410,237 research outputs found

    A new distance measure for model-based sequence clustering

    Get PDF
    We review the existing alternatives for defining model-based distances for clustering sequences and propose a new one based on the Kullback-Leibler divergence. This distance is shown to be especially useful in combination with spectral clustering. For improved performance in real-world scenarios, a model selection scheme is also proposed.Publicad

    Partial mixture model for tight clustering of gene expression time-course

    Get PDF
    Background: Tight clustering arose recently from a desire to obtain tighter and potentially more informative clusters in gene expression studies. Scattered genes with relatively loose correlations should be excluded from the clusters. However, in the literature there is little work dedicated to this area of research. On the other hand, there has been extensive use of maximum likelihood techniques for model parameter estimation. By contrast, the minimum distance estimator has been largely ignored. Results: In this paper we show the inherent robustness of the minimum distance estimator that makes it a powerful tool for parameter estimation in model-based time-course clustering. To apply minimum distance estimation, a partial mixture model that can naturally incorporate replicate information and allow scattered genes is formulated. We provide experimental results of simulated data fitting, where the minimum distance estimator demonstrates superior performance to the maximum likelihood estimator. Both biological and statistical validations are conducted on a simulated dataset and two real gene expression datasets. Our proposed partial regression clustering algorithm scores top in Gene Ontology driven evaluation, in comparison with four other popular clustering algorithms. Conclusion: For the first time partial mixture model is successfully extended to time-course data analysis. The robustness of our partial regression clustering algorithm proves the suitability of the ombination of both partial mixture model and minimum distance estimator in this field. We show that tight clustering not only is capable to generate more profound understanding of the dataset under study well in accordance to established biological knowledge, but also presents interesting new hypotheses during interpretation of clustering results. In particular, we provide biological evidences that scattered genes can be relevant and are interesting subjects for study, in contrast to prevailing opinion

    Geometry-Aware Neighborhood Search for Learning Local Models for Image Reconstruction

    Get PDF
    Local learning of sparse image models has proven to be very effective to solve inverse problems in many computer vision applications. To learn such models, the data samples are often clustered using the K-means algorithm with the Euclidean distance as a dissimilarity metric. However, the Euclidean distance may not always be a good dissimilarity measure for comparing data samples lying on a manifold. In this paper, we propose two algorithms for determining a local subset of training samples from which a good local model can be computed for reconstructing a given input test sample, where we take into account the underlying geometry of the data. The first algorithm, called Adaptive Geometry-driven Nearest Neighbor search (AGNN), is an adaptive scheme which can be seen as an out-of-sample extension of the replicator graph clustering method for local model learning. The second method, called Geometry-driven Overlapping Clusters (GOC), is a less complex nonadaptive alternative for training subset selection. The proposed AGNN and GOC methods are evaluated in image super-resolution, deblurring and denoising applications and shown to outperform spectral clustering, soft clustering, and geodesic distance based subset selection in most settings.Comment: 15 pages, 10 figures and 5 table

    Nonparametric Feature Extraction from Dendrograms

    Full text link
    We propose feature extraction from dendrograms in a nonparametric way. The Minimax distance measures correspond to building a dendrogram with single linkage criterion, with defining specific forms of a level function and a distance function over that. Therefore, we extend this method to arbitrary dendrograms. We develop a generalized framework wherein different distance measures can be inferred from different types of dendrograms, level functions and distance functions. Via an appropriate embedding, we compute a vector-based representation of the inferred distances, in order to enable many numerical machine learning algorithms to employ such distances. Then, to address the model selection problem, we study the aggregation of different dendrogram-based distances respectively in solution space and in representation space in the spirit of deep representations. In the first approach, for example for the clustering problem, we build a graph with positive and negative edge weights according to the consistency of the clustering labels of different objects among different solutions, in the context of ensemble methods. Then, we use an efficient variant of correlation clustering to produce the final clusters. In the second approach, we investigate the sequential combination of different distances and features sequentially in the spirit of multi-layered architectures to obtain the final features. Finally, we demonstrate the effectiveness of our approach via several numerical studies

    Clustering Time Series from Mixture Polynomial Models with Discretised Data

    Get PDF
    Clustering time series is an active research area with applications in many fields. One common feature of time series is the likely presence of outliers. These uncharacteristic data can significantly effect the quality of clusters formed. This paper evaluates a method of over-coming the detrimental effects of outliers. We describe some of the alternative approaches to clustering time series, then specify a particular class of model for experimentation with k-means clustering and a correlation based distance metric. For data derived from this class of model we demonstrate that discretising the data into a binary series of above and below the median improves the clustering when the data has outliers. More specifically, we show that firstly discretisation does not significantly effect the accuracy of the clusters when there are no outliers and secondly it significantly increases the accuracy in the presence of outliers, even when the probability of outlier is very low

    Min-Max-Jump distance and its applications

    Full text link
    We explore three applications of Min-Max-Jump distance (MMJ distance). MMJ-based K-means revises K-means with MMJ distance. MMJ-based Silhouette coefficient revises Silhouette coefficient with MMJ distance. We also tested the Clustering with Neural Network and Index (CNNI) model with MMJ-based Silhouette coefficient. In the last application, we tested using Min-Max-Jump distance for predicting labels of new points, after a clustering analysis of data. Result shows Min-Max-Jump distance achieves good performances in all the three proposed applications

    Axioms for Distanceless Graph Partitioning

    Full text link
    In 2002, Kleinberg proposed three axioms for distance-based clustering, and proved that it was impossible for a clustering method to satisfy all three. While there has been much subsequent work examining and modifying these axioms for distance-based clustering, little work has been done to explore axioms relevant to the graph partitioning problem, i.e., when the graph is given without a distance matrix. Here, we propose and explore axioms for graph partitioning when given graphs without distance matrices, including modifications of Kleinberg's axioms for the distanceless case and two others (one axiom relevant to the ''Resolution Limit'' and one addressing well-connectedness). We prove that clustering under the Constant Potts Model satisfies all the axioms, while Modularity clustering and Iterative k-core both fail many axioms we pose. These theoretical properties of the clustering methods are relevant both for theoretical investigation as well as to practitioners considering which methods to use for their domain science studies
    • …
    corecore