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Abstract

Background: Cancer typically exhibits genotypic and phenotypic heterogene-

ity, which can have prognostic significance and influence therapy response.

Computed Tomography (CT)-based radiomic approaches calculate quanti-

tative features of tumour heterogeneity at a mesoscopic level, regardless of

macroscopic areas of hypo-dense (i.e., cystic/necrotic), hyper-dense (i.e., cal-

cified), or intermediately dense (i.e., soft tissue) portions.

Method: With the goal of achieving the automated sub-segmentation of these
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three tissue types, we present here a two-stage computational framework

based on unsupervised Fuzzy C-Means Clustering (FCM) techniques. No ex-

isting approach has specifically addressed this task so far. Our tissue-specific

image sub-segmentation was tested on ovarian cancer (pelvic/ovarian and

omental disease) and renal cell carcinoma CT datasets using both overlap-

based and distance-based metrics for evaluation.

Results: On all tested sub-segmentation tasks, our two-stage segmentation

approach outperformed conventional segmentation techniques: fixed multi-

thresholding, the Otsu method, and automatic cluster number selection heuris-

tics for the K-means clustering algorithm. In addition, experiments showed

that the integration of the spatial information into the FCM algorithm gener-

ally achieves more accurate segmentation results, whilst the kernelised FCM

versions are not beneficial. The best spatial FCM configuration achieved

average Dice similarity coe�cient values starting from 81.94 ± 4.76 and

83.43 ± 3.81 for hyper-dense and hypo-dense components, respectively, for

the investigated sub-segmentation tasks.

Conclusions: The proposed intelligent framework could be readily integrated

into clinical research environments and provides robust tools for future ra-

diomic biomarker validation.

Keywords: Tissue-specific segmentation, Computed Tomography,

Unsupervised fuzzy clustering, Ovarian cancer, Renal cell

carcinoma, Radiomics
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1. Introduction

Cancer is typically characterised by genotypic and phenotypic hetero-

geneity, which has prognostic significance and may influence the response to

therapy [1]. Computed Tomography (CT) is the most frequently used cross-

sectional imaging method in oncology. It quantifies spatial variation in the5

morphology of individual tumours by measuring variations in X-ray attenua-

tion, which allows for the assessment of the macro- and mesoscopic structure

of tumours [2, 3]. Intra- and inter-tumoural heterogeneity can be quanti-

fied on the mesoscopic level by using CT-based radiomics, which has been

shown to hold both predictive and prognostic information for many cancer10

types, including high-grade serous ovarian carcinoma (HGSOC) and renal

cell carcinoma (RCC). Notably, these two cancer types are characterised by

high levels of macroscopic heterogeneity with frequent cystic/necrotic, solid,

and calcified tumour regions [3–9]. However, the majority of radiomics stud-

ies disregard macroscopic tumour heterogeneity, even though solid tumour15

regions typically have high cellular density and could contribute more to ad-

verse prognostic or predictive information than necrotic, cystic, or calcified

regions [10]. We reasoned that applying di↵erent weightings to radiomic fea-

tures for macroscopically di↵erent tumour regions could increase accuracy for

predicting response and outcome. However, clinical CT reporting to evaluate20

the size of tumour masses and response to treatment relies upon mono- or

multi-dimensional tumour diameters, typically following RECIST 1.1 criteria

[11]. This standard reporting does not quantify the proportion of the tumour

that is composed of solid, cystic/necrotic, or calcified tissue [11]. These meth-

ods therefore may benefit from automated or manual sub-segmentation of all25
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disease present. Fig. 1 shows three examples of axial CT slices analysed for

tissue-specific sub-segmentation of HGSOC and RCC lesions.
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Figure 1: Examples of input axial CT slices for tissue-specific sub-segmentation: (a, b)

HGSOC lesions in the pelvis and omentum, respectively; (c) RCC. The whole tumour

burden, defined by the yellow contour and zoomed at the bottom right of each sub-figure,

is characterised by mixed tumoural tissues.

Recent advances in machine learning techniques for medical imaging have

benefited from the strong learning ability of fully supervised deep learning

models [12] and the availability of large training datasets that include ac-30

curate and detailed annotations [13, 14]. In order to work on datasets with

less accurate annotations (for example, bounding boxes or image-level la-

bels [15]), di↵erent machine learning models use weak supervision [16] or

Generative Adversarial Networks (GANs) [17, 18] for data augmentation.

In clinical applications, particularly in the case of heterogeneous or multi-35

institutional datasets, the development of e↵ective supervised deep models

typically relies upon solutions tailored for obtaining adequate generalisation

abilities, even on limited data samples [19, 20]. For this reason, when dealing

with an amount of labelled input data that does not allow for a represen-
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tative training sample along with a su�cient unseen test set, unsupervised40

machine learning techniques have particularly gained ground in biomedical

applications [21, 22].

We mainly address the following issue in medical image analysis:

• How accurately does an unsupervised machine learning approach seg-

ment hyper-dense and hypo-dense components on the whole tumour45

burden on CT images?

The rationale underlying this question, towards precision oncology, was:

• May tissue-specific cancer sub-segmentation, as a measure of intra-

tumoural heterogeneity, provide insights into a more precise therapy

response assessment?50

In this work, we propose a computational framework based on unsuper-

vised machine learning techniques to sub-segment tumour lesions into hypo-

dense (cystic/necrotic), hyper-dense (calcified), and intermediately dense

(soft tissue) tumour components. To the best of our knowledge, this is

the first approach that purposely focuses on whole tumour burden sub-55

segmentation on CT images. Our method optimises the segmentation for

each individual image whilst also taking into account prior domain knowledge

for the typical densities of candidate sub-regions. Our automated approach

allows for deployment in clinical research environments, without the need for

any training phase [23]. Furthermore, the results of our tissue-specific sub-60

segmentation method are interpretable by researchers and clinicians [24, 25],

by taking into account prior domain knowledge of the typical sub-region

Hounsfield Unit (HU) values.
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This manuscript is organised as follows. Section 2 concisely introduces

the theoretical background of unsupervised fuzzy clustering techniques. The65

proposed automatic tissue-specific segmentation framework is presented in

Section 3. Section 4 presents the characteristics of the analysed HGSOC and

RCC datasets, along with the evaluation methodology used. Section 5 shows

and discusses the achieved experimental results. Finally, Section 6 provides

conclusive remarks and future directions.70

2. Unsupervised fuzzy clustering techniques

This section briefly outlines the main concepts underlying the devised

unsupervised fuzzy clustering framework designed to unify the classic, spa-

tial, and kernelised versions of the Fuzzy C-Means (FCM) method [26, 27].

For a detailed description of the mathematical formulation, please refer to75

Section S1 in the Supplementary Material.

Fundamentally, the FCM algorithm [26, 27] is a partitional clustering

technique that minimises the intra-cluster variance, as well as maximises the

inter-cluster variance, in terms of a distance metric between the feature vec-

tors [28]. This unsupervised technique optimises the intrinsic partitioning80

of an unlabelled dataset X = {x1,x2, . . . ,xN} composed of N feature vec-

tors, which denote data samples xk 2 RD (k = 1, 2, . . . , N) belonging to

a D-dimensional Euclidean space, into exactly C clusters (i.e., non-empty

partitions of the input dataset). Thus, a partition P is defined as a fuzzy set

family P = {Y1,Y2, . . . ,YC} [29]. Importantly, let V = {v1,v2, . . . ,vC} be a85

set of D-dimensional prototype vectors, called centroids that are associated

with the C clusters. Therefore, the input dataset X is partitioned by itera-
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tively searching for the optimal fuzzy partition P that minimises an objective

function Jm (where m denotes the fuzzification constant) by means of a local

optimisation technique. The role of the weighting exponent m in the FCM90

model was systematically analysed in [30], where the authors suggested that

the best choice for m is in the interval [1.5, 2.5], and its mean value m = 2 is

typically used.

The classic FCM clustering algorithm does not take into account any spa-

tial relationship among pixels since all the samples are used as disperse and95

independent points, making it sensitive to noise and other imaging artefacts

[31]. Accordingly, the integration of spatial information might be beneficial.

The spatial FCM (sFCM), elegantly introduced by Chuang et al. [32], enables

the retention of the same formulation and objective function as the classic

FCM algorithm, just by modifying the update rules with the local spatial100

content in the image. The incorporation of this spatial component consid-

erably improves the performance: (i) in a homogeneous region, the spatial

functions emphasise the original membership, so the clustering results are

not a↵ected; (ii) in noisy regions, spurious blobs or misclassified pixels may

be corrected. According to [32], in all the tests, a local squared window of105

! ⇥ ! pixels, with ! = 5, was used. Simply, the parameters p and q weight

the original membership (based on pixel values alone) and spatial compo-

nents, respectively. Hereafter, in compliance with the notation introduced in

[32], we denote the sFCM with the control parameters p and q as sFCMp,q.

Relying upon the literature [31, 32], we tested p = 1 and q 2 {0, 1, 2}.110

The metric used in the objective function of these FCM versions is still

the Euclidean distance. However, the use of the `2 norm might lead to
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non-robust results on the segmentation of an image corrupted by noise, out-

liers, and other imaging artefacts. The kernelised methods let us generalise

distance-based algorithms to operate in feature spaces, usually non-linearly

related to the input space. Importantly, kernelised methods are suitable for

clustering algorithms [33] and also allow for implicit mapping [34]. In our

implementation, a Gaussian Radial Basis Function (GRBF) kernel was used:

K(x,y) = e�
kx�yk2

2�2 , (1)

where � denotes the kernel width. Since � is a particularly sensitive param-

eter we relied upon [33], where an adaptive strategy is used to determine

the kernel parameters by using the fast bandwidth selection rule in Eq. (2),

based on the distance variance of all data points in the collection:

� =

vuut 1

N � 1

NX

i=1

�
di � d̄

�2
, (2)

where di = kxi � x̄k is the distance from the grey-scale of the i-th pixel to

the grey-scale average of all pixels and d̄ is the average of all distances di. To

perform a comparison independent of centroid initialisation, our kernelised

sFCM (ksFCM) version exploited the formulation adopted by the classic

FCM algorithm in the original space.115

For all the implemented fuzzy clustering methods, the convergence con-

ditions can be defined by comparing the value of the objective function Jm

between two consecutive iterations. The iterative procedure ends when the

convergence condition is less than a fixed tolerance value "tol or the maxi-

mum number of allowed iterations Tmax is achieved. In all the tests, we used120

"tol = 10�5 and Tmax = 100.
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Regarding the computational complexity (for each iteration), the classic

FCM algorithm requires O(NCD) floating-point operations [35, 36]. With

the introduction of the spatial information conveyed by the local !⇥ ! win-

dow, the sFCM version has a time complexity of O(NCD +N!2). The ks-125

FCM version involves also the kernel distance computation characterised by a

quadratic complexity with the number of objects N , resulting in O(N2CD+

N!2) floating-point operations [36, 37].

In the literature, additional solutions have been proposed to deal with

large datasets. Cannon et al. in [38] proposed the approximate FCM to130

reduce the FCM’s time complexity by replacing the exact calculation with

approximate ones via look-up tables for the Euclidean distances and exponen-

tiation operations. However, these approximations can be relevant mostly for

integer-valued data, whilst lead to result quality degradation for real-valued

data [35]. In terms of memory reduction, the reformulation of the iterative135

FCM update steps presented in [35] allows for eliminating the storage of the

membership matrix U 2 RC⇥N . Nevertheless, our implementation stores

this data structure for the membership filtering that considers the spatial

neighbourhood for each pixel.

Recent FCM-based techniques mostly aim at improving the search and140

convergence capabilities of the optimisation process. Careful seeding mech-

anisms, such as the FCM++ approach [39], adaptively scatter the initial

cluster centroids throughout the data space during the initialisation phase.

To further boost the FCM performance, extensions and modifications to the

objective function can be introduced. For instance, hyper-volume prototypes145

(with size either fixed or determined automatically from the data undergo-
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ing clustering) and heuristic-based adaptive cluster merging or incremental

fuzzy partitioning were introduced in [40] and [41], respectively. Alterna-

tively, the search for the optimal solution could be improved by replacing

gradient-based search techniques with global optimisation techniques, such150

as evolutionary strategies [42] or Particle Swarm Optimisation (PSO) [43].

However, these metaheuristics (i.e., population-based stochastic optimisation

techniques) are strongly a↵ected by the initialisation of the solutions’ pop-

ulation, by influencing both the convergence speed and the quality of the

solutions [44, 45], as well as careful functioning parameter settings [46]. In155

this direction, Mekhmoukh and Mokrani in [47] exploited the PSO algorithm

for the initial choice of the cluster centroids in brain tissue segmentation on

Magnetic Resonance Imaging (MRI) scans. Finally, the fuzzy clustering re-

sult was refined via level set functions.

In our experiments, the initial fuzzy partitions were randomly generated160

to carry out a fair comparison independent of centroid initialisation, thus en-

suring result repeatability among the unsupervised fuzzy clustering versions

investigated in the proposed framework. Moreover, no further computational

burden was introduced by careful initialisation schemes.

3. The proposed tissue-specific CT image segmentation method165

In our tissue-specific CT image segmentation method, we decided to

consider the HU values alone for the segmentation—without including any

texture feature (e.g., Haralick features [48, 49])—in order to obtain inter-

pretable results and avoid possible biases in the downstream radiomics anal-

ysis (particularly, for feature selection in biomarker development). In this170
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manner, this design choice decouples the morphological tissue-specific sub-

segmentation from radiomics-based habitat analyses, as well as maintains the

interpretability of the cluster centroids expressed in HU (which are fully un-

derstandable for the end-user). Therefore, from now on, the cluster centroids

are denoted as scalars vi 2 V ✓ RC .175

As a simple pre-processing step, a Gaussian filter (with � = 1) was ap-

plied by means of a 5⇥ 5 convolution kernel. In order to deal with the high

bias in the hypo-dense and hyper-dense tissue detection based on unsuper-

vised clustering, a pre-processing step to remove the fatty components was

performed; more specifically, the voxels with values lower than �10 HU are180

removed. This strategy deals with the possible errors in the delineation pro-

cess (mainly due to the discretisation of the contour drawn by the radiologists

that outlines tumours that are surrounded by non-cancerous fat tissue).

The overall sub-segmentation method, relying upon previously delineated

whole tumour region masks, leverages a divide-et-impera strategy via two185

stages represented in Figs. 2 and 3, respectively:

1. Detection of the hyper-dense regions: multiple executions ⌧ of the un-

supervised clustering with C = 2, by incrementally including clusters in

which the centroid v1 is higher than the minimum hyper-dense cluster

selection value hyperHU
min

. This iterative procedure takes into account190

the heterogeneity of the hyper-dense tissues;

2. Distinction between hypo-dense and intermediately dense regions: the

clustering algorithm is executed with C = 2. Afterwards, the minimum

intensity centroid v2 is compared with the maximum hypo-dense cluster

selection value hypoHU
max

.195
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Figure 2: Flow diagram of the hyper-dense tissue segmentation (i.e., phase 1). The grey

and black data blocks denote grey-scale images and binary masks, respectively. The

gradient blue-green trapezoidal block represents the defuzzification step, via a maximum

membership scheme, from the fuzzy clustering results (blue data block) to the crisp clusters

(green data blocks). Solid and dashed arrows correspond to processing and control-oriented

operations, respectively.

This two-stage approach allows us to e�ciently avoid the estimation of

the number of clusters via heuristics, since C is unknown a priori. The

sequential order of the two phases is motivated by detection purposes of

hyper-dense components, which might present small/di↵use calcifications.
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Figure 3: Flow diagram of the hypo-dense tissue segmentation (i.e., phase 2). The gradient

blue-green trapezoidal block represents the defuzzification step, via a maximum member-

ship scheme, from the fuzzy clustering results (blue data block) to the crisp clusters (green

data blocks). Solid and dashed arrows correspond to processing and control-oriented op-

erations, respectively.

Besides, the larger HU range of hyper-dense tissues with respect to hypo-200

dense portions (even hundreds versus few tens in terms of HU value ranges)

justifies the choice of multiple executions of the clustering procedure (during

phase 1), particularly in the case of highly calcified sub-regions. Afterwards,

the delineation of hypo-dense regions can be performed suitably.

To determine the best settings for the cluster selection values, we consid-205

ered a calibration set consisting of HGSOC lesions containing both hyper-
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dense and hypo-dense regions. Only two RCC lesions included small calcified

areas (see Section 4.1.2) and we used this dataset as an external validation.

As a baseline, we used the classic FCM algorithm (i.e., sFCM1,0) without

any morphological post-processing to focus on the performance depending210

only on cluster selection values. The value of hyperHU
min

varied in {110, 120,

130, 140, 150} HU considering a calibration set of 70 randomly selected CT

images with hyper-dense components. After selecting the best hyperHU
min

,

the hypoHU
max

values in {20, 30, 40, 50, 60} HU were tested on a calibration

set composed of 120 randomly selected CT images with hypo-dense compo-215

nents (since hypo-dense tissue is more frequent than hyper-dense regions,

as described in Section 4.1). In this study, relying upon the results in sup-

plementary Figs. S1 and S2, the cluster selection values hyperHU
min

and

hypoHU
max

were set to 130 HU and 50 HU, respectively, to achieve the best

compromise in terms of correct detection performance and reliability, via the220

Dice similarity coe�cient (DSC) explained in Section 4.2.2. In more detail,

the trend of hyperHU
min

shows a degradation of DSC values for 140 and 150

HU since small calcifications might be overlooked. In the case of hypoHU
max

,

a value of 20 HU misses the majority of the hypo-dense components, whilst 50

HU shows the lowest standard deviation. Accordingly, we aimed to show the225

robustness of these settings on unseen data, especially in the case of the RCC

dataset. Fig. 4 illustrates the interpretability of our approach via a colour-

coded HU scale of the di↵erent tissues composing the whole tumour burden.

Gradient colours were used to show that no fixed threshold can reliably iden-

tify the hyper-dense and hypo-dense components. A maximum membership230

defuzzification scheme was applied after every unsupervised fuzzy clustering

14



execution to yield a crisp classification.

This two-stage approach ensures robustness in highly variable clinical sce-

narios, such as in the case of metastatic HGSOC that is frequently composed

of up to three di↵erent tissue types. Using this divide-et-impera strategy,235

no technique for automatic selection of the number of clusters is needed. In

fact, the inherent variability within the analysed cohort of patients and tu-

mour types, considering both the di↵erent acquisition parameters and tissues

occurring in the lesions, might a↵ect the reliability in the estimation of the

number of clusters. These strategies include heuristics (e.g., elbow or sil-240

houette methods), information theory methods, or fuzzy clustering validity

measures [28, 50].

The proposed two-stage approach was applied separately to each lesion

type (even when there was more than one distinct lesion in a given CT

slice). Furthermore, to increase accuracy, the unsupervised fuzzy clustering245

was performed independently on each connected-component of the whole

hyperHUminhypoHUmax

0 HU scale

– Hyper-dense tissue
– Intermediately dense solid tissue
– Hypo-dense tissue

-10 50 130

Fatty 
component

hyperHUminhypoHUmax

0 HU scale-10 50 130

Fatty 
component

Figure 4: HU scale showing the di↵erent densities of the tissues composing the whole

tumour burden on CT imaging. hyperHUmin and hypoHUmax denote the cluster selection

values for the hyper-dense and hypo-dense tissues, respectively. The colour legend is shown

at the bottom.
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Figure 5: Incremental hyper-dense region segmentation via multiple executions of the un-

supervised fuzzy clustering models for hyper-dense region detection. (a) Example of inter-

mediate results obtained by the first phase of the proposed pipeline (employing sFCM1,1)

on an HGSOC CT image. The high-intensity cluster centroid values v1, during the execu-

tions, are also shown. For better clarity, the green-coloured and red-coloured centroids v1

denote higher or lower values than the selected cluster selection value hyperHUmin = 130,

respectively. (b) Corresponding manual gold standard. The whole tumour and the seg-

mented hyper-dense region contours are displayed as dashed yellow and solid magenta

lines, respectively.

tumour. This is important when the regions split or merge across adjacent

slices, which is particularly the case in HGSOC.

The proposed approach was developed using the MatLab R� R2019b (64-bit

version) environment (The MathWorks, Natick, MA, USA). The tests were250

conducted on a MacOS X (Mojave, version 10.14.6) computational platform

equipped with an IntelR� Core
TM

i7@2.7 GHz CPU and 16 GB of RAM.

3.1. Hyper-dense tissue segmentation

Since hyper-dense regions are particularly heterogeneous due to inter-

spersed foci of dense calcifications and non-calcified or less densely calci-255
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fied tissue (see, for example, Fig. 5), only the sub-regions with the highest

HU values would be detected in a single execution of the clustering algo-

rithm. We overcame this problem by performing several executions of the

fuzzy clustering with a C = 2 procedure using the same cluster selection

value hyperHU
min

for each iteration (Fig. 2). More precisely, the clustering260

algorithm analyses the pixels that were not assigned to the high-intensity

cluster Y1 during the previous iteration until the current v1 is lower than

hyperHU
min

. In this manner, the hyper-dense component is identified by in-

crementally adding the regions that satisfy the criteria based on the cluster

selection value hyperHU
min

. Therefore, we can explicitly deal with the het-265

erogeneity of the hyper-dense tissues (i.e., calcifications or vessels). Fig. 5

shows an example of the incremental results achieved by three executions of

the clustering procedure. Last, a morphological closing operation (by using

a circular structuring element with a two-pixel radius) was applied to make

the sub-region boundaries smoother.270

3.2. Hypo-dense tissue segmentation

As shown in Fig. 3, the hypo-dense component segmentation relied on the

binary mask yielded by the first phase. Indeed, the clustering algorithm was

applied on the pixels not assigned to the hyper-dense region (i.e., this binary

mask could be also completely 0-valued when no hyper-dense region was275

previously detected). The hypo-dense and the intermediately dense regions

were segmented by using the fuzzy clustering with C = 2. After its execution,

if the minimum intensity centroid v2 was lower than the maximum hypo-dense

cluster selection value hypoHU
max

, the low-intensity cluster Y2 was assigned

as a hypo-dense region. To achieve a higher sensitivity in the identification280
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of small hypo-dense regions, a fixed thresholding—using the well-established

value of 20 HU for cystic/necrotic regions—was employed in the case of no

detection via the proposed clustering-based pipeline.

Finally, the following morphological operations were performed to refine

the sub-segmentation results [51]:285

• a small-area removal operation, dealing with connected-components

smaller than 0.08 cm2, to remove small regions not relevant for clinical

purposes or radiomic applications;

• morphological closing (circular structuring element with two-pixel ra-

dius) to smooth the hypo-dense region boundaries;290

• a hole-filling algorithm on the segmented hypo-dense region to remove

possible holes due to local inhomogeneities.

4. Materials and evaluation methods

4.1. Patient dataset composition

The proposed framework segments the clinical CT scans of patients af-295

fected by (i) HGSOC and (ii) RCC. All the patients had been referred for

clinically indicated CT scans by their clinical team. Both studies were ap-

proved by the local ethical review board. Written, informed consent to par-

ticipate in this research was obtained from patients with ovarian cancer. For

patients with RCC, the need for informed consent was waived.300

All the analysed CT data are encoded in the 16-bit Digital Imaging and

Communications in Medicine (DICOM) format. The dataset comprised axial
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Table 1: CT acquisition parameters of the HGSOC and RCC datasets.
Dataset Peak voltage [kV] Matrix size [pixels] Slice thickness [mm] Pixel spacing [mm]

HGSOC {100, 120, 130} 512 ⇥ 512 2.0-5.0 0.627-0.977

RCC {100, 120, 140} 512 ⇥ 512 {3.75, 5.0} 0.586-0.965

CT scans acquired at multiple institutions by using scanners from three dif-

ferent vendors: General Electric Healthcare (Waukesha, WI, USA); Siemens

Healthineers (Erlangen, Germany); and Toshiba Medical Systems (Tokyo,305

Japan). The main CT acquisition characteristics for the two datasets are

reported in Table 1. Fig. S3 (in Supplementary Material) shows the volume

distribution for the whole tumour, hyper-dense and hypo-dense components

for the three considered tumour lesion locations. In all the cases, the vol-

ume distributions are right-skewed and present outliers, thus showing the310

intrinsic variability across the samples. Fig. S4 (in Supplementary Mate-

rial) shows the variability of the Signal-to-Noise-Ratio (SNR), computed as

SNRROI(WholeTumour) =
µROI(WholeTumour)

�ROI(WholeTumour)
, across the three tumour lesion loca-

tions analysed in this study.

4.1.1. High-grade serous ovarian carcinoma315

CT scans of the abdomen and pelvis of 29 patients with HGSOC were

included in this study. All ovarian cancers contained tumour of intermediate

density together with either hypo-dense or hyper-dense portions, or both.

We selected the most frequent and clinically relevant anatomic locations of

HGSOC metastases, which are the pelvis and ovaries (Pelvic and Ovarian320

Disease, POD) and in the omentum. Overall, 26 and 10 POD and omental

lesions, respectively, were considered. The total number of analysed CT slices

was 965, where the average number of slices per lesion was 26.8 ± 19.5 and
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25.7 ± 19.4 for POD and omental lesions, respectively. The average lesion

volume was highly variable: 769.8 ± 1068.7 cm3 and 290.1 ± 435.4 cm3 for325

POD and omental lesions, respectively. More specifically, considering the

tissue-specific Regions of Interest (ROIs), the number of hyper-dense (hypo-

dense) regions was 15 (24) and 9 (7) for the POD and omentum, respectively.

4.1.2. Renal cell carcinoma

The RCC dataset was composed of 10 patients with a total number of330

152 analysed CT slices (average number of slices per lesion: 15.2 ± 6.2).

All the renal lesions considered in this study contained hypo-dense tissue

components and only two revealed small calcifications (volume lower than

0.2 cm3).

The average volume of the lesions was 215.1±182.1 cm3. Whilst CT scans335

in patients with HGSOC were acquired during the portal venous phase, renal

CT scans were acquired during the nephrographic phase, which involves a

longer delay after the injection of intra-venous contrast agent.

4.2. Evaluation methodology

In this section, we describe the gold standard delineation strategy and340

the used region detection evaluation metrics.

4.2.1. Gold standard delineation procedure

CT images were loaded into Microsoft Radiomics (project InnerEye1, Mi-

crosoft, Redmond, WA, USA) and the entire POD, as well as any metastases

1https://www.microsoft.com/en-us/research/project/

medical-image-analysis/
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in the omentum, were semi-automatically outlined in consensus by three345

readers: a medical doctor and PhD student with 1.5 years of training and

experience in cancer imaging (S.U.), a radiology registrar with five years of

experience (L.B.), and a consultant radiologist with ten years of experience

(R.W.) in general radiology and oncological imaging.

Hypo-dense areas that represented cystic or necrotic parts were identified350

visually and outlined separately. The same was done with the hyper-dense

tumour portions that represented calcifications. We optimised window set-

tings for the identification and semi-automatic segmentation of calcified tu-

mour portions similar to the approach proposed in [52]. We measured the

attenuation in the solid tumour part by manually placing an ROIsolid there.355

The mean of the HU in the ROIsolid was then used to estimate the optimal

window level and width, respectively: Windowlevel = HU(ROIsolid) · 2.68 and

Windowwidth = HU(ROIsolid) · 3.1.

4.2.2. Region detection and segmentation evaluation metrics

In order to assess the ability of the proposed method to correctly detect360

the slices with hypo-dense and hyper-dense components, we calculated the

Area Under the Receiver Operating Characteristic Curve (AUROC).

For the quantitative evaluation of the image segmentation results achieved

by the investigated computational methods, the automatically segmented CT

images (S) were compared against the corresponding gold standard manual365

segmentation (G) using spatial overlap- and distance-based metrics [53–55].

Since our method analyses 2D CT images (mainly due to the slice thick-

ness that may give rise to disconnected ROIs between adjacent slices), we

calculated slice-wise metrics that were then averaged per patient. The seg-
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mentation evaluation metrics were computed separately for the hyper-dense370

and hypo-dense components. To achieve the goal of clinical and radiomic ap-

plications, a minimum area of 0.15 cm2 was set for the sub-region connected-

components considered in the segmentation evaluation metrics calculation.

In this manner, we decrease the e↵ect on our assessment values caused by

potentially created ROIs that consist of too-few pixels to be relevant for clini-375

cal or radiomic approaches. The used medical image segmentation evaluation

metrics are described in Section S2 of the Supplementary Material.

The two-sided Wilcoxon signed rank test on paired DSC results [56] was

performed (for each type of the segmented regions in a slice-wise fashion) with

the null hypothesis that the samples come from continuous distributions with380

equal medians. In all the tests, a significance level of 0.05 was considered.

4.2.3. Competing methods

Since no existing literature work has addressed the tissue-specific sub-

segmentation of the whole tumour burden on CT images so far, an experi-

mental comparison of the proposed unsupervised FCM-based techniques was385

performed against the following segmentation approaches:

• fixed multi-threshold approach, which relies on clinically-established

thresholds: pixels with values higher than 220 HU or lower than 20

are assigned to the hyper-dense and hypo-dense clusters, respectively.

Relying on [57, 58], a threshold of 220 HU is generally used for aortic390

calcifications;

• two-stage Otsu method [59], which executes the same controls, based

on the HU values for the inclusion in the hyper-dense and hypo-dense
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clusters, and post-processing steps;

• automatic selection of the number of regions based on cluster evaluation395

methods. Considering the crisp K-means clustering algorithm [60],

K was estimated for each slice (aiming at a fine-grained control for

finding the underlying tissue distribution). The tested heuristics were:

the Caliński-Harabasz (CH) criterion [61]; the Davies-Bouldin (DB)

criterion [62]; the silhouette criterion [63]; the gap statistics [64]. For400

all the techniques, the range of values used was K 2 {1, 2, 3}. The

automatic modified FCM cluster segmentation algorithm, proposed by

Li and Shen [28], is unsuitable since the used cluster validity function,

based on the fuzzy partitions (explicitly considering the cardinality

of each cluster), might be highly a↵ected by the ROI sizes and class405

imbalance.

5. Experimental results

This section presents the experimental results achieved by the proposed

computational framework, by showing both graphical examples and quanti-

tative evaluation metrics.410

Fig. 6 shows an example of hypo-dense tissue segmentation results by

varying the weighting parameters, p and q, in the case of the sFCM algo-

rithm. It is worth noting that the higher the spatial weighting q, the more

connected the segmented areas; this applies especially in the case of highly

heterogeneous hypo-dense tissue components.415

Furthermore, two examples of the implemented ksFCM versions (with

various values of the q parameter) compared against the sFCM1,2 for hyper-
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Figure 6: Influence of the weighting parameters p and q in the sFCMp,q algorithm com-

pared against the gold standard delineation. The whole tumour, hyper-dense, and hypo-

dense region contours are displayed as dashed yellow, solid magenta and solid green lines,

respectively.

dense and hypo-dense tissue segmentation are depicted in Figs. 7a and 7b,

respectively. In both cases, the introduction of the spatial context also incre-

mentally improves the segmentation results also for the kernelised version.420

However, the delineations of all the ksFCM are less accurate than those

achieved by sFCM1,2.

Fig. 8 shows the results achieved by the implemented methods on the

CT images in Fig. 1. For higher visibility, we display only sFCM1,2 and

ksFCM1,2 results (achieving the best overall qualitative and quantitative per-425

formance among the tested p and q values), along with the fixed thresholding

and two-stage Otsu methods. The fixed thresholding, as well as the Otsu

method, tends to under-estimate the segmented regions. In particular, in

the case of large inhomogeneous hypo-dense components, the segmentation

might present many disconnected and spurious areas. In addition, some small430

calcifications could be missed. Furthermore, the tested two-stage Otsu ap-

proach could fail in the case of lesions with highly mixed tissue components

24



*ROG�6WDQGDUG )L[HG�7KUHVK 2WVXV)&0��� V)&0��� V)&0���
NV)&0��� NV)&0��� NV)&0���

NV)&0��� NV)&0��� NV)&0���NV)&0��� NV)&0��� NV)&0���ksFCM1,0 Gold standardksFCM1,1 ksFCM1,2sFCM1,2

V)&0��� V)&0��� V)&0��� NV)&0��� NV)&0��� NV)&0���NV)&0��� NV)&0��� NV)&0���
NV)&0��� NV)&0��� NV)&0��� *ROG�6WDQGDUG )L[HG�7KUHVK 2WVX

(a)

*ROG�6WDQGDUG )L[HG�7KUHVK 2WVXV)&0��� V)&0��� V)&0���
NV)&0��� NV)&0��� NV)&0���

NV)&0��� NV)&0��� NV)&0���NV)&0��� NV)&0��� NV)&0���ksFCM1,0 Gold standardksFCM1,1 ksFCM1,2sFCM1,2

V)&0��� V)&0��� V)&0��� NV)&0��� NV)&0��� NV)&0���NV)&0��� NV)&0��� NV)&0���
NV)&0��� NV)&0��� NV)&0��� *ROG�6WDQGDUG )L[HG�7KUHVK 2WVX

(b)

Figure 7: Example of results achieved by sFCM1,2 compared to ksFCM1,q by varying the

spatial component weight q 2 {0, 1, 2}: (a) hyper-dense tissue segmentation; (b) hypo-

dense tissue segmentation. In both cases, the gold standard delineation is shown at the

right-most panel. The whole tumour, hyper-dense, and hypo-dense region contours are

displayed as dashed yellow, solid magenta and solid green lines, respectively.

(Figs. 8a and 8b). With regard to unsupervised fuzzy clustering methods,

sFCM1,2 generally yields more accurate segmentation results than ksFCM1,2;

Fig. 8a, in particular, shows the high ability to detect di↵use calcified tissue,435

as well as small details in the hypo-dense component.

To better demonstrate how the tumoural tissue components appear in-

tertwined, Fig. 9 shows three examples of three-dimensional rendering of

the ROIs, allowing us to display their actual locations in the whole tumour

(represented by means of the enclosing transparent yellow surface).440
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Figure 8: Segmentation results computed on the input CT images in Fig. 1. The whole

tumour, hyper-dense, and hypo-dense region contours are displayed as dashed yellow, solid

magenta and solid green lines, respectively.

5.1. Region detection and segmentation results

Table 2 shows the AUROC for evaluating the specificity and sensitivity of

the performance of hyper-dense and hypo-dense region detection. The first

experimental finding was that the fixed thresholding and the two-stage Otsu

method do not perform adequately. Similarly, the automatic strategies for445

the selection of the number of clusters for the K-means algorithm showed a

poor performance. This could be observed particularly in HGSOC due to the
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Figure 9: Three-dimensional reconstruction of the segmented ROIs (green and magenta

volumetric models for the hyper- and hypo-dense components, respectively) in their actual

location with respect to the enclosing whole tumour (transparent yellow surface): (a) POD,

(b) omental lesion, (c) RCC. The transparent surfaces are rendered with alpha blending

(↵ = 0.40).

higher prevalence of hyper-dense and hypo-dense components, compared to

RCC. The proposed two-stage approach based on unsupervised fuzzy cluster-

ing achieves excellent detection performance by overcoming the need for the450

a priori number of clusters. On the contrary, the same two-stage approach

employing the Otsu method in place of the fuzzy clustering algorithms did

not achieve a comparable performance.

Regarding the segmentation evaluation metrics described in Section 4.2.2,

for conciseness and clarity, we report only the DSC values in what follows.455

Figs. 10a, 10b, and 11 plot the distribution of the DSC values achieved on

the POD, omental, and RCC lesions, respectively. All the boxplots display a

black solid line and a red circular marker that denote the median and mean

values, respectively. The whisker value is set to 1.5 in all cases and the out-

liers are displayed as black diamonds. The legend box at the bottom denotes460

the investigated classes of methods with di↵erent colour palettes. For com-
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Table 2: AUROC achieved by the compared tissue-specific CT image sub-segmentation

methods on the HGSOC (POD and omental lesions) and RCC datasets.

Method
HGSOC (POD) HGSOC (omentum) RCC

Hyper-dense Hypo-dense Hyper-dense Hypo-dense Hyper-dense Hypo-dense

Fixed thresholding 0.781 0.534 0.674 0.573 0.667 0.771

Two-stage Otsu 0.682 0.689 0.623 0.716 0.500 0.802

Silhouette + K-means 0.694 0.578 0.572 0.589 0.466 0.739

CH + K-means 0.471 0.501 0.499 0.492 0.333 0.500

DB + K-means 0.481 0.507 0.528 0.535 0.282 0.553

Gap + K-means 0.628 0.754 0.519 0.599 0.490 0.719

sFCM1,0 0.901 0.987 0.937 0.987 0.943 0.981

sFCM1,1 0.901 0.987 0.937 0.987 0.943 0.981

sFCM1,2 0.901 0.987 0.937 0.987 0.943 0.981

ksFCM1,0 0.917 0.982 0.937 0.981 0.943 0.981

ksFCM1,1 0.901 0.982 0.937 0.981 0.943 0.981

ksFCM1,2 0.901 0.987 0.937 0.987 0.943 0.981

pleteness, the results of the other metrics are provided in the Supplementary

Material (Figs. S5-S14) and are used to support the result analysis.

The fixed thresholding and two-stage Otsu methods obtain low DSC val-

ues, because they typically under-estimate the segmented regions (low sensi-465

tivity and high specificity values). In accordance with the AUROC values in

Table 2, the highly variable DSC results, obtained by the four tested heuris-

tics for the K-means algorithm [60], point out the di�culty of selecting the

correct number of clusters; among these strategies, the CH criterion [61]

achieved the overall best performance whilst the gap statistics [64] showed470

highly unreliable results.

In general, the unsupervised fuzzy clustering configuration with p = 1

and q = 2 outperformed the other configurations for both sFCM and ksFCM.

The introduction of the spatial information provided significant benefits over

the classic FCM algorithm. However, sFCM1,2 overall achieved higher per-475

formance than ksFCM1,2. In particular, sFCM1,2 significantly outperformed
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(a)

(b)

Figure 10: DSC values of the tissue-specific sub-segmentation results for the (a) POD and

(b) omental lesions on the HGSOC CT datasets.

ksFCM1,2 in the case of POD lesions (p = 2.282⇥10�4 and p = 1.483⇥10�49

for hyper-dense and hypo-dense DSC values, respectively), as well as RCC

lesions (p = 0.0011) for hypo-dense DSC values, respectively). In more de-

tail, all the ksFCM configurations often fail on noisy images by disconnecting480

areas with local inhomogeneities, such as large heterogeneous hypo-dense re-

gions. The low presence of hyper-dense components and the large hypo-dense

areas in the case of the RCC dataset (Fig. 11), compared to the HGSOC le-

sions (Figs. 10a and 10b), can explain the typically better performance of the
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Figure 11: DSC values of the tissue-specific sub-segmentation results for the kidney lesions

on the RCC CT datasets.

K-means clustering using the heuristics for the number of cluster selection.485

5.2. Computational performance

The computational performance, in terms of processing time and memory

consumption, was measured. The execution times were computed by means

of the tic and toc stopwatch timer functions. Moreover, by relying on

the size of the variables allocated in the MatLab workspace, we estimated490

the amount of memory required by the investigated methods. Aiming at a

practical use case, we selected a patient with HGSOC in which there was

a large pelvic lesion (4690.6 cm3), with large cystic components, extended

across 51 CT slices.

The fixed thresholding was the most time-e�cient approach, along with495

the two-stage Otsu method. Among the heuristics for the selection of the
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Table 3: Computational performance achieved by the implemented methods in terms of

processing times and memory consumption for the HGSOC CT scan (considering a large

POD lesion) selected as a practical use case.
Method Processing time [s] Memory [GB]

Fixed thresholding 0.1345 1.0185

Two-stage Otsu 1.8046 1.0170

Silhouette + K-means 1.4200 ⇥ 103 (= 23.667 mins) 1.0498

CH + K-means 17.9152 1.0498

DB + K-means 18.1542 1.5718

Gap + K-means 2.0796 ⇥ 103 (= 34.66 mins) 1.0478

sFCM1,0 18.4728 1.0246

sFCM1,1 25.3067 1.0246

sFCM1,2 24.7146 1.0246

ksFCM1,0 31.4829 1.0246

ksFCM1,1 52.5809 1.0246

ksFCM1,2 51.1077 1.0246

number of clusters for the K-means clustering, the silhouette and the gap

statistics are particularly demanding with respect to the CH and DB cri-

teria (whose processing times are in line with sFCM1,0). Considering the

unsupervised fuzzy clustering implementations, the processing time of sFCM500

increases with the introduction of the spatial function (see Supplementary

Material), even though the computational overhead is mitigated for q = 1

and q = 2. Comparing ksFCM1,0 and sFCM1,0, an increase in processing

times is appreciable due to the transformation of all the input pixel values

into the feature space by means of the GRBF kernel). Interestingly, the trend505

regarding the spatial version, by varying q in {1, 2, 3}, is valid also for the

kernelised implementations.

With reference to the computational complexity, since our framework uses

only the HU values (i.e., D = 1) and two clusters (i.e., C = 2), the overall

time and memory requirements are suitable for nearly real-time performance.510

Indeed, all the sFCM and ksFCM versions have a linear O(N) and quadratic
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O(N2) time complexity, respectively. Interestingly, C = 2 implies that the

membership matrix U can be stored using 2 ⇥ N double-precision floating-

point numbers (i.e., 8 bytes in MatLab). Regarding the scalability, since the

clustering algorithm is applied for each 2D slice, the implementation scales515

with the number of slices composing the whole tumour burden. Therefore,

a distributed computing paradigm can be leveraged to o✏oad onto multiple

CPU cores the independent computations concerning the di↵erent slices to

segment [65].

6. Discussion and conclusion520

In this work, we proposed an intelligent tissue-specific sub-segmentation

framework based on unsupervised fuzzy clustering techniques, which allows

for clinically interpretable and radiomics-oriented results. Our novel ap-

proach, leveraging a two-stage divide-et-impera strategy, accurately and ef-

ficiently detects and delineates the hyper-dense and hypo-dense components525

in heterogeneous tumours, thus overcoming the limitations imposed by the

automatic selection of the number of clusters required by partitional cluster-

ing techniques. We tested our approach on two datasets comprising highly

heterogeneous tumours, namely, HGSOC and RCC. Both detection and seg-

mentation performance with regard to tissue components—in terms of AU-530

ROC and overlap-/distance-based evaluation metrics, respectively—showed

superiority over the existing methods (namely, fixed thresholding, two-stage

Otsu method, automatic clusters number selection heuristics for theK-means

clustering algorithm). More specifically, sFCM1,2 generally outperformed the

other clustering configurations, even when compared to the kernelised ver-535
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sions, in particular. Therefore, the proposed framework could be suitably

transferred into biomedical research environments (without requiring any

training/set-up phases) for robust radiomic biomarker development [23, 66].

From a clinical perspective, the proposed computational framework, yield-

ing interpretable results, might represent a reliable and feasible solution, since540

it obtains a DSC higher than 70% overall, which is generally regarded as a

satisfactory level of agreement between two segmentations (i.e., manual and

automated delineations) in clinical applications [67, 68]. The accurate seg-

mentation performance achieved by our two-stage framework, in terms of

the DSC metric, was confirmed by a good balance of the sensitivity and545

specificity values. The experimental findings provided by the overlap-based

metrics are endorsed by the distance-based metrics that consider the de-

lineated region boundaries. Generally, sFCM achieved more accurate results

than ksFCM, consistent with the results presented in [31], where sFCM (with

p = 1 and q = 2) significantly outperformed the K-means, classic FCM, and550

the kernelised version in brain MRI tissue segmentation.

This single-lesion-focused study on intra-tumoural heterogeneity could be

extended to multiple sites to evaluate intra-/inter-tumoural heterogeneity, es-

pecially in the case of HGSOC, which typically comprises a heterogeneous

mixture of solid and cystic tissue and has frequently metastasised to mul-555

tiple anatomic locations when diagnosed [69, 70]. With regard to RCC,

the macroscopic heterogeneity visible on CT is typically caused by necrosis,

haemorrhage, and cystic parts [71]. These typical morphological charac-

teristics even allow for a cancer classification based on the appearance of a

tumour on CT [72]. CT-based texture feature computation on intermediately560
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dense tumour tissue alone was shown to be e↵ective in the literature: Taka-

hashi et al. [73] drew the largest possible circular ROI avoiding calcifications,

whilst Lend et al. [74] manually excluded calcifications and cystic/necrotic

parts from the whole tumour. The implementation of our approach for tis-

sue sub-segmentation into a clinical research workflow, which aims at estab-565

lishing radiomic biomarkers, might allow us to evaluate tissue-type-specific

radiomics more extensively against whole-tumour radiomics. Since highly

proliferative and aggressive tumour portions are frequently found in solid,

non-calcified areas of ovarian cancer [10], radiomics specifically computed for

these areas might convey more relevant predictive and prognostic informa-570

tion than global tumour radiomics. Another potential field of application

is the clinical radiological setting, where treatment response is commonly

assessed based on changes in the overall diameters of tumours [11] whilst

this simplification disregards di↵erential changes in solid versus cystic tu-

mour components [75, 76]. An automated and reliable approach for the575

sub-segmentation of tumour sub-regions, as demonstrated here, might allow

for more specific response assessment to be first evaluated and subsequently

integrated into clinical research environments. Due to the interpretability

of the results obtained using our proposed method, clinicians might be more

amenable to the implementation of such a tool for clinical purposes compared580

to less interpretable “black box” approaches [77]. Potential areas of further

investigation might regard the integration with circulating biomarkers, where

CA125, which is an established clinical biomarker used for disease detection

and monitoring in HGSOC [78], as well as circulating tumour cells and cell

free tumour DNA in plasma, which are currently evaluated in translational585
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oncological studies [79].

One of the limitations of this study is the continued requirement for rel-

atively labour-intensive and time-consuming manual delineation of tumours

and the inherent user-dependence [80]. Convolutional Neural Networks hold

the potential to overcome this necessity when exploited to develop a fully au-590

tomated segmentation approach for combined whole tumour detection and

segmentation [81], which could be integrated with our unsupervised tissue-

specific sub-segmentation pipeline. However, developing such a comprehen-

sive framework requires large-scale annotated datasets for training/testing

and was beyond the scope of this study, but might be a goal for develop-595

ing the proposed method further. Another limitation is the relatively small

number of patients included in this study. However, the large size of some of

the selected lesions, which extended over 80 CT slices, also allowed the 2D

clustering approach to be validated on a remarkably higher number of images

(1117 in total) than the number of patients might suggest. In conclusion,600

we were able to show the e↵ectiveness of the proposed approach and its ad-

vantages compared to the investigated competing methods on both HGSOC

and RCC datasets.
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