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Anisotropic mean shift based fuzzy c-means
segmentation of dermoscopy images
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Abstract—Image segmentation is an important task in
analysing dermoscopy images as the extraction of the borders
of skin lesions provides important cues for accurate diagnosis.
One family of segmentation algorithms is based on the idea
of clustering pixels with similar characteristics. Fuzzy c-means
has been shown to work well for clustering based segmentation,
however due to its iterative nature this approach has excessive
computational requirements. In this paper we introduce a new
mean shift based fuzzy c-means algorithm that requires less
computational time than previous techniques while providing
good segmentation results. The proposed segmentation method
incorporates a mean field term within the standard fuzzy c-means
objective function. Since mean shift can quickly and reliably
find cluster centres, the entire strategy is capable of effectively
detecting regions within an image. Experimental results on a
large dataset of diverse dermoscopy images demonstrate that the
presented method accurately and efficiently detects the borders
of skin lesions.

Index Terms—Skin cancer, dermoscopy, melanoma, image
segmentation, fuzzy c-means, mean shift.

I. I NTRODUCTION

M ALIGNANT melanoma, the most deadly form of skin
cancer, is one of the most rapidly increasing cancers

in the world, with an estimated incidence of 62,480 and
an estimated total of 8,420 deaths in the United States in
2008 alone [1]. Early diagnosis is particularly important since
melanoma can be cured with a simple excision if detected
early.

Dermoscopy, one of the major tools for the diagnosis of
melanoma, is a non-invasive skin imaging technique that
involves optical magnification which makes sub-surface struc-
tures more readily visible compared to conventional clincal
images [2]. This in turn reduces screening errors and provides
greater differentiation between difficult lesions such as pig-
mented Spitz nevi and small, clinically equivocal lesions [3].
However, it has also been demonstrated that dermoscopy might
lower the diagnostic accuracy in the hands of inexperienced
dermatologists [4]. Therefore, in order to minimise diagnostic
errors resulting from the difficulty and subjectivity of visual
interpretation, the development of computerised image analy-
sis techniques is of paramount importance.
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Automatic border detection of lesions is often the first step
in the automated or semi-automated analysis of dermoscopy
images and is crucial for accurate diagnosis. Image segmen-
tation can be defined as the grouping of similar pixels (i.e.,
lesion and non-lesion pixels) in a parametric space, where they
are associated with each other in the same or different images.
Fuzzy c-means (FCM) is a segmentation algorithm that is
based on clustering similar pixels in an iterative way where
the cluster centres are adjusted during each iteration [5].Due
to its iterative nature the computational cost of the algorithm
is relatively high compared to other segmentation techniques.
Hence, a number of approaches, e.g. [6], [7], have been
presented that allow for significant speedups while maintaining
good segmentation performance.

In this paper we introduce a new mean shift based fuzzy
c-means algorithm that requires less computational time than
these established techniques. The proposed method incorpo-
rates a mean field term within the standard fuzzy c-means
objective function. Since mean shift can quickly and reliably
find cluster centres, the entire strategy is capable of effectively
segmenting clusters within an image. We evaluate the proposed
algorithm on a large dataset of dermoscopic images. Based
on these experiments we show that our approach delivers
excellent segmentation of lesions in a computationally efficient
manner.

The rest of the paper is organised as follows: In Section II,
the original FCM algorithm and its variants are introduced
and discussed. Our proposed anisotropic mean shift based
FCM approach is described in Section III. Section IV presents
extensive comparative results of the proposed scheme and
conventional approaches. Finally, conclusions and futuredi-
rections are given in Section V.

II. FUZZY C-MEANS IMAGE SEGMENTATION AND ITS

VARIANTS

A. Classical fuzzy c-means

Fuzzy c-means (FCM) is based on the idea of finding cluster
centres by iteratively adjusting their positions and evaluation
of an objective function similar to the original hard c-means,
yet it allows more flexibility by introducing the possibility of
partial memberships to clusters. The effect of the general FCM
algorithm is illustrated in Figure 1.

The objective function usually follows the form

E =

C
∑

j=1

N
∑

i=1

µk
ij ||xi − cj ||

2, (1)
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whereµk
ij is the fuzzy membership of sample (or pixel)xi

and the cluster identified by its centrecj , andk is a constant
that defines the fuzziness of the resulting partitions.
E can reach the global minimum when pixels nearby the

centroid of corresponding clusters are assigned higher mem-
bership values, while lower membership values are assigned
to pixels far from the centroid [8]. Here, the membership is
proportional to the probability that a pixel belongs to a specific
cluster where the probability is only dependent on the distance
between the image pixel and each independent cluster centre.
The membership functions and the cluster centres are updated
by

µij =
1

∑C
m=1

(

||xj−ci||

||xj−cm||)2/(k−1)

) , (2)

and

ci =

∑N
j=1 u

k
ijxj

∑N
j=1 u

k
ij

. (3)

Fig. 1 is probably here!

The steps involved in fuzzy c-means image segmentation
are [5]:

1) Initialise the cluster centresci and lett = 0.
2) Initialise the fuzzy partition memberships functionsµij

according to Eq. (2).
3) Let t = t+ 1 and compute new cluster centresci using

Eq. (3).
4) Repeat Steps 2 to 3 until convergence.

An initial setting for each cluster centre is required and
FCM converges to a local minimum. The efficiency of FCM
has been comprehensively investigated in [9]. To effectively
address the inefficiency of the original FCM algorithm several
variants of the fuzzy c-means algorithm have been introduced
which we cover briefly in the following subsections.

B. Fast FCM with random sampling (RSFCM)

To reduce the computational requirements of FCM, Cheng
et al. [6] proposed a multistage random sampling strategy. This
method has a lower number of feature vectors and also needs
fewer iterations to converge. The basic idea is to randomly
sample and obtain a small subset of the dataset in order
to approximate the cluster centres of the full dataset. This
approximation is then used to reduce the number of iterations.
The random sampling FCM algorithm consists of two phases.
First, a multistage iterative process of a modified FCM is
performed. Phase 2 is then a standard FCM with the cluster
centres approximated by the final cluster centres from Phase
1.
Phase 1: Randomly initialise the cluster centresci

Let X∆% be a subset whose number of subsamples is∆%
of theN samples contained in the full datasetX and denote
the number of stages asn. ǫ1 and ǫ2 are parameters used as

stopping criteria. After the following steps the dataset (denoted
asX(ns∗∆%)) will include N ∗∆% samples:

1) SelectX(∆%) from the set of the original feature vectors
matrix (z = 1).

2) Initialise the fuzzy memberships functionsµij using
Eq. (2) withX(z∗∆%).

3) Compute the stopping conditionǫ = ǫ1-z∗((ǫ1-ǫ2)/ns)
and letj = 0.

4) Setj = j + 1 .
5) Compute the cluster centresc(z∗∆%) using Eq. (3).
6) Computeµ(z∗∆%) using Eq. (2).
7) If ||µj

(z∗∆%) − µj−1
(z∗∆%)|| ≥ ǫ, then go to Step 4.

8) If z ≤ ns then select anotherX(∆%) and merge it with
the currentX(z∗∆%) and setz = z+1, otherwise move
to Phase 2 of the algorithm.

Phase 2: FCM clustering
1) Initialise µij using the results from Phase 1, i.e.

c(ns∗∆%) with Eq. (3) for the full data set.
2) Go to Steps 3 of the conventional FCM algorithm and

iterate the algorithm until stopping criterionǫ2 is met.
Evidence has shown that this improved FCM with random

sampling is able to reduce the computation requested in the
classical FCM method [10]. Other variants of this multistage
random sampling FCM framework have also been developed
and can be found e.g. in [11] and [12].

C. Enhanced FCM (EnFCM) and variants

Ahmedet al. [13] introduced an alternative to the classical
FCM by adding a term that enables the labelling of a pixel
to be associated with its neighborhood. As a regulator, the
neighbourhood term can change the solution towards piece-
wise homogeneous labelling. As a further extension of this
work, Sziĺagyi et al. [7] introduced their EnFCM algorithm
where, in order to reduce the computational complexity, a
linearly weighted sum imageg is formed from the original
image, and the local neighbour average image evaluated as

gm =
1

1 + α



xm +
α

NR

∑

j∈Nr

xj



 , (4)

wheregm denotes the gray value of them-th pixel of the image
g, xj represents the neighbours ofxm, NR is the cardinality of
a cluster,Nr represents the set of neighbours inside a window
aroundxm.

The objective function used for segmenting imageg is
defined as

J =
C
∑

i=1

qc
∑

l=1

γlµ
m
il (gl − ci)

2, (5)

whereqc denotes the number of the gray levels in the image,
andγl is the number of the pixels having an intensity equal to
l, which refers to intensity levels withl = 1, 2, . . . , qc. Thus,
∑qc

l=1 γl = N under the constraint that
∑C

i=1 µil = 1 for any
l.

Finally, we can obtain the following expressions for mem-
bership functions and cluster centres [14]:.

µil =
(gl − si)

−2/m−1

∑C
j=1(gl − sj)−2/m−1

. (6)
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and

si =

∑qc
l=1 γlµ

m
il gl

∑qc
l=1 γlµ

m
il

. (7)

EnFCM considers a number of pixels with similar intensities
as a weight. Thus, this process may accelerate the convergence
of searching for global similarity. On the other hand, to
avoid image blur during the segmentation, which may lead
to inaccurate segmentation, Caiet al. [14] utilises a measure
Sij in a fast generalised FCM algorithm (FGFCM), which
incorporates the local spatial relationshipSs

ij and the local
gray-level relationshipSg

ij , and is defined as

Sij =

{

Ss
ij × Sg

ij , j 6= i

0, j = i
(8)

with

Ss
ij = exp

(

−max(|pcj − pci|, |qcj − qci|)

λs

)

, (9)

and

Sg
ij = exp

(

−||xi − xj ||
2

λg × σ2
g

)

, (10)

where(pci, qci) describe the co-ordinates of thei-th pixel, σg

is a global scale factor of the spread ofSs
ij , andλs and λg

represent scaling factors.Sij replacesα in Eq. (4).
Hence, the newly generated imageg is updated as

gi =

∑

j∈Ni
Sijxj

Sij
, (11)

and is restricted to [0, 255] due to the denominator.
Given a pre-defined number of clustersC and a threshold

valueǫ > 0, the reported FGFCM algorithm [14] proceeds in
the following steps:

1) Initialise the clusterscj .
2) Compute the local similarity measuresSij using Eq. (8)

for all neighbours and windows over the image.
3) Compute linearly-weighted summed imageg using

Eq. (11).
4) Update the membership partitions using Eq. (6).
5) Update the cluster centresci using Eq. (7).
6) If

∑C
i=1 ||ci(old) − ci(new||

2 > ǫ go to Step 4.

Similar efforts to improve the computational efficiency and
robustness have also been reported in [15] and [16].

D. Other FCM variants

Other variants of the classical FCM algorithm can be classi-
fied into two groups: those with added spatial constraints, and
those with optimisation of termination conditions or objective
functions.

1) FCM with spatial constraints:There are certain sim-
ilarities when considering spatial contents of an image. For
example, a number of regions in the image can be very similar
to each other in intensity or colour. These similarities can
be labelled before any segmenting process starts. During the
actual segmenting process, one of the areas from the similar
groups will be utilised for segmentation, while the others may
be directly assigned to the same clusters as the former with

little computational effort. This is the basis of one strategy to
applying spatial constraints to the standard FCM.

Pham [17] proposed an improved FCM objective func-
tion with an added spatial penalty term in the membership
functions. This technique needs some extented computational
efforts to search for an appropriate penalty term. However,
the entire FCM scheme is of lower computational complexity
upon determination of the penalty term.

psFCM, as proposed by Hung and Yang [18], is a two-
stage scheme. A smaller data set is extracted from the entire
image using the classicalk-d tree method, followed by a
standard FCM segmentation which uses the cluster centres
previously generated. This strategy reduces the computational
requirements of the FCM segmentation significantly. Eschrich
et al. [11] presented the brFCM algorithm, which can reduce
the number of distinct patterns by aggregating similar exam-
ples and then using a weighted exemplar in the FCM process.

2) FCM with optimisation of functionals:Modifications or
adjustment of membership functions can also be used to reduce
the number of iterations required in the FCM scheme. The
motivation behind this strategy is the possibility of simplifying
the original membership functions or modifying the classical
convergence criterion so as to accelerate the segmentation
procedure.

Höppner [10] re-organised the original data sets as a tree
before segmentation starts, leading to fast convergence ofthe
later process. Unfortunately, this re-organisation is notan ideal
model in the presence of large data sets or increasing number
of clusters [19]. Cannonet al. [20] reported a speed-up factor
of 6 for an improved FCM scheme by look-up tables for
exponential and distance function. Frequent updating of the
standard FCM can be used to reduce the iterations and hence
improves the computational efficiency [21].

A similarity-driven cluster merging method was proposed
by Xiong et al. [22]. This method takes into account the
similarity between clusters by a fuzzy cluster similarity matrix,
and an adaptive threshold is used for merging. De Gruijter and
McBratney [23] modified the objective function to account for
outliers (extragrades) and hence improve the performance of
the FCM in noisy environments.

III. A NISOTROPIC MEAN SHIFT BASEDFCM

In this subsection we will present a new combinatorial
approach to fuzzy c-means segmentation that utilises an
anisotropic mean shift algorithm coupled with fuzzy segmen-
tation.

Mean shift based techniques have been shown to be capable
of estimating the local density gradients of similar pixels.
These gradient estimates are iteratively performed so thatall
pixels can find similar pixels in corresponding images [24],
[25]. A standard mean shift approach method uses radially
symmetric kernels. Unfortunately, the temporal coherence
will be reduced in the presence of irregular structures and
noise in the image. This reduced coherence may not be
properly detected by radially symmetric kernels and thus,
an improved mean shift approach, namely anisotropic kernel
mean shift [26], provides better performance.
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A. Proposed algorithm

In mean shift algorithms the image clusters are continuously
moved along the gradient of the density function before they
become stationary. Those points gathering in an outlined area
are treated as the members of the same segment. To determine
the membership of an image point a density estimate at the
point needs to be conducted. In other words, similarity com-
putation must be achieved between this point and the centre
of the segment. Furthermore, the coherence between this point
and its surrounding image points needs to be discovered (e.g.
colour or intensity consistency), as this coherence can be used
to remove any inconsistency such as image artifacts or noise.
In this subsection, we mainly discuss about the estimation of
the density function of an image point (this kernel density
estimation is also known as the Parzen window technique).

The motivation of introducing the density estimation based
segmentation is that the image space can be represented
by empirical probability density functions (PDF) of certain
parameters (e.g., colour or intensity). Dense or sparse regions
of similar image points correspond to local maxima or minima
of the PDF (or the modes of the unknown density) [25]. After
the modes have been located in the image, the membership of
an image point to a particular segment will be determined.

A kernel density estimate on an image point is defined by

f̃(x) =
1

N

N
∑

i=1

K(x− xi), (12)

with
K(x) = |H|−1/2K(H−1/2x), (13)

whereN is the number of samples, andxi stands for a sample
from an unknown density functionf . K(·) is the d-variate
kernel function with compact support satisfying the regularity
constraints, andH is a symmetric positive definited × d
bandwidth matrix. Usually, we haveK(x) = ke(x), where
ke(x) is a convex decreasing function, e.g. for a Gaussian
kernel

ke(x) = cte
−x/2, (14)

or for an Epanechnikov kernel,

ke(x) = ct max(1− x, 0), (15)

wherect is a normalising constant.
If a single global spherical bandwidth is applied,H = h2

I

(where I is the identity matrix), then we have the classical
form as

f̃(x) =
1

Nhd

N
∑

i=1

K

(

x− xi

h

)

. (16)

Since the kernel can be divided into two different radially
symmetric kernels, we have the kernel density estimate as

f̃(x; c) =

N
∑

i=1

1

N(hα)p(hβ)q
kα

(

||(cα − xα
i )/h

α||2
)

kβ
(

||(cβ − xβ
i )/h

β ||2
)

, (17)

where c represents a vector of cluster centres,p and q are
two ratios, andα and β denote the spatial and temporal

components respectively [26]. Classical mean shift utilises
symmetric kernels that may experience a lack of temporal
coherence in the regions where the intensity gradients exist
with a slope relative to the evolving segment. In contrast,
anisotropic kernel mean shift links with every data point by
an anisotropic kernel. This kernel associated with a pixel can
update its shape, scale and orientation. The density estimator
is represented by

f̃(x; c) =
1

N

N
∑

i=1

1

hβ(Hα
i )

q
kα(d(cα, xα

i , H
α
i ))

kβ
(

||(cβ − xβ
i )/(h

βHα
i )||

2
)

, (18)

whered(cαi , x
α
i , H

α
i ) is the Mahalanobis distance

d(cα, xα
i , H

α
i ) = (xα

i − c
α)THα−1

i (xα
i − c

α). (19)

Anisotropic mean shift is intended to modulate the kernels
during the mean shift procedure. The objective is to keep
reducing the Mahalanobis distance so as to group similar
samples as much as possible. First, the anisotropic bandwidth
matrix Hα

i is estimated using a standard radially symmetric
diagonalHα

i andhβ . The neighbourhood of pixels aroundc
has the following constraints:

{

kαe (d(c, xi, H
α
i )) < 1

kβe
(

||(c− xi)/(h
βHα

i )||
2
)

< 1
(20)

A new full matrix H̄α
i will use the variance of (c− xi) as its

components. To show how the modulation ofH̄α
i happens we

first decompose the required bandwidth matrix to

H̄α
i = λV AV T , (21)

whereλ is a scalar,V is a matrix of normalised eigenvectors,
and A is a diagonal matrix of eigenvalues whose diagonal
elementsai satisfy [26]

p
∏

i=1

ai = 1. (22)

The bandwidth matrix is updated by adding more and more
points to the computational list: the more image points with
similar colour or intensity gather in the same segments, the
less total Mahalanobis distance between the image points and
the centres of individual segments will be obtained (refer to
Eqs. (19)-(22)).

In the proposed algorithm we combine fuzzy c-means and
anisotropic mean shift segmentation. A significant difference
between our approach and other similar methods is that our
algorithm continuously inherits and updates the states, based
on the interaction of FCM and mean shift. Stemming from
the algorithm reported in [26], the proposed anisotropic mean
shift based FCM (AMSFCM) proceeds in the following steps:

1) Initialise the cluster centrescj . Let the iteration count
t = 0.

2) Initialise the fuzzy partitionsµij using Eq. (2).
3) Incrementt = t + 1 and computecj using Eq. (3) for

all clusters.
4) Updateµij using Eq. (2). This is an FCM process.
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5) For each pixelxi one needs to estimate the density
with anisotropic kernels and related colour radius using
Eqs. (18)-(21). For simplicity,̄Hα

i can just apply vari-
ances at the diagonal items with other zero components.
Note that mean shift is employed after the FCM stage.

6) Calculate the mean shift vector and then iterate until
the mean shift,M+(xi) − M−(xi), is less than 0.01
considering the previous position and a normalised
position change:
M+(xi) = νM−(xi) + (1 −

ν)
∑N

j=1(xj−M−(xi))||(M
−(xβ

i )−xβ
j )/(h

βHα
j )||2

∑N
j=1 ||(M−(xβ

i )−xβ
j )/(h

βHα
j )||2

with

ν = 0.5.
7) Merge pixels that possess less Mahalanobis distances

than the pre-defined thresholds.
8) Repeat Steps 3 to 7 until|µt

ij − µt−1
ij | < ǫ0 (ǫ0 is a

pre-set threshold).

Figure 2 illustrates how the segmentation evolves using the
proposed AMSFCM algorithm. In this example the segmenta-
tion optimally converges after 6 iterations.

Fig. 2 is probably here!

B. Convergence behaviours

1) Classical FCM:Classical FCM is one of the sub-optimal
segmentation algorithms, which sacrifices global optimality
to the improved numerical efficiency and flexibility of the
segmentation process. The computational cost of FCM heavily
depends on the number of image points that need to be
processed in each iteration.

To obtain a global minimal solution, we differentiate both
sides of Eq. (1) with respect tock and then set them to zero:

∂E

∂ck
=

∂

∂ck

C
∑

j=1

N
∑

i=1

µk
ij ||xi − cj ||

2

= 0. (23)

The right hand side of Eq. (1) has an upper bound that leads
to

C
∑

j=1

N
∑

i=1

µk
ij(||xi − cm||2 + ||cm − cj ||

2)

≥

C
∑

j=1

N
∑

i=1

µk
ij(xi − cj)

2, (24)

wherecm stands for the mean value ofcj . Introducing Eq. (24)
into Eq. (23), one can observe that the derivative ofE with
respect tock will be dominated by the sum of distance between
cm and cj . The faster this distance is reduced, the better
asymptotic performance the entire FCM holds.

2) Proposed AMSFCM:To find cluster centres we can
utilise the gradient of the density estimator. Let

k̃
(

‖
c− xi

h̃
‖2

)

= kα(d(cα, xα
i , H

α
i ))k

β
(

‖
c
β − xβ

i

hβHα
i

‖2
)

.

(25)
Then we have

∂f̃(x; c)

∂c
= Cs

[

N
∑

i=1

g
(

‖
c− xi

h
‖2

)]

[

∑N
i=1 xig

(

‖ c−xi

h ‖2
)

∑N
i=1 g

(

‖ c−xi

h ‖2
) − c

]

, (26)

in which the constantCs is expressed as

Cs =
2cd

Nhd+2
, (27)

andcd is the corresponding normalisation constant [25].

g
(

‖
c− xi

h
‖2

)

=
∂

∂c
k̃
(

‖
c− xi

h̃
‖2

)

=
(

d(cα, xα
i , H

α
i )

)′

k′1k2

+k1k
′
2

2cβ−1(cβ − xβ
i )

h2β(Hα
i )

2
, (28)

and






k1 = kα
(

d(cα, xα
i , H

α
i )

)

,

k2 = kβ
(

‖
c
β−xβ

i

hβHα
i

‖2
)

.
(29)

The regulation term is

f̃r(x; c) = Cs

[

N
∑

i=1

g
(

‖
c− xi

h
‖2

)]

, (30)

and the mean shift term is

ms(x; c) =
[

∑N
i=1 xig

(

‖ c−xi

h ‖2
)

∑N
i=1 g

(

‖ c−xi

h ‖2
) − c

]

, (31)

Referring to [25] we can obtain the following expression:

ms(x; c) = Cv

∂f̃(x;c)
∂c

f̃r(x; c)
, (32)

where Cv is a constant. According to the Capture Theo-
rem [27], the trajectories of the gradient method introduced
here are attracted by local maxima if they are unique stationary
points within a small neighborhood. In other words,

∂f̃(x; c)

∂c
= 0. (33)

In due convergence, we will have an optimalcm from Eq. (33),
where the magnitude of the mean shift vector approaches 0.

Let us revisit Eqs. (24), (32) and (33). It has been proven
that the mean shift with a form as in Eq. (26) converges if
the kernelK(·) has a convex and monotonically decreasing
profile [25]. While the kernel function is approaching to
its convergence, the mean valuecm of the cluster centres
is available and can be a prediction for next iteration of
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FCM segmentation. This helps reduce computational efforts
addressed in the FCM segmentation procedure afterwards. The
convergence speed of the mean shift relies on the∂f̃(x;c)

∂c ,
which normally is very fast due to fast mean calculation.

IV. EXPERIMENTAL EVALUATION

The proposed segmentation algorithm was evaluated on a set
of 100 dermoscopy images (30 invasive malignant melanoma
and 70 benign) obtained from the EDRA Interactive Atlas of
Dermoscopy [2] and the dermatology practises of Dr. Ashfaq
Marghoob (New York, NY), Dr. Harold Rabinovitz (Plan-
tation, FL) and Dr. Scott Meznies (Sydney, Australia). The
benign lesions included nevocellular nevi and dysplastic nevi.
A subset of the images is shown in Figure 3. Manual borders
were obtained by selecting a number of points on the lesion
border, connecting these with a 2nd-order B-spline and finally
filling the resulting closed curve. Three sets of manual borders
were determined by dermatologists Dr. William Stoeckker, Dr.
Joseph Malters, and Dr. James Grichnik using this method and
serve as a ground truth for the experiments.

Fig. 3 is probably here!

For our experimental evaluation, we used a PC with Intel(R)
Core(TM)2 CPU (2.66GHz) and 2GB RAM. The algorithms
that we compared are conventional FCM [5], EnFCM [7],
RSFCM [6] and the proposed AMSFCM. In a final stage,
morphological processing is employed for smoothing the
segmentation outcomes, especially the image borders and
removing small isolated areas.

An example of the segmentations obtained by the various
algorithms is given in Figure 4 which shows one of the
ground truth segmentations together with the results by all
four methods. It can be observed that the segmentations
produced by classical FCM and RSFCM are less smooth
than those by EnFCM and AMSFCM. This is due to (1)
RSFCM uses FCM in the second phase so they both have
approximate convergence characteristics, and (2) EnFCM and
AMSFCM take into account weighted image pixels so their
outcomes are smoothed in the FCM stage. Clearly, smoother
borders are more realistic and also conform better to the
manual segmentations derived by the dermatologists. The
second observation is also reflected in Figure 5, where original
images are segmented using different FCM algorithms and
the lesion borders are then extracted. It is also noticed that
different algorithms generate similar results forigure 5,while
the proposed AMSFCM algorithm has clearly the best border
result for the third example.

Fig. 4 is probably here!

For each image segmentation we record the number of True

PositivesTP (the number of pixels that were classified both by
the algorithm and the expert as lesion pixels), True Negatives
TN (the number of pixels that were classified both by the
algorithm and the experts as non-lesion pixels), False Positives
FP (the number of instances where a non-lesion pixel was
falsely classified as part of a lesion by an algorithm) and False
NegativesFN (the number of instances where an lesion pixels
was falsely classified as non-lesion by an algorithm). From this
we can then calculate the sensitivitySE (or true positive rate)
as

SE =
TP

TP + FN
(34)

and the specificitySP (or true negative rate) as

SP =
TN

TN + FP
(35)

In Table I we list the sensitivity and specificity obtained
by all algorithms over the entire database and compared to
all three ground truth segmentations (averageSE and SP
based on all three manual segmentations are reported). It can
be seen that the proposed AMSFCM performs significantly
better with an average sensitivity of about 78% while the other
algorithms achieve only a sensitivity of about 74%. In addition,
our algorithm provides more consistent results as indicated by
the lower variance ofSE. As specificity is fairly similar for
all algorithms, we can conclude that AMSFCM provides the
best segmentation on the given dataset.

Fig. 5 is probably here!

Table 1 is probably here!

As we have noted before, computational efficiency is a
crucial issue when considering FCM based segmentation. We
record the number of iteration required in each FCM approach
for evaluation, which in turn enables us to make a comparison
regarding the relative efficiency of the different approaches.
We normalised them so that the classical FCM algorithm
is assigned 1.00 while the other ones represent the relative
fractions they take compared to this. The results are presented
in Table II from which it can be seen that the proposed
AMSFCM takes computation efforts of 37%, 4% and 17% less
than compared to FCM, RSFCM and EnFCM respectively.

Table 2 is probably here!

Overall, it is evident that the proposed approach provides a
very useful tool for the analysis of dermoscopic images. Not
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only does it provide the best segmentation results among the
algorithms investigated, it also is the most efficient method.

V. CONCLUSIONS

Fuzzy c-means based algorithms are frequently used to
segment medical images but are also computational intensive.
In this paper we have introduced a new mean shift based
fuzzy c-means segmentation algorithm. The proposed method
incorporates a mean field term within the standard fuzzy c-
means objective function. Based on a large set of dermoscopic
images, we have shown that the proposed segmentation tech-
nique AMSFCM is not only more efficient than other fuzzy
c-means approaches but that it is also capable of providing su-
perior segmentation. The developed algorithm hence provides
a useful tool as a first stage in the automatic or semi-automatic
analysis of skin lesion images.
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Captions:

Fig. 1 Illustration of classical FCM that attempts to find
appropriate cluster centres.

Fig. 2 Examples of AMSFCM iterative segmentation.

Fig. 3 Subset of the dermoscopic image set used in the
evaluation.

Fig. 4 Segmentation comparison of original image (upper
left), ground truth (upper right), FCM (middle left), RSFCM
(middle right), EnFCM (bottom left) and AMSFCM (bottom
right) for image 15.

Fig. 5 Border detection of exemplar segmented images (row
1: original images; row 2 - FCM results; row 3 - RSFCM
results; row 4 - EnFCM results and row 5 - AMSFCM results).

Table 1 Segmentation performance on the complete dataset.
For each algorithm the average sensitivity and specificity are
given. The values in brackets indicate the standard deviations
of the measures.

Table 2 Efficiency analysis of the different algorithms. Re-
ported is the relative efficiency compared to the conventional
FCM algorithm. The values in brackets indicate the standard
deviations of the measures.
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Algorithm Sensitivity Specificity

FCM 0.739 (0.120) 0.99 (0.056)
RSFCM 0.738 (0.118) 0.99 (0.052)
EnFCM 0.740 (0.118) 0.99 (0.061)
AMSFCM 0.776 (0.113) 0.99 (0.065)

TABLE I

Algorithm computational cost

FCM 1.00 (0.00)
RSFCM 0.67 (0.11)
EnFCM 0.80 (0.09)
AMSFCM 0.63 (0.09)

TABLE II
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(a) Available clusters (b) Random centres (c) Converging (d) Final settlement

Fig. 1.

(a) original image (b) 3 iterations (c) 4 iterations (d) 6 iterations

Fig. 2.

Fig. 3.
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Fig. 4.
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Fig. 5.


