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Anisotropic mean shift based fuzzy c-means
segmentation of dermoscopy images

Huiyu Zhou, Gerald Schaefeklember, IEEE, Abdul H. SadkaSenior Member, IEEEand M. Emre
Celebi,Member, IEEE

Abstract—Image segmentation is an important task in Automatic border detection of lesions is often the first step
analysing dermoscopy images as the extraction of the borders jn the automated or semi-automated analysis of dermoscopy
of skin lesions provides important cues for accurate diagnosis. images and is crucial for accurate diagnosis. Image segmen-

One family of segmentation algorithms is based on the ideat ti be defined th . f simil ivels (i
of clustering pixels with similar characteristics. Fuzzy c-means @U0N can be defined as the grouping of similar pixels (e,

has been shown to work well for clustering based segmentation, 1€sion and non-lesion pixels) in a parametric space, wie t

however due to its iterative nature this approach has excessive are associated with each other in the same or different immage
computational requirements. In this paper we introduce a new Fyzzy c-means (FCM) is a segmentation algorithm that is
mean shift based fuzzy c-means algorithm that requires |1ess paseq on clustering similar pixels in an iterative way where

computational time than previous techniques while providing . . . .
good segmentation results. The proposed segmentation methodth€ cluster centres are adjusted during each iteratiorD6¢

incorporates a mean field term within the standard fuzzy c-means 10 its iterative nature the computational cost of the alhoni
objective function. Since mean shift can quickly and reliably is relatively high compared to other segmentation tectesqu
find cluster centres, the entire strategy is capable of effectiye Hence, a number of approaches, e.g. [6], [7], have been

detecting regions within an image. Experimental results on a r n h llow for sianifican while maiitiai
large dataset of diverse dermoscopy images demonstrate thate presented t atalo or significant speedups e mang
good segmentation performance.

presented method accurately and efficiently detects the border

of skin lesions. In this paper we introduce a new mean shift based fuzzy
. . c-means algorithm that requires less computational tirae th
Index Terms—Skin cancer, dermoscopy, melanoma, image . . .
segmentation, fuzzy c-means, mean shift. these established techniques. The proposed method incorpo

rates a mean field term within the standard fuzzy c-means
objective function. Since mean shift can quickly and rd{iab
. INTRODUCTION find cluster centres, the entire strategy is capable of iftdyg
ALIGNANT melanoma, the most deadly form of skinsegmenting clusters within an image. We evaluate the pezpos
cancer, is one of the most rapidly increasing canceadgorithm on a large dataset of dermoscopic images. Based
in the world, with an estimated incidence of 62,480 andn these experiments we show that our approach delivers
an estimated total of 8,420 deaths in the United States @xcellent segmentation of lesions in a computationallyieiffit
2008 alone [1]. Early diagnosis is particularly importaimce manner.
melanoma can be cured with a simple excision if detectedThe rest of the paper is organised as follows: In Section I,
early. the original FCM algorithm and its variants are introduced
Dermoscopy, one of the major tools for the diagnosis @nd discussed. Our proposed anisotropic mean shift based
melanoma, is a non-invasive skin imaging technique thBEM approach is described in Section Ill. Section IV present
involves optical magnification which makes sub-surfacecstr extensive comparative results of the proposed scheme and
tures more readily visible compared to conventional clincgonventional approaches. Finally, conclusions and futlire
images [2]. This in turn reduces screening errors and pesvidections are given in Section V.
greater differentiation between difficult lesions such & p
mented Spitz nevi and small, clinically equivocal lesio8% [ Il. FUZZY C-MEANS IMAGE SEGMENTATION AND ITS
However, it has also been demonstrated that dermoscopyt migh VARIANTS
lower the diagnostic accuracy in the hands of inexperiencg\d
dermatologists [4]. Therefore, in order to minimise diagim = ) . o
errors resulting from the difficulty and subjectivity of uis Fuzzy c-means (FCM) is based on the idea of finding cluster

interpretation, the development of computerised imagéyanaCentres by iteratively adjusting their positions and eztian
sis techniques is of paramount importance. of an objective function similar to the original hard c-msan

yet it allows more flexibility by introducing the possibifibf

H. Zhou ?nd AH. Sadkaba(rje with the School of dEngine:jering amald Dpartial memberships to clusters. The effect of the geneZ F
sign, Brunel University, Uxbridge, UB8 3PH, United Kingdor&rmail: ; o i ; ;
{Hul yu. Zhou: Abdul . Sadka)@r unel . ac. uk. algorlthm_ls |!Iustratec_i in Figure 1.

G. Schaefer is with the School of Engineering and Applied 1he objective function usually follows the form
Science, Aston University, Birmingham, United Kingdom, E-mail c N
g. schaef er @st on. ac. uk. k 9

M.E. Celebi is with the Department of Computer Science, Lamigi State E = Z Z Hij | \xz - Cj” s (1)
University, Shreveport, LA 71115, USA, E-maécel ebi @ sus. edu. j=1i=1

Classical fuzzy c-means
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where ufj is the fuzzy membership of sample (or pixal) stopping criteria. After the following steps the datasen@ted
and the cluster identified by its centeg, andk is a constant as X(,,_.a%)) Will include N x A% samples:

that defines the fuzziness of the resulting partitions.

FE can reach the global minimum when pixels nearby the
centroid of corresponding clusters are assigned higher-mem2)
bership values, while lower membership values are assigned
to pixels far from the centroid [8]. Here, the membership is 3)
proportional to the probability that a pixel belongs to adifie
cluster where the probability is only dependent on the dita  4)
between the image pixel and each independent cluster centres)
The membership functions and the cluster centres are update6)

1)

SelectX A from the set of the original feature vectors
matrix (z = 1).

Initialise the fuzzy memberships functions; using
Compute the stopping condition = e;-zx((e1-€2)/n)
and letj = 0.

Setj=5+1.

Compute the cluster centreg...n%) using Eg. (3).
Computey..ay%) using Eg. (2).

by . 7)
= 2 8)
NJ Zc ( HI]‘*Cz‘H )a ( )
m=1 \ [|zj—cp|[)2/F-D

If ||Mgzm% — uj(z_*lA%)H > ¢ thengoto Step 4.

If 2 <n, then select anotheX ) and merge it with
the currentX.,ay%) and set: = z + 1, otherwise move
to Phase 2 of the algorithm.

and N Phase 2 FCM clustering
k e e . .
o ijl“uxﬂ 3) 1) Initialise p;; using the results from Phase 1, i.e.
! Z;,V:l uk, C(n.xa%) With Eq. (3) for the full data set.

2) Go to Steps 3 of the conventional FCM algorithm and
iterate the algorithm until stopping criterion is met.
Evidence has shown that this improved FCM with random
sampling is able to reduce the computation requested in the

classical FCM method [10]. Other variants of this multigtag
random sampling FCM framework have also been developed
Hd can be found e.g. in [11] and [12].

Fig. 1 is probably here!

The steps involved in fuzzy c-means image segmentatisl
are [S]: C. Enhanced FCM (EnFCM) and variants

1) Initialise the cluster centres and lett = 0. _ Ahmedet al. [13] introduced an alternative to the classical
2) Initialise the fuzzy partition memberships functions  Fcp by adding a term that enables the labelling of a pixel
according to Eq. (2). , to be associated with its neighborhood. As a regulator, the
3) Lett =1 +1 and compute new cluster centrésusing peighhourhood term can change the solution towards piece-
Eq. (3). _ wise homogeneous labelling. As a further extension of this
4) Repeat Steps 2 to 3 until convergence. work, Szilagyi et al. [7] introduced their EnFCM algorithm
An initial setting for each cluster centre is required anglhere, in order to reduce the computational complexity, a
FCM converges to a local minimum. The efficiency of FCMinearly weighted sum image is formed from the original

has been comprehensively investigated in [9]. To effelstiveimage, and the local neighbour average image evaluated as
address the inefficiency of the original FCM algorithm saver
e E (L’j y

variants of the fuzzy c-means algorithm have been introdluce
JEN,

which we cover briefly in the following subsections.
_ _ whereg,,, denotes the gray value of the-th pixel of the image

B. Fast FCM with random sampling (RSFCM) g, =; represents the neighbours:af,, Ny, is the cardinality of

To reduce the computational requirements of FCM, Chergcluster,N,. represents the set of neighbours inside a window
et al.[6] proposed a multistage random sampling strategy. ngound];m'- . _ o _
method has a lower number of feature vectors and also needdhe objective function used for segmenting images
fewer iterations to converge. The basic idea is to randomfigfined as o
sample and obtain a small subset of the dataset in order J = ZZWW(W — )2,
=1 [=1

to approximate the cluster centres of the full dataset. This
approximation is then used to reduce the number of iter&tio@vhereq(. denotes the number of the gray levels in the image,
d~; is the number of the pixels having an intensity equal to

The random sampling FCM algorithm consists of two phasea%,1
ls, which refers to intensity levels with=1,2,...,q.. Thus,

First, a multistage iterative process of a modified FCM i
performed. Phase 2 is then a standard FCM with the clusterg. — N under the constraint that'C . 4 — 1 for an
centres approximated by the final cluster centres from Ph =17 Wiz i y
1. '
Phase 1 Randomly initialise the cluster centres

Let XA be a subset whose number of subsamples%
of the N samples contained in the full datas€tand denote
the number of stages as ¢; ande, are parameters used as

Gm 4)

Tm

:1—|—a

(®)

Finally, we can obtain the following expressions for mem-
bership functions and cluster centres [14]:.
(g0 — si)~2/m!

Hil = C .
Zj:l(gl — ;) 72/m=1

(6)
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and . . little computational effort. This is the basis of one stggtéo
3, = Dl ikl g @) applying spatial constraints to the standard FCM.
dosy Mt Pham [17] proposed an improved FCM objective func-

EnFCM considers a number of pixels with similar intensitieon With an added spatial penalty term in the membership
as a weight. Thus, this process may accelerate the coneergdinctions. This technique needs some extented compugation
of searching for global similarit. On the other hand, t§fforts to search for an appropriate penalty term. However,
avoid image blur during the segmentation, which may ledB€ entire FCM scheme is of lower computational complexity
to inaccurate segmentation, Gati al. [14] utilises a measure UPON determination of the penalty term.

S;; in a fast generalised FCM algorithm (FGFCM), which PSFCM, as proposed by Hung and Yang [18], is a two-
incorporates the local spatial relationshifj;, and the local stage scheme. A smaller data set is extracted from the entire

image using the classical-d tree method, followed by a
standard FCM segmentation which uses the cluster centres
g — { HBS Sf’j, jF#i ®) previously generated. This strategy reduces the compuntdti

I 0, j=1 requirements of the FCM segmentation significantly. Esthri
et al. [11] presented the brFCM algorithm, which can reduce

gray-level relationshigs?;, and is defined as

with the number of distinct patterns by aggregating similar exam
55 — exp (— max(|pej — peils [ge; — Q(:i|)> . (9) Plesand then using a weighted exemplar in the FCM process.
As 2) FCM with optimisation of functionalsModifications or
and adjustment of membership functions can also be used toeeduc
G _ —||z; — x4]|? (10) the number of iterations required in the FCM scheme. The
ij — ¢XP Ay X 02 ' motivation behind this strategy is the possibility of siifyihg

the original membership functions or modifying the claabic
convergence criterion so as to accelerate the segmentation
procedure.

Hoppner [10] re-organised the original data sets as a tree
before segmentation starts, leading to fast convergendeeof

where (p.;, g.;) describe the co-ordinates of tih pixel, o,

is a global scale factor of the spread 8f;, and A; and ),

represent scaling factors,; replacesx in Eq. (4).
Hence, the newly generated imagés updated as

> jeN: DijT; later process. Unfortunately, this re-organisation isarotdeal
9i = Tv (11)  model in the presence of large data sets or increasing number
_ ) ’ ) of clusters [19]. Cannoet al. [20] reported a speed-up factor
and is restricted to [0, 255] due to the denominator. of 6 for an improved FCM scheme by look-up tables for

Given a pre-defined number of clust.e%and a threshold. exponential and distance function. Frequent updating ef th
valuee > 0, the reported FGFCM algorithm [14] proceeds iRtandard FCM can be used to reduce the iterations and hence

the following steps: improves the computational efficiency [21].

1) Initialise the clusters;. A similarity-driven cluster merging method was proposed
2) Compute the local similarity measurég using Eq. (8) by Xiong et al. [22]. This method takes into account the
for all neighbours and windows over the image. similarity between clusters by a fuzzy cluster similaritgtnix,

3) Compute linearly-weighted summed image using and an adaptive threshold is used for merging. De Gruijtdr an

Eq. (11). McBratney [23] modified the objective function to account fo
4) Update the membership patrtitions using Eqg. (6). outliers (extragrades) and hence improve the performahce o
5) Update the cluster centres using Eq. (7). the FCM in noisy environments.
6) If 0, l|ci(ota) — Citnew| 2 > € g0 to Step 4.
Similar efforts to improve the computational efficiency and 1. ANISOTROPIC MEAN SHIFT BASEDFCM

robustness have also been reported in [15] and [16]. i . i i i
In this subsection we will present a new combinatorial

] approach to fuzzy c-means segmentation that utilises an

D. Other FCM variants anisotropic mean shift algorithm coupled with fuzzy segmen

Other variants of the classical FCM algorithm can be clasgation.
fied into two groups: those with added spatial constrainmtd, a Mean shift based techniques have been shown to be capable
those with optimisation of termination conditions or oltijee of estimating the local density gradients of similar pixels
functions. These gradient estimates are iteratively performed soathat

1) FCM with spatial constraints:There are certain sim- pixels can find similar pixels in corresponding images [24],
ilarities when considering spatial contents of an image. F{25]. A standard mean shift approach method uses radially
example, a number of regions in the image can be very simigymmetric kernels. Unfortunately, the temporal coherence
to each other in intensity or colour. These similarities camill be reduced in the presence of irregular structures and
be labelled before any segmenting process starts. Durimg tioise in the image. This reduced coherence may not be
actual segmenting process, one of the areas from the simpaoperly detected by radially symmetric kernels and thus,
groups will be utilised for segmentation, while the otherym an improved mean shift approach, namely anisotropic kernel
be directly assigned to the same clusters as the former witlean shift [26], provides better performance.
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A. Proposed algorithm components respectively [26]. Classical mean shift elis

In mean shift algorithms the image clusters are contingouslymmetric kemels that may experience a lack of temporal
moved along the gradient of the density function before th&pherence in the regions where the intensity gradients exis
become stationary. Those points gathering in an outlined aWith @ slope relative to the evolving segment. In contrast,
are treated as the members of the same segment. To deterrHgotropic kemel mean shift links with every data point by
the membership of an image point a density estimate at tR@ anisotropic kernel. This kernel associated with a pizel ¢
point needs to be conducted. In other words, similarity cor{fPdate its shape, scale and orientation. The density éstima
putation must be achieved between this point and the ceridepresented by

of the segment. Furthermore, the coherence between this poi ) 1N 1

and its surrounding image points needs to be discovered (6.9 f(z;c) = — Z ——_k(d(c®, 22, HY))
colour or intensity consistency), as this coherence carsbd u N i=1 hA(H )

to remove any inconsistency such as image artifacts or noise 1B (||(CB _ x@)/(hﬂHq)‘|2) (18)
In this subsection, we mainly discuss about the estimatfon o ' ! ’

the density function of an image point (this kernel densityhered(c®, %, H*) is the Mahalanobis distance
estimation is also known as the Parzen window technique). -

The motivation of introducing the density estimation based ~ d(c®, =", H{') = (¢ — c®)"HX (2 — c®). (19)

ts)eg?rﬁnitrziig;n Irzbr;:itthseg;gefuﬁgggﬁsC(?D;E)e O:cegéensaeimegnisotropic mean shift is intended to modulate the kernels
Y P b y y during the mean shift procedure. The objective is to keep

parameters (€.g., colour or intensity). Dense or sparserreg reducing the Mahalanobis distance so as to group similar

of similar image points correspond to local maxima or minimgarn les as much as possible. Eirst. the anisotronic batidwid
of the PDF (or the modes of the unknown density) [25]. After P o . POssIble. ' trop :

. : .maTtnx H¢ is estimated using a standard radially symmetric
the modes have been located in the image, the membersh|%.0

o B i i
an image point to a particular segment will be determined. lagonal f1;* and 4”. The neighbourhood of pixels around

A kernel density estimate on an image point is defined br;/as the following constraints:

1 N { kg(d(cvxivHia)) <1 (20)
fla) = 5 > K-, (12) k2 (l(e =) /(W HP)|P) < 1
. =t A new full matrix H¢ will use the variance ofq(— ;) as its
with s s components. To show how the modulationff happens we
K(z) = [H|TV?K(H ™ 2), (13) first decompose the required bandwidth matrix to
whereN is the number of samples, ang stands for a sample HY = \WAVT, (21)

from an unknown density functiorf. K(-) is the d-variate

kernel function with compact support satisfying the regtya where is a scalar} is a matrix of normalised eigenvectors,
constraints, andd is a symmetric positive definitd x d and A is a diagonal matrix of eigenvalues whose diagonal
bandwidth matrix. Usually, we hav& (z) = k.(z), where elementsa; satisfy [26]

ke(x) is a convex decreasing function, e.g. for a Gaussian »
kernel a; = 1. (22)
ke(z) = cre™®/2, (14) 1;[1
or for an Epanechnikov kernel, The bandwidth matrix is updated by adding more and more
points to the computational list: the more image points with
ke(z) = ¢ max(1 — ,0), (5)  similar colour or intensity gather in the same segments, the
wherec; is a normalising constant. less total Mahalanobis distance between the image poiits an

If a single global spherical bandwidth is applied,= h2I the centres of individual segments will be obtained (refer t
(whereT is the identity matrix), then we have the classicdras: (19)-(22)).

form as In the proposed algorithm we combine fuzzy c-means and
- 1 Y T — anisotropic mean shift segmentation. A significant diffiee
f@) = 573 YK ( - ) : (16) petween our approach and other similar methods is that our
=1

algorithm continuously inherits and updates the statesedba
Since the kernel can be divided into two different radiallpn the interaction of FCM and mean shift. Stemming from
symmetric kernels, we have the kernel density estimate asthe algorithm reported in [26], the proposed anisotropiame

shift based FCM (AMSFCM) proceeds in the following steps:

N
. 1 ) o L
: = _k© > _z*)/p™ 1) Initialise the cluster centres;. Let the iteration count
F(asc) ;N(ha)p(hﬁ)qk (||(c 2)/h| ) ) tIZIOIS us res iteration cou
kﬂ<||(cﬁ _ x-ﬂ)/hﬁHQ) (17) 2) Initialise the fuzzy partitiong:;; using Eq. (2).
! ’ 3) Incrementt = ¢ + 1 and compute:; using Eq. (3) for
where c represents a vector of cluster centrpsand ¢ are all clusters.

two ratios, anda and 5 denote the spatial and temporal 4) Updateu;; using Eq. (2). This is an FCM process.
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5) For each pixelz; one needs to estimate the density 2) Proposed AMSFCM:To find cluster centres we can
with anisotropic kernels and related colour radius usingilise the gradient of the density estimator. Let
Egs. (18)-(21). For simplicityH¢ can just apply vari- ‘ 5.8
ances at the diagonal items with other zero components. I ﬂ ||2 ) - k"(d(ca,x?,Hf))kﬁ( I C;Jiz ||2 )
Note that mean shift is employed after the FCM stage. h hP H;

6) Calculate the mean shift vector and then iterate um”Then we have (25)
the mean shiftM*(z;) — M~ (z;), is less than 0.01 ) N
con.s?dering the previous position and a normalised of(x;c) o {Z (” C— X; 2 )}
position change: dc o i g h
M (x;) = vM~(z;) + (1 - ;v:l
) S lEs M @I )~/ H)| with i w( [ 2)
S @) —a) /(WP Hy)[2 { ~ _— —C}, (26)
v =05." - S g e )
7) Merge pixels that possess less Mahalanobis distances .
than the pre-defined thresholds. in which the constant’, is expressed as
8) Repeat Steps 3 to 7 untjl; — ul;'| < € (e is @ . — 2¢4 7)

pre-set threshold). s = Npdt2’

Figure 2 illustrates how the segmentation evolves using tB8d ¢, is the corresponding normalisation constant [25].
proposed AMSFCM algorithm. In this example the segmenta- C—Xi o - C—xi o
tion optimally converges after 6 iterations. 9( ==l ) = %k( [ ; | )

— (d(ca,xf‘7Hf‘))/k/1k2

. . - B
Fig. 2 is probably here! , 2¢7 1P — ) 5
+k1k2 hQB(H?)2 ’ ( 8)
and
ki = k*(d(c*, ¢, HY)),
5( v ) (29)
B. Convergence behaviours ky =k (|| el )
1) Classical FCM:Classical FCM is one of the sub-optimal The regulation term is
segmentation algorithms, which sacrifices global optitpali N
to the improved numerical efficiency and flexibility of the fr(w;e) = Cs[zg( [y )}7 (30)
segmentation process. The computational cost of FCM heavil i—1 h
depends on the nymbgr of image points that need to Bgy the mean shift term is
processed in each iteration. N o
To obtain a global minimal solution, we differentiate both L 2im1 $i9< [ ) 31
sides of Eq. (1) with respect tg, and then set them to zero: m,(z; €) = [ N c—xi 12\ C]’ (31)
o= )
oK 0 ZC: i\’: il 2 Referring to [25] we can obtain the following expression:
ack B 8Ck J=1i=1 IUU i “ 8f($;c)
_ m,(z;¢) = C,=—25—, (32)
0- (23) fr(w;c)

: . ere C, is a constant. According to the Capture Theo-
The right hand side of Eq. (1) has an upper bound that Iea\r%%] [27], the trajectories of the gradient method introdiice

to here are attracted by local maxima if they are unique station
C N points within a small neighborhood. In other words,
(s = emll® + llem — ¢511%) (o
j:u; ’ of(wic) _ (33)
c N dc
> Z Zufj(mi —¢)?, (24) Indue convergence, we will have an optingl from Eq. (33),
o e where the magnitude of the mean shift vector approaches 0.

Let us revisit Egs. (24), (32) and (33). It has been proven
wherec,, stands for the mean value of. Introducing Eq. (24) that the mean shift with a form as in Eq. (26) converges if
into Eq. (23), one can observe that the derivativeFofvith the kernel K'(-) has a convex and monotonically decreasing
respect taz;, will be dominated by the sum of distance betweeprofile [25]. While the kernel function is approaching to
c¢m and ¢;. The faster this distance is reduced, the bettés convergence, the mean valug, of the cluster centres
asymptotic performance the entire FCM holds. is available and can be a prediction for next iteration of



IEEE JOURNAL ON SELECTED TOPICS IN SIGNAL PROCESSING, VOL.XX, NXX, XXX 2008 6

FCM segmentation. This helps reduce computational effoft®sitivesl” P (the number of pixels that were classified both by
addressed in the FCM segmentation procedure afterwarés. Tie algorithm and the expert as lesion pixels), True Negativ
convergence speed of the mean shift relies on iﬁ?cﬁ, TN (the number of pixels that were classified both by the
which normally is very fast due to fast mean calculation. algorithm and the experts as non-lesion pixels), FalsetiPesi
FP (the number of instances where a non-lesion pixel was
IV. EXPERIMENTAL EVALUATION falsely classified as part of a lesion by an algorithm) andé-al

: . NegativesFN (the number of instances where an lesion pixels
The proposed segmentation algorithm was evaluated on a s¢ o : . '
was falsely classified as non-lesion by an algorithm). Frioish t

of 100 dermoscopy images (30 invasive malignant melanoma e L
and 70 benign) obtained from the EDRA Interactive Atlas ot can then calculate the sensitiviy (or true positive rate)

Dermoscopy [2] and the dermatology practises of Dr. A:shfae}qS TP

Marghoob (New York, NY), Dr. Harold Rabinovitz (Plan- SE = TP+ FN (34)
tation, FL) and Dr. Scott Meznies (Sydney, Australia). The

benign lesions included nevocellular nevi and dysplastid.n and the specificitys P (or true negative rate) as

A subset of the images is shown in Figure 3. Manual borders TN

were obtained by selecting a number of points on the lesion SP = TN+ FP (35)

border, connecting these with a 2nd-order B-spline andlyinal
filling the resulting closed curve. Three sets of manual bsd  In Table | we list the sensitivity and specificity obtained
were determined by dermatologists Dr. William Stoeckkar, Dby all algorithms over the entire database and compared to
Joseph Malters, and Dr. James Grichnik using this method aaitl three ground truth segmentations (average and SP
serve as a ground truth for the experiments. based on all three manual segmentations are reported)n It ca
be seen that the proposed AMSFCM performs significantly
better with an average sensitivity of about 78% while theepth
algorithms achieve only a sensitivity of about 74%. In addit

our algorithm provides more consistent results as indichte

the lower variance o6 E. As specificity is fairly similar for

] . . all algorithms, we can conclude that AMSFCM provides the
For our experimental evaluation, we used a PC with Intel(RRbst segmentation on the given dataset.

Core(TM)2 CPU (2.66GHz) and 2GB RAM. The algorithms
that we compared are conventional FCM [5], EnFCM [7],
RSFCM [6] and the proposed AMSFCM. In a final stage, _ i
morphological processing is employed for smoothing the Fig: S iS probably here!
segmentation outcomes, especially the image borders and
removing small isolated areas.

An example of the segmentations obtained by the various
algorithms is given in Figure 4 which shows one of the

round truth segmentations together with the results by all .
?our methods. I% can be obsgrved that the segmenta);ions-rable 1 is probably here!
produced by classical FCM and RSFCM are less smooth
than those by EnFCM and AMSFCM. This is due to (1)
RSFCM uses FCM in the second phase so they both haveéAs we have noted before, computational efficiency is a
approximate convergence characteristics, and (2) EnFQM aiucial issue when considering FCM based segmentation. We
AMSFCM take into account weighted image pixels so thefecord the number of iteration required in each FCM approach
outcomes are smoothed in the FCM stage. Clearly, smootif@revaluation, which in turn enables us to make a comparison
borders are more realistic and also conform better to thegarding the relative efficiency of the different appraegh
manual segmentations derived by the dermatologists. TWe normalised them so that the classical FCM algorithm
second observation is also reflected in Figure 5, whereraigi is assigned 1.00 while the other ones represent the relative
images are segmented using different FCM algorithms aftéctions they take compared to this. The results are pteden
the lesion borders are then extracted. It is also noticet tii@a Table Il from which it can be seen that the proposed
different algorithms generate similar results forigurashjle AMSFCM takes computation efforts of 37 4% and 17 less
the proposed AMSFCM algorithm has clearly the best bord#tan compared to FCM, RSFCM and EnFCM respectively.
result for the third example.

Fig. 3 is probably here!

Table 2 is probably here!
Fig. 4 is probably here!

Overall, it is evident that the proposed approach provides a
For each image segmentation we record the number of Treery useful tool for the analysis of dermoscopic images. Not
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only does it provide the best segmentation results among the
algorithms investigated, it also is the most efficient mdtho
[15]
V. CONCLUSIONS
Fuzzy c-means based algorithms are frequently used [thl
segment medical images but are also computational innsiv
In this paper we have introduced a new mean shift based
. : 17
fuzzy c-means segmentation algorithm. The proposed metﬁod
incorporates a mean field term within the standard fuzzy ps]
means objective function. Based on a large set of dermascopi
images, we have shown that the proposed segmentation tech-
nigue AMSFCM is not only more efficient than other fuzzy19]
c-means approaches but that it is also capable of providing s
perior segmentation. The developed algorithm hence pesvig,q
a useful tool as a first stage in the automatic or semi-auiomat
analysis of skin lesion images. [21]
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Fig. 2 Examples of AMSFCM iterative segmentation.

Fig. 3 Subset of the dermoscopic image set used in the
evaluation.

Fig. 4 Segmentation comparison of original image (upper
left), ground truth (upper right), FCM (middle left), RSFCM
(middle right), EnFCM (bottom left) and AMSFCM (bottom
right) for image 15.

Fig. 5 Border detection of exemplar segmented images (row
1: original images; row 2 - FCM results; row 3 - RSFCM
results; row 4 - EnFCM results and row 5 - AMSFCM results).

Table 1 Segmentation performance on the complete dataset.
For each algorithm the average sensitivity and specifiqigy a
given. The values in brackets indicate the standard dewisti
of the measures.
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[ Algorithm ]| Sensitivity | Specificity |
FCM 0.739 (0.120)] 0.99 (0.056)
RSFCM 0.738 (0.118)| 0.99 (0.052)
EnFCM 0.740 (0.118)| 0.99 (0.061)
AMSFCM || 0.776 (0.113)| 0.99 (0.065)

TABLE |

[ Algorithm | computational cost

FCM 1.00 (0.00)
RSFCM 0.67 (0.11)
EnFCM 0.80 (0.09)
AMSFCM 0.63 (0.09)

TABLE I
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(a) Available clusters (b) Random centres (c) Converging ) F{dal settlement

(a) original image (b) 3 iterations (c) 4 iterations (d) erétions

Fig. 1.

Fig. 2.

Fig. 3.
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Fig. 4.
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Fig. 5.
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