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Abstract
Intensity non-uniformity (bias field) correction, contextual constraints over spatial intensity
distribution and non-spherical cluster's shape in the feature space are incorporated into the fuzzy c-
means (FCM) for segmentation of three-dimensional multi-spectral MR images. The bias field is
modeled by a linear combination of smooth polynomial basis functions for fast computation in the
clustering iterations. Regularization terms for the neighborhood continuity of either intensity or
membership are added into the FCM cost functions. Since the feature space is not isotropic, distance
measures, other than the Euclidean distance, are used to account for the shape and volumetric effects
of clusters in the feature space. The performance of segmentation is improved by combining the
adaptive FCM scheme with the criteria used in Gustafson-Kessel (G-K) and Gath-Geva (G-G)
algorithms through the inclusion of the cluster scatter measure. The performance of this integrated
approach is quantitatively evaluated on normal MR brain images using the similarity measures. The
improvement in the quality of segmentation obtained with our method is also demonstrated by
comparing our results with those produced by FSL (FMRIB Software Library), a software package
that is commonly used for tissue classification.
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Introduction
Magnetic resonance imaging (MRI) with its superb soft tissue contrast is an ideal modality for
tissue classification and volumetry. This has significant implications in understanding the
neural basis for many neurological disorders 25. For instance, in a number of neurological
disorders, such as multiple sclerosis (MS) and Alzheimer's disease, the volume changes in total
brain, gray matter (GM), and white matter (WM) provide important information about the
neuronal and axonal loss 7,33,34. In addition, MRI-derived tissue volumetry is increasingly
employed as a secondary end point in many clinical trials 30. Accurate and robust tissue
classification or segmentation is critical for detecting changes in tissue volumes in healthy and
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diseased brain. Commonly used techniques for segmentation have been recently reviewed
32.

A unique feature of MRI is its multi-modal nature that allows acquisition of images with
different tissue contrasts (T1-, T2-, density-weighting etc.) It is possible to improve the quality
of segmentation by combining information from images with multiple contrasts 4,17,21,46.
Feature map-based classification techniques for MR image segmentation have attracted
considerable attention because they are fast, simple to implement, and allow expert's input in
tissue classification. However, in practice, this multi-spectral segmentation is prone to false
tissue classifications and requires significant manual intervention and pre-processing since the
distribution of intensities in the feature space is distorted by various factors that include image
intensity inhomogeneity arising from the radio frequency receiver and transmitter coil profiles,
partial volume averaging effects from the limited resolution, image noise, and spatial
misalignment of images. While there are a few methods to overcome some of these problems,
we focus on fuzzy c-means (FCM) based methods 1,10,31,37,38,45,51 because of their many
advantages in tissue classification.

Conventional FCM-based methods do not correct for intensity inhomogeneity and do not
exploit contextual information. The adaptive FCM (AFCM) incorporates the intensity
inhomogeneity correction, applies contextual constraints to overcome the noise problems, and
utilizes fuzzy membership to address the partial volume averaging effect and automatic
clustering 1,26,31,37,38,44,53.

One problem with AFCM and a number of other clustering algorithms is that they are totally
based on the objective cost function. Therefore, the performance of the algorithms is greatly
dependent on the cosnstruction of the objective cost function. When using the Euclidean
distance in the objective cost function, as in AFCM, the algorithm has a tendency to generate
equal cluster volumes with spherical occupancy in the feature space 10,19. This could have a
significant effect on the MRI segmentation. To deal with this problem, a few methods have
been proposed in which some pre-selected seeds are included 5,6. Methods aimed at automating
the selection of seeds were reviewed by Sucking et al. 44. However, these methods are
cumbersome to implement. In order to automatically produce reasonable clusters, more
sophisticated distance measure was included in the Gustafson-Kessel (G-K) algorithm 20,24
in which a positive definite, symmetric scatter matrix (or covariance matrix) was used instead
of the Euclidean distance to define the Mahalanobis distance to form an ellipsoidal cluster in
the feature space. However, as Krishnapuram and Kim demonstrated 28,29, the G-K algorithm
still prefers clusters with equal volumes. Gath and Geva (G-G) algorithm 18,24 also takes the
size and density of the clusters into account, but overcomes the limitation of equal cluster
volumes to produce better clustering results. Since G-G algorithm is not dependent on any cost
functions but only modifies the distance measure 18,24 in the existing FCM based algorithms,
it has to be combined with either AFCM or G-K algorithm to from the adaptive clustering
iterations of the MRI data.

The fundamentals of fuzzy clustering in medical image segmentation have been reviewed by
Sutton et al. 45. The main formalism presented in this paper is based on the grouped coordinate
descent method (also called alternating optimization (AO)) 45. Important details, such as
singularity, initialization, rules of thumb for the parameters, methods to determine the number
of clusters are not described in this paper due to space limitation, but can be found elsewhere
23,42. Throughout this paper, we assume that the total number of clusters is known and that
proper initialization is available.

In the current studies, we extended AFCM to multi-spectral segmentation that includes efficient
intensity non-uniformity (or bias field) correction and contextual constraints over
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neighborhood spatial intensity distribution and membership affinity. The volume and shape of
the nonspherical occupancy in the feature space of clusters was accounted by utilizing cluster
scatter measures to define the Mahalanobis distance 18,24. The methods were applied to
segment GM, WM and CSF of MR brain images of normal volunteers acquired with fast spin
echo (FSE) pulse sequence which is commonly used in the routine clinical practice. The
performance of the algorithm was quantitatively evaluated using the similarity measures on
Brainweb MR images 13. There are two software packages that are commonly used for tissue
classification, SPM 49 and FSL (FMRIB Software Library) 50 , since SPM could not be applied
to multi-channel images, the results of our segmentation on Brianweb images are compared
with those produced by FSL 50.

Methods and Materials
A. Multi-spectral adaptive FCM

This section and following two sections describe the extension of the original AFCM 1 to multi-
spectral case with the inclusion of contextual constraints over membership 37 to obtain the
general cost functions. The objective function of the conventional FCM for clustering n-
channel image data, xk, k = 1,..., N, into c-classes can be expressed as

(1)

subject to

(2)

where uik is the membership of k-th voxel belonging to class-i, vi is the cluster center of class-
i, and p is a preset weighting exponent or fuzzifier. To include the influence of immediate
neighborhood for forcing the solution towards piecewise-homogeneous labeling,
regularization terms are introduced into the objective function 1,37,26,42. With the inclusion
of the regularization terms, Eqn. (1) can be written as

(3)

where Nk represents the neighbors of current voxel, and NR is the cardinality of Nk. The
regularization terms can be adjusted by setting the value of α and β in Eqn. (3) to compromise
between the sharp segmentation and the suppression of pulse noise 1,37.

In general, the distribution of MR image intensities in the feature space is distorted (dispersed)
due to the presence of RF inhomogeneity that needs to be corrected for the proper tissue
classification. The intensity of a voxel located at the spatial position k (k = 1,..., N, where N is
the number of voxels) can be represented as 38

(4)
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where ok is the observed intensity, tk is the true intensity, Gk is the diagonal matrix representing
the gain field, and noise (k) is the noise. In multi-spectral case, the focus of the current studies,
all the above variables, exceptGk, are vectors. Assuming n image channels, we can explicitly
express ok = [ok1,ok2,...,okn]T, and tk = [tk1,tk2,...,tkn]T . The gain field can be denoted as gk =
[gk1,gk2,...,gkn]T, with Gk = diag(gk1,gk2,...,gkn) and Eqn. (1) can be rewritten as

(5)

By applying the log-transform on both sides of Eqn. (1), denoting the log-transformed observed
MR image data as yk, and the log-transformed true intensity of underlying tissues as xk, the
MR image data can be approximated using the conventional manner as1,31

(6)

where bk = [bk1,bk2,...,bkn]T is the vectorial voxel representation of the bias field.

The estimation of bias field should be completed for each clustering iteration. Therfore, for
efficiency, the choice of basis functions for approximating the bias field is important. The
smooth basis functions can be splines 43, radial basis functions 15, or polynomials of different
orders 47,48. Of all these choices, the polynomial basis functions are the simplest and are used
in our studies. While the least squares estimation used in the fitting process may be sensitive
to the presence of outliers with the sub-sampling operation in bias field estimation 43,21, our
new implementation works without sub-sampling. Generally, the bias field can be

approximated as , where ϕi(pk) is a smooth basis function and pk represents
the coordinates. Therefore bk can be written as

(7)

with

and

where m is the number of basis functions in Φ. The whole bias field can be expressed as

(8)

In practice, the approximation of the bias field is over the 3D space, and the spatial relation
has to be included into the expansion of the smooth basis functions.
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By assuming that the spatial tissue intensity distribution is piecewise homogeneous, the
influence of the RF inhomogeneity is included in the objective function (Eqn. 3). By
introducing a normalizing factor, e, the modified objective function can be written as

(9)

subject to

Since the amplitude of bk is arbitrary, normalization of bk is necessary to ascertain that the sum
of bk is zero to satisfy the convergence condition of alternating optimization (AO). The
normalization factor, e, will maintain the sum of bk being zero and plays an important role in
the convergence of the iterations in the AO that can be applied to Eqn. (9) to arrive at the (local)
optima.

The image segmentation is achieved by solving (see appendix I)

(10)

To take the cluster shape into account, we incorporate the covariance matrix of each cluster
into the calculation of distance measures using G-K algorithm 20 as described in the following
section.

B. Extension of G-K algorithm
In the Gustafson-Kessel (G-K) algorithm more sophisticated distance measure, the
Mahalanobis distance, based on positive definite, symmetric scatter matrix (or covariance
matrix) is used instead of the Euclidean distance in FCM and AFCM to account for the scatter
shape of each cluster and the ellipsoidal occupancy of clusters in the feature space 20,24. The
fuzzy covariance matrix, Si, is given by

(11)

and let  denote the norm matrix. It should be pointed out that Si (and
subsequently Ai) are pre-computed from last iteration in the G-K algorithm20,24. We describe
the algorithm for extending the G-K algorithm to multi-channel MR image segmentation by
denoting

(12)
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and

(13)

The Lagrange multiplier is adopted to include the constraints into the optimization, and the
augmented objective function becomes

(14)

Taking the derivative of F with respect to uik for p>1, and equating to zero, and with the

constraint , we get

(15)

For a symmetric matrix L, for any vector x, we know that

(16)

Taking the derivative of F with respect to vi and equating it to zero (∂F/∂vi = 0), by expanding
(12) and (13) with respect to terms containing vi, and using the result in Eqn. (16), we have

(17)

with the property , we have

(18)

Similarly, the bias field can be estimated by equating the derivative of Fm with respect to bk
to zero and using the matrix derivative result

(19)

we have
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(20)

Let

(21)

(22)

and

(23)

The Eqn. 20 can be written as

(24)

which equals to

(25)

where ⊗ represents the Kronecker product in Eqn. (25). The definition of “:” in Eqn. (25) is
as follows: for arbitrary matrix W, “W:” is defined as the vector formed by concatenating all
the columns of matrix W. For example, if h = W[m×n]:, then hi+m(j-1) = wi,j. Therefore we have

(26)

The computation of Q is fast since the dimensions of O and M are small. The above solutions
lead to the smooth approximation of the bias field as

(27)
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As before, the smoothed bk should be normalized to eliminate the arbitrary value of the
amplitude of bk and ascertain that the sum of bk is zero to satisfy the convergence condition
of AO.

C. Improvement with G-G approach
Although G-K algorithm uses a Mahalanobis distance measure to generate the ellipsoidal
clusters in the feature space, it prefers clusters with equal volume 28,29. However, G-G
algorithm takes the size and the density of the clusters into account while overcoming the
limitations of equal cluster volumes 18,24. In the following, the G-G algorithm is included for
the adaptive segmentation of multi-spectral MR images. It is important to point out that the G-
G measure does not employ any objective cost function but merely improves the distance
measure through the fuzzification of the statistical estimators 18,24,16. Therefore the G-G
measure should be combined with formula of either the AFCM or G-K algorithms described
in the previous sections to construct the clustering iterations. Here we combined G-G measure
with the formula obtained with the G-K algorithm.

Denote a priori probability of data belonging to cluster i as 24

(28)

and let , then we have (see (26))

(29)

and

(30)

G-G algorithm may be considered as a fuzzified version of expectation-maximization (EM)
18,16,35,36 which decomposes finite (Gaussian) mixtures based on maximum likelihood
estimation. If the membership is still expressed as 18

(31)

then the realization of G-G can be based on the fuzzy cluster centers which are expressed as

(32)
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Otherwise, using the probabilistic expectation (with p=2), the posterior probability 18,24 will
be

(33)

where  is the observation, and a priori probability is

(34)

Hence we have the probabilistic expectation as

(35)

Since the posterior probability for cluster i is conditional upon the observationY′, by assuming
a multivariate normal density distribution for each cluster, we have

(36)

where α′ is a normalization constant independent of i that can be determined by using

.

Therefore, uij can be obtained by

(37)

which corresponds to p=2 in the membership equation. Further more, by including the
contextual information, analogous to the G-K algorithm, Eqs. (35) and (37) become

(38)

and
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(39)

Since there are no exact cost functions in G-G, we choose to estimate the bias field analogous
to the development of G-K's rule, as expressed in the previous section.

The above equations were derived for p=2 since the G-G algorithm for this p value reduces to
expectation maximization 36, while taking p value other than 2 but greater than 1, we have the
general fuzzified version of expectation-maximization.

The G-G algorithm is computationally more expensive because of the evaluation of the
exponential expressions. In addition, the clustering process in G-G algorithm is quite sensitive
to the presence of local minima which further increases the computation complexity. Therefore,
one should use either the AFCM or the G-K to obtain the initial clusters for G-G.

D. Image Acquisition
For evaluation of the above algorithms on actual brain images, dual fast spin echo (FSE) MR
images of the whole brain (from vertex to foramen magnum) were acquired on 20 normal
volunteers. Since the dual echo images are acquired in an interleaved manner, the images are
in perfect registration with each other and do not require post-acquisition image alignment.
Images were acquired either on a GE (1.5T) or a Philips (3T) scanner, with the following
parameters: field-of-view of 240 mm × 240 mm, image matrix of 256 × 256, and echo train
length of 8. A quadrature birdcage resonator was used both for RF transmission and signal
reception at 1.5 T using the following parameters: TE1/TE2/TR = 12 ms/ 86 ms/6800 ms,
where TE and TR represent the echo and repetition times respectively. A total of 42 contiguous
and interleaved slices, each of 3 mm thick, were acquired. On the Philips 3T Intera scanner a
six channel SENSE coil was used for signal reception while the whole body coil was used for
RF transmission. A SENSE factor of 2 was used for these scans. MR images were acquired
with the following scan parameters: TE1/TE2/TR = 9.5ms/90ms/6800 ms. The total number
of slices at 3T was 44, each of 3 mm thick.

Prior to segmentation, the extrameningeal tissues from the images were removed using a semi-
automatic procedure that is described elsewhere 14,41 and these stripped brain images were
used as the input to the algorithms. The output of the algorithms included inhomogeneity
corrected images, cluster centers, bias field, and memberships of the image volume. All the
proposed algorithms were developed under Interactive Data Language (IDL) environment in
Windows.

E. Evaluation
The performance of these algorithms was evaluated quantitatively using the Brainweb images.
The Brainweb images consist of 3 mm thick normal proton density (PD) and T2 weighted
images with 3% noise and 40% inhomogeneity added. We assumed the number of clusters to
be four and our results suggest this number to be appropriate (see the discussion for the rationale
for using four clusters). For the Brainweb images these four clusters represent WM, GM, CSF,
and the dura matter that is consistent with Sucking et al. 44. This is different from most of the
studies performed using the single-channel images (such as T1 weighted) where usually only
3 classes - WM, GM, and CSF- are included 1,2,26,31,53. We also evaluated the performance
of these algorithms on MRI acquired in human normal volunteers. We also compared our
results obtained on the Brainweb images with those obtained with FSL 50 that utilizes the EM
approach. Unlike the Brainweb images, the ground truth is not known in human MRI.
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Therefore, the segmentation results on human images were only qualitatively evaluated based
on visual inspection, by an expert neuroradiologist.

The convergence of clustering iterations is controlled by the L2 norm of the cluster center's
difference between two consecutive iterations (denoted as ε). Two ε values were used: ε=0.05
and 0.01. At least visually, the clustering results for the two ε values were comparable, as
assessed by an expert, but the computation cost for the lower value of ε was almost twice. For
instance, the computational time for AFCM was around 1 minute for ε=0.05, but around 2
minutes for ε=0.01. Therefore the value of ε=0.05 was chosen to generate the initial inputs for
the G-K algorithm using the AFCM. Other parameters that control the contextual constraints
are indicated at the relevant places. All the segmentation (clustering) was performed in two-
dimensional feature space.

For quantitative comparison of segmentation based on AFCM, G-K and G-G algorithms and
FSL, we compared the tissue volumes (Seg) based on the segmentation of the Brainweb images
with the reference volumes (Ref) generated by the ground truth (using the crisp data) and
computing the four similarity measures defined in Eqs. (40) - (43) 3. In these equations,
POE, PUE, PCE refer to the over-, under-, and the correctly estimated percentage of tissue
volumes, respectively, and SI is the similarity index.

(40)

(41)

(42)

(43)

The performance of the algorithm was also evaluated using the FSE images of human brain.
Since in this case the ground truth is not known, the evaluation was qualitative and based on
the opinion of expert neuroradiologist. For the FSE images these four classes primarily
represent WM, GM, CSF, and GM+CSF. Without the inclusion of GM+CSF as a separate
cluster, the long spread between GM and CSF in the feature space led to unfavorable
classification results.

Inclusion of the G-K and G-G algorithms to account for the nonspherical occupancy and
volume difference in the feature space are the major components of this study. Therefore, we
quantitatively evaluated the importance of G-K and G-G algorithms by segmenting the
Brainweb images with and without the incorporation of the G-K/G-G algorithm and comparing
the results with the ground truth using the similarity measures described above. The
improvement in the tissue segmentation by including the G-K/G-G algorithm was also visually
evaluated on the FSE images acquired on normal volunteers.
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Results and Discussion
The Brainweb images were segmented into four tissue classes: WM, GM, CSF, and dura matter.
The intensity inhomogeneity correction was performed iteratively along with the classification
of tissues as described above. To clarify the algorithm's effects on the volume and shape of
cluster in the feature space, the neighborhood contextual constraints 1,37,38,42 were separately
evaluated for either Brainweb or FSE images.

As an example, the memberships of Brainweb image clustering using the AFCM, G-K and G-
G at one slice location are shown in Fig. 1. As can be seen from these images, at least visually,
G-G algorithm performs better than G-K algorithm, and G-K algorithm performs better than
AFCM. Table 1 summarizes the quantitative evaluation of AFCM, G-K and G-G based on the
similarity measures of all the segmented tissues. The Ref values used for computing the
similarity measures were obtained from the Brainweb images in which the tissue classifications
are known. Of all these similarity measures, the similarity index is the most important metric
since it takes into account both false positives and false negatives into account. The
performance of G-K/G-G algorithm can be appreciated by the high values of similarity index.
A comparison of the results in Tables 1 clearly shows that G-K/G-G algorithm improved all
the similarity measures over AFCM. It can also be seen from Fig. 1 that the noise is more
effectively suppressed (for example, in the white matter region) with the G-G relative to AFCM
and G-K algorithms, suggesting that the G-G algorithm is more immune to image noise. From
Table 1, it can also be observed that overall the similarity index based on G-G is higher than
with FSL.

To evaluate the imhomogeneity correction, we calculated the image entropies before and after
correction, and the results are summarized in Table 2. As can be seen from these results, all
the three algorithms reduced the entropy, suggesting their effectiveness in correcting the bias
field. These results also demonstrate the superior performance of the G-G and G-K algorithms
relative to AFCM. The effect of membership contextual information on the similarity measures
was investigated over a narrow range of the parameters α and β (0 to 0.1). Since the cost
functions for the AFCM and G-K algorithms are different, one would expect the values of α
and β to be different for these two algorithms. Based on this evaluation, the parameters that
gave the best results were α = 0.1 and β = 0 for AFCM, α =0.01 and β =0 for G-K. As can be
seen from this table, the contextual constraints considerably improved the segmentation
performance. Fine tuning these parameters could further improve the results.

As an example, the calculated bias field profile in normal volunteer at two slice locations are
shown in Fig. 2. These field profiles were generated using third order polynomial basis
functions. This figure also shows the corresponding images before and after bias field
correction. The substantial improvement in the image quality following the bias field correction
can be visually appreciated on these images.

As indicated earlier, the images acquired on normal volunteers were classified into four classes
namely GM, WM, CSF and GM+CSF. The use of four clusters in the FSE images (GM, WM,
CSF, GM+CSF) can also be rationalized by the fact that the proximity of CSF and GM,
particularly in the cortex, often results in significant partial volume averaging between these
two tissues. Additional dimensions (represented by FLAIR images, for example) in the feature
space may be required to increase the separability of more classes such as lesions 4,17,22. As
an example Fig. 3 shows the segmentation (membership) of one section of the brain in the
cerebellar region. As can be seen from this figure, AFCM misclassified GM and WM (top
row). However, both G-K and G-G correctly classified GM and WM (rows 2−4). Based on
our own experience and that of a number of other investigators, the cerebellar and the posterior
fossa regions are difficult to segment using FCM-based techniques 41,44,53. It is known that

He et al. Page 12

Ann Biomed Eng. Author manuscript; available in PMC 2009 March 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



on the FSE images the tissue intensities in the cerebellar regions are different from those of
the superior parts of the brain 44. This is especially evident in the scanning of clinical patients.
These intensity differences can not be corrected by merely applying the inhomogeneity
correction. Therefore, the segmentation of the cerebellum area is usually performed by
adopting regional or localized methods 41,44,53. With G-K/G-G algorithm, the segmentation
is considerably improved.

Fig. 4 shows the segmentation of a FSE image containing the thalamus/putamen structure. As
can be seen from Fig. 3, the AFCM and G-K algorithms did not clearly discern the thalamus/
putamen structure, while the G-G algorithm was able to segment these structures in a way that
is consistent with the known anatomy. This pattern was consistently observed across all the
images of the 20 volunteers that were included in these studies. It should be pointed out that,
unlike in the real human images, the caudate/putamen structure in the Brainweb image was
reasonably well segmented by the AFCM algorithm. This points out some of the limitations
in using simulated images, such as Brainweb, for complete evaluation of segmentation
algorithms.

While we studied the segmentation of GM, WM, and CSF by including the volume and shape
of clusters in the 2D feature space, additional dimensions in the feature space would be helpful
in the segmentation of lesions. In addition, more complicated methods such as those described
in 27,11 would be helpful in increasing the computational efficiency. Further performance
improvement could be obtained by considering the grand mean and cluster scatter matrices
within and between clusters in the unsupervised clustering 45,19,8,9,12,5,6,28,29,39,52.

Conclusions
An integrated approach for segmentation of multi-spectral MR images is described. This
integrated approach incorporates an efficient bias field correction along with contextual
constraints. This method takes into account the nonspherical occupancy and volume
differences in the clusters in the feature space by replacing the Euclidian distance with cluster
scatter measures to define the Mahalanobis distance, or fuzzifying the statistical measure of
expectation-maximization. Qualitative and quantitative evaluation indicates satisfactory
performance of this approach.
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Appendix I Extension of adaptive FCM to multi-channel segmentation
Denote

(44)

and

(45)
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The Lagrange multiplier is adopted to include the constraints into the optimization and the
augmented objective function becomes

(46)

Taking the derivative of F with uik, for p>1, we have

(47)

and

(48)

by applying , we have

(49)

and

(50)

The concrete norm is required to derive the updated cluster prototype. Generally the norm is
given by

(51)

where L is a positive definite matrix, by using (16), for Euclidean norm, we have L=I, the
identity matrix. Taking the derivative of F with respect to vi, we have

(52)

and
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(53)

Similarly, the bias field can be estimated by taking the derivative of F with bk, that is

(54)

and using the formula of (19), Eqn. (54) can be written as

(55)

then we get

(56)

Solving Eqn. (56) leads to the smooth approximation of the bias field as

(57)
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Figure 1.
Classification of a Brainweb images into four tissue classes. The left two images in the first
row are the original PD and T2 and the next two images are with 3% noise and 40% bias. The
classification order in next four rows from left to right is WM, Dura, GM, and CSF. The second,
third, and fourth rows show results with AFCM, G-K algorithm, and G-G algorithm,
respectively. The last row shows the ground truth of Brainweb images.
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Figure 2.
The imhomogeneity correction of FSE image obtained by applying G-G algorithm on two
slices of images displayed in Fig.3 and Fig. 4. The first row is for PD, and the 2nd row is for
T2. The imhomogeneity are retrieved as columns 1 and 2, columns 3 and 4 are images before
correction, and columns 5 and 6 are images after correction.
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Figure 3.
The membership of one axial cross-section of FSE images in cerebellum region, the
classification is in the order of WM, GM, GM+CSF, and CSF, from left to right. The first row
is the results of AFCM, the 2nd row is the results of G-K algorithm, and the 3rd row is the
results of G-G algorithm with initials from AFCM, and the 4th row is the results of G-G
algorithm with initials from G-K. The last row shows the original FSE images.
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Figure 4.
The membership of one axial cross-section of FSE images containing thalamus/putamen
structure, the classification is in the same order of Figure 3. The first row is the results of
AFCM, the 2nd row is the results of G-K algorithm, the 3rd row is the results of G-G algorithm
with initials from G-K, and the 4th row is the results of G-G algorithm with initials from AFCM.
The last row shows the original FSE images.
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Table 2
Calculated entropies of Brainweb images with AFCM, G-K and G-G methods. The entropy of the original images
without inhomogeneity correction is shown in the last column.

Inhomogeneity Corrected AFCM G-K G-G Uncorrected

PD (1D) 7.1409 7.1053 7.1055 7.3414

T2 (1D) 7.5243 7.5198 7.5212 7.5526

PD-T2 (2D) 12.852 12.822 12.822 13.023
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