM and NVIDIA™Corporation GT218M
[GeForce 315M] graphical card. The operating system used was Kubuntu 12.04 Linux.
The code was written in C++ language and integrated with ROS hydro distribution. The
dynamic quadrotor model used is based on the Hector-quadrotor ROS package [150].
Different scenarios with static obstacles are considered and different number of aerial

robots, from two to twenty quadrotors (see Figures 7.11 and 7.15). The videos of the
different performed experiments are available at http://www.youtube.com/0grvc0.
Next, the studies and results obtained in three different scenarios are presented. The

dimension of the safety regions that have been considered in simulation are as follows.

• Collision rxy = 0.7m rz = 0.45m

• Conflict rxy = 1.0m rz = 0.64m

• Obstacles rxy = 1.0m rz = 0.6m

7.3.1 2 UAVs with and without static obstacles

The next simulations analyze the behavior of the G-ORCA algorithm when an environment
with static obstacles is considered. The scenario shown in Figure 7.11 is used with and
without both static obstacles. In this scenario, the two quadrotors are planned to interchange
their positions while flying at the same altitude. Obviously, the CA block has to modify
their trajectories in order to avoid the potential collision.

Simulation S1 proposes a scenario without static obstacles. In this situation, G-ORCA
algorithm computes the new velocities such that quadrotors change their lateral trajectories
in order to avoid the collision. Figure 7.12 shows the vertical and horizontal separation
distance between quadrotors (grey and green lines). Note that the vertical separation
distance is almost zero during the whole flight because the maneuvers to avoid the collision
are executed in the horizontal plane and the minimum horizontal separation is met.

A more interesting situation is presented in simulation S2. The initial and final positions
of the quadrotors are the same as in S1. However, the quadrotors are placed in a corridor
that makes it impossible to perform the maneuvers obtained in the previous simulation. G-
ORCA algorithm is capable of automatically detecting the static obstacles and computing
the new velocities in order to avoid collision by performing flight level changes. Figure 7.12
shows the separation distances between quadrotors (blue and red lines). The augmented
2 http://www.ros.org/

http://www.youtube.com/0grvc0
http://www.ros.org/

7.3 Multi-Quadrotor Simulations 171

Figure 7.11 Scenario with two quadrotors and two static obstacles.

window shows as at least the horizontal or the vertical minimum separations are always
met during the simulation. The separation of each quadrotor with respect to the closer
obstacle is shown in Figure 7.13. Again, the generated trajectories are safe for the minimum
horizontal or vertical separations are met.

7.3.2 Scalability

Figure 7.14 shows the distribution of the computation time for calculating the collision-free
ORCA velocity for one agent in the execution of simulations from 3 to 8 UAVs. Note that
each agent only takes into account the agents that are closer than the neighboring distance.
In this case, this distance was set to 4m. Also, the preprocessing step is done off-line,
so its execution time has not been taken into account as it does not affect the real-time
performance of the system.

These results show that the computation time in calculating the ORCA velocity for each
agent was far below 1ms in more than the 97% of the cases. Moreover, the computation
time grows very slowly with number of UAVs: it was confined between 0.3 and 0.5ms in
the case of 3 UAVs and between 0.4 and 0.6ms with 8 UAVs.
The CA module was computing collision-free velocities at a rate of up to 100Hz for

each quadrotor. This has allowed us to perform simulations with up 8 quadrotors in
real time and in the same machine. Taking into account these results, more than 50 are
likely be considered in the same machine without experiencing flaws. Furthermore, the
computations can be easily distributed among several PCs thanks to the ROS integration.
Therefore, no limits exist in theory about the number of robots this method can handle.

Scenario with up to 8 UAVs and two static obstacles

A complex industrial scenario is proposed in this simulation, see Figure 7.15. Simulations
with four and eight quadrotors are performed. In this scenario the minimum separation
between quadrotor and obstacles is 0.8m.

172 Chapter 7. Collision Avoidance

Figure 7.12 Separation distances between quadrotors in simulations S1 and S2: horizontal
separation in S1 in green, vertical separation in S1 in grey, horizontal separation
in S2 in red, vertical separation in S2 in blue, minimum horizontal separation
in dashed black line and minimum vertical separation in dotted black line.

Simulation S3 shows a long endurance mission with four quadrotors (QR1, QR3, QR5
and QR7 in the Figure 7.15). Table 7.1 shows a summary of the main results obtained in a
ten minutes long coordinated mission. These results include the number of CA maneuvers,
duration, involved number of vehicles and the minimum separation distance between
quadrotors and each quadrotor with the closer obstacle.

Simulation S4 considers eight quadrotors which interchange their positions in the same
scenario. The minimum separations in the experiment between two robots was 1.12m, and
with static obstacles was 1.02m.

7.3.3 Scenario with up to 8 UAVs and complex static obstacles

Scenario S5 considers up to 8 UAVs in a environment with complex obstacles as depicted
in figure 7.16. The obstacles in this scenario are different and give much less space to
the UAVs to maneuver. For this reason, the not only the safety radius have changed, but
also the cruise velocity is considerably slower (v = 0.2m/s). In this scenario the following
radius of agents have been considered:

• Collision: rxy = 0.55m and rz = 0.3m

• Conflict: rxy = 0.7m and rz = 0.42m

• Obstacles: rxy = 0.9m and rz = 0.5m

7.3 Multi-Quadrotor Simulations 173

Figure 7.13 Separation distances between quadrotors and closer obstacle in simulation
S2: QR1-obstacle in blue, QR2-obstacle in red and minimum separation in
dashed black line.

0

1

2

3

4

5

6

x 10
−3

3 4 5 6 7 8

Number of quad−rotors

C
o
m
p
u
t
a
t
i
o
n

t
i
m
e

f
o
r

o
n
e

a
g
e
n
t

(
s
)

Figure 7.14 Distribution of the computation time in proposed algorithm for one agent
with the number of UAVs in the system. The median of each distribution
is indicated in red, the blue box represent the 25th and 75th percentiles and
the 3rd and 97th percentiles are indicated in black. Red marks represent the
outliers.

174 Chapter 7. Collision Avoidance

Table 7.1 Results obtained in the simulation S3.

Characteristics Quad-rotors Value
Number of maneuvers performed in simulation - 55

Average Duration - 9.56sec
Average Vehicles Involved in the Maneuver - 2.81

Minimum separation with obstacles

QR1 0.84m
QR3 0.87m
QR5 0.82m
QR7 0.81m

Minimum horizontal or vertical separation

QR1-QR3 1.14m
QR1-QR5 1.17m
QR1-QR7 0.853m
QR3-QR5 1.00m
QR3-QR7 0.857m
QR5-QR7 0.856m

Figure 7.15 ARCAS scenario with eight quadrotors and two pipes in theMulti-UAV testbed
of CATEC.

7.3.4 Scenario with 20 UAVs

A common benchmark of a reactive coordination algorithm is to place several agents
distributed evenly over a circumference and make them travel to the opposite point of the
sphere. In this case, all desired trajectories intersect at the center of the circumference, so
the worst case of a CA problem is generated.

Simulation S6 considers twenty quadrotors placed in different points of a circumference
of radius 10m. Figure 7.17 represents a sequence of snapshots taken during the execution
of scenario S6.. The quadrotors are then commanded goal to go to the opposite point and
then return to their original positions at an altitude of 1.5m, although vertical maneuvers

7.4 Conclusions 175

Figure 7.16 Simulation scenario with up to eight quadrotors and complex static obstacles.

are allowed.
In this scenario the following radius of agents have been considered:

• Collision: rxy = 0.7m and rz = 0.5m

• Conflict: rxy = 0.85m and rz = 0.65m

No collisions nor safety distance violations were found during the execution of this
complex scenario and the vehicles performed velocity and altitude ajustments automatically
to achieve the commanded tasks. In addition, the CA systems was running at 40Hz in the
same machine whose characteristics were described at the beginning of this section.

7.4 Conclusions

In this chapter, the basics of ORCA in a three dimensional environment has been presented
in order to be applied as an reactive CA block. It presents several characteristics that
encourage its application in reactive distributed system including: it is derived from the
velocity space(first order algorithm) that allows the inclusion of dynamic and kinematic
constraints in the movement of the robot; it is reciprocal, and thus all agents cooperate to
avoid the collision; and its fast computation allows its real-time operation in systems with
a high number of UAVs.
This method has been taken as the basis of a new distributed method for 3D CA in

scenarios with complex 3D obstacles, which has been named G-ORCA. The main additions
to the basic algorithm are included in Section 7.2. Most importantly, the collision-free
generation of maneuvers has formally proven in scenarios with the presence of convex

176 Chapter 7. Collision Avoidance

Figure 7.17 Snapshots obtained in the execution of Scenario S6 with twenty quadrotors
and no static obstacles. From left to right and top to bottom: a) Initial b)
Approach c) Further approach d) First CA begins e) First CA done f) Return
command g) Second CA maneuvers h) Simulation almost finishing.

obstacles. Then, two methods for dealing with non-convex obstacles are presented, which

7.4 Conclusions 177

are computing the convex hull of the obstacle, which is the more efficient and conservative
solution, or to divide the obstacle into several quasi-convex pieces. This last method is
more computationally demanding, but allows the UAV to use all the available space to
maneuver.

This proposed CA block has been extensively tested in several simulations test batches
with up to twenty quadrotors. In particular, a scalability analysis of the proposed method
and a long-term simulation have been presented. The results of the scalability analysis
demonstrate that the G-ORCA algorithm can be executed in systems composed by tenths of
UAVs in a single computer at high frequencies (up to 100Hz). Furthermore, the execution
time of one instance of ORCA do not exceed 8ms for systems with 8 UAVs and it is below
1ms in most cases. These facts make it a very convenient and reliable algorithm for reactive
systems.

This chapter ends the theoretical contributions of the thesis. Next chapter will study the
integration of the G-ORCA algorithm into a multi-UAV system for structure assembly and
construction. Experimental results will be presented in this chapter.

8 Experimental G-ORCA based
Collision Avoidance

Anything that can go wrong, will go wrong.

J. P. Stapp (principle usually known as Murphy’s Law).

In this chapter, the integration of the G-ORCA algorithm which has been described
in Chapter 7 into the ARCAS project is analyzed. This will be make it possible

to execute complex multi-UAV tasks that involve assembly construction. Finally, the
experimental work which has been carried out in the context of the project is detailed,
paying special attention to the issues found in real experimentation, the lessons learned
during its execution and the safety actions performed in order to improve the behavior of
the proposed system.

8.1 Introduction

The ARCAS project considers cooperative missions by developing a cooperative free-flying
robot system for assembly and structure construction. The ARCAS system uses helicopters
and quadrotors with multi-link manipulators for assembly tasks. The aerial robots consist
of UAVs equipped with arms that carry structure parts that should be assembled at the target
destination. Cooperative assembly planning and safe trajectory generation to perform the
coordinated missions play an important role in the ARCAS system. Thus, implemented
algorithms in the system should ensure that neither the UAVs nor the arms or the objects
carried collide with each other. Also, the collisions with objects of the environment (static
obstacles) should be avoided.

The main inputs required by the proposed system are the models of the aerial robots, the
model of the environment, and the initial planning computed by an external path planning

179

180 Chapter 8. Experimental G-ORCA based Collision Avoidance

algorithm based on t-RRT algorithm. The trajectories of each aerial robot are calculated
independently and they provide the desired initial trajectory for each aerial robot.

The initial trajectories of the robots that may fly simultaneously should be coordinated.
Therefore, the output of the system will be the coordinated maneuvers which are needed
to perform a safe execution of the mission. The system will ensure that every potential
collision detected is avoided in real-time.

Several multi-UAV experiments to validate the proposed algorithms have been carried
out in the indoor testbed of CATEC with up to 4 UAVs performing real-time coordination.
These experiments will be distinguished in two different groups: the earlier experiments,
which had been executed in June, 2013; and the final experiments which were executed in
October, 2013. These final experiments where performed by studying the lessons learned
of the earlier experiments and by developing a more realistic simulator that takes into
account the communcation delays of the system.

8.2 Basic architecture of the system

Figure 8.1 shows the basic block diagram of the implemented ROS modules in the context
of the ARCAS project. In particular there are two implemented blocks.

• The Trajectory Generator (TG) module which is responsible of tracking a trajec-
tory that is commanded by the ROS Bridge module. In order to achieve this, it
generates a desired velocity command, taking into account the position of the UAV.

• The Collision Avoidance (CA) module takes as inputs the desired command of the
TG, the state of the UAVs in the system and the mesh file that models the static
obstacles in the environment and generates a safe collision-free velocity command.

The next sections further detail the algorithms implemented in the TG and CA modules.
For more details on the integration of this system in the whole ARCAS architecture, please
refer to Appendix C.

Figure 8.1 Integration of the proposed algorithms into the ANIMO framework.

8.2 Basic architecture of the system 181

8.2.1 Trajectory Generator Module

The TG module has been developed to perform the trajectory tracking in the ARCAS
project. The reference trajectories are generated by an external planner module or loaded
from file. Then, ROSBridge module generates a translational task to be fulfilled by the TG
module. The interfaces of the TG module can be seen in Figure 8.2. The state of the UAV
and the task to be fulfilled are the most important inputs of TG, while its main outputs
are the velocity command and the mission completion report, which can be used also for
notifying unexpected errors.

Figure 8.2 Main interfaces of the TG module.

Pure pursuit (PP) steering control, as applied to mobile robots, was borrowed from a
maneuver commonly used by military pilots. This maneuver involves pointing the pursuer
directly at the object being pursued. PP guarantees that the pursuer will always converge
on the target if the pursuer has a velocity greater than the target [151].
PP is probably the most popular method of high-level steering control used on mobile

robotics. Figure 8.3 illustrates the steering control strategy when PP is used. It basically is
done by calculating a real-time target WP which lays in the target path and is situated a
look-ahead (L) distance from the vehicle. Then, the vehicle is commanded to point directly
to this WP. Evidently, if the vehicle is farther than L, the WP will match to the closest
point to the path. Adaptive pure pursuit (APP) is a common variant of the PP in which
the look-ahead distance L is a function of the lateral path error ε , the curvature c and the
speed of the vehicle v of the path in the surroundings of the WP (L = f (ε,c,v)).
The stability of PP has been analyzed and tested experimentally in [152] performing

tracking experiments at constant speeds (3, 6 and 9m/s) for straight and constant curvature
path sections. The maximum and minimum look-ahead distances for each speed where
calculated and validated experimentally.
When applied to non-holonomic robots, PP method generates a commanded heading

change ∆φ that points that points directly to the current WP, as shown in Figure 8.3.

∆φ = arctg

(
yre f

xre f

)
(8.1)

where ∆φ is the heading change that must be performed to reach the goal and xre f and yre f
are the coordinates of the goal in the reference frame of the robot.

However, in the designed module, the output is not the commanded heading but rather
the commanded velocity vector. It will have as heading the obtained in equation 8.1 and
as module the desired cruise speed as indicated in the flight plan.

182 Chapter 8. Experimental G-ORCA based Collision Avoidance

L

UAV1
xref

yref

Figure 8.3 Trajectory tracking with the PP algorithm. Calculus of the target WP, in white
dot, and the lateral error ε .

The extension to 3D is achieved by commanding as vz the necessary velocity to achieve
the carrot at the same in the plane xy and in the coordinate z. Obviously, all components
of the velocity vector are bounded. The values of the look-ahead distance (L) in different
conditions have been empirically tuned.

8.2.2 Collision Avoidance Module

The CA Module is responsible of coordinating all the UAVs in the system in order to
follow the commands generated by the TG modules of each UAV. It is also responsible of
avoidance collision between the UAVs and the static obstacles in the system that could
appear when performing collision avoidance maneuvers.

The CA maneuvers are generated in real-time by using the G-ORCA algorithm that has
been thoroughly described in Chapter 7.

The relevant interfaces of the CA module are shown in Figure 8.4. This module takes
as inputs the commanded velocity of TG, the states of all UAVs in the system and relevant
configuration data, such as the 3D model file of the scenario which models the static
obstacles and some relevant configuration parameters of the G-ORCA algorithm which
are listed in Table 8.1. These parameters include the separation distances to obstacles (dxy
and dz) and between agents (Exy and Ez). Also, the time horizons (T and Tobs) are relevant.
Usually, Tobs < T because cooperation between agents should be produced earlier than a
CA maneuver due to obstacles. f has been set to 40Hz in most experiments.

The CA module then processes the commanded velocity of TG, taking into account
the state of the system and the model of the obstacles in the environment, and generates
collision-free commands that are sent to the UAV Abstraction Layer (UAL), which is
responsible of commanding them to the onboard autopilot.

8.3 Preliminary experiments 183

Figure 8.4 Main interface of the CA module.

Table 8.1 Main configuration parameters of the G-ORCA algorithm.

Parameter Description
f Frequency on which a new reference is calculated

Exy Minimum horizontal distance between robots
Ez Minimum vertical distance between robots
T Time horizon. Minimum collision-free time between agents

dxy Minimum horizontal distance to an obstacle
dz Minimum vertical distance to an obstacle

Tobs Time obstacle horizon. Minimum collision-free time with obstacles

8.3 Preliminary experiments

The first experiments were performed in June, 2013 at the multi-UAV testbed of CATEC
(see Appendix A). Although the coordination was carried out successfully, the results
obtained in experimentation were not as good as expected. They differed in a great deal
from the behavior obtained in simulation results. In particular, an oscillatory behavior of
the UAVs was found during the execution of most of collision resolution maneuvers.
Table 8.2 shows the parameters used in the experiments presented in this section:

frequency, minimum horizontal separation distance among robots (Exy), minimum vertical
separation distance among robots (Ez) and the time horizon (T).

Table 8.2 G-ORCA configuration parameters in Experiment 1.

Parameter f Exy Ez T dxy dz Tobs
Value 20Hz 1.2m 0.6m 10s 0.9m 0.6m 2s

8.3.1 Experiment 1

Experiment 1 is presented in order to clarify the aforementioned undesirable behavior of
the aerial robots during the execution phase that has motivated the inclusion of additional
systems and several improvements of the G-ORCA algorithm. This experiment involves
two aerial robots which fly trajectories to interchange their positions as shown in Figure
8.5. Static obstacles are not considered in the environment, so only maneuvers to avoid
collisions among the UAVs are performed. Obviously, the parameters related to static
obstacles are not used in this experiment.

184 Chapter 8. Experimental G-ORCA based Collision Avoidance

Figure 8.5 Initial plans in Experiment 1.

Figure 8.6 shows the horizontal and vertical separation among the aerial robots during the
experiment. The vertical and horizontal separations were met during the whole experiment
because the minimum values were not surpassed at the same time. Therefore, the flown
trajectories were safe.

10 15 20 25
0

1

2

3

4

5

Time(s)

S
e
p
a
ra
ti
o
n
(m
)

Figure 8.6 Horizontal (red line) and vertical (blue line) separation between the UAVs
during the Experiment 1. The minimum separation distances are shown in
dashed line.

However, the behavior of the algorithm was not suitable because oscillations of the
aerial robots during the flight took place. This can be observed in the oscillations of the
separation distance in Figure 8.6. Moreover, the control system had to command aggressive
maneuvers that resembled a dance behavior. They were similar to the reciprocal dances
found in [153] but more persistent.

8.3 Preliminary experiments 185

8.3.2 Experiment 2

Experiment 2 is similar to Experiment 1 but with the presence of static obstacles in the
environment. Figure 8.7 represents the initial trajectories of the quadrotors as well as the
static obstacles of the scenario. In this case, the quadrotors are forced to perform different
maneuvers in order to avoid collisions not only between the quadrotors, but also with the
static obstacles.

Figure 8.7 Initial plans in Experiment 2.

The configuration parameters of the static obstacles are considered in the Experiment 2
(see Table 8.2). Note that the minimum horizontal separation to obstacles is smaller than
the minimum separation between quadrotors. It is possible on the one hand the closest
point from the static obstacle to the center of the UAV is being considered in the case
of avoiding collisions with static obstacles. On the other hand, the distance between the
center of the quadrotors is being considered when avoiding collisions between UAVs. It
is also remarkable that the time horizon in collision between quadrotors is much greater
than the time horizon in collisions between a quadrotor and the static obstacles. Thus, the
quadrotor will maneuver to avoid collisions with static obstacles only when it is sufficiently
close to the obstacles. This parameter has to be carefully tuned taking into account the
maximum allowed acceleration amax and the maximum velocity vmax in order to guarantee
that no collisions with static obstacles can be produced.

Figure 8.8 shows the vertical and horizontal separations between the quadrotors during
Experiment 2. The horizontal or the vertical separation are met during the whole flight. In
contrast to Experiment 1, there are time instants where the horizontal separation is not met
but the vertical is. This indicates that the quadrotors have performed a vertical collision
avoidance maneuver. This type of maneuver was imposed taking into account the scenario
where the quadrotors were located. In this experiment, no noticeable oscillations were
found.

186 Chapter 8. Experimental G-ORCA based Collision Avoidance

Time(s)

S
e
p
a
ra

ti
o
n
 (

m
)

18 20 22 24 26 28

0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 8.8 Horizontal (red line) and vertical (blue line) separation between the aerial
robots during Experiment 2. The minimum separation distances are shown in
dashed line.

8.3.3 Experiment 3

Experiment 3 proposes a scenario with four quadrotors and several static obstacles. This
scenario have tested the proposed method in the presence of more quadrotors and static
obstacles. Thus, more complex maneuvers have to be performed. Figure 8.9 represents the
initial trajectories of each quadrotor. The execution of the plan of quadrotor Q4 is delayed
by approximately fifteen seconds with respect of the execution of quadrotors Q1-Q3.

The separations between each pair of quadrotors during the execution of the experiment
is plotted in Figure 8.10. The trajectories are safe because the horizontal or vertical
separation is met during the whole flight. However, the same oscillations that were found
in Experiment 1 were found. Furthermore, in some situations were conflicts with more
than two quadrotors were detected, the system evolved to an almost deadlock situation that
lasted for almost ten seconds in some cases (see instants from 70s to 90s in separation
between Q1-Q2, Q1-Q3 and Q2-Q3). Finally, some minor separation violations were
found in some instants in the deadlocks (see instants from 60s to 80s in separation between
Q2-Q3) and without deadlocks (instants in the surroundings of 85s in separation between
Q3-Q4). This situation, although brief, is not desirable in collision avoidance systems.

8.3.4 Conclusions

As conclusions, the experiments performed were safe during the execution of the initial
plans. However, the behavior of the proposed method when integrated into the real system
is still far from the one desired and the one obtained in simulation. Some oscillations
in roll were found in Experiments 1 and 3. In addition, there were some states close to
deadlocks at the end of Experiment 3 in which the quadrotors, although being static in
their translational position, were oscillating in their roll angles. In fact, some of these
oscillations did imply slight violations in the minimum allowed separations.

8.4 Lessons learned 187

Figure 8.9 Initial plans of Experiment 3.

In order to overcome this problem some actions were necessary, which are detailed in
Section 8.4.

8.4 Lessons learned

At first, it was difficult to find out the reason of the differences between the behavior in
simulation and the one in the real flight. Several hypotheses were formulated on the origin
of the problem:

• The algorithm was running at a frequency too high and thus the reference signal
could not be properly followed by the onboard control system.

• The control signals generated by the G-ORCA algorithm made the aerial robots
oscillate.

• ANIMO middleware for inter-robot communication, and more likely, ROS frame-
works could be introducing a significant delay in the communications of the state of
the system. Moreover, the lag due to the flight controller can be also noticeable.

With a more thorough analysis of the experiments, it was almost certain that the oscilla-
tory behavior is mostly generated by communication delay. This delay was not modeled in
the simulator and therefore had not been taken into account when designing the collision
avoidance system. The total communications delay in the testbed experiments can be
estimated as the sum of the delay from the VICON to the ORCA ROS node and the delay

188 Chapter 8. Experimental G-ORCA based Collision Avoidance

0 20 40 60 80 100 120

Time (s)

S
e
p
a
ra

ti
o
n
 (

m
)

0

1

2

3

4

5

6

0 20 40 60 80 100 120
0

1

2

3

4

5

6

Time (s)

S
e
p
a
ra

ti
o
n
 (

m
)

0 20 40 60 80 100 120
0

1

2

3

4

5

6

Time (s)

S
e
p
a
ra

ti
o
n
 (

m
)

0 20 40 60 80 100 120
0

1

2

3

4

5

6

Time (s)

S
e
p
a
ra

ti
o
n
 (

m
)

0 20 40 60 80 100 120
0

1

2

3

4

5

6

Time (s)

S
e
p
a
ra

ti
o
n
 (

m
)

0 20 40 60 80 100 120
0

1

2

3

4

5

6

Time (s)

S
e
p
a
ra

ti
o
n
 (

m
)

Figure 8.10 Horizontal (red line) and vertical (blue line) separation between quadrotors
during Experiment 3. The minimum separation distances are shown in dashed
line. These plots, from left to right and top to bottom represent the separations
of quadrotors Q1-Q2, Q1-Q3, Q1-Q4, Q2-Q3, Q2-Q4, Q3-Q4.

from the ORCA ROS node to the autopilot onboard the quadrotors as shown in Figure 8.11.
The G-ORCA algorithm itself also introduces a small latency (lower than 1ms) which is
not considered because it at least two orders of magnitude lower than the total.

This delay, Td , should be taken into account whenever a new command is generated by
G-ORCA algorithm. The two firsts blocks represent the VICON processing time in order to
estimate the state of the system and the communication of this state to the G-ORCAmodule
(Comms1). This communication is heterogeneous and includes the UDP communication
to the UAL node and the ROS communication between nodes. Then G-ORCA algorithm
processes the information and generates the commands that should be sent back to the UAL
node and then to the flight controller via zigbee (Comms2). However, as the developed
collision avoidance system is designed to be executed onboard each UAV in a distributed
manner, and also each UAV will use its own sensors for positioning, in real applications
this delay will be much lower and these effects will be much alleviated.

8.4 Lessons learned 189

Figure 8.11 Communication delay in the ARCAS system.

Note that the G-ORCA algorithm has to work with an estimation of the state in t +Td
from the state in t in order to generate the proper commands where Td is the sum of the
times considered in Figure 8.11. In order to both model and estimate Td , this delay has been
set into the simulation system as a configurable parameter. It has been empirically found
that a total delay of 0.5s gives a simulation behavior that is close to the one obtained in
experimentation. Therefore, several modifications and additions to the original G-ORCA
algorithm have been included in the final system. Next, the implemented improvements,
and necessary safety actions are described:

1. Addition of the delay in the simulator. The simulator was modified in order to
take into account the communication delays of the system. This is modeled as a total
delay that includes the sensing and actuating delays. This delay was modified until
the behavior was similar to the one obtained experimentally. The total estimated
delay with this method was 0.5s.

2. Future state estimation. The state of the system at time t + Td is estimated by
integrating the generated commands from t to t +Td from the state in the system at t
obtained by the VICON system. Note that each UAV can generate the commands
of the rest of aerial robots because it knows the state of the whole system and the
desired speed of each aerial robot.

3. Dynamic constraint. Let ts be the step time of the algorithm. The difference between
the velocity command in t and the previous command in t− ts is bounded in order to
introduce a maximum acceleration constraint as shown in Eq. 8.2. This procedure
follows the method detailed in section 7.2.1.

‖vvv(t)− vvv(t− ts)≤ amaxts‖ (8.2)

4. Low pass filter. In order to make the velocity commands smoother, an additional low
pass filter has been introduced. Although it seemed that a reduction of the frequency
of G-ORCA algorithm could be appropriate, an increment to 40Hz and the inclusion
of a low pass filter has been found more convenient. The filter makes a weighted
mean of the latest N commands (N is usually referred as the size of the filter) as
shown in the following equation:

vvvLP(t) = 2
∑

N
i=1 vvv(t− (N− i)ts)

N(N +1)
(8.3)

190 Chapter 8. Experimental G-ORCA based Collision Avoidance

5. Multi-UAV Control Centre. A visual application has been developed in order to
make the execution of multi-UAV tasks easier and to provide access to emergency
stop buttons, landing and takeoff functions and real-time separation plots. In addition,
it can automatically generate emergency stop signals if a safety distance threshold
between UAVs or from one UAV to the static obstacles is violated in both hori-
zontal (Exy) and vertical (Ez) components. Last, logs of the position and distances
amongst vehicles are automatically generated. Figure 8.12 shows two snapshots of
the developed application.

Figure 8.12 Snapshots of the ARCAS Coordination Centre application. The basic actions
that can be sent to the quadrotors can be found on the left side. On the right
side, the real-time plots of the distance are detailed.

8.5 Final experiments

Once the improvements in the G-ORCA algorithm were implemented and tested in simu-
lation, a new battery of experiments were successfully executed in the multi-UAV testbed
at the CATEC facilities. The videos of the execution of the experiments can be found in
the youtube channel of the GRVC of the University of Seville1. Next, three experiments
are shown with up to 4 aerial robots and with the presence of static obstacles. Table 8.3
shows the parameters used in the final experiments. These parameters are similar to the
ones used in the preliminary experiments (see Table 8.2). The most significant difference
is that the frequency of the CA module has been doubled. In addition, two new parameters
have been included: the filter size N has been set to 10; and the prediction horizon Thorizon
which has been set to the estimated delay of the system: 0.5s.

1 http:// youtube.com/0grvc0

http://youtube.com/0grvc0

8.5 Final experiments 191

Table 8.3 G-ORCA configuration parameters in the final experiments.

Parameter f Exy Ez T dxy dz Tobs N Thorizon
Value 40Hz 1.2m 0.6m 10s 1.1m 0.8m 2.4s 10 0.5s

8.5.1 Experiment 4

Experiment 4 is very similar to Experiment 1, which had to be repeated in order to
experimentally check and verify the improvements of the G-ORCA algorithm described in
Section 8.4.
This experiment involves two quadrotors that will interchange their positions and then

go back to their original positions. In contrast, the UAVs in Experiment 1 were not
commanded to return to their original positions.

Figure 8.13 represents the horizontal and vertical separations obtained in the execution
of the experiments. As expected, the horizontal separations gradually descends in the time
interval [70,110]s in the first position interchange. In this case, the collision is successfully
avoided as the horizontal separation never goes below the desired safety distance. Then,
the horizontal distance will grow until each UAV reach the first goal position. When the
first waypoint is reached, the UAVs will maneuver to go back to their original positions
and thus another collision avoidance maneuver occurs in the time interval [130,155]s. The
maneuver is similar to the previous one but there are differences that are produced because
the system is reacting in real-time and thus small changes in the relative position of the
UAVs will generate similar but not identical maneuvers.

With regards to safety, the separation between UAVs is above 2m in most cases. Further-
more, the oscillations due to the delay in communications was reduced in a great extent
when compared with the results obtained in Experiment 1.

8.5.2 Experiment 5

Experiment 5 considers three UAVs which go to the opposite side of the central obstacle
as shown in Figure 8.14. Then, the UAVs are commanded to go back to their original
positions.

Figure 8.15, Figure 8.16 and Figure 8.17 show the distance between each pair of UAVs
during the execution of the experiment. As expected, quad-rotor 3 passes in the middle of
the other two quad-rotors in the time intervals [95,105]s and [142,152]s. Therefore, the
horizontal distance between quad-rotor 1 and 2 increases when the collision avoidance
maneuver is being executed. In contrast, the horizontal distances between quadrotors 1-3
and 2-3 diminish as the collision avoidance maneuver executes but without violating the
horizontal safety distance (in blue-dashed line).
To sum up, the separation of the quadrotors is greater than the minimum separation

distances during the whole experiment so it was conducted safely by the proposed CA
system and most of the dancing-like behavior that was found in Experiments 1 and 3 is
not detected in this Experiment 5, as obtained in the simulations performed before the
experiments.

192 Chapter 8. Experimental G-ORCA based Collision Avoidance

0

1

2

3

4

5

6

7

80 100 120 140 160 180

Time (s)

S
e
p
a
ra

ti
o
n
 (

m
)

Figure 8.13 Horizontal (red line) and vertical (blue line) separations between quad rotors 1
and 2 during the Experiment 5. The minimum separation distances are shown
in dashed line.

Figure 8.14 Initial trajectories of each quad-rotor in Experiment 5. Trajectories of the
quad-rotors 1, 2 and 3 are respectively shown in pink, yellow and blue. The
green circles indicate the starting position of each quad-rotor.

8.5.3 Experiment 6

Finally, Experiment 6 considers the same scenario that has been presented in Experiment
3 (see Section 8.3.3) which is composed by four quad-rotors. Figure 8.9 shows the initial
trajectories of each quad-rotor.

Figure 8.18 shows the horizontal and vertical separation distance of each pair of quad-
rotors. The trajectories are safe and there are not signs of dance-like behavior.

Next, a more detailed explanation of the separations shown in Figure 8.18 is done. First,

8.5 Final experiments 193

80 100 120 140 160 180

0

1

2

3

4

5

6

7

S
e
p
a
ra

ti
o
n
 (

m
)

Time (s)

Figure 8.15 Horizontal (red line) and vertical (blue line) separations between quad rotors 1
and 2 during the Experiment 5. The minimum separation distances are shown
in dashed line.

80 90 100 110 120 130 140 150 160

0

1

2

3

4

5

6

7

S
e
p
a
ra

ti
o
n
 (

m
)

Time (s)

Figure 8.16 Horizontal (red line) and vertical (blue line) separations between quad rotors 1
and 3 during the Experiment 5. The minimum separation distances are shown
in dashed line.

initial plans should be reviewed (see Figure 8.9) in order to understand the separations
shown in Figure 8.18. Initial plans of quadrotors 1 and 2 are close at the beginning

194 Chapter 8. Experimental G-ORCA based Collision Avoidance

80 90 100 110 120 130 140 150 160

-1

0

1

2

3

4

5

6

7

S
e
p
a
ra

ti
o
n
 (

m
)

Time (s)

Figure 8.17 Horizontal (red line) and vertical (blue line) separations between quad rotors 2
and 3 during the Experiment 5. The minimum separation distances are shown
in dashed line.

(time interval [118,126]s) and the end of the mission (time interval from [185,195]s). In
these intervals, the horizontal separation is not met but the vertical separation is greater
than the minimum vertical separation distance. Therefore, the trajectories are safe. The
same happens between quadrotors 1 and 3 (time interval [100,110]s). Quadrotors 1-4
and quadrotors 2-4 are close several times but the horizontal separation is always met.
Quadrotors 2-3 are far much time of the mission. The horizontal separation is large
because each flies on the opposite side of the structure. During that time the vertical
separation oscillates but this is due to the different altitudes of each quadrotors. In this
case, the vertical separation does not influence on the safety of the mission. Quadrotors
fly close when each quadrotor is coming back to the initial position. Particularly, in the
time interval [160,170]s, the horizontal separation is not met but the vertical separation is.
Also quadrotors 3-4 fly close in the lapse of time [135,145]s. Again, during this lapse the
horizontal separation is not met but the vertical separation is met.
To sum up, the safety conditions that were imposed were fulfilled during the whole

execution of the mission and for each pair of quadrotors.

8.6 Conclusions

In this chapter, a TG module based on the APP algorithm with an integrated CA system is
proposed, implemented and integrated into the ARCAS system. Moreover, the interfaces
of the developed modules (TG and CA) have been described in detail.
The preliminary experimental test is described and discussed thoroughly in Section

8.3. The experiments were conducted with safely as the separation distances were greater

8.6 Conclusions 195

100 110 120 130 140 150 160 170 180 190

1

2

3

4

5

6

Time (s)

S
e
p
a
ra

ti
o
n
 (

m
)

100 120 140 160 180 200

0

1

2

3

4

5

6

S
e
p
a
ra

ti
o
n
 (

m
)

Time (s)

100 120 140 160 180 200

0

1

2

3

4

5

6

7

8

S
e
p
a
ra

ti
o
n
 (

m
)

Time (s)
100 120 140 160 180 200

1

2

3

4

5

6

7

S
e
p
a
ra

ti
o
n
 (

m
)

Time (s)

100 120 140 160 180 200

0

1

2

3

4

5

6

7

8

S
e
p
a
ra

ti
o
n
 (

m
)

Time (s)
100 110 120 130 140 150 160 170 180

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

S
e
p
a
ra

ti
o
n
 (

m
)

Time (s)

Figure 8.18 Horizontal (red line) and vertical (blue line) separations between quadrotors
during Experiment 6. The minimum separation distances are shown in dashed
line. These plots, from left to right and top to bottom represent the separations
of quadrotors Q1-Q2, Q1-Q3, Q1-Q4, Q2-Q3, Q2-Q4, Q3-Q4.

than the safety margins during the experiments, with the exception of punctual and small
violations. Unfortunately, the behavior of the quadrotors was not as nice as the obtained in
simulation: a noticeable oscillation in the roll angle of the quadrotors was found when
the collision avoidance maneuvers had to be performed. This oscillations were due to the
communication delay present in the experimental setup.

These preliminary experiments underscored the necessity of modifying the proposed
CA system in order to handle the communication delay. This yielded to the implementation
of improvements in the system and another additional safety measures that are described
in Section 8.4.

Finally, these improvements were tested experimentally in a thorough test battery which
is partially described in Section 8.5. In this section, three experiments with up to 4 UAVs
performing real-time coordination are described. The results are then compared to the
ones obtained in Section 8.3 concluding that the final behavior was safer and that the
undesired oscillations were successfully removed.

196 Chapter 8. Experimental G-ORCA based Collision Avoidance

This chapter ends the experimental part of the thesis. The next chapter will analyze
the content included in the thesis in order to elaborate the conclusions generated with its
achievements. Also, it will describe the future work that is still going on in the different
areas covered in this thesis.

9 Conclusions and Future
Developments

I will seize fate by the throat; it shall certainly never wholly
overcome me.

L. v. Beethoven.

The aim of this thesis is the development of Collision Detection (CD) and Collision
Avoidance (CA) techniques that are required in order to safely perform multi-UAV

missions. It has been stated during the thesis that the multi-UAV systems have relevant
advantages over mono-UAV systems such as extended autonomy, parallel execution of
tasks and even that they are able to perform tasks that mono-UAV systems cannot, such as
the transportation of heavy payloads.

Several methods for multi-UAV systems path and trajectory planning, coordination and
reactive collision avoidance have been presented in this thesis. They were thoroughly
tested via extensive random test sets involving up to tenths of UAVs.
In addition, the proposed methods were integrated and tested experimentally in large

scale projects such as ARCAS and MUAC-IREN. In these projects, multi-UAV systems
are being successfully applied to fulfill relevant tasks such as structure assembly, mapping,
grasping and many more.

In this chapter, first Section 9.1 revisits the contributions and analyzes the impact of the
thesis to the state of the art. Next, future developments that either desirable, interesting or
actually ongoing are listed in Section 9.2.

9.1 Summary of contributions

The main focus of this thesis is the trajectory planning problem applied to real-time
trajectory coordination in both reactive and tactical ways of operation. In this context, the

197

198 Chapter 9. Conclusions and Future Developments

first contribution of the thesis was an in-depth study of the state of the art regarding to
UAV and multi-UAV trajectory planning. This was addressed in Chapter 2 and one of
its most important features can found in Table 2.2 where the characteristics of the main
trajectory planning algorithms are summarized.
Several methods have been proposed for collaboratively achieving real-time tactical

trajectory coordination in systems composed by up to 10 UAVs. Chapters 3 and 4 propose
anytime approach with uncertainty analysis that are able to found the most convenient
maneuver (in the case of MS-PSO) for performing collision avoidance with execution
times starting from tenths of a second. These approaches have been tested experimentally
with up to 4 UAVs. Their main results are:

• The design of a non-collaborative algorithm which takes into account localization
and wind-related uncertainties to ensure collision-free trajectories.

• An in-depth comparison of the perfomance of both GA and PSO algorithms when
applied to trajectory planning.

• An anytime PSO approach, which includes simple trajectory planning strategies
for obtaining a first feasible solution is proposed. In addition, the quality of the
obtained solution over the time is analyzed.

• A new method (MS-PSO) that automatically selects the type of maneuver that gives
best performance is designed.

Another topic that has been thoroughly discussed in Chapter 5 is the problem of the
“Path-velocity decomposition”, which was first proposed in [15]. By using this approach,
each UAV plans its trajectory independently ensuring that is collision-free with static
obstacles. Then, the proposed 2-VA, n-VA, Greedy and VP methods can be applied in
order to find out a velocity profile for each UAV which will be collision-free with respect
to the rest of UAVs in the system. This approach has also been tested in simulation with
up to 10 UAVs and in experimentation with up to 4 UAVs.
Yet another CA algorithm based on optimal probabilistic path-planning algorithms

is proposed in Chapter 6 and integrated into a cooperative thermal management and
identification system. Additionally, a distributed waypoint allocation algorithm called
BRHS is proposed for achieving multi-UAVwaypoint exploration tasks and an algorithm to
detect thermals in the environment is also proposed. Furthermore, the proposed methods
are tested in simulation and real experimentation of the whole system. The low-level
architecture of the system is detailed in Appendix B.
The proposed methods up to this point are centralized as the information of the whole

system has to be known in order to perform Collision Detection checks with a determinate
Time Horizon and to perform the coordination. Besides, although the execution time has
been reduced as much as possible, these methods cannot achieve a reactive execution rate,
and thus they are suitable to performing collision detection and resolutions checks in a
rate of [0.1,0.5]Hz at most.

Therefore, an additional real-time reactive CA method is proposed in Chapter 7. It is an
distributed method which is executed independently by each UAV. This method is based
on the ORCA algorithm but several improvements have been developed in order to make

9.2 Future developments 199

it able to safely perform real experiments with the presence of complex static obstacles.
These modifications have been thoroughly described and theoretically proven. The safety
of the system is checked in simulation with up to 20 UAVs.
A very important feature of this thesis should be highlighted here. All proposed algo-

rithms have been experimentally validated with real-time tests. These experiments include
indoors experiments performed in the CATEC multi-UAV testbed, and also outdoors
experiments that were performed in the context of the MUAC-IREN project. This fact
makes it clear the stability and reliability of the proposed techniques. Most importantly, the
simulation work prior to the experimentation and the lessons learned during the execution
of the experiments have been extensively detailed in Chapters 6 and 8.

9.2 Future developments

Although the results of the thesis are very promising, there is still plenty of work to do
regarding to the integration of the system into more complex systems which are capable of
performing high-level tasks automatically. Also, some algorithms can be further improved
as follows.

9.2.1 Evolutionary-based methods parallelization

The main idea is to execute one instance of the GA or PSO algorithms proposed in
Chapters 3 and 4, respectively, to solve the same problem in the computer onboard each
UAV. Additionally, the same principle can also be applied to execute the algorithm in the
same computer: an instance of each algorithm can also be executed independently in each
core of the processor.

The main issue when parallelizing randomized algorithms is that different solutions can
be obtained by each different instance, which will prevent the convergence of the algorithm.
For this reason, the different instances have to be coordinated in order to synchronize their
evolution. Also, this synchronization can be done periodically to improve the evolution of
each instance. A final synchronization is necessary in order to obtain the best solution of
all instances when the execution deadline is met.

9.2.2 Extensive thermal identification and exploitation experimentation

The experimental results obtained in Chapter 6 tested the thermal exploitation capabilities
of the system. They also tested the real-time CA system successfully. However, in these
tests only thermal emulation had been performed by letting the UAV use its propulsion
system in the surroundings of a emulated thermal location. Unfortunately, the thermal
identification part of the system has only been tested in simulation during this thesis.
Therefore, further thermal identification and exploitation tests in order to extend the

flight endurance of the gliding UAVs are still to be executed. In first place, they will be
tested in simulation by using the HIL capabilities described in Appendix B. In order to do
this, a more detailed model of the gliding UAV should be developed. Once the simulation
results are convincing enough, a real-time multi-UAV cooperative soaring experiment will
be carried out.

200 Chapter 9. Conclusions and Future Developments

9.2.3 Integrated ARCAS experiments

To date, not all the systems that will interact as part of the ARCAS system have been tested
at the same time. In this thesis, only the trajectory planner which is designed to obtain
the payload displacement has been integrated with the real-time CA systems. However, in
these experiments, no real payload handling has been made.
The final integration experiments of the ARCAS project will be carried out in the late

2015 or early 2016. In these experiments, complex assembly construction experiments
will be executed in which the modules of the system have to be coordinated to achieve the
desired results. This will be a key goal in the ARCAS project.

9.2.4 G-ORCA and SLAM integration

In the CA system proposed in Chapters 7 and 8 the static obstacles present in the environ-
ment were described a priori with a 3D mesh file. This allows the system to be able to
coordinate the motion of several UAVs in the presence of complex obstacles.
However, sometimes this information cannot be obtained prior to the execution of the

task. Even if that is possible, an accurate localization of the robots is not always possible.
Therefore, uncertainty analysis should be performed in order to ensure the safety of the
system. Moreover, unmodeled obstacles can appear that could threaten the UAV. Therefore
the G-ORCA system should be capable of handling uncertain information obtained from
sensors onboard the UAV such as cameras, radars, to name a few. This would allow this
method to react to unexpected situations and add more safety and reliability to the system.
More interestingly, the CA system should be integrated with SLAM systems. These

systems will update a map of the environment and estimate the location of the UAV relative
to the generated map with the aid of the aforementioned sensors. Then, the G-ORCA
algorithm could use this information in order to generate safe commands to the UAV.

Appendix A
Multi-UAV indoors testbed

The experimental validation of the proposed algorithms with aerial vehicles has been
performed in the indoor testbed of Center for Advanced Aerospace Technologies (CATEC)
in Seville (Spain) in a great extent. Figure A.1 shows a picture of the testbed where an
experiment with 3 UAVs was being performed.

Figure A.1 Multi-UAV testbed located at the CATEC facilities when performing a Collision
Avoidance experiment with 4 UAVs.

It is equipped with an off-the-shelf VICON localization system that counts with 20 IR
cameras (see Figure A.2). This systems is able to offer the position and altitude of each
object with millimeter and degree accuracy in real time, respectively. In addition, up to 20
mobiles objects can by tracked by the system simultaneously. These objects have to be
equipped with at least three passive markers in order to be detected by the VICON system.
The total volume of the testbed is 16×15×6m3, although the useful volume of the indoor

201

202 Appendix A. Multi-UAV indoors testbed

testbed is a cube of 10×10×3m3. In this useful volume the VICON system is capable of
offering its optimum accuracy in the measurements. Wireless communication between the
master computer and mobile vehicles is performed via Zigbee.

Figure A.2 Detailed of the IR cameras used by the VICON localization system.

Up to 8 UAVs quadrotors like the one shown in Figure A.3 are available to be used at
once in this testbed. This is an AscTec Hummingbird quadrotor by Ascending Technologies
with 200 gr of payload and up to 20 minutes of flight autonomy. Its maximum speed is 50
Km/h and are capable of performing hover flight.

Figure A.3 AscTec Hummingbird quadrotor used in the indoor experiments.

The software architecture is based on a master computer and some slaves PCs. The

203

master is a QNX Control Computer (real-time OS) responsible for the reception of data of
position and altitude from VICON cameras, the flight plan, and run a software control and
send command control to the vehicles through Zigbee network. Slaves PCs are connected
by Ethernet to the master computer. Several architectures are supported in order to develop
the high level algorithms including ROS and Matlab-Simulink.

Appendix B
Multi-UAV Thermal Detection and
Exploitation System Architecture

This appendix shows the communications scheme of the systems developed in order to
perform multi-UAV thermal exploration and exploitation. This scheme can be adapted
with no significant effort in order to perform HIL simulations and real experimentation.
HIL are one of the most effective methods for testing the overall control performance
and the safety of the systems before conducting actual flight tests [154]. The HIL system
is composed of an on-board Autopilot hardware, a flight simulator and a ground station
which are all integrated as close as possible to the real experimental setup. HIL simulation
has been designed to diminish the gap between simulation and real experimentation.
In addition, a multi-UAV Control Station that is capable of monitoring the state of

multi-UAV long endurance missions using autonomous soaring UAVs is presented. This
includes a new Graphical User Interface (GUI) that represents in real-time the relevant
info generated by the multi-UAV gliding planning system needs to be developed.

B.1 Introduction

The architecture of multi-UAV system and, in general, robotic systems is usually carried out
independently by many universities and technical institutions all over the world. This yields
to different approaches and solutions that are far from being standardized. Nevertheless,
some efforts for offering open source integrate solutions have been appeared recently.
The most remarkable effort is the ROS, which has been developed in first instance by
Willow Garage. In the field of UAV autopilot systems, MavLink has also become a de facto
standard for communicating the autopilot onboard the UAV and the GCS. This appendix
details the use of these systems in the multi-UAV architecture for thermal exploration and
exploitation.
Nowadays there are a large variety of Ground Control Stations (GCS) that can suit for

different purposes. For example, the Global Hawk’s station is a complex system whose
size is similar to a room. On the other hand, is possible to find commercial software-based

205

206 Chapter B. Multi-UAV Thermal Detection and Exploitation System Architecture

GCSs like ICOMC2 by Insitu INC 1, or open source alternatives such as QGroundControl
2. Furthermore, most autopilots such as Ardupilot have his own Control Station software.
All these stations have similar components including artificial horizon, IMU indicators
and GPS positioning using satellite 2D Maps representation. As the UAV systems become
more complex, the operator’s workload increases. For this reason, it is common to use
multi-modal technologies for interacting with the Control Stations such as positional sound,
speech recognition and haptic signals [155] [156]. In the proposed GCS, a general purpose
GCS (QGroundControl) has been used alongside with a specific GCS which has been
designed according to the requirements of the system described in Section 6.5.

B.2 Objectives

In this appendix, the communication system designed for its use in multi-UAV thermal
detection and exploitation is presented. Moreover, a multi-UAV GCS which has been
implemented for performing HIL simulations and real experimentations. To sum up, the
main objectives that are fulfilled in this section are listed as follows:

• To establish a communication between modules on simulation and real flight for
single or multi-UAV. The system must be able to easily change its configuration
between HIL simulation and real experimentation.

• A main goal when designing the system is to profit as much as possible from open-
source developments in software, hardware and communications. This is necessary
to reduce the development and equipment costs. Also, the use of off-the-shelf
platforms is encouraged.

• As a secondary objective, the system should be capable of handling a heterogeneous
fleet of UAVs (including fixed and rotary wing).

• Develop a GUI for monitoring multi-UAV missions and thermal columns. Its most
important functions will be:

– Modify and consult on-board parameters in flight.

– Monitoring fly data in real-time (battery, airspeed, ascending rate, etc.)

– Easy adaptation for multi-UAV mission with different number of UAVs.

• Successful completion of complex both HIL and real flight tests involving automatic
on-line flight plan generation with the tools presented in this appendix.

B.3 System description

In this section, the main components that compose the proposed GCS and the equipment
on-board the UAVs are described.
1 Insitu’s Common Open-mission Management Command and Control (ICOMC2). http://www.insitu.com/
systems/ icomc2. Accessed January 2015.

2 QGroundControl: Open source MAV GCS. http:// qgroundcontrol.org (2010). Accessed January 2015

http://www.insitu.com/systems/icomc2
http://www.insitu.com/systems/icomc2
http://qgroundcontrol.org

B.3 System description 207

B.3.1 Hardware

The proposed GCS and the on-board equipment the UAVs are composed by the following
hardware components:

• Autopilot: This hardware element receives the data obtained by the sensors onboard
the UAV, such as GPS data (lat, long, alt; yaw, roll, pitch; relative velocity) and
IMU’s data (Roll,Pitch and Yaw rates and acceleration in three axes) which are
used to respectively generate the control signals that are sent to the aileron, elevator,
rudder and throttle servo actuators of the glider. The open source ArduPilot general
purpose UAV autopilot has been selected for two main reasons. First, it is an
open source autopilot which is executed in the also open-source Arduino Platform.
Second, it has been developed by an active community. In this section, the model
APM2.6 has been used in its ArduPlane variant, which has been designed to control
fixed-wing UAVs. However, the same Autopilot can be configured with ArduCopter
binaries in order to control rotary-wing UAVs, and thus the capability of controlling
a heterogeneous fleet of UAVs is fulfilled.

• Radio modem: The Autopilot and the GCS are linked with a digital radio link. In
particular, the radio modems 3DR Radio Set 433Mhz have been used as they are
capable of providing a stable radio link of up to 250 kbps with a range of 1nm. This
allows the communication in the legal Line of Sight range.

• Main laptop: A ruggerized Dell®Inspiron laptop has been used as the main laptop.
It will be directly connected to the Radio Modem via USB and will run a the purpose
GCS software QGroundControl in order to make pre-flight calibrations, to offer
basic safety commands to the UAVs in the system and to monitor the trajectories
and position of the UAVs in real-time. It will also provide the secondary laptop with
dual-link communications via ROS middleware.

• Secondary laptop: The upper layers of the applications, which include on-line
trajectory planning and task allocation, will be executed in this computer. It is
important to execute separately the basic and complex parts of the system in order
to prevent undesired single point failures.

B.3.2 Software in Real flight configuration

Figure B.1 shows the communication diagram in real flight mode. It is composed by an
onboard autopilot connected by radio modem with the GCS using an USB connection.
The main software components in the real flight configuration are as follows:

• Mavros: This package 3 belongs to ROS framework is the core of ground station.
It acts as a communication relay that is capable to connect the GCS software and
the Gliding Planning GUI with various autopilots. It has two interfaces. First, the
MAVLink communication protocol is used for interfacing the Autopilots onboard
the UAVs. Second, the Gliding Planner or other higher automation layers are

3 MAVROS package. http://wiki.ros.org/mavros. Accessed January 2015.

http://wiki.ros.org/mavros

208 Chapter B. Multi-UAV Thermal Detection and Exploitation System Architecture

Figure B.1 Real flight configuration for experimentation for one UAV.

interfaced via ROS Middleware. Additionally, it provides a UDP-MAVLink bridge
for connecting to MAVLink-compatible GCS software (e.g. QGroundControl in our
case).

• Gliding planning GUI. The gliding aircrafts of the system will be coordinated by
using the autonomous multi-UAV soaring system proposed in Section 6.5. A Qt-
based C++ GUI that integrates ROS communication has been designed to monitor
the available thermals and the state of the UAVs, and to send basic commands to
them. Also, map visualization has been added by using the Marble C++ library.
Relevant flight data such as data like windspeed, ascend rate or battery level or each
UAV can easily be monitored as shown in Figure B.2.

• QGroundControl: It is recommended to use a general purpose Gui for interfacing
the UAVs besides the GUI presented in this section. Furthermore, it is also con-
venient to execute them in separate machines in order to increase the reliability of
the system. QGroundControl is an open source GCS that will allow us to easily
monitor the trajectories of the UAVs in the system in a 2D map and to send simple
commands to the UAVs. In addition, they are capable of performing pre-flight
calibration procedures and can handle emergency commands such as Return to
Home and Flight To when an emergency situation is found.

B.3.3 Software: HIL Configuration

In the HIL configuration, more software elements are required when compared to the real
flight configuration. They are necessary in order to replicate a real scene behavior. In
contrast, Radio Modems are not necessary because it is possible to connect to the Autopilot

B.3 System description 209

Figure B.2 The Gliding planning GUI is capable of monitoring relevant flight data of
multiple UAVs. Furthermore, some basic actions such as flight mode changes
are easily accessible in it.

via direct USB connection. GPS modules are neither necessary, because GPS localization
will be provided by the flight simulator.

In regards to the software, the HIL configuration for simulation mode (see Figure B.3)
uses the same modules as the real flight configuration and in addition includes:

• Flight simulatorGUI. The FlightGear software has been used to represent a realistic
virtual scene and to generate realistic GPS and IMU data. It could be configured
different factors such as weather conditions, initial conditions. FlightGear is an
open-source and multi-platform flight simulator which supports.

• Flight simulator engine. The JSBSim 4 has been used. It is an multi-platform and
open source Flight Dynamics Model (FDM). The FDM is essentially the physics/-
math model that defines the movement of an aircraft, rocket, etc., under the forces
and moments applied to it using the various control mechanisms and from the forces
of nature.

• Interface Autopilot-Flight Simulator-MAVLink. The FGShim module connects
the autopilot with the rest of modules using different links (USB or UDP). It en-
capsulates the data frame by UDP using MAVLink navigation protocol between
modules. This application is inside ArduPilot source package 5.

4 Open source Flight Dynamics Model. http:// jsbsim.sourceforge.net/ . Accessed February 2015.
5 ArduPilot Project. https:// github.com/ colinsauze/ ardupilot. Accessed February 2015.

http://jsbsim.sourceforge.net/
https://github.com/colinsauze/ardupilot

210 Chapter B. Multi-UAV Thermal Detection and Exploitation System Architecture

Figure B.3 MULTI-UAV HIL block diagram. In this case two different Ardupilots are
connected to the GCS via USB.

B.3.4 Off-line processing

In every experiment, log files are generated by QGroundControl and/or by the Ardupilots
onboard the UAVs. These results can be analyzed in detail with the QGroundControl
software. Also a tool included in the MAVLink source allows us to convert this log into a
kml file. As result, we can represent a experiments with Google Earth software, which
provides several utilities including 3Dmission replay of the flight or generation of elevation
profiles. Besides, we have developed a tool which translates QGroundControl flight plan
files into kml files in order to represent the waypoints in Google Earth too. Additionally,
rosbag files can be recorded and thus all ROS data emitted by the Mavros module can be
reproduced at will in order to further test the developed algorithms.

B.4 Communications

In this section the communications links between the different nodes in the system between
the different modules of system are further detailed.

Figure B.4 describes the protocol between FGShim and autopilot which is necessary to
perform a HIL simulation. It begins by receiving a data frame with the generated values
by the simulator and sending to autopilot. It generates the values of servos which were
explained in the architecture section.
The rest of connections are configured by UDP. The main reason for this use is that

UDP is suitable for purposes where error checking and correction is either not necessary
or is performed in the application, avoiding the overhead of such processing at the network
interface level. Time-sensitive applications often use UDP because dropping packets is
preferable to waiting for delayed packets, which may not be an option in a real-time system.
Figure B.3 shows all connections which are established on HIL configuration. UDP

communication is used in HIL for linking MAVROS module with the simulator and

B.4 Communications 211

Figure B.4 USB communication.

autopilot modules. In contrast, in the case of real flight configuration UDP is only used to
connect the Mavros package with the QGroundControl software. This connection could
also link an external ground station running in a computer, tablet or smartphone.

B.4.1 Protocol and parameters

The MAVLink protocol has been used in order to provide the communication between the
GCS and the Autopilots onboard the UAVs. It is the most standardized navigation protocol
in UAVs. In fact, it has become a de facto standard in small scale UAV communication as
it is compatible with most of autopilots and ground stations available in the market. In
our case, autopilot APM2.6 use this standard protocol and the same format of parameters.
This allows a fully compatible use of the Mavros packages.

All the relevant flight information can be monitored on terminal using basic ROS tools
such as rostopic. However, they are gathered with the Gliding Planning GUI proposed
in this section in order to simplify the experimental setup. Another relevant aspect is
the possibility of change internal parameters in-flight (real and simulated) associated to
flight plans, flight modes, controllers and servos outputs. The most useful commands such
as changing the Flight Mode change and the maximum allowed throttle value are also
accessible via the GUI.
The most important MAVLINK parameters and commands that have been used in the

automatic flight plan generation and used are described in the list below 6.

• Flight plan commands: APM 2.6 has adopted a subset of the MAVLink protocol
command set. There are 3 types of commands which are described in the list below.

6 MAVLink Micro Air Vehicle Communication Protocol. http://qgroundcontrol.org/mavlink/start. Accessed
January 2015.

212 Chapter B. Multi-UAV Thermal Detection and Exploitation System Architecture

– Navigation Commands. They are the most basic commands for usual way-
point navigation. They include WAYPOINT for performing a sequence of go to
maneuvers; and LOITER_UNLIMITED for making the UAV wait while making
circles which are centered in a determinate location.

– Conditional Commands. Are used to delay DO commands until some condition
is met 7. For example the UAV reaches some altitude. Also, they can be used in
conjunction with LOITER_UNLIMITED commands in order to make the UAV
wait until a condition is produced.

– Now Commands. They affect to relevant parameters of the Autopilot, such as
Cruise Speed and also can modify the execution flow of the mission such as
the GOTO command.

• Flight modes: There are several modes available in ArduPlane configuration. In
our case, we are interested in few flight modes including Manual, Stabilized and
Automatic modes. In addition, Return to Home mode can be useful when a issue is
detected in the experiment and it is automatically switched on by Ardupilot when a
persistent failure in the radio link is detected.

• Flight Parameters: All flight modes have their own parameters that can be used
to modify the behavior of the control system of the Autopilot. The most important
parameters studied for performing gliding flight with thermal emulation are modified
in real-time by the glider planning GUI and can be modified by the user at requested.
These parameters include THR_MAX (max throttle value in percentage) and WP_-

LOITER_RAD (the distance from the waypoint center, the plane will maintain during
a loiter).

B.5 Developed GUI

A snapshot of the displays that are present in the proposed system is shown in Figure B.5.
In particular, Figure B.5 left shows the output of the developed Gliding Planning GUI and
its right side shows the output of QGroundControl while performing a HIL simulation.

It is interesting to highlight that the most relevant information about the system is present
in the Gliding Planning GUI. It includes, the real-time position of the UAVs in the system,
the position of the updrafts and possible updrafts and some information about the UAVs,
such as altitude, battery level, to name a few. In addition, some basic actions can be
applied to the UAVs for safety purposes, such as return to home, flight mode change, and
autopilot parameters change (useful when turning back to powered flight, with the aid of
the THR_MAX parameter).

7 Condition and Do commands are associated with the next NAV command: if the UAV fulfills the NAV command
before those commands are executed, they will be skipped and the next NAV command will be loaded.

B.6 Conclusions 213

Figure B.5 Screen output when performing a HIL simulation. On the right side, a screen-
shot of the output of the Glider Planner GUI is shown. The location of the
UAVs, the points of interest to be visited and the thermals available in the
system are represented in yellow, white and blue circles, respectively. On the
left side, a screenshot of the QGroundControl software, executed in the main
laptop is also shown.

B.6 Conclusions

The most relevant part of the communication architecture used in both experimentation
and HIL simulation in order to validate the distributed thermal exploration and exploitation
system proposed in Chapter 6 have been presented.
Most of the system benefit from open source developments including ROS, MavLink,

QGroundControl, FlightGear and JSBsim. Furthermore, a GUI for monitoring the state of
the UAVs in the system and the thermals discovered has been developed.

Appendix C
G-ORCA Integration in the ARCAS

system

The reactive behavior has been integrated into the ANIMO framework proposed in the
ARCAS project. In this section, the developed blocks and the communication with the
other parts of the ARCAS project are detailed.

C.1 Overview of the ARCAS system

The ARCAS’ architecture is composed by three main layers as shown in Figure C.1. In
particular, two ROS nodes (TG and CA) have been developed in the context of this thesis.
Note that each aerial robot will have an instance of these two blocks, so the algorithm has
been implemented distributedly.

• The Control Level. This is the lowest layer, where the control of the aerial robot is
implemented. Each aerial robot has its own instance of all modules in this level.

• The Application Level. This layer integrates the high level modules for each aerial
robot. The high level control of the aerial robot, including navigation algorithms and
the arm control. The communications between modules of this layer is performed
by using the ROS middleware. The communications between modules of this level
and modules of Control Level is carried out through the UAL module (see Section
C.2).

• The Multi-vehicle Level. This is the highest layer, where the applications involved
in the whole environment are deployed. In this layer, the applications have visibility
of each individual system (each aerial robot) and perform tasks like planning and
supervision of the mission. The communications between modules of this level
is performed by using ANIMO Framework (a communication framework based
on DDS-RTI). In contrast, the communications between Multi-UAV Level and
Application Level have to use the ROS-Bridge module. This module is an ANIMO
plug-in for connecting DDS with ROS.

215

216 Chapter C. G-ORCA Integration in the ARCAS system

Figure C.1 ARCAS’ architecture scheme.

C.2 ORCA’s module interfaces

Two modules have been generated into the Application Level: the TG and CA modules.
Figure C.2 represents the interfaces of the blocks developed in this task and the related
blocks, as well as the types of inputs. The blocks and their description are listed below.

• ROS-Bridge. This block acts as an interface between modules of the Application
Layer and the modules of the Multi-vehicle layer. Additionally, it will send the state
of the other aerial robots in the system to CA block.

• Trajectory Planning (TP). This block generates the original trajectory of each
UAV. It has been developed by LAAS. TP is a Multi-vehicle Level module and has
the information about the whole environment. Its main objective is to decide the
optimal trajectory to be used by each aerial robot. These generated trajectories and
the necessary information about each aerial robot, like the pose, will be sent to each
TG module via the Global Supervisor (GS) and ROS-Bridge to pass the messages
between the Multi-vehicle Level to the Application Level.

• Trajectory Generator (TG). This block gets the flight plan which is sent by the
Motion Planner as a waypoint list. This flight plan is a discretization of a continuous
flight plan with very low sample time (usually 0.01s). For this reason, a continuous
path tracker has been implemented in order to follow the desired flight plan. In this
case, a planner based on APP [157] has been developed. The output of this block is
a desired velocity of the aerial robot in order to follow the flight plan.

• Collision Avoidance (CA). This block filters the desired velocity, which has been
generated by TG module, and modifies it, if necessary, in order to ensure collision
free flights amongst the aerial robots in the system. The behavior of this module

C.2 ORCA’s module interfaces 217

is deeply discussed in Chapter 8, while the algorithm is based on the G-ORCA
algorithmwhich is described in Chapter 7. The output of this block is the commanded
velocity that will follow the aerial robot autopilot. Note that a 3D model of the
environment is necessary, the green block of Figure C.2, in order to ensure that the
aerial robots do not collide with the environment while avoiding collisions between
them.

• UAV Abstraction Layer (UAL). This block acts as an interface between the ROS
nodes and the Autopilot onboard of the UAV. It provides the other ROS nodes with
basic services such as takeoff and landing. It is also capable of receiving waypoint
commands.

Figure C.2 Integration of the proposed algorithms into the ANIMO framework.

C.2.1 Mission protocol

This section will describe the information flow amongst the blocks in the system in order
to perform a mission. Figure C.3 represents the sequence diagram of this protocol which
is explained in detail below.

1. GS sends, via DDS, the configuration of the arm of each aerial vehicle and the
mission objectives. Then TP sends to GS the optimized trajectory (flight plan) of
each robot, taking into account the mission and the environment.

2. GS sends, via DDS, the trajectories to ROS-Bridge (GS can do some checks before
sending it, if necessary). Then, ROS-Bridge sends via ROS middleware the same
trajectory to each TG module.

3. TG module implements a trajectory tracking algorithm that will generates waypoint
commands to be sent to CA module.

4. CAmodule checks and avoids possible collisions and, finally, sends the next waypoint
to the UAL module, that will interact with the Control Level modules.

218 Chapter C. G-ORCA Integration in the ARCAS system

5. UAL sends the quadrotor state estimation of itself to ROS-Bridge, CA and TG
module. On the other hand, the state estimation of the others robots is sent to the CA
module via the ROS-Bridge module. This state estimation information could also be
sent to the GS in the Multi-UAV Layer.

6. TG informs the GS module that the task has been accomplished, or reports some
issues while executing the task.

Figure C.3 Sequence diagram of the modules of the system. Dashed lines represent
continuous information flow, while non-dashed lines represent asynchronous
flow.

List of Figures

1.1. Operation levels in the ATM system. Figure adapted from [3] 5
1.2. TCAS protecting volumes for displaying both TAs and RAs. Source: Wikimedia

Commons 6
1.3. Proposed classification of the actions in a multi-UAV system depending on the

look-ahead time 8
1.4. Block Diagram of the centralized implementation of a CDR system 8
1.5. Block Diagram of the decentralized implementation of CA 9
1.6. From left to right: fixed-wing gliding UAV used in experiments during the the-

sis; Megastar fixed-wing UAV; Piper fixed-wing UAV. Also, the on-board and
deployed WSNs are detailed 14

1.7. Motivational figure that proposes a task to be fulfilled in the ARCAS project 14
1.8. Basic overview of the proposed architecture that is currently in development in

the ARCAS project 15

2.1. Basic block diagram of an autonomous mobile robot 20
2.2. zyx-Euler angles for a robot moving in a 3-dimensional space 28

3.1. Basic flow diagram of GA 41
3.2. Example of problem that will be solved by applying GA. The starting point is

marked in a black circle, and the goal point in a green cross. Two paths A, in
red, and B in blue are represented 42

3.3. Probability functions of normal sampling for the proposed problem. On the left
side the probability function of WP1 is plotted, on the right side the probability
function of WP2 is also plotted 43

3.4. Crossover operators that have been tested in this thesis. From left to right: one
point crossover, two-points crossover and uniform crossover 45

3.5. Mutation of the second gene of the genome G (blue line) yields to a new
genome Gmutation = (1,1.57,3.5,2) (red line). 46

219

220 List of Figures

3.6. Left: (a) an example of collision detection envelopes based on aligned bounding
boxes; two boxes are added for each UAV. Right: (b) an example of collision detection 48

3.7. Calculus of the Dubins path related to a trajectory described by WPi−1, WPi
and WPi+1 49

3.8. Flow diagram of the GA path planner with uncertainty considerations 51
3.9. From left to right and top to bottom: a) Simulation scenario. b) First CD call.

A collision has been detected. c) Proposed solution in a iteration of GA. d)
Second CD call. The CA algorithm has achieved a valid solution 54

3.10. Complete scenarios considered in simulations with uncertainty considerations 55
3.11. Cost value for different number of GA iterations in S1 and S2 55
3.12. Mean execution time of the algorithm when varying the number of UAVs and

number of obstacles in S3 56
3.13. Mean execution time of the algorithm when varying the module of the wind in S1 57
3.14. Mean execution time of the algorithm when varying the direction of the wind in S1 57
3.15. Sequence of execution of the proposed method with varying number of UAVs

in the system 58
3.16. Percentage of time spent doing CD over the number of UAVs in the sytem 58
3.17. Structure of the genome when solving a cooperative multi-UAV problem 60
3.18. Configuration of the problem that has been proposed in order to select the best

crossover operator 61
3.19. Cost results obtained in the simulation with UAVs 1 & 2. The median of the cost

obtained in one hundred executions is represented 62
3.20. The distribution of the execution time obtained when performing one hundred

of test cases with UAVs 1 & 2 is represented. The median is represented with
red line, while the limits of the box are the 25th and 75th percentiles. Extreme
values are represented with the outer segment 62

3.21. Cost results obtained in the simulation with UAVs 1, 2 & 3. The median of the
cost obtained in one hundred executions is represented 63

3.22. The distribution of the execution time obtained when performing one hundred of
test cases with UAVs 1, 2 & 3 is represented. The median is represented with
red line, while the limits of the box are the 25th and 75th percentiles. Extreme
values are represented with the outer segment 63

3.23. Cost results obtained in the simulation with all UAVs. The median of the cost
obtained in one hundred executions is represented 64

3.24. The distribution of the execution time obtained when performing one hundred
of test cases with all UAVs is represented. The median is represented with
red line, while the limits of the box are the 25th and 75th percentiles. Extreme
values are represented with the outer segment 64

3.25. Distribution of the time of execution over the number of UAVs after 100 iterations
in 200 different simulations in GA 66

3.26. Time of execution over the number of UAVs after 100 iterations with GA algorithm 67
3.27. Median of minimum cost of the population throughout successive iterations with

GA algorithm 68
3.28. Normalized cost through successive iterations with GA algorithm. The line

marks the 90% optimality 69

List of Figures 221

3.29. Evolution of the solution trajectories with 4 UAVs in simulation I: 7th in dotted
line, 15th in dash dotted line, 23th in dashed line and 30th iteration in solid line 69

3.30. Multi-UAVs testbed of CATEC’s facilities and initial configuration of the UAVs in
Experiment II 70

3.31. a) Left: initial trajectories of Experiment I; all UAVs fly with the same height.
b) Right: Trajectories computed by the GA method for each aerial vehicle in
Experiment I. Simulated trajectory (in dotted line) and actual trajectory (in solid
line) 70

3.32. a) Left: initial trajectories of Experiment II; all UAVs fly with the same height.
b) Right: Trajectories computed by the GA method for each aerial vehicle in
Experiment II. Simulated trajectory (in dotted line) and actual trajectory (in solid
line) 71

4.1. Information contained in the state vector of the PSO algorithm 74
4.2. Initial situation to be solved by changing speeds in the simple example. The

intersection point of the two trajectories will be the point where the speed of the
UAVs will change in the PSO algorithm 76

4.3. Evolution of the PSO algorithm when solving a simple speed planning problem
with 2 UAVs. The represented iterations are, from left to right and up to bottom,
1-12, 14, 16, 18 and 20 77

4.4. Distribution of the time of execution over the number of UAVs after 100 iterations
in 200 different simulations in PSO 79

4.5. Time of execution vs. number of iterations depending on the number of UAVs
with PSO algorithm 79

4.6. Median of minimum cost of the population throughout successive iterations with
PSO algorithm 80

4.7. Normalized cost throughout successive iterations with PSO algorithm. The line
marks the 90% optimality 81

4.8. Extending the one at a time strategy to fixed-wing UAVs. RD is the safety radius
and RT is the turning radius 83

4.9. Left: Conflict zone in a system with 3 UAVs. Right: IWs which have been
obtained by applying the one at a time technique. A WP is added for each UAV 83

4.10. Conflict of 2 UAVs solved by applying the virtual roundabout technique. The
generated WPs of UAV 1 are labeled as IW1, IW2 and IW3 85

4.11. Time of execution vs. number of iterations depending on the number of vehicles
in the system 86

4.12. Median of minimum cost throughout successive iterations 87
4.13. Distribution of the change of speeds with two to five UAVs 87
4.14. Normalized cost throughout successive iterations. The dashed line marks the

90% optimality 88
4.15. Anytime approach with systems from two to five UAVs 89
4.16. IW calculation when applying course changes in PSO. ∆θ1 and ∆θ2 are the

codified variables that store the course changes. θ0 is the original course for
traveling from WP0 to WP1. The obtained WPs are IW1 and IW2 90

4.17. Simple scenario with three UAVs and solution after 100 iterations to avoid collisions 92

222 List of Figures

4.18. Solution of the simple scenario after 10 iterations. In this case, all UAVs se-
lected altitude maneuvers 92

4.19. Evolution of the median of the cost obtained with GA, PSO and MS-PSO meth-
ods with different number of UAVs. A value of the cost greater than ωc. means
that the solution trajectories are not free of collisions due to the added penalty ωc 95

4.20. Evolution of the median of the cost obtained with GA, PSO and MS-PSO meth-
ods, from top to bottom, with increasing number of IWs. Values above the
collision penalty indicate that no collision-free solutions have been found 96

4.21. Scenario where the experiments presented in this Chapter have been carried
out. This picture is a snapshot an actual experiment 97

4.22. Initial trajectories of each quadrotor in the experiments 98
4.23. Separation between the QR trajectories with the planned trajectories without

coordination 99
4.24. Trajectories computed by the proposed system for each quadrotor in the experiment 99
4.25. Trajectories flown by each quadrotor in the experiment 100
4.26. Horizontal (up) and vertical (down) separation between the QR trajectories from

the real data. Green dashed line shows the horizontal or vertical minimum separation 100

5.1. Example of multi-UAV path planning problem that could not be solved by em-
ploying the Path-velocity decomposition, but can be solved by means of a multi-
UAV trajectory planning problem. Left: two paths obtained independently that
are impossible to coordinate. Right: a solution obtained by solving the whole
multi-UAV trajectory problem 104

5.2. Left UAV trajectories in a discretized airspace divided into cells. Right: any UAV
trajectory can be described as a sequence of visited cells 105

5.3. Disadvantage of the grid model: UAV3 and UAV4 are in conflict while UAV1 and
UAV2 are not 106

5.4. Left: neighboring cells with different safety cells. Right: Conflict Zone (CZ)
(gray) in a scenario with two UAVs. The safety distance is set to two cells 107

5.5. Greedy algorithm. UAV1 passes through cells 3, 5, 1, 2 y 7. When t = t1
the velocity of UAV2 is decreased delaying its stay on cell 5 for avoiding the
collision with UAV1 in cell 3 109

5.6. Left: Fi j means that UAVi and UAVj do not collide if they have the same
velocity, either v0 or v1. Right: The graph GF corresponding to F = (x̄1 ∨
x2)∧ (x̄2∨ x3)∧ (x1∨ x̄3)∧ (x2∨ x3) 111

5.7. Trees generated in the example scenario. UAV2 tree only has one branch be-
cause is the first UAV that passes through CZ1. UAV1 has two branches be-
cause a collision has been detected in CZ1 so a backtracking process starts 114

5.8. Up-Left: First simulation scenario (S1). Up-Right: Second simulation scenario
(S2). Down: Third simulation scenario (S3) 117

5.9. Speeds computed for UAV2, UAV3, UAV4 and UAV5 to avoid the detected con-
flicts with the VA method in S1 118

5.10. Computing time for each method with different number of safety cells in S2 121
5.11. Scenarios considered in experiments: Experiment I (grey lines) and Experiment

II (black lines) 122

List of Figures 223

5.12. Experiment I: Separation between UAVs 123
5.13. Experiment II: Separation between UAVs 124

6.1. Gliding fixed-wing UAV used in the experiments 129
6.2. Block diagram of the system 131
6.3. Experimental setup of one of the gliding fixed-wing aircraft UAV 132
6.4. Trapezoidal shape of the wind distribution 135
6.5. Detection of a thermal when a UAV passes through it by using Algorithm 1 137
6.6. Computation of the TPs to pass through a thermal again 138
6.7. Last simulation scenario with WP1 and WP2 to be visited by UAV1 and UAV2

respectively. Comparison between RRT(blue) and RRT ∗i (red) generated tra-
jectories. Static obstacles are represented with black circles. The minimum
distance between UAVs in RRT ∗i is represented 145

6.8. UAV trajectory to pass through fifty PoI (black points). Thermals 1-12 are cre-
ated at the start and N1-N5 are generated during the mission. Wind map con-
sidered corresponding with t=600 seconds 146

6.9. Mission with three UAVs: UAV trajectories to pass through fifty PoI (black
points). Wind map considered corresponding with t=450 seconds 147

6.10. Vertical profile of the UAV flight. Seven thermals are identified and the UAV
passes through each thermal twice to estimate its parameters 148

6.11. 2D representation of the route obtained when executing the Scenario 1. Up:
Simulated; Down: Real 150

6.12. Elevation profile obtained in Scenario 1. Up: Simulated; Down: Real 150
6.13. 2D trajectory obtained when following the thermal flight plan proposed in Sce-

nario 2. Up: Simulated; Down: Real 152
6.14. Route thermal flight plan. Up: Simulated; Down: Real 152
6.15. Thermal flight plan trajectory obtained in real experimentation 153
6.16. Real and simulated flight in 2D to explore the environment in the airfield of La

Cartuja (Seville). A potential collision is detected (a) and real UAV avoids it (b).
Therefore, the real UAV passes through PoI1 and PoI3, and the simulated UAV
passes through PoI2 153

6.17. UAV Trajectories and location of thermal represented in the airfield of La Cartuja
(Seville): real gliding fixed-wing UAV (blue), simulated gliding fixed-wing UAV
(red) and thermal (black cylinder) 154

7.1. On the left side, a scenario involving three robots (A, B and C) on collision
course is represented. This scenario leads to VOτ

A|B (filled in light grey) which
is represented on the right side. The minimum reaction robot A and B have to
perform in order to avoid collisions is represented by uA|B 158

7.2. The ORCA half-planes ORCAτ

A|B and ORCAτ

A|C that robots B, C induce in
robot A are represented. The region of allowed velocities robot A can take is
given by the intersection of these half-planes. This region is filled in light gray 161

7.3. 2D Dynamic and Kinematic constraints in a non-holonomic and control-saturated
mobile robot (adapted from [55]) 162

224 List of Figures

7.4. VOτ

A|O and ORCA half-plane ORCAτ

A|O induced by obstacle O to agent A in
a two-dimensional environment. ddd represents the minimum distance from A to O 163

7.5. Minimum distance between one agent A and a box-shaped obstacle O in three
different instants 164

7.6. Only concave obstacles can make O /∈ OORCA, as demonstrated by Theorem 7.2.1 166
7.7. Concave obstacles have to be decomposed into one or several convex obsta-

cles in a preprocessing step 167
7.8. Comparison of spherical shaped region of radius rxy (in blue) and the proposed

region (in red). The proposed region has different horizontal and vertical radius
rxy and rz, respectively 167

7.9. Calculus of the reaction vector uuu when vvvr is near of the truncation of the cone 168
7.10. Safety regions proposed in the G−ORCA algorithm 169
7.11. Scenario with two quadrotors and two static obstacles 171
7.12. Separation distances between quadrotors in simulations S1 and S2: horizontal

separation in S1 in green, vertical separation in S1 in grey, horizontal separation
in S2 in red, vertical separation in S2 in blue, minimum horizontal separation in
dashed black line and minimum vertical separation in dotted black line 172

7.13. Separation distances between quadrotors and closer obstacle in simulation S2:
QR1-obstacle in blue, QR2-obstacle in red and minimum separation in dashed
black line 173

7.14. Distribution of the computation time in proposed algorithm for one agent with
the number of UAVs in the system. The median of each distribution is indicated
in red, the blue box represent the 25th and 75th percentiles and the 3rd and
97th percentiles are indicated in black. Red marks represent the outliers 173

7.15. ARCAS scenario with eight quadrotors and two pipes in the Multi-UAV testbed
of CATEC 174

7.16. Simulation scenario with up to eight quadrotors and complex static obstacles 175
7.17. Snapshots obtained in the execution of Scenario S6 with twenty quadrotors and

no static obstacles. 176

8.1. Integration of the proposed algorithms into the ANIMO framework 180
8.2. Main interfaces of the TG module 181
8.3. Trajectory tracking with the PP algorithm. Calculus of the target WP, in white

dot, and the lateral error ε 182
8.4. Main interface of the CA module 183
8.5. Initial plans in Experiment 1 184
8.6. Horizontal (red line) and vertical (blue line) separation between the UAVs during

the Experiment 1. The minimum separation distances are shown in dashed line 184
8.7. Initial plans in Experiment 2 185
8.8. Horizontal and vertical separation between the aerial robots during Experiment 2 186
8.9. Initial plans of Experiment 3 187
8.10. Horizontal (red line) and vertical (blue line) separation between quadrotors dur-

ing Experiment 3. The minimum separation distances are shown in dashed
line. These plots, from left to right and top to bottom represent the separations
of quadrotors Q1-Q2, Q1-Q3, Q1-Q4, Q2-Q3, Q2-Q4, Q3-Q4 188

List of Figures 225

8.11. Communication delay in the ARCAS system 189
8.12. Snapshots of the ARCAS Coordination Centre application. The basic actions

that can be sent to the quadrotors can be found on the left side. On the right
side, the real-time plots of the distance are detailed 190

8.13. Horizontal (red line) and vertical (blue line) separations between quad rotors 1
and 2 during the Experiment 5. The minimum separation distances are shown
in dashed line 192

8.14. Initial trajectories of each quad-rotor in Experiment 5. Trajectories of the quad-
rotors 1, 2 and 3 are respectively shown in pink, yellow and blue. The green
circles indicate the starting position of each quad-rotor 192

8.15. Horizontal (red line) and vertical (blue line) separations between quad rotors 1
and 2 during the Experiment 5. The minimum separation distances are shown
in dashed line 193

8.16. Horizontal (red line) and vertical (blue line) separations between quad rotors 1
and 3 during the Experiment 5. The minimum separation distances are shown
in dashed line 193

8.17. Horizontal (red line) and vertical (blue line) separations between quad rotors 2
and 3 during the Experiment 5. The minimum separation distances are shown
in dashed line 194

8.18. Horizontal (red line) and vertical (blue line) separations between quadrotors
during Experiment 6. The minimum separation distances are shown in dashed
line. These plots, from left to right and top to bottom represent the separations
of quadrotors Q1-Q2, Q1-Q3, Q1-Q4, Q2-Q3, Q2-Q4, Q3-Q4 195

A.1. Multi-UAV testbed located at the CATEC facilities when performing a Collision
Avoidance experiment with 4 UAVs 201

A.2. Detailed of the IR cameras used by the VICON localization system 202
A.3. AscTec Hummingbird quadrotor used in the indoor experiments 202

B.1. Real flight configuration for experimentation for one UAV 208
B.2. The Gliding planning GUI is capable of monitoring relevant flight data of multiple

UAVs. Furthermore, some basic actions such as flight mode changes are easily
accessible in it 209

B.3. MULTI-UAV HIL block diagram. In this case two different Ardupilots are con-
nected to the GCS via USB 210

B.4. USB communication 211
B.5. Screen output when performing a HIL simulation. On the right side, a screen-

shot of the output of the Glider Planner GUI is shown. The location of the UAVs,
the points of interest to be visited and the thermals available in the system are
represented in yellow, white and blue circles, respectively. On the left side, a
screenshot of the QGroundControl software, executed in the main laptop is also
shown 213

C.1. ARCAS’ architecture scheme 216
C.2. Integration of the proposed algorithms into the ANIMO framework 217

226 List of Figures

C.3. Sequence diagram of the modules of the system. Dashed lines represent con-
tinuous information flow, while non-dashed lines represent asynchronous flow 218

List of Tables

2.1. Inputs and outputs of the trajectory planning problem 22
2.2. Summary of the main characteristic of the most relevant type of trajectory planners 36

4.1. Mean time of execution and mean cost considering 200 simulations for each
number of UAVs when using PSO and GA methods 80

4.2. Median time of execution and standard deviation in order to reach the 90% level
of optimality. Two hundred simulations have been considered for each number
of UAVs 82

4.3. Mean and standard deviation of the time of execution and the cost considering
200 simulations for each number of vehicles 86

4.4. Lookup table of the MS-PSO Algorithm 90
4.5. Mean time and standard deviation (in seconds) of the execution time of GA,

PSO and MS-PSO algorithms in iterations 10, t(10), and 100, t(100) when one
IW is added 93

5.1. Results obtained from the Greedy approach considering S1 and S2 118
5.2. Results obtained from the problem with DVA method (2-VA) 119
5.3. Results obtained from the problem with DVA method (5-VA) 119
5.4. Computational time spent in all phases of the algorithm and criteria results of

the solutions obtained in S2 from the heuristic VP method 120
5.5. Computational time spent in all phases of the algorithm and criteria results of

the solutions obtained in S3 from the heuristic VP method 120
5.6. SPEED PROFILE AND TIME FOR EACH UAV IN EXPERIMENT I 122
5.7. SPEED PROFILE AND TIME FOR EACH UAV IN EXPERIMENT II 123

6.1. Shape constants for bell-shaped vertical velocity distribution 135
6.2. Comparison of the execution time of the first solution (t) and cost of the best

(c) solution when applying RRT, RRT* and RRT ∗i 144
6.3. Detection and identification of thermals 146
6.4. Detection and identification of thermals considering ten simulations 147

227

228 List of Tables

6.5. Thermal emulation flight plan automatically generated with the proposed plan-
ner. The coordinates of the waypoints are expressed in latitude (deg), longitude
(deg) and altitude (meters above the sea level) 151

7.1. Results obtained in the simulation S3 174

8.1. Main configuration parameters of the G-ORCA algorithm 183
8.2. G-ORCA configuration parameters in Experiment 1 183
8.3. G-ORCA configuration parameters in the final experiments 191

Bibliography

[1] A. Rapinett, “Zephyr: A high altitude long endurance unmanned air vehicle,”
Master in Physics, Univerity of Surrey, 2009. [Online]. Available: http://personal.
ph.surrey.ac.uk/~phs1pr/mphys-dissertations/2009/Rapinett-MPhys09.pdf

[2] M. K. et al., “Transport safety performance in the eu a statistical overview,”
European Transport Safety Council, Tech. Rep., 2003. [Online]. Available:
http://etsc.eu/wp-content/uploads/2003_transport_safety_stats_eu_overview.pdf

[3] M. Soler, Fundamentals of Aerospace Engineering: An introductory course to
aeronautical engineering. (M. Soler Ed.) ISBN 978-14-937277-5-9, 2014.

[4] EUROCONTROL, “Acas ii guide,” EUROCONTROL, Tech. Rep., July
2014. [Online]. Available: https://www.eurocontrol.int/sites/default/files/content/
documents/nm/safety/ACAS/safety-acas-II-guide.pdf

[5] J. K. Kuchar and L. C. Yang, “A review of conflict detection and resolution modeling
methods,” IEEE Transactions on Intelligent Transportation Systems, vol. 1, pp. 179–
189, 2000.

[6] J. Canny, The Complexity of Robot Motion Planning, ser. ACM doctoral dissertation
award. MIT Press, 1988. [Online]. Available: http://books.google.es/books?id=
_VRM_sczrKgC

[7] J.-C. Latombe, Robot Motion Planning. Norwell, MA, USA: Kluwer Academic
Publishers, 1991.

[8] S. M. LaValle, Planning Algorithms. New York, NY, USA: Cambridge University
Press, 2006.

[9] C. Goerzen, Z. Kong, and B. Mettler, “A survey of motion planning algorithms
from the perspective of autonomous uav guidance,” Journal of Intelligent and
Robotic Systems, vol. 57, no. 1-4, pp. 65–100, 2010. [Online]. Available:
http://dx.doi.org/10.1007/s10846-009-9383-1

229

http://personal.ph.surrey.ac.uk/~phs1pr/mphys-dissertations/2009/Rapinett-MPhys09.pdf
http://personal.ph.surrey.ac.uk/~phs1pr/mphys-dissertations/2009/Rapinett-MPhys09.pdf
http://etsc.eu/wp-content/uploads/2003_transport_safety_stats_eu_overview.pdf
https://www.eurocontrol.int/sites/default/files/content/documents/nm/safety/ACAS/safety-acas-II-guide.pdf
https://www.eurocontrol.int/sites/default/files/content/documents/nm/safety/ACAS/safety-acas-II-guide.pdf
http://books.google.es/books?id=_VRM_sczrKgC
http://books.google.es/books?id=_VRM_sczrKgC
http://dx.doi.org/10.1007/s10846-009-9383-1

230 Bibliography

[10] M. Soler, “Commercial aircraft trajectory planning based on multiphase mixed-
integer optimal control,” Doctor of Philosophy in Aerospace Engineering, Universi-
dad Rey Juan Carlos, 2013.

[11] C. Vanaret, D. Gianazza, N. Durand, and J.-B. Gotteland, “Benchmarking conflict
resolution algorithms,” in 5th International Conference on Research in Air Trans-
portation (ICRAT 2012), May 22-25, 2012, University of California, Berkeley, USA,
2012.

[12] J. A. Cobano, R. Conde, D. Alejo, and A. Ollero, “Path planning based on genetic
algorithms and the monte-carlo method to avoid aerial vehicle collisions under
uncertainties,” in Proc. IEEE Int Robotics and Automation (ICRA) Conf, 2011, pp.
4429–4434.

[13] R. Conde, D. Alejo, J. A. Cobano, A. Viguria, and A. Ollero, “Conflict detection and
resolution method for cooperating unmanned aerial vehicles,” Journal of Intelligent
& Robotic Systems, vol. 65, pp. 495–505, 2012, 10.1007/s10846-011-9564-6.

[14] D. Alejo, J. A. Cobano, G. Heredia, and A. Ollero, “Collision-free 4D trajectory
planning in Unmanned Aerial Vehicles for assembly and structure construction,”
Journal of Intelligent and Robotic Systems, vol. 73, pp. 783–795, 2014.

[15] K. Kant and S. Zucker, “Toward efficient trajectory planning: The path-velocity
decomposition,” The International Journal of Robotics Research, vol. 5(3), 1986.

[16] D. Alejo, J. A. Cobano, M. A. Trujillo, A. Viguria, A. Rodríguez, and A. Ollero,
“The speed assignment problem for conflict resolution in aerial robotics,” in 2012
IEEE International Conference on Robotics and Automation, May 2012, pp. 3619–
3624.

[17] D. Alejo, J. Díaz-Báñez, J. A. Cobano, P. Pérez-Lantero, and A. Ollero, “The
velocity assignment problem for conflict resolution in air traffic management,”
Journal of Intelligent & Robotic Systems, Agosto 2012, dOI 10.1007/s10846-
012-9768-4. [Online]. Available: http://grvc.us.es/publica/revistas/documentos/
JINT2012_DAlejoJMDiazBanezJACobanoPPerezLanteroAOllero.pdf

[18] D. Alejo, J. A. Cobano, G. Heredia, and A. Ollero, “Optimal reciprocal collision
avoidance with mobile and static obstacles for multi-uav systems,” in 2014 In-
ternational Conference on Unmanned Aircraft Systems (ICUAS), May 2014, pp.
1259–1266.

[19] J. A. Cobano, G. H. D. Alejo, S. Vera, and A. Ollero, “Multiple gliding uav coor-
dination for static soaring in real time applications,” in 2013 IEEE International
Conference on Robotics and Automation, May 2013, pp. 782–787.

[20] J. Cobano, G. H. D. Alejo, S. Sukkarieh, and A. Ollero, “Thermal detection and
generation of collision-free trajectories for cooperative soaring uavs,” in Interna-
tional Conference on Intelligent Robots and Systems (IROS), Noviembre 2013, pp.
2948–2954.

http://grvc.us.es/publica/revistas/documentos/JINT2012_DAlejoJMDiazBanezJACobanoPPerezLanteroAOllero.pdf
http://grvc.us.es/publica/revistas/documentos/JINT2012_DAlejoJMDiazBanezJACobanoPPerezLanteroAOllero.pdf

Bibliography 231

[21] J. Cobano, D. Alejo, S. Vera, G. Heredia, S. Sukkarieh, and A. Ollero, “Distributed
thermal identification and exploitation for multiple soaring uavs,” in Human Be-
havior Understanding in Networked Sensing. Springer International Publishing
Switzerland, 2014, pp. 359–378.

[22] J. C. del Arco, A. D, B. C. Arrue, J. A. Cobano, G. Heredia, and A. Ollero, “Multi-
uav ground control station for gliding aircraft,” in 23rd Mediterranean Conference
on Control and Automation, 2015, pp. 1–6.

[23] A. Ollero, “Aerial robotics cooperative assembly system (ARCAS): First results,”
in Aerial Physically Acting Robots (AIRPHARO) workshop, IROS 2012, Vilamoura,
Portugal, October 7-12 2012.

[24] A. E. Jimenez-Cano, J. Martin, G. Heredia, R. Cano, and A. Ollero, “Control of an
aerial robot with multi-link arm for assembly tasks,” in IEEE Int. Conf. Robotics
and Automation (ICRA), Karlsruhe, Germany, MAY 6-10 2013.

[25] A. O. A. de Sanbernabé, J. R. Martínez, “Efficient cluster-based tracking mech-
anisms for camera-based wireless sensor networks,” Mobile Computing, IEEE
Transactions on, vol. PP, no. 99, pp. 1–1, 2014.

[26] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning,
1st ed. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1989.

[27] J. Branke, K. Deb, and K. Miettinen, Multiobjective optimization: Interactive and
evolutionary approaches. Springer-Verlag New York Inc, 2008, vol. 5252.

[28] M. Vilaplana, E. Gallo, F. Navarro, and S. Swierstra, “Towards a formal language for
the common description of aircraft intent,” in Digital Avionics Systems Conference,
2005. DASC 2005. The 24th, vol. 1, Oct 2005, pp. 3.C.5–3.1–9 Vol. 1.

[29] J. H. Reif, “Complexity of the mover’s problem and generalizations,” in
Proceedings of the 20th Annual Symposium on Foundations of Computer Science,
ser. SFCS ’79. Washington, DC, USA: IEEE Computer Society, 1979, pp.
421–427. [Online]. Available: http://dx.doi.org/10.1109/SFCS.1979.10

[30] J. F. Gilmore, “Autonomous vehicle planning analysis methodology,” in AIAAA
Guidance Navigation Control Conference, 1991, pp. 2000–4370.

[31] R. J. Szczerba, “Threat netting for real-time, intelligent route planners,” in IEEE
Symp. Inf., Decis. Control, 1999, pp. 377–382.

[32] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische
Mathematik, vol. 1, pp. 269–271, 1959.

[33] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic deter-
mination of minimum cost paths",” IEEE Transactions on Systems Science and
Cybernetics, vol. 4, no. 2, p. 100–107, 1968.

http://dx.doi.org/10.1109/SFCS.1979.10

232 Bibliography

[34] D. Meagher, “Geometric modeling using octree enconding,” Computer Graphics
and Image Processing, vol. 19, pp. 129–148, 1982.

[35] J. Pearl, Heuristics: Intelligent Search Strategies for Computer Problem Solving.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1984.

[36] Y. Goto and A. Stentz, “The cmu system for mobile robot navigation,” in Robotics
and Automation. Proceedings. 1987 IEEE International Conference on, vol. 4, Mar
1987, pp. 99–105.

[37] A. T. Stentz, “Optimal and efficient path planning for partially-known environments,”
in Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA ’94), vol. 4, May 1994, pp. 3310 – 3317.

[38] A. Stentz, “The focussed d* algorithm for real-time replanning,” in Proceedings of
the 14th International Joint Conference on Artificial Intelligence - Volume 2, ser.
IJCAI’95. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1995,
pp. 1652–1659. [Online]. Available: http://dl.acm.org/citation.cfm?id=1643031.
1643113

[39] S. Koenig and M. Likhachev, “D*lite,” in Eighteenth National Conference
on Artificial Intelligence. Menlo Park, CA, USA: American Association
for Artificial Intelligence, 2002, pp. 476–483. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=777092.777167

[40] K. Daniel, A. Nash, S. Koenig, and A. Felner, “Theta*: Any-angle path planning
on grids,” Journal of Artificial Intelligence Research, vol. 39, no. 1, pp. 533–579,
2010.

[41] A. Nash, S. Koenig, and C. Tovey, “Lazy theta*: Any-angle path planning and
path length analysis in 3d,” in AAAI Conference on Artificial Intelligence, 2010.
[Online]. Available: https://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/
view/1930/1945

[42] P. Yap, N. Burch, R. C. Holte, and J. Schaeffer, “Block a*: Database-driven
search with applications in any-angle path-planning,” in Proceedings of the
Twenty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2011, San
Francisco, California, USA, August 7-11, 2011, 2011. [Online]. Available:
http://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3449

[43] A. Nash, S. Koenig, and M. Likhachev, “Incremental phi*: Incremental any-angle
path planning on grids.” in IJCAI, 2009, pp. 1824–1830.

[44] L. Kavraki, P. Svestka, J.-C. Latombe, andM. Overmars, “Probabilistic roadmaps for
path planning in high-dimensional configuration spaces,” Robotics and Automation,
IEEE Transactions on, vol. 12, no. 4, pp. 566–580, Aug 1996.

[45] C. Nissoux, T. Simeon, and J.-P. Laumond, “Visibility based probabilistic roadmaps,”
in Intelligent Robots and Systems, 1999. IROS ’99. Proceedings. 1999 IEEE/RSJ
International Conference on, vol. 3, 1999, pp. 1316–1321 vol.3.

http://dl.acm.org/citation.cfm?id=1643031.1643113
http://dl.acm.org/citation.cfm?id=1643031.1643113
http://dl.acm.org/citation.cfm?id=777092.777167
http://dl.acm.org/citation.cfm?id=777092.777167
https://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1930/1945
https://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1930/1945
http://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3449

Bibliography 233

[46] V. Boor, M. Overmars, and A. van der Stappen, “The gaussian sampling strategy for
probabilistic roadmap planners,” in Robotics and Automation, 1999. Proceedings.
1999 IEEE International Conference on, vol. 2, 1999, pp. 1018–1023 vol.2.

[47] R. Bohlin and L. E. Kavraki, “Path planning using lazy prm,” in IEEE International
Conference on Robotics and Automation, 2000, pp. 521–528.

[48] S. M. Lavalle, “Rapidly-exploring random trees: A new tool for path planning,”
Tech. Rep., 1998.

[49] S. M. Lavalle, J. J. Kuffner, and Jr., “Rapidly-Exploring Random Trees: Progress
and Prospects,” in Algorithmic and Computational Robotics: New Directions, 2000,
pp. 293–308.

[50] J. Kuffner and S. LaValle, “Rrt-connect: An efficient approach to single-query
path planning,” in Robotics and Automation, 2000. Proceedings. ICRA ’00. IEEE
International Conference on, vol. 2, 2000, pp. 995–1001 vol.2.

[51] L. Jaillet, J. Cortes, and T. Simeon, “Transition-based rrt for path planning in contin-
uous cost spaces,” in Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ
International Conference on, Sept 2008, pp. 2145–2150.

[52] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion plan-
ning,” International Journal of Robotics Research, vol. 30, pp. 1–76, 2011.

[53] A. Perez, R. Platt, G. Konidaris, L. Kaelbling, and T. Lozano-Pérez, “Lqr-
rrt*: Optimal sampling-based motion planning with automatically derived
extension heuristics,” in Proceedings of the IEEE International Conference
on Robotics and Automation, May 2012, pp. 2537–2542. [Online]. Available:
http://lis.csail.mit.edu/pubs/perez-icra12.pdf

[54] M. Otte and N. Correll, “C-forest: Parallel shortest path planning with superlinear
speedup,” Robotics, IEEE Transactions on, vol. 29, no. 3, pp. 798–806, June 2013.

[55] P. Fiorini and Z. Shiller, “Motion planning in dynamic environments using velocity
obstacles,” International Journal of Robotics Research, vol. 17, pp. 760–772, 1998.

[56] J. van den Berg, M. C. Lin, and D. Manocha, “Reciprocal Velocity Obstacles for
Real-Time Multi-Agent Navigation,” in IEEE INTERNATIONAL CONFERENCE
ON ROBOTICS AND AUTOMATION. IEEE, 2008, pp. 1928–1935.

[57] S. J. Guy, J. Chhugani, C. Kim, N. Satish, M. C. Lin, D. Manocha, and P. Dubey,
“ClearPath: Highly Parallel Collision Avoidance for Multi-Agent Simulation,” in
ACM SIGGRAPH/EUROGRAPHICS SYMPOSIUMON COMPUTER ANIMATION.
ACM, 2009, pp. 177–187.

[58] D. Claes, D. Hennes, K. Tuyls, and W. Meeussen, “Collision avoidance under
bounded localization uncertainty.” in IROS. IEEE, 2003, pp. 1192–1198.

http://lis.csail.mit.edu/pubs/perez-icra12.pdf

234 Bibliography

[59] J. Alonso-Mora, A. Breitenmoser, M. Rufli, P. Beardsley, and R. Siegwart, “Optimal
Reciprocal Collision Avoidance for Multiple Non-Holonomic Robots,” in Proc.
of the 10th International Symposium on Distributed Autonomous Robotic Systems
(DARS), A. Martinoli and F. Mondada, Eds. Berlin: Springer Press, November
2010.

[60] J. van den Berg, J. Snape, S. Guy, and D. Manocha, “Reciprocal collision avoidance
with acceleration-velocity obstacles,” in Robotics and Automation (ICRA), 2011
IEEE International Conference on, May 2011, pp. 3475–3482.

[61] C. Darwin, On the Origin of Species by Means of Natural Selection. London:
Murray, 1859, or the Preservation of Favored Races in the Struggle for Life.

[62] S. Kent, “Evolutionary approaches to robot path planning,” Doctor of Philosophy,
Brunel University, 1999.

[63] M. Gerke, “Genetic path planning for mobile robots,” in American Control Confer-
ence, 1999. Proceedings of the 1999, vol. 4, 1999, pp. 2424–2429 vol.4.

[64] O. Sahingoz, “Flyable path planning for a multi-uav system with genetic algorithms
and bezier curves,” in Unmanned Aircraft Systems (ICUAS), 2013 International
Conference on, May 2013, pp. 41–48.

[65] K. Deb, D. K. Pratihar, and A. Ghosh, “Learning to avoid moving obstacles opti-
mally for mobile robots using a genetic-fuzzy approach,” in Proceedings of Fifth
International Conference on Parallel Problems Solving from Nature (PPSN, 1998.

[66] N. Durand and J. Alliot, “Ant colony optimization for air traffic conflict resolution,”
in Proceedings of the Eighth USA/Europe Air Traffic Management Research and
Development Seminar (ATM2009), Napa, (CA, USA), 2009.

[67] P. Masci and A. Tedeschi, “Modelling and evaluation of a game-theory approach
for airborne conflict resolution in omnet++,” in Second International Conference
on Dependability, June 2009.

[68] P. Huang, G. Liu, J. Yuan, and Y. Xu, “Multi-objective optimal trajectory planning
of space robot using particle swarm optimization,” in Advances in Neural Networks
- ISNN 2008, ser. Lecture Notes in Computer Science, F. Sun, J. Zhang, Y. Tan,
J. Cao, and W. Yu, Eds. Springer Berlin Heidelberg, 2008, vol. 5264, pp. 171–179.
[Online]. Available: http://dx.doi.org/10.1007/978-3-540-87734-9_20

[69] A. Nasrollahy and H. Javadi, “Using particle swarm optimization for robot path
planning in dynamic environments with moving obstacles and target,” in Computer
Modeling and Simulation, 2009. EMS ’09. Third UKSim European Symposium on,
Nov 2009, pp. 60–65.

[70] E. Masehian and D. Sedighizadeh, “A multi-objective pso-based algorithm for
robot path planning,” in Industrial Technology (ICIT), 2010 IEEE International
Conference on, March 2010, pp. 465–470.

http://dx.doi.org/10.1007/978-3-540-87734-9_20

Bibliography 235

[71] P. Sujit and R. Beard, “Multiple uav path planning using anytime algorithms,” in
American Control Conference, 2009. ACC ’09., June 2009, pp. 2978–2983.

[72] E. Rimon and D. Koditschek, “Exact robot navigation using artificial potential
functions,” Robotics and Automation, IEEE Transactions on, vol. 8, no. 5, pp.
501–518, Oct 1992.

[73] D. Horner and A. Healey, “Use of artificial potential fields for uav guidance and
optimization of wlan communications,” in Autonomous Underwater Vehicles, 2004
IEEE/OES, June 2004, pp. 88–95.

[74] H. Tanner and A. Kumar, “Towards decentralization of multi-robot navigation
functions,” in Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005
IEEE International Conference on, April 2005, pp. 4132–4137.

[75] Y. Koren and J. Borenstein, “Potential field methods and their inherent limitations
for mobile robot navigation,” in Robotics and Automation, 1991. Proceedings., 1991
IEEE International Conference on, Apr 1991, pp. 1398–1404 vol.2.

[76] S. Carpin and G. Pillonetto, “Merging the adaptive random walks planner with the
randomized potential field planner,” in Robot Motion and Control, 2005. RoMoCo
’05. Proceedings of the Fifth International Workshop on, June 2005, pp. 151–156.

[77] P. Vadakkepat, T. H. Lee, and L. Xin, “Application of evolutionary artificial po-
tential field in robot soccer system,” in IFSA World Congress and 20th NAFIPS
International Conference, 2001. Joint 9th, July 2001, pp. 2781–2785 vol.5.

[78] A. Vela, S. Solak, W. Singhose, and J.-P. Clarke, “Amixed integer program for flight-
level assignment and speed control for conflict resolution,” in Decision and Control,
2009 held jointly with the 2009 28th Chinese Control Conference. CDC/CCC 2009.
Proceedings of the 48th IEEE Conference on, dec. 2009, pp. 5219 –5226.

[79] H. Erzberger, “Automated conflict resolution for air traffic control,” in Proceeding
International Congress Aeronautical Sciences, 2006, pp. 179–189.

[80] A. Richards and J. P. How, “Aircraft trajectory planning with collision avoidance
using mixed integer linear programming,” in In Proc. ACC, 2002, pp. 1936–1941.

[81] L. Pallottino, E. Feron, and A. Bicchi, “Conflict resolution problems for air traffic
management systems solved with mixed integer programming,” Intelligent Trans-
portation Systems, IEEE Transactions on, vol. 3, no. 1, pp. 3 –11, mar 2002.

[82] I. Hwang and C. Tomlin, “Protocol-based conflict resolution for air traffic control,”
Department of Aeronautics and Astronautics Stanford University, Stanford, CA
(USA), SUDAAR-762, 2002.

[83] R. Bellman, Dynamic Programming, 1st ed. Princeton, NJ, USA: Princeton
University Press, 1957.

236 Bibliography

[84] L. Pontryagin, V. Boltyanskii, R. Gamkrelidze, and E. Mishchenko, Mathematical
Theory of Optimal Processes. New York/London: Interscience Publishers, 1962,
1962.

[85] A. Bryson, Applied Optimal Control: Optimization, Estimation and Control, ser.
Halsted Press book. Taylor & Francis, 1975.

[86] J. T. Betts, “Survey of numerical methods for trajectory optimization,” Journal of
Guidance, Control, and Dynamics, vol. 21, pp. 193–207, 1998.

[87] W. Karush, “Minima of Functions of Several Variables with Inequalities as Side
Constraints,” Master’s thesis, Dept.˜of Mathematics, Univ.˜of Chicago, 1939.

[88] H. W. Kuhn and A. W. Tucker, “Nonlinear programming,” in Proceedings of
the Second Berkeley Symposium on Mathematical Statistics and Probability.
Berkeley, Calif.: University of California Press, 1951, pp. 481–492. [Online].
Available: http://projecteuclid.org/euclid.bsmsp/1200500249

[89] O. von Stryk and R. Bulirsch, “Direct and indirect methods for trajectory
optimization,” Annals of Operations Research, vol. 37, no. 1, pp. 357–373, 1992.
[Online]. Available: http://dx.doi.org/10.1007/BF02071065

[90] E. D. Dickmanns and K. H. Well, “Approximate solution of optimal control
problems using third order hermite polynomial functions,” in Proceedings of
the IFIP Technical Conference. London, UK, UK: Springer-Verlag, 1974, pp.
158–166. [Online]. Available: http://dl.acm.org/citation.cfm?id=646296.687873

[91] O. Tumbull and A. Richards, “Collocation methods for multi-vehicle trajectory
optimization,” in Proceedings of the European Control Conference (ECC), Zurich,
Switzerland, 2013.

[92] I. Rano, “Direct collocation for two dimensional motion camouflage with non-
holonomic, velocity and acceleration constraints,” in Robotics and Biomimetics
(ROBIO), 2013 IEEE International Conference on, Dec 2013, pp. 109–114.

[93] C. Qi and W. Zhongyuan, “Optimal trajectory for time-on-target of a guided projec-
tile using direct collocation method,” inMechatronic Sciences, Electric Engineering
and Computer (MEC), Proceedings 2013 International Conference on, Dec 2013,
pp. 2803–2806.

[94] M. Razzaghi and G. N. Elnagar, “A pseudospectral collocation method for
the brachistochrone problem,” Mathematics and Computers in Simulation
(MATCOM), vol. 36, no. 3, pp. 241–246, 1994. [Online]. Available: http:
//EconPapers.repec.org/RePEc:eee:matcom:v:36:y:1994:i:3:p:241-246

[95] Q. Gong, W. Kang, N. Bedrossian, F. Fahroo, P. Sekhavat, and K. Bollino, “Pseu-
dospectral optimal control for military and industrial applications,” in Decision and
Control, 2007 46th IEEE Conference on, Dec 2007, pp. 4128–4142.

http://projecteuclid.org/euclid.bsmsp/1200500249
http://dx.doi.org/10.1007/BF02071065
http://dl.acm.org/citation.cfm?id=646296.687873
http://EconPapers.repec.org/RePEc:eee:matcom:v:36:y:1994:i:3:p:241-246
http://EconPapers.repec.org/RePEc:eee:matcom:v:36:y:1994:i:3:p:241-246

Bibliography 237

[96] S. Xu, K. Deng, S. Li, S. Li, and B. Cheng, “Legendre pseudospectral computation
of optimal speed profiles for vehicle eco-driving system,” in Intelligent Vehicles
Symposium Proceedings, 2014 IEEE, June 2014, pp. 1103–1108.

[97] K. Mohan, M. A. Patterson, and A. V. Rao, “Optimal trajectory and control genera-
tion for landing of multiple aircraft in the presence of obstacles,” in AIAA Guidance,
Navigation, and Control Conference, Minneapolis (Minnesota), USA, 2012.

[98] D. Hsu, J.-C. Latombe, and H. Kurniawati, “On the probabilistic foundations of
probabilistic roadmap planning,” Int. J. Rob. Res., vol. 25, no. 7, pp. 627–643, July
2006. [Online]. Available: http://dx.doi.org/10.1177/0278364906067174

[99] J. R. Koza, Genetic Programming: On the Programming of Computers by Means
of Natural Selection. Cambridge, MA, USA: MIT Press, 1992.

[100] M. Hutter and S. Legg, “Fitness uniform optimization,” Trans. Evol. Comp, vol. 10,
no. 5, pp. 568–589, Oct. 2006. [Online]. Available: http://dx.doi.org/10.1109/
TEVC.2005.863127

[101] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective
genetic algorithm: Nsga-ii,” Evolutionary Computation, IEEE Transactions on,
vol. 6, no. 2, pp. 182–197, Apr 2002.

[102] I. Y. Lun and J. C. Lam, “A study of weibull parameters using long-term wind
observations,” Renewable Energy, vol. 20, no. 2, pp. 145 – 153, 2000. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S0960148199001032

[103] D. Indhumathy, C. Seshaiah, and K. Sukkiramathi, “Estimation of weibull parame-
ters for wind speed calculation at kanyakumari in india,” International Journal of
Innovative Research in Science, Engineering and Technology, vol. 3, pp. 8340–8345,
2014.

[104] N. A. S. Rodríguez. Algorithms & applications group motion planning puzzles (aka
benchmarks). [Online]. Available: https://parasol.tamu.edu/groups/amatogroup/
benchmarks/mp/

[105] K. E. Parsopoulos and M. N. Vrahatis, “Recent approaches to global optimization
problems through particle swarm optimization,” Natural Computing, Springer,
vol. 1, pp. 235–306, 202.

[106] M. E. H. Pedersen, “Good parameters for particle swarm optimization,” in Hvass
Laboratories, Technical Report no. HL1001, 2010.

[107] A. B. L. Pallotino, V. G. Scordio and E. Frazzoli, “Decentralized cooperative policy
for conflict resolution in multi-vehicle systems,” IEEE Transactions on Robotics,
vol. 23, no. 6, pp. 1170 –1183, December 2007.

http://dx.doi.org/10.1177/0278364906067174
http://dx.doi.org/10.1109/TEVC.2005.863127
http://dx.doi.org/10.1109/TEVC.2005.863127
http://www.sciencedirect.com/science/article/pii/S0960148199001032
https://parasol.tamu.edu/groups/amatogroup/benchmarks/mp/
https://parasol.tamu.edu/groups/amatogroup/benchmarks/mp/

238 Bibliography

[108] A. Platzer and E. M. Clarke, “Formal verification of curved flight collision
avoidance maneuvers: A case study,” in Proceedings of the 2Nd World Congress
on Formal Methods, ser. FM ’09. Berlin, Heidelberg: Springer-Verlag, 2009, pp.
547–562. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-05089-3_35

[109] M. Pontani and B. A. Conway, “Particle Swarm Optimization Applied to Space
Trajectories,” Journal of Guidance Control and Dynamics, vol. 33, pp. 1429–1441,
2010.

[110] A. O. J. Rebollo and I. Maza, “Collision avoidance among multiple aerial robots
and other non-cooperative aircraft based on velocity planning,” in 7th Conference
on Mobile Robots, 2007.

[111] M. T. A. Richards, J. Bellingham and J. How, “Coordination and control of multiple
uavs,” in AIAA Guidance, Navigation, and Control Conference and Exhibit, 2002.

[112] G. I. S. Waslander and C. Tomlin, “Decentralized optimization via nash bargaining,”
Theory Algorithms Cooperative Systems, no. 4, p. 565–585, 2004.

[113] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness. New York, NY, USA: W. H. Freeman & Co., 1979.

[114] A. H. G. R. K. E. L. Lawler, J. K. Lenstra and D. B. Shmoys, “Sequencing and
scheduling: algorithms and complexity.” Handbooks in Operations Research and
Management Science, vol. 4, pp. 627–643, 1993.

[115] J. Sgall, “On-line scheduling - a survey,” 1997.

[116] R. E. T. B. Aspvall, M. F. Plass, “A linear-time algorithm for testing the truth of
certain quantified boolean formulas,” Information Processing Letters, vol. 8, pp.
121–123, 1979.

[117] T. C. Project, CGAL User and Reference Manual, 3rd ed. CGAL Editorial Board,
2011, http //www.cgal.org/Manual/3.9/doc_html/cgal_manual/packages.html.

[118] T. W. McLain and R. W. Beard, “Coordination variables, coordination functions,
and cooperative-timing missions,” Journal of Guidance Control and Dynamics,
vol. 28, no. 1, pp. 150–161, 2005.

[119] M. J. Allen, “Guidance and control of an autonomous soaring uav,” NASA TM-
214611, February 2007.

[120] L. Rayleigh, “The soaring of birds,” Nature, no. 27, pp. 534–535, 1883.

[121] H. Weimerskirch, T. Guionnet, S. A. S. J. Martin, and D. P. Costa, “Fast and fuel
efficient optimal use of wind by flying albatrosses.” in Proceedings of the Royal
Society of London - Biological Sciences, vol. 267, 2000, pp. 1869–1874.

[122] I. Lancaster, “The problem of the soaring bird,” The University of Chicago Press,
1885.

http://dx.doi.org/10.1007/978-3-642-05089-3_35

Bibliography 239

[123] C. K. Patel and I. M. Kroo, “Theorical and experimental investigation of energy
extraction from atmospheric turbulence,” in Proc. 26th Congress of International
Council of the Aeronautical Sciences, Anchorage, Alaska, USA, 14-19 September
2008.

[124] M. J. Allen, “Updraft model for development of autonomous soaring uninhabited air
vehicles,” in 44 th AIAA Aerospace Sciences Meeting and Exhibit, AIAA 2006-1510,
2006, pp. 9–12.

[125] J. Wharington, “Autonomous control of soaring aircraft by reinforcement learning,”
Ph.D. dissertation, Royal Melbourne Institute of Technology, Melbourne, Australia,
1998.

[126] M. Hazard, “Unscented kalman filter for thermal parameter identification,” in AIAA
Region II Student Conference, AIAA, Washington, DC, USA, 2009.

[127] D. J. Edwards, “Implementation details and flight test results of an autonomous
soaring controller,” in AIAA Guidance, Navigation, and Control Conference, AIAA,
Paper 2008-7244, Reston, VA, August 2008.

[128] N. Kahveci, P. Ioannou, and D. Mirmirani, “Optimal static soaring of uavs using
vehicle routing with time windows,” in AIAA Aerospace Sciences Meeting and
Exhibit, AIAA-2007-158, AIAA, Washington, DC, USA, 2007.

[129] M. J. Allen, “Autonomous soaring for improved endurance of a small uninhabited
air vehicle,” in Proceedings of the 43rd Aerospace Sciences Meeting, AIAA, 2005.

[130] D. Metzger and J. Hedrick, “Optimal flight paths for soaring flight,” in Proceedings
of the 2nd International Symposium on the Technology and Science of Low Speed
and Motorless Flight, 1974.

[131] A. Klesh, P. Kabamba, and A. Girard, “Optimal cooperative thermalling of un-
manned aerial vehicles,” Optimization and Cooperative Control Strategies, vol. 381,
pp. 355–369, 2009.

[132] J. Nguyen, N. Lawrance, R. Fitch, and S. Sukkarieh, “Energy-constrained mo-
tion planning for information gathering with autonomous aerial soaring,” in IEEE
International Conference on Robotics and Automation (ICRA2013), Karlsruhe,
Germany, 6-10 May 2013, pp. 3825–3831.

[133] A. Chakrabarty and J. W. Langelaan, “Energy-based long-range path planning for
soaring-capable unmanned aerial vehicles,” Journal of Guidance, Control and
Dynamics, vol. 34, no. 4, pp. 1002–1015, July-August 2011.

[134] N. R. J. Lawrance and S. Sukkarieh, “Path planning for autonomous soaring flight
in dynamic wind fields,” in Proceedings of the IEEE International Conference on
Robotics and Automation, ICRA2011, Shanghai, China, May 2011, pp. 2499–2505.

240 Bibliography

[135] W. B. Kagabo and J. R. Kolodziej, “Trajectory determination for energy efficient
autonomous soaring,” in 2011 American Control Conference, San Francisco, CA,
USA, June 29 - July 01 2011, pp. 4655–4660.

[136] J. H. A. Clarke and W. H. Chen, “Trajectory generation for autonomous soaring
uas,” International Journal of Automation and Computing, pp. 248–256, June 2012.

[137] G. O. Antal C. and L. S., “Adaptive autonomous soaring of multiple uavs using
simultaneous perturbation stochastic approximation,” in Proceedings of the 49th
IEEE Conference on Decision and Control, Atlanta, GA, USA, 2010, pp. 3656—-
3661.

[138] N. T. Depenbusch and J. W. Langelaan, “Coordinated mapping and exploration
for autonomous soaring,” in AIAA Infotech@Aerospace Conference, St. Louis,
Missouri, USA, Marchl 29-31 2011.

[139] K. Andersson, I. Kaminer, K. Jones, V. Dobrokhodov, andD. Lee, “Cooperating uavs
using thermal lift to extend endurance,” in AIAA Unmanned Unlimited Conference,
Seatle, Washington, USA, April 6-9 2009.

[140] C. E. Childress, “An empirical model of thermal updrafts using data obtained from
a manned glider,” Master in Science, Univerity of Knoxville, 2010.

[141] Z. R. T. Hazen, “Design and implementation of a low cost thermal soaring system
for uninhabited aircraft,” Master in Science, Univerity of Wichita, 2007.

[142] S. Russell and P. Norvig, Artificial Intelligence. A modern approach., 2nd ed.
Prentice-Hall, 2003.

[143] S. J. Rasmussen, T. Shima, J. Mitchel, A. G. Sparks, and P. Chandler, “State-space
search for improved autonomous uavs assignment algorithm,” in Proc. 43rd IEEE
Conference on Decision and Control, Atlantis, Paradise Island, Bahamas, 2004, pp.
2911–2916.

[144] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion plan-
ning,” International Journal of Robotics Research, vol. 30, 2011.

[145] B. Akgun and M. Stilman, “Sampling heuristics for optimal motion planning in
high dimensions.” in International Conference on Intelligent Robots and Systems
(IROS2011), San Francisco, California (USA), 25-30 September 2011, pp. 2640 –
2645.

[146] J. van den Berg, S. J. Guy, M. C. Lin, and D.Manocha, “Reciprocal n-body Collision
Avoidance,” in INTERNATIONAL SYMPOSIUM ON ROBOTICS RESEARCH,
2009.

[147] E. Larsen, S. Gottschalk, M. Lin, and D. Manocha., “Proximity query
package website,” 2014, [Accessed 5-February-2014]. [Online]. Available:
http://gamma.cs.unc.edu/SSV/

http://gamma.cs.unc.edu/SSV/

Bibliography 241

[148] M. Ghosh, N. M. Amato, Y. Lu, and J.-M. Lien, “Fast approximate convex decom-
position using relative concavity,” Computer-Aided Design, in press 2012, also
appear in Proc. of Symposium on Solid and Physical Modeling, Dijon, France, Oct.
2012.

[149] J. van den Berg, S. J. Guy, J. Snape, M. C. Lin, and D. Manocha, “Rvo2
library website,” 2012, [Accessed 16-February-2014]. [Online]. Available:
http://gamma.cs.unc.edu/RVO2/

[150] J. Meyer, “Hector quadrotor ros package website,” 2014, [Accessed 5-February-
2014]. [Online]. Available: http://wiki.ros.org/hector_quadrotor

[151] D. Hommertzheim, J. Huffman, and I. Sabuncuoglu, “Training an artificial neural
network the pure pursuit maneuver,” Computers & Operations Research, vol. 18,
no. 4, pp. 343–353, 1991.

[152] A. Ollero and G. Heredia, “Stability analysis of mobile robot path tracking,” in
IEEE/RSJ Int. Conf. on Int. Robots and Systems, 1995, pp. 461–466.

[153] J. Snape, J. P. van den Berg, S. J. Guy, and D. Manocha, “The Hybrid Reciprocal
Velocity Obstacle,” IEEE Transactions on Robotics, vol. 27, no. 4, pp. 696–706,
2011.

[154] G. Cai, B. Chen, T. Lee, and M. Dong, “Design and implementation of a hardware-
in-the-loop simulation system for small-scale uav helicopters,” in Automation and
Logistics, 2008. ICAL 2008. IEEE International Conference on, Sept 2008, pp.
29–34.

[155] I. Maza, F. Caballero, R. Molina, N. P. na, and A. Ollero, “Multimodal interface
technologies for uav ground control stations. a comparative analysis,” J. Intell.
Robot. Syst., vol. 57, no. 1-4, pp. 371–391, 2012.

[156] O. Lemon, A. Bracy, A. Gruenstein, and S. Peters, “The witas multi-modal dialogue
system i,” in 7th European Conference on Speech Communication and Technology,
2001, pp. 1559–1562.

[157] A. Kelly, “A feedforward control approach to the local navigation problem for
autonomous vehicles,” Tech. Rep., 1994.

http://gamma.cs.unc.edu/RVO2/
http://wiki.ros.org/hector_quadrotor

	Resumen
	Abstract
	Acronyms
	Introduction
	Motivation
	Notes on the ATM amplification procedure
	Reactive Collision Avoidance on ATM
	Future of ATM

	UAV CA schemes
	Related work
	Objectives
	Outline and main contributions
	Framework
	ARCAS project
	Other projects

	Conclusions

	State of the art in UAV planning
	Introduction
	Problem Formulation
	Configuration and State Spaces of a robot and a system of robots
	Path Planning Problem Definition
	Optimal Planning
	Interfacing the UAV
	Complexity

	Graph search method
	On obtaining the graph representation
	Exact graph generation methods
	Probabilistic Roadmaps
	Rapidly-exploring Random Trees
	Optimal probabilistic methods
	Parallelization

	Reactive Methods
	Velocity Obstacles
	Potential Field Methods

	Optimal Methods
	Evolutionary Optimization Applied to Path Planning
	Swarm Optimization Applied to Path Planning
	Linear and non-linear Programming methods

	Optimal Control Methods
	Conclusions

	Evolutionary multi-UAV planning
	Introduction
	Non-collaborative Genetic Algorithm Path Planner
	Initialization of the population
	Selection
	Crossover algorithm
	Mutation
	Evaluating the fitness of the individuals
	Aligned Bounding Boxes Detection
	Continuous collision detection

	Control Parameters

	Uncertainty considerations
	Overview of the system
	Monte-Carlo analysis
	Stochastic Model
	A simple test case
	Simulation batch
	Dependency of the criteria with the number of GA iterations
	Dependency of the execution time with the number of UAVs and obstacles
	Different wind conditions
	Execution time distribution

	Collaborative GA planner
	Main Changes in GA
	Initialization
	Crossover
	Evaluation

	Simulations
	Crossover operator selection
	Test set design
	Simulation results

	Experiments
	Conclusions

	Multi-UAV planning with Particle Swarm Optimization
	Collaborative PSO planner
	A simple example

	GA and PSO Comparison
	Time of execution against the number of UAVs
	Optimality comparison
	Time for 90% of optimality

	Anytime approach
	One at a time strategy
	Inserting the solution into the population

	Virtual roundabouts
	Simulations
	Estimating the quality of the solution

	Reducing the dimensionality problem
	Course change
	Maneuver selection
	Simulations
	A simple case
	Test set

	Experiments
	Objectives of the Experiment
	Experimental scenario
	Solution and results

	Conclusions

	Velocity planning: Coordination of Multi-UAVs Trajectories
	Introduction
	Proposed approaches
	Problem Formulation
	NP-Hardness Proof
	Proposed Methods
	Greedy Method
	The discrete allocation problem
	Heuristic velocity planning with optimization phase
	Search tree step
	One conflict zone problem
	More than one conflict zone
	QP-problem

	Simulations
	Velocity profile calculation
	Greedy results
	2-VA Results and Generalizations
	Heuristic VP results
	Comparison with the number of safety cells

	Experiments
	Conclusions

	A Distributed System for Cooperative Static Soaring
	Introduction
	State of the art
	Overview of the system
	Local Path Planner
	Autopilot
	Thermal Detector
	Mission Manager
	Thermal Manager
	Collision Detection and Resolution block

	Thermals detector
	Thermal model
	Thermal detection algorithm
	Computation of the TPs

	Path planner
	Conflict detection and resolution
	RRT
	RRT*
	Gliding UAV Model

	Simulation results
	Collision Detection and Resolution Simulation
	Whole system simulation
	Mono UAV simulation

	Experimental results
	Preflight considerations
	Scenario 1
	Scenario 2
	Scenario 3. Thermal emulation real-time experiment

	Conclusions
	Future work
	What is next?

	Real-time 3D Collision Avoidance with Static Obstacles
	Optimal Reciprocal Collision Avoidance
	Proposed method: Generalized ORCA
	Kinematic and Dynamic constraints handling
	Considering 3D obstacles
	Original ORCA static obstacles considerations
	Proposed solution
	Dealing with non-convex obstacles

	Non spherical robot
	Safety region

	Multi-Quadrotor Simulations
	2 UAVs with and without static obstacles
	Scalability
	Scenario with up to 8 UAVs and two static obstacles

	Scenario with up to 8 UAVs and complex static obstacles
	Scenario with 20 UAVs

	Conclusions

	Experimental G-ORCA based Collision Avoidance
	Introduction
	Basic architecture of the system
	Trajectory Generator Module
	Collision Avoidance Module

	Preliminary experiments
	Experiment 1
	Experiment 2
	Experiment 3
	Conclusions

	Lessons learned
	Final experiments
	Experiment 4
	Experiment 5
	Experiment 6

	Conclusions

	Conclusions and Future Developments
	Summary of contributions
	Future developments
	Evolutionary-based methods parallelization
	Extensive thermal identification and exploitation experimentation
	Integrated ARCAS experiments
	G-ORCA and SLAM integration

	Appendix Multi-UAV indoors testbed
	Appendix Multi-UAV Thermal Detection and Exploitation System Architecture
	Introduction
	Objectives
	System description
	Hardware
	Software in Real flight configuration
	Software: HIL Configuration
	Off-line processing

	Communications
	Protocol and parameters

	Developed GUI
	Conclusions

	Appendix G-ORCA Integration in the ARCAS system
	Overview of the ARCAS system
	ORCA's module interfaces
	Mission protocol

	List of Figures
	List of Tables
	Bibliography
	End/Last page
	First page

