315 research outputs found

    Noise-robust method for image segmentation

    Get PDF
    Segmentation of noisy images is one of the most challenging problems in image analysis and any improvement of segmentation methods can highly influence the performance of many image processing applications. In automated image segmentation, the fuzzy c-means (FCM) clustering has been widely used because of its ability to model uncertainty within the data, applicability to multi-modal data and fairly robust behaviour. However, the standard FCM algorithm does not consider any information about the spatial linage context and is highly sensitive to noise and other imaging artefacts. Considering above mentioned problems, we developed a new FCM-based approach for the noise-robust fuzzy clustering and we present it in this paper. In this new iterative algorithm we incorporated both spatial and feature space information into the similarity measure and the membership function. We considered that spatial information depends on the relative location and features of the neighbouring pixels. The performance of the proposed algorithm is tested on synthetic image with different noise levels and real images. Experimental quantitative and qualitative segmentation results show that our method efficiently preserves the homogeneity of the regions and is more robust to noise than other FCM-based methods

    Medical imaging analysis with artificial neural networks

    Get PDF
    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging

    Evolving Ensemble Models for Image Segmentation Using Enhanced Particle Swarm Optimization

    Get PDF
    In this paper, we propose particle swarm optimization (PSO)-enhanced ensemble deep neural networks and hybrid clustering models for skin lesion segmentation. A PSO variant is proposed, which embeds diverse search actions including simulated annealing, levy flight, helix behavior, modified PSO, and differential evolution operations with spiral search coefficients. These search actions work in a cascade manner to not only equip each individual with different search operations throughout the search process but also assign distinctive search actions to different particles simultaneously in every single iteration. The proposed PSO variant is used to optimize the learning hyper-parameters of convolutional neural networks (CNNs) and the cluster centroids of classical Fuzzy C-Means clustering respectively to overcome performance barriers. Ensemble deep networks and hybrid clustering models are subsequently constructed based on the optimized CNN and hybrid clustering segmenters for lesion segmentation. We evaluate the proposed ensemble models using three skin lesion databases, i.e., PH2, ISIC 2017, and Dermofit Image Library, and a blood cancer data set, i.e., ALL-IDB2. The empirical results indicate that our models outperform other hybrid ensemble clustering models combined with advanced PSO variants, as well as state-of-the-art deep networks in the literature for diverse challenging image segmentation tasks

    Anisotropic mean shift based fuzzy c-means segmentation of deroscopy images

    Get PDF
    Image segmentation is an important task in analysing dermoscopy images as the extraction of the borders of skin lesions provides important cues for accurate diagnosis. One family of segmentation algorithms is based on the idea of clustering pixels with similar characteristics. Fuzzy c-means has been shown to work well for clustering based segmentation, however due to its iterative nature this approach has excessive computational requirements. In this paper, we introduce a new mean shift based fuzzy c-means algorithm that requires less computational time than previous techniques while providing good segmentation results. The proposed segmentation method incorporates a mean field term within the standard fuzzy c-means objective function. Since mean shift can quickly and reliably find cluster centers, the entire strategy is capable of effectively detecting regions within an image. Experimental results on a large dataset of diverse dermoscopy images demonstrate that the presented method accurately and efficiently detects the borders of skin lesions

    Anisotropic mean shift based fuzzy C-means segmentation of dermoscopy images

    Get PDF

    Volume and shape in feature space on adaptive FCM in MRI segmentation.

    Get PDF
    Intensity non-uniformity (bias field) correction, contextual constraints over spatial intensity distribution and non-spherical cluster\u27s shape in the feature space are incorporated into the fuzzy c-means (FCM) for segmentation of three-dimensional multi-spectral MR images. The bias field is modeled by a linear combination of smooth polynomial basis functions for fast computation in the clustering iterations. Regularization terms for the neighborhood continuity of either intensity or membership are added into the FCM cost functions. Since the feature space is not isotropic, distance measures, other than the Euclidean distance, are used to account for the shape and volumetric effects of clusters in the feature space. The performance of segmentation is improved by combining the adaptive FCM scheme with the criteria used in Gustafson-Kessel (G-K) and Gath-Geva (G-G) algorithms through the inclusion of the cluster scatter measure. The performance of this integrated approach is quantitatively evaluated on normal MR brain images using the similarity measures. The improvement in the quality of segmentation obtained with our method is also demonstrated by comparing our results with those produced by FSL (FMRIB Software Library), a software package that is commonly used for tissue classification

    Computer Vision and Medical Image Processing: a brief survey of application areas

    Get PDF
    Every day is greater the number of images obtained to characterize the anatomy and functions of the human body, because of this the automation of the medical image processing has become a practice to improve the diagnosis and treatment of certain diseases. In this study the main areas of application of computer vision to the digital processing of medical images are reviewed. It begins with the selection of the three edges with more publications available in Springer, ScienceDirect, Wiley, and IEEE which are: segmentation of organs and lesions, feature extraction in optical images and labelling machine on x-ray images. Over them, latest algorithms, techniques and methods for medical imaging processing are analyzed exposing its main characteristics and ways of use.Sociedad Argentina de Informática e Investigación Operativa (SADIO

    Computer Vision and Medical Image Processing: a brief survey of application areas

    Get PDF
    Every day is greater the number of images obtained to characterize the anatomy and functions of the human body, because of this the automation of the medical image processing has become a practice to improve the diagnosis and treatment of certain diseases. In this study the main areas of application of computer vision to the digital processing of medical images are reviewed. It begins with the selection of the three edges with more publications available in Springer, ScienceDirect, Wiley, and IEEE which are: segmentation of organs and lesions, feature extraction in optical images and labelling machine on x-ray images. Over them, latest algorithms, techniques and methods for medical imaging processing are analyzed exposing its main characteristics and ways of use.Sociedad Argentina de Informática e Investigación Operativa (SADIO

    Cancer diagnosis using deep learning: A bibliographic review

    Get PDF
    In this paper, we first describe the basics of the field of cancer diagnosis, which includes steps of cancer diagnosis followed by the typical classification methods used by doctors, providing a historical idea of cancer classification techniques to the readers. These methods include Asymmetry, Border, Color and Diameter (ABCD) method, seven-point detection method, Menzies method, and pattern analysis. They are used regularly by doctors for cancer diagnosis, although they are not considered very efficient for obtaining better performance. Moreover, considering all types of audience, the basic evaluation criteria are also discussed. The criteria include the receiver operating characteristic curve (ROC curve), Area under the ROC curve (AUC), F1 score, accuracy, specificity, sensitivity, precision, dice-coefficient, average accuracy, and Jaccard index. Previously used methods are considered inefficient, asking for better and smarter methods for cancer diagnosis. Artificial intelligence and cancer diagnosis are gaining attention as a way to define better diagnostic tools. In particular, deep neural networks can be successfully used for intelligent image analysis. The basic framework of how this machine learning works on medical imaging is provided in this study, i.e., pre-processing, image segmentation and post-processing. The second part of this manuscript describes the different deep learning techniques, such as convolutional neural networks (CNNs), generative adversarial models (GANs), deep autoencoders (DANs), restricted Boltzmann’s machine (RBM), stacked autoencoders (SAE), convolutional autoencoders (CAE), recurrent neural networks (RNNs), long short-term memory (LTSM), multi-scale convolutional neural network (M-CNN), multi-instance learning convolutional neural network (MIL-CNN). For each technique, we provide Python codes, to allow interested readers to experiment with the cited algorithms on their own diagnostic problems. The third part of this manuscript compiles the successfully applied deep learning models for different types of cancers. Considering the length of the manuscript, we restrict ourselves to the discussion of breast cancer, lung cancer, brain cancer, and skin cancer. The purpose of this bibliographic review is to provide researchers opting to work in implementing deep learning and artificial neural networks for cancer diagnosis a knowledge from scratch of the state-of-the-art achievements
    corecore