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Geometry-Aware Neighborhood Search for Learning
Local Models for Image Super-Resolution

Julio Cesar Ferreira, Elif Vural, and Christine Guillemot

Abstract—Local learning of sparse image models has proven
to be very effective to solve inverse problems in many computer
vision applications. To learn such models, the data samples
are often clustered using the K-means algorithm with the Eu-
clidean distance as a dissimilarity metric. However, the Euclidean
distance may not always be a good dissimilarity measure for
comparing data samples lying on a manifold. In this paper, we
propose two algorithms for determining a local subset of training
samples from which a good local model can be computed for
reconstructing a given input test sample, where we take into
account the underlying geometry of the data. The first algo-
rithm, called Adaptive Geometry-driven Nearest Neighbor search
(AGNN), is an adaptive scheme which can be seen as an out-of-
sample extension of the replicator graph clustering method for
local model learning. The second method, called Geometry-driven
Overlapping Clusters (GOC), is a less complex nonadaptive
alternative for training subset selection. The proposed AGNN and
GOC methods are evaluated in image super-resolution and shown
to outperform spectral clustering, soft clustering, and geodesic
distance based subset selection in most settings.

Index Terms—Clustering, patch manifolds, nearest neighbor
search, image super-resolution, image restoration.

I. INTRODUCTION

THE super-resolution problem can be formulated as a lin-
ear inverse problem by modeling the image deformation

via a linear system. This problem is generally ill-posed and
the solutions often rely on some a priori information about
the image to be reconstructed. Research in the recent years
has proven that adopting an appropriate sparse image model
can yield quite satisfactory reconstruction qualities. Sparse
representations are now used to solve inverse problems in
many computer vision applications, such as super-resolution
[1], [2], [3], [4]; denoising [1], [5], [6]; compressive sensing
[7], [8], [9]; and deblurring [1], [2]. While several works
assume that the image to be reconstructed has a sparse
representation in a large overcomplete dictionary [4], [5], it has
also been observed that representing the data with small, local
models (such as subspaces) might have benefits over a single
and global model since local models may be more adaptive
and capture better the local variations in data characteristics
[1], [2], [10]. The image restoration methods in [1] and [2]
propose a patch-based processing of images, where the training
patches are first clustered and then a principal component

J. C. Ferreira is with the Goiano Federal Institute of Education, Science and
Technology, Urutai, 35790-000 Brazil. e-mail: julio.ferreira@ifgoiano.edu.br

E. Vural is with Middle East Technical University, Ankara, 06800 Turkey.
e-mail: velif@metu.edu.tr

C. Guillemot is with INRIA, Rennes, 35000 France. e-mail: chris-
tine.guillemot@inria.fr

Most part of the work was performed while the first two authors were in
INRIA.

analysis (PCA) basis is learned in each cluster. The idea of
learning adaptive models from groups of similar patches for
image restoration has been exploited in several recent works
[11], [12], [13].

When learning local models, the assessment of the similarity
between image patches is of essential importance. Different
similarity measures lead to different partitionings of data,
which may eventually change the learned models significantly.
Many algorithms constructing local models assess similarity
based on the Euclidean distance between samples. For example
in [1] and [2] image patches are clustered using the K-means
algorithm, where patches having a small Euclidean distance
are grouped together to learn a PCA basis. Test patches are
then reconstructed under the assumption that they are sparsely
representable in this basis.

However, patches sampled from natural images are highly
structured and constitute a low-dimensional subset of the high-
dimensional ambient space. In fact, natural image patches are
commonly assumed to lie close to a low-dimensional manifold
[14], [15]. Similarly, in the deconvolution method proposed
in [10], image patches are assumed to lie on a large patch
manifold, which is decomposed into a collection of locally
linear models learned by clustering and computing local PCA
bases. The geometric structure of a patch manifold depends
very much on the characteristics of the patches constituting
it; the manifold is quite nonlinear especially in regions where
patches have a rich texture. When evaluating the similarity
between patches on a patch manifold, care should be taken
especially in high-curvature regions, where Euclidean distance
loses its reliability as a dissimilarity measure. In other words,
in the K-means based setting of [1] and [2], one may obtain a
good performance only if the local PCA basis agrees with the
local geometry of the patch manifold, i.e., the most significant
principal directions should correspond to the tangent directions
on the patch manifold so that data can be well approximated
with a sparse linear combination of only a few basis vec-
tors. While this easily holds in low-curvature regions of the
manifold where the manifold is flat, in high-curvature regions,
the subspace spanned by the most significant principal vectors
computed from the nearest Euclidean-distance neighbors of
a reference point may diverge significantly from the tangent
space of the manifold if the neighborhood size is not selected
properly [16], [17]. This is illustrated in Figure 1, where the
first few significant principal directions fail to approximate
the tangent space because the manifold bends over itself as
in Figure 1(b), or because the curvature principal components
dominate the tangential principal components as in Figure 1(c).

In this work, we focus on the image super-resolution
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(a) (b) (c)

Fig. 1: PCA basis vectors computed with data sampled from a neighborhood on a
manifold. In (a), the two most significant principal directions correspond to tangent
directions and PCA computes a local model coherent with the manifold geometry. In
(b), PCA fails to recover the tangent space as the manifold bends over itself and the
neighborhood size is not selected properly. In (c), as the curvature component is stronger
than the tangential components, the subspace spanned by the two most significant PCA
basis vectors again fails to approximate the tangent space.

inverse problem and consider approaches based on sparse
representations of images in locally learned subspaces. We
present geometry-driven strategies to select subsets of data
samples for learning local models. Given a test sample, we
address the problem of determining a local subset of the
training samples, i.e., a neighborhood of the test sample, from
which a good local model can be computed for reconstructing
the test sample, where we take into account the underlying
geometry of the data. Hence, the idea underlying this work is
to compute local models that agree with the low-dimensional
intrinsic geometry of data. Low dimensionality allows sparse
representations of data, and the knowledge of sparsity can
be efficiently used for solving inverse problems in image
restoration.

Training subsets for learning local models can be deter-
mined in two ways; adaptively or nonadaptively. In adaptive
neighborhood selection, a new subset is formed on the fly
for each test sample, whereas in nonadaptive neighborhood
selection one subset is chosen for each test sample among
a collection of training subsets determined beforehand in
a learning phase. Adaptive selection has the advantage of
flexibility, as the subset formed for a particular test sample
fits its characteristics better than a predetermined subset, but
the drawback is the higher complexity. In this work, we study
both the adaptive and the nonadaptive settings and propose two
different algorithms for geometry-aware local neighborhood
selection.

We first present an adaptive scheme, called Adaptive
Geometry-driven Nearest Neighbor search (AGNN). Our
method is inspired by the Replicator Graph Clustering (RGC)
[18] algorithm and can be regarded as an out-of-sample exten-
sion of RGC for local model learning. Given a test sample, the
AGNN method computes a diffused affinity measure between
each test sample and the training samples in a manner that
is coherent with the overall topology of the data graph. The
nearest neighbor set is then formed by selecting the training
samples that have the highest diffused affinities with the test
sample.

The evaluation of the adaptive AGNN method in super-
resolution experiments shows a quite satisfactory image re-
construction quality. We then propose a nonadaptive scheme
called Geometry-driven Overlapping Clusters (GOC), which
seeks a less complex alternative for training subset selection.

The method computes a collection of training subsets in a
prior learning phase in the form of overlapping clusters. The
overlapping clusters are formed by first initializing the cluster
centers and then expanding each cluster around its central
sample by following the K-nearest neighborhood connections
on the data graph. What really determines the performance
of the GOC method is the structure of the clusters, driven by
the number of neighbors K and the amount of expansion. We
propose a geometry-based strategy to set these parameters, by
studying the rate of decay of PCA coefficients of data samples
in the cluster, thereby characterizing how close the cluster lies
to a low-dimensional subspace.

Note that, while the proposed AGNN and GOC algorithms
employ similar ideas to those in manifold clustering methods,
our study differs from manifold clustering as we do not aim
to obtain a partitioning of data. Instead, given a test sample to
be reconstructed, we focus on the selection of a local subset
of training data to learn a good local model. We evaluate
the performance of our methods in image super-resolution
application. The results show that the proposed similarity
assessment strategies can provide performance gains compared
to the Euclidean distance, especially for superresolving images
with rich texture where patch manifolds are highly nonlinear.
When applying the proposed method in the super-resolution
problem, we select the NCSR algorithm [1] as a reference
method, which currently leads the state of the art in super-
resolution. We first show that the proposed AGNN and GOC
methods outperform reference subset selection strategies such
as spectral clustering, soft clustering, and geodesic distance
based neighborhood selection. Finally, we perform compara-
tive experiments with the NCSR [1], ASDS [2], and SPSR [19]
super-resolution algorithms, which suggest that the proposed
methods can be successfully applied in super-resolution for
taking the state of the art one step further. We also discuss
the applicability of the presented methods to other image
restoration problems such as deblurring and denoising.

The rest of the paper is organized as follows. In Section II
we give an overview of manifold-based clustering methods. In
Section III we formulate the neighborhood selection problem
studied in this paper. In Section IV we discuss the proposed
AGNN method. Then in Section V we describe the GOC
algorithm. In Section VI we present experimental results, and
in Section VII we conclude.

II. CLUSTERING ON MANIFOLDS: RELATED WORK

As our study has close links with the clustering of low-
dimensional data, we now give a brief overview of some
clustering methods for data on manifolds. The RGC method
[18], from which the proposed AGNN method has been
inspired, first constructs a data graph. An initial affinity matrix
is then computed based on the pairwise similarities between
data samples. The affinity matrix is iteratively updated such
that the affinities between all sample pairs converge to the
collective affinities that consider all paths on the data graph.
Spectral clustering is another well-known algorithm for graph-
based clustering [20], [21]. Samples are clustered with respect
to a low-dimensional embedding given by the functions of
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slowest variation on the data graph, which encourages assign-
ing neighboring samples with strong edge weights to the same
cluster. The Laplacian eigenmaps method [22] builds on the
same principle; however, it targets dimensionality reduction.

Geodesic clustering provides an extension of the K-means
algorithm to cluster data lying on a manifold, where the
Euclidean distance is replaced with the geodesic distance [23],
[24]. In [25], a method is proposed for clustering data lying
on a manifold, which extends the graph-based semi-supervised
learning algorithm in [26] to a setting with unlabeled data. The
diffusion matrix that diffuses known class labels to unlabeled
data in [26] is interpreted as a diffusion kernel in [25],
which is then used for determining the similarity between data
samples to obtain clusters. The works in [27], [28] also use
the geodesic distance as a dissimilarity measure. They propose
methods for embedding the manifold into the tangent spaces of
some selected reference points and perform a fast approximate
nearest neighbor search on the space of embedding.

While the above algorithms consider all data samples to
lie on a single manifold, several other methods model low-
dimensional data as samples from multiple manifolds and
study the determination of these manifolds. An expectation
maximization approach is employed in [29] to partition the
data into manifolds. The points on each manifold are then
embedded into a lower-dimensional domain. The method in
[30] computes a sparse representation of each data sample in
terms of other samples, where high coefficients are encouraged
for nearby samples. Once the sparse coefficients are computed,
data is grouped into manifolds simply with spectral clustering.
The method in [31] extends several popular nonlinear dimen-
sionality reduction algorithms to the Riemannian setting by
replacing the Euclidean distance with the Riemannian distance.
It is then shown that, if most data connections lie within the
manifolds rather than between them, the proposed Riemannian
extensions yield clusters corresponding to different manifolds.

Finally, the generation of overlapping clusters in GOC
is also linked to soft clustering [32]. Rather than strictly
partitioning the data into a set of disjoint groups, a membership
score is computed between each data sample and each cluster
center in soft clustering. The cluster centers are then updated
by weighing the samples according to the membership scores.
In [33], a manifold extension of soft clustering is proposed,
where the membership scores are computed with a geodesic
kernel instead of the Euclidean distance.

III. RATIONALE AND PROBLEM FORMULATION

In patch-based image processing, one often would like
to develop tools that can capture the common structures
inherently present in patches and use this information for the
efficient treatment of images. One important example is the
invariance to geometric transformations. In practical image
formation scenarios, different regions of the image are likely
to observe the same structure, exposed, however, to different
geometric transformations in different parts of the image
plane. While most patch-based methods inherently achieve
invariance to translations as they extract patches from the
image over sliding windows, more complex transformations

such as rotations and scale changes are more difficult to handle
in evaluating the structural similarities between patches. In
addition to geometric transformation models, structural simi-
larities between image patches may be stemming from many
other low-dimensional, possibly parametrizable patch models
as well. In [15], several parametrizable patch manifold models
are explored such as oscillating textures and cartoon images. In
the treatment or reconstruction of image patches, local models
computed from patches sharing the same structure reflect the
local geometry of the patch manifold, while the comparison
of patch similarities based on Euclidean distance does not
necessarily achieve this. In this paper, we propose similarity
assessment strategies that better take structural similarities
into account than the simple Euclidean distance in image
restoration.

Given observed measurements y, the ill-posed inverse prob-
lem can be generally formulated in a Banach space as

y = Θx + ν (1)

where Θ is a bounded operator, x is an unknown data point
and ν is an error term. In image restoration y is the vectorized
form of an observed image, Θ is a degradation matrix, x is
the vectorized form of the original image, and ν is an additive
noise vector. There are infinitely many possible data points x
that explain y; however, image restoration algorithms aim to
reconstruct the original image x from the given measurements
y, often by using some additional assumptions on x. When Θ
is composed of a down-sampling operator and a blurring oper-
ator, image restoration becomes single image super-resolution.

In image restoration with sparse representations, x can be
estimated by minimizing the cost function

α̂ = arg min
α

{
‖y −ΘΦ ◦ α‖22 + λ ‖α‖1

}
(2)

where Φ is a dictionary, α is the sparse representation of x in
Φ, and λ > 0 is a regularization parameter. It is common to
reconstruct images patch by patch and model the patches of
x as sparsely representable in Φ. Representing the extraction
of the j-th patch xj of x with a matrix multiplication as
xj = Rjx, the reconstruction of the overall image x can be
represented via the operator ◦ as shown in [1], [2]. If the
dictionary Φ is well-chosen, one can efficiently model the
data points x using their sparse representations in Φ. Once the
sparse coefficient vector α is estimated, one can reconstruct
the image x as

x̂ = Φ ◦ α̂. (3)

While a global model is considered in the above problem,
several works such as [1], [2], [34] propose to reconstruct
image patches based on sparse representations in local models.
In this case, one aims to reconstruct the j-th patch xj of
the unknown image x from its degraded observation yj by
selecting a local model that is suitable for yj . The problem in
(2) is then reformulated as

α̂j = arg min
αj

{
‖yj −ΘΦjαj‖22 + λ ‖αj‖1

}
(4)

where yj is the j-th patch from the observed image y, Φj is
a local (PCA) basis chosen for the reconstruction of yj , and
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α̂j is the coefficient vector. The unknown patch xj is then
reconstructed as x̂j = Φjα̂j . The optimization problem in (4)
forces the coefficient vector α̂j to be sparse. Therefore, the
accuracy of the reconstructed patch x̂j in approximating the
unknown patch xj depends on the reliability of the local basis
Φj , i.e., whether signals are indeed sparsely representable in
Φj .

The main idea proposed in this paper is to take into account
the manifold structure underlying the data when choosing a
neighborhood of training data points to learn a local basis.
Our purpose is to develop a dissimilarity measure that is better
suited to the local geometry of the data than the Euclidean dis-
tance and also to make the neighborhood selection procedure
as adaptive as possible to the test samples to be reconstructed.

Let D = {di}mi=1 be a set of m training data points di ∈ Rn
lying on a manifold M and let Y = {yj}Mj=1 be a set of M
test data points yj ∈ Rn. As for the image restoration problem
in (4), each test data point yj corresponds to a degraded image
patch, and the training data points in D are used to learn the
local bases Φj . The test samples yj are not expected to lie
on the patch manifold M formed by the training samples;
however, one can assume yj to be close to M unless the
image degradation is very severe.

We then study the following problem. Given an observation
yj ∈ Y of an unknown image patch xj , we would like to
select a subset S ⊂ D of training samples such that the PCA
basis Φj computed from S minimizes the reconstruction error
‖xj − x̂j‖, where the unknown patch xj is reconstructed as
x̂j = Φjα̂j , and the sparse coefficient vector is given by

α̂j = arg min
αj

{
‖yj −ΘΦjαj‖22 + λ ‖αj‖1

}
. (5)

Since the nondeformed sample xj is not known, it is clearly
not possible to solve this problem directly. In this work, we
propose some constructive solutions to guide the selection of
S by assuming that yj lies close to M. As the manifold M
is not known analytically, we capture the manifold structure
of training data D by building a similarity graph whose nodes
and edges represent the data points and the affinities between
them. In Sections IV and V we describe the AGNN and the
GOC methods, which respectively propose an adaptive and
a nonadaptive solution for training subset selection for local
basis learning from the similarity graph.

IV. ADAPTIVE GEOMETRY-DRIVEN NEAREST NEIGHBOR
SEARCH

In this section, we present the Adaptive Geometry-driven
Nearest Neighbor search (AGNN) strategy for selecting the
nearest neighbors of each test data point within the training
data points with respect to an intrinsic manifold structure.
Our subset selection method builds on the RGC algorithm
[18], which targets the clustering of data with respect to
the underlying manifold. The RGC method seeks a globally
consistent affinity matrix that is the same as its diffused version
with respect to the underlying graph topology. However, the
RGC method focuses only on the initially available training
samples and does not provide a means of handling initially
unavailable test samples. We thus present an out-of-sample

yj
di

dl

dl’

al
ail*

Fig. 2: Illustration of AGNN. The affinity between yj and dl is al, and the affinity
between dl and di is a∗il. The intermediate node dl contributes by the product ala∗il
to the overall affinity between yj and di. The sample dl′ is just another intermediate
node like dl. Summing the affinities via all possible intermediate nodes (i.e., all training
samples), the overall affinity is obtained as in (9).

generalization of RGC and propose a strategy to compute and
diffuse the affinities between the test sample and all training
samples in a way that is consistent with the data manifold.

In the RGC algorithm, given a set of data points D, an
affinity matrix A = (ail) is first computed. The elements ail
of A measure the similarity between the data points di and dl.
A common similarity measure is the Gaussian kernel

ail = exp

(
−‖di − dl‖

2

nc12

)
(6)

where ‖·‖ denotes the `2-norm on Rn and c1 is a constant.
Then, the initial affinities are updated with respect to the
underlying manifold as follows. The affinities are diffused by
looking for an A matrix such that each row Ai of A maximizes

ATi = arg max
v

(vTAv). (7)

Since the maximization problem on the right hand side of (7)
is solved by an eigenvector of A, the method seeks an affinity
matrix such that the similarities between the data sample di
and all the other samples in D (given by the row Ai) are
proportional to the diffused version of the similarities in Ai
over the whole manifold via the product AATi ; i.e., an affinity
matrix is searched such that ATi ∝ AATi . The optimization
problem in (7) is solved with an iterative procedure based
on a game theoretical approach to obtain a diffused affinity
matrix A∗. The diffusion of the affinities are constrained to
the s nearest neighbors of each point di.

In our AGNN method, we first compute and diffuse the
affinities of training samples in D as proposed in [18]. This
gives us a similarity measure coherent with the global geom-
etry of the manifold. Meanwhile, unlike in RGC, our main
purpose is to select a subset S ⊂ D of training samples for a
given test sample yj ∈ Y . We thus need a tool for generalizing
the above approach for test samples.

We propose to compute the affinities between yj and D by
employing A∗ as follows. Given a test data point yj ∈ Y , we
first compute an initial affinity vector a whose i-th entry

ai = exp

(
−‖yj − di‖

2

nc12

)
(8)

measures the similarity between yj and the training sample
di. We then update the affinity vector as follows. Denoting
the entries of the diffused affinity matrix A∗ by a∗il, first the
product a∗ilal should give the component of the overall affinity
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Algorithm 1 Adaptive Geometry-driven Nearest Neighbor
search (AGNN)
1: Input:
D = {di}mi=1: Set of training samples
yj ∈ Y : Test sample
c1, c2, κ: Algorithm parameters

2: AGNN Algorithm:
3: Form affinity matrix A of training samples with respect to (6).
4: Diffuse the affinities in A to obtain A∗ as proposed in the RGC method [18].
5: Initialize the affinity vector a between test sample yj and the training samples as

in (8).
6: Diffuse the affinities in a to obtain a? with respect to (10).
7: Determine set S of nearest neighbors of yj by selecting the training samples with

the highest affinities as in (11).
8: Output:
S : Set of nearest neighbors of yj in D.

between yj and di that is obtained through the sample dl:
if there is a sample dl that has a high affinity with both
di and yj , this means that the affinity between di and yj
should also be high due to the connection established via the
intermediate node dl (see the illustration in Figure 2). Note
that the formulation in (7) also relies on the same idea. We
thus update the affinity vector a such that its i-th entry ai
becomes proportional to

m∑
l=1

a∗il al (9)

i.e., the total affinity between samples di and yj obtained
through all nodes dl in the training data graph. This suggests
that the initial affinities in the vector a should be updated as
A∗a, which corresponds to the diffusion of the affinities on
the graph. Repeating this diffusion process κ times, we get the
diffused affinities of the test sample as

a? = (A∗)κa (10)

where a?i gives the final diffused affinity between yj and di.
This generalizes the idea in (7) to initially unavailable data
samples; and hence, provides an out-of-sample extension of
the diffusion approach in RGC. The parameter κ should be
chosen in a way to permit a sufficient diffusion of the affinities.
However, it should not be too large in order not to diverge too
much from the initial affinities in a. In our experiments we
have observed that κ = 2 gives good results in general.

Once the affinities a? are computed, the subset S consisting
of the nearest neighbors of yj can be obtained as the samples
in D whose affinities to yj are higher than a threshold

S = {di ∈ D : a?i ≥ c2 max
l
a?l } (11)

where 0 < c2 < 1. The samples in S are then used for learning
a PCA basis to reconstruct yj . The threshold c2 should be
chosen sufficiently high to select only the similar patches to
the reference patch, however, it should not be selected too
high in order to have sufficiently many neighbors necessary
for computing a basis. If S contains too few samples, the
threshold c2 can be adapted to increase the number of samples
or a sufficient number of points with highest affinities can
be directly included in S. The proposed AGNN method for
determining training subsets gets around the problem depicted
in Figure 1(b), since points lying at different sides of a

manifold twisting onto itself have a small diffused affinity
and are not included in the same subset. A summary of the
proposed AGNN method is given in Algorithm 1.

V. GEOMETRY-DRIVEN OVERLAPPING CLUSTERS

As we will see in Section VI, the AGNN method presented
in Section IV is efficient in terms of image super-resolution
performance. However, it may have a high computational
complexity and considerable memory requirements in settings
with a large training set D, as the size of the affinity matrix
grows quadratically with the number of training samples and
the subset selection is adaptive (repeated for each test sample).
For this reason, we propose in this section the Geometry-
driven Overlapping Clusters (GOC) method, which provides
a computationally less complex solution for obtaining the
nearest neighbors of test samples.

The GOC algorithm computes a collection {Sk}Ck=1 of
subsets Sk ⊂ D of the training data set, which are to be used
in local basis computation. Contrary to the AGNN method,
the subsets Sk ⊂ D are determined only using the training
data and are not adapted to the test samples. However, the
number C of subsets should then be sufficiently large to have
the desired adaptivity for capturing arbitrary local variations.
Due to the large number of subsets, Sk are not disjoint in
general; hence, can be regarded as overlapping clusters. In
the following, we first describe our method for forming the
clusters and then propose a strategy to select some parameters
that determine the size and the structure of the clusters.

Given the number of clusters C to be formed, we first
determine the central data point µk ∈ D of each cluster Sk.
In our implementation, we achieve this by first clustering D
with the K-means algorithm, and then choosing each µk as
the point in D that has the smallest Euclidean distance to the
center of the k-th cluster given by K-means.

The training data points µk are used as the kickoff for the
formation of the clusters Sk. Given the central sample µk,
the cluster Sk is formed iteratively with the GOC algorithm
illustrated in Figure 3 as follows. We first initialize Sk as

S0
k = NK(µk) (12)

where NK(µk) denotes the set of the K-nearest neighbors of
µk in D with respect to the Euclidean distance. Then in each
iteration l, we update the cluster Slk as

Slk = Sl−1
k ∪

⋃
di∈Sl−1

k

NK(di) (13)

by including all samples in the previous iteration as well as
their K-nearest neighbors. Hence, the clusters are gradually
expanded by following the nearest neighborhood connections
on the data graph. This procedure is repeated for L iterations
so that the final set of clusters is given by

{Sk}Ck=1 = {SLk }Ck=1. (14)

The expansion of the clusters is in a similar spirit to the affinity
diffusion principle of AGNN; however, is computationally
much less complex.
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yj
di

dl

dl’

al
ail*

Fig. 3: Illustration of the GOC algorithm. The cluster Sk around the central sample µk

is formed gradually. Sk is initialized with S0
k containing the K nearest neighbors of

µk (K = 3 in the illustration). Then in each iteration l, Sl
k is expanded by adding the

nearest neighbors of recently added samples.

In the simple strategy presented in this section, we have
two important parameters to set, which essentially influence
the performance of learning: the number of iterations L and
the number of samples K in each small neighborhood. In the
following, we propose an algorithm to adaptively set these
parameters based on the local geometry of data. Our method
is based on the observation that the samples in each cluster
will eventually be used to learn a local subspace that provides
an approximation of the local tangent space of the manifold.
Therefore, Sk should lie close to a low-dimensional subspace
in Rn, so that nearby test samples can be assumed to have a
sparse representation in the basis Φk computed from Sk. We
characterize the concentration of the samples in Sk around a
low-dimensional subspace by the decay of the coefficients of
the samples in the local PCA basis.

We omit the cluster index k for a moment to simplify
the notation and consider the formation of a certain cluster
S = Sk. With a slight abuse of notation, let SL,K stand for the
cluster S that is computed by the algorithm described above
with parameters L and K. Let Φ = [φ1 ... φn] be the PCA
basis computed with the samples in S, where the principal
vectors φ1, . . . , φn ∈ Rn are sorted with respect to the
decreasing order of the absolute values of their corresponding
eigenvalues. For a training point di ∈ S, let di = di − ηS
denote the shifted version of di where ηS = |S|−1

∑
di∈S di

is the centroid of cluster S. We define

I(L,K) = min
{
ι |

ι∑
q=1

∑
di∈SL,K

〈
φq, di

〉2
≥ c3

n∑
q=1

∑
di∈SL,K

〈
φq, di

〉2} (15)

which gives the smallest number of principal vectors to
generate a subspace that captures a given proportion c3 of
the total energy of the samples in S, where 0 < c3 < 1. We
propose to set the parameters L, K by minimizing the function
I(L,K), which gives a measure of the concentration of the
energy of S around a low-dimensional subspace. However,
in the case that S contains m ≤ n samples where n is the
dimension of the ambient space, the subspace spanned by
the first m − 1 principal vectors always captures all of the
energy in S; therefore I(L,K) takes a relatively small value;
i.e., I(L,K) ≤ m − 1. In order not to bias the algorithm
towards reducing the size of the clusters as a result of this, a

Algorithm 2 Geometry-driven Overlapping Clusters (GOC)
1: Input:
D = {di}mi=1: Set of training samples
C: Number of clusters
c3: Algorithm parameter

2: GOC Algorithm:
3: Determine cluster centers µk of all C clusters (possibly with the K-means algo-

rithm).
4: for k = 1, · · · , C do
5: Fix parameter L′ = L0 at an initial value L0.
6: for K′ = 1, · · · , Kmax do
7: Form cluster Sk = SL0,K′ as described in (12)-(14).
8: Evaluate decay rate function Ĩ(L0, K

′) given in (16).
9: end for

10: Set K as the K′ value that minimizes Ĩ(L0, K
′).

11: for L′ = 1, · · · , Lmax do
12: Form cluster Sk = SL′,K as described in (12)-(14).
13: Evaluate decay rate function Ĩ(L′, K) given by (16).
14: end for
15: Set L as the L′ value that minimizes Ĩ(L′, K).
16: Determine cluster Sk as SL,K with the optimized parameters.
17: end for
18: Output:
{Sk}Ck=1 : Set of overlapping clusters in D.

normalization of the function I(L,K) is required. We define

Ĩ(L,K) = I(L,K)/min{ |SL,K | − 1, n} (16)

where | · | denotes the cardinality of a set. The denomina-
tor min{ |SL,K | − 1, n} of the above expression gives the
maximum possible value of I(L,K) in cluster SL,K . Hence,
the normalization of the coefficient decay function by its
maximum value prevents the bias towards small clusters.

We can finally formulate the selection of L, K as (L,K) =
arg min(L′,K′)∈Λ Ĩ(L′,K ′) where Λ is a bounded parameter
domain. This optimization problem is not easy to solve exactly.
One can possibly evaluate the values of Ĩ(L,K) on a two-
dimensional grid in the parameter domain. However, in order
to reduce the computation cost, we approximately minimize
the objective by optimizing one of the parameters and fixing
the other in each iteration. We first fix the number of iterations
L at an initial value and optimize the number of neighbors K.
Then, updating and fixing K, we optimize L.

The computation of the parameters L and K with the above
procedure determines the clusters as in (14). The samples in
each cluster Sk are then used for computing a local basis Φk.
The proposed GOC method is summarized in Algorithm 2.
Since the proposed GOC method determines the clusters not
only with respect to the connectivity of the data samples on
the graph, but also by adjusting the size of the clusters with
respect to the local geometry, it provides a solution for both
of the problems described in Figures 1(b) and 1(c).

In the proposed GOC method, contrary to AGNN, we need
to define a strategy to select the PCA basis that best fits a given
test patch. Given a test patch yj , we propose to select a basis
Φk by taking into account the distance between yj and the
centroid µk of the cluster Sk (corresponding to Φk), as well
as the agreement between yj and the principal directions in Φk.
Let Φrk = [φ1 . . . φr] denote the submatrix of Φk consisting
of the first r principal vectors, which give the directions that
determine the main orientation of the cluster. We then choose
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the basis Φk that minimizes

k = arg min
k′

{
‖yj − µk′‖2 − γ

∥∥∥∥(Φrk)T
yj − µk′
‖yj − µk′‖2

∥∥∥∥
2

}
(17)

where γ > 0 is a weight parameter. While the first term above
minimizes the distance to the centroid of the cluster, the second
term maximizes the correlation between the relative patch
position yj−µk′ and the most significant principal directions.
Once the basis index k is determined as above, the test patch
yj is reconstructed based on a sparse representation in Φk.

VI. EXPERIMENTS

In this section, we experimentally evaluate the performance
of the proposed methods. In Section VI-A we first present an
experiment which demonstrates that the proposed neighbor-
hood selection strategies can be successfully used for capturing
structural similarities of images. Then, in Section VI-B we test
our algorithms in image super-resolution. Finally in Section
VI-C we discuss the applicability of the proposed methods to
other image restoration applications and overview some results
obtained in image deblurring and denoising.

A. Transformation-invariant patch similarity analysis

Natural images often contain different observations of the
same structure in different regions of the image. Patches that
share a common structure may be generated from the same
reference pattern with respect to a transformation model that
can possibly be parameterized with a few parameters. One
example to parametrizable transformation models is geometric
transformations. In this section, we evaluate the performance
of the proposed AGNN strategy in capturing structural similar-
ities between image patches in a transformation-invariant way.
We generate a collection of patches of size 10× 10 pixels, by
taking a small set of reference patches and applying geometric
transformations consisting of a rotation with different angles
to each reference patch to obtain a set of geometrically
transformed versions of it. Figure 4 shows two reference
patches and some of their rotated versions. The data set used in
the experiment is generated from 10 reference patches, which
are rotated at intervals of 5 degrees.

In order to evaluate the performance of transformation-
invariant similarity assessment, we look for the nearest neigh-
bors of each patch in the whole collection and identify the
“correct” neighbors as the ones sharing the same structure,
i.e., the patches generated from the same reference patch.
Three nearest neighbor selection strategies are tested in the
experiment, which are AGNN, neighbor selection with respect
to Euclidean distance, and K-means clustering. In AGNN, the
neighborhood size that gives the best algorithm performance
is used. The Euclidean distance uses the same neighborhood
size as AGNN, and the number of clusters in K-means is set
as the true number of clusters, i.e., the number of reference
patches generating the data set. The correct clustering rates are
shown in Figure 5, which are the percentage of patches that are
correctly present in a cluster (each neighborhood is considered
as a cluster in AGNN and Euclidean distance). The horizontal
axis shows the number of clusters (i.e., number of reference
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Fig. 4: Two of the reference patches and their rotated versions used in the experiment
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Fig. 5: Percentage of patches correctly included in the clusters

patches) used in different repetitions of the experiment. It
can be observed that the AGNN method yields the best
transformation-invariant similarity assessment performance.
Contrary to methods based on simple Euclidean distance,
AGNN measures the similarity of two patches by tracing all
paths on the manifold joining them. Therefore, it is capable
of following the gradual transformations of structures on the
patch manifold and thus identifying structural similarities of
patches in a transformation-invariant manner.

B. Image super-resolution

In this section, we demonstrate the benefits of our neighbor-
hood selection strategies in the context of the NCSR algorithm
[1], which leads to state-of-the-art performance in image
super-resolution.

The NCSR algorithm [1] is an image restoration method
that reconstructs image patches by selecting a model among
a set of local PCA bases. This strategy exploits the image
nonlocal self-similarity to obtain estimates of the sparse coding
coefficients of the observed image. The method first clusters
training patches with the K-means algorithm and then adopts
the adaptive sparse domain selection strategy proposed in
[2] to learn a local PCA basis for each cluster from the
estimated high-resolution (HR) images. After the patches are
coded, the NCSR objective function is optimized with the
Iterative Shrinkage Thresholding (IST) algorithm proposed in
[35]. The clustering of training patches with the K-means
algorithm in [1] is based on adopting the Euclidean distance
as a dissimilarity measure. The purpose of our experiments
is then to show that the proposed geometry-based nearest
neighbor selection methods can be used for improving the
performance of an image super-resolution algorithm such as
NCSR.

We now describe the details of our experimental setting
for the super-resolution problem. In the inverse problem y =
Θx+ν in (1), x and y denote respectively the lexicographical
representations of the unknown image X and the degraded
image Y . The degradation matrix Θ = DH is composed of a
down-sampling operator D with a scale factor of q = 3 and a
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Fig. 6: Test images for super-resolution: Butterfly, Bike, Hat, Plants, Girl, Parrot,
Parthenon, Raccoon, Leaves, Flower.

Gaussian filter H of size 7×7 with a standard deviation of 1.6,
and ν is an additive noise. We aim to recover the unknown
image vector x from the observed image vector y. We evaluate
the proposed algorithms on the 10 images presented in Figure
6, which differ in their frequency characteristics and content.
For color images, we apply the single image SR algorithm
only on the luminance channel and we compute the PSNR
and SSIM [36] only on the luminance channel for coherence.
Besides PSNR and SSIM, the visual quality of the images is
also used as a comparison metric.

Overlapping patches of size 6 × 6 are used in the exper-
iments. The original NCSR algorithm initializes the training
set D by extracting patches from several images in the scale
space of the HR image. However, in our implementation we
initialize the set of training patches by extracting them only
from the low-resolution image; i.e., the m initial training
patches di ∈ Rn in D = {di}mi=1 are extracted from the
observed low-resolution (LR) image vector y. We learn online
PCA bases using the training patches in D with the proposed
AGNN and GOC methods. In the original NCSR method, in
every P iterations of the IST algorithm, the training set D
is updated by extracting the training patches from the current
version of the reconstructed image x̂ and the PCA bases are
updated as well by repeating the neighborhood selection with
the updated training data. In our experiments, we use the same
training patches D for the whole algorithm.

In Section VI-B1, we evaluate our methods AGNN and
GOC by comparing their performance to some other clustering
or nearest neighbor selection strategies in super-resolution. In
Section VI-B2, we provide comparative experiments with sev-
eral widely used super-resolution algorithms and show that our
proposed manifold-based neighborhood selection techniques
can be used for improving the state of the art in super-
resolution.

In Sections VI-B1 and VI-B2, the results for the algorithms
in comparison are obtained by using the software packages
made publicly available by the corresponding authors 1.

1) Performance Evaluation of AGNN and GOC: We com-
pare the proposed AGNN and GOC methods with 4 dif-
ferent clustering algorithms; namely, the K-means algorithm
(Kmeans), Fuzzy C-means clustering algorithm (FCM) [32],
Spectral Clustering (SC) [20], Replicator Graph Clustering
(RGC) [18]; and also with K-NN search using geodesic

1We would like to thank the authors of [1], [2], [18], [19], [20], [32] and
[37] for making their software packages publicly available.

distance (GeoD). Among the clustering methods, Kmeans
and FCM employ the Euclidean distance as a dissimilarity
measure, while SC and RGC are graph-based methods that
consider the manifold structure of data. When testing these
four methods, we cluster the training patches and compute a
PCA basis for each cluster. Then, given a test patch, the basis
of the cluster whose centroid has the smallest distance to the
test patch is selected as done in the original NCSR algorithm
where K-means is used. In the GeoD method, each test patch is
reconstructed with the PCA basis computed from its nearest
neighbors with respect to the geodesic distance numerically
computed with Dijkstra’s algorithm [37]. The idea of nearest
neighbor selection with respect to the geodesic distance is also
in the core of the methods proposed in [27] and [28]. Note
that the four reference clustering methods and GOC provide
nonadaptive solutions for training subset selection, while the
GeoD and the AGNN methods are adaptive.

The parameters of the AGNN algorithm are set as s = 35
(number of nearest neighbors in the diffusion stage of RGC
[18]), κ = 2 (number of iterations for diffusing the affinity
matrix), c1 = 10 (Gaussian kernel scale), and c2 = 0.9
(affinity threshold). The parameters of the GOC algorithm
are set as C = 64 (number of clusters), c3 = 0.5 (threshold
defining the decay function), γ = 150, and r = 8 (parameters
for selecting a PCA basis for each test patch). The number of
clusters in the other four clustering methods in comparison are
also set to the same value as C = 64. The size of the clusters
with the FCM algorithm are selected roughly the same as the
cluster sizes computed with K-means. The total number of
iterations and the number of PCA basis updates are chosen as
1000 and 4 in the NCSR algorithm. All the general parameters
for the NCSR algorithm are selected as Dong et al. [1]. In
this way, we can maintain consistency in the comparison of
the methods related to NCSR algorithm.

We evaluate the GOC algorithm in three different settings.
In the first setting the cluster size parameters L and K
are estimated adaptively for each cluster with the strategy
proposed in Algorithm 2, which is denoted as aGOC. In the
second setting, denoted avGOC, the parameters L and K are
not adapted to each cluster; all clusters are formed with the
same parameter values, where L and K are computed by
minimizing the average value of coefficient decay function
Ĩ(L,K) over all clusters of the same image. The parameters
are thus adapted to the images, but not to the individual
clusters of patches of an image. Finally, in the third setting,
denoted mGOC, the parameters L and K are manually entered
and used for all clusters of the same image. The parameter
values provided to the algorithm for each image are set as
the best values obtained with an exhaustive search. Therefore,
mGOC can be considered as an oracle setting.

The results are presented in Figure 7, Figure 8, and Table
I. Figures 7 and 8 provide a visual comparison between
the image reconstruction qualities obtained with the K-means
clustering algorithm and the proposed AGNN and GOC meth-
ods for the Butterfly and the Hat images. It is observed
that AGNN and GOC produce sharper edges than K-means.
Moreover, the visual artifacts produced by K-means such as
the phantom perpendicular bands on the black stripes of the
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(a) LR image (b) Original HR image (c) NCSR-Kmeans (d) NCSR-AGNN (e) NCSR-GOC

(f) Original HR close-up (g) NCSR-Kmeans close-up (h) NCSR-AGNN close-up (i) NCSR-GOC close-up

Fig. 7: Comparison of SR results (×3). It can be observed that NCSR-AGNN and NCSR-GOC reconstruct edges with a higher contrast than NCSR-Kmeans. Artifacts visible with
NCSR-Kmeans (e.g., the oscillatory phantom bands perpendicular to the black stripes on the butterfly’s wing) are significantly reduced with NCSR-AGNN and NCSR-GOC.

(a) LR image (b) Original HR image (c) NCSR-Kmeans (d) NCSR-AGNN (e) NCSR-GOC

(f) Original HR close-up (g) NCSR-Kmeans close-up (h) NCSR-AGNN close-up (i) NCSR-GOC close-up

Fig. 8: Comparison of SR results (×3). NCSR-Kmeans produces artifacts such as the checkerboard-like noise patterns visible on plain regions of the cap, which are prevented by
NCSR-AGNN or NCSR-GOC.

butterfly and the checkerboard-like noise patterns on the cap
are significantly reduced with AGNN and GOC. The efficiency
of the proposed methods for removing these artifacts can
be explained as follows. When image patches are clustered
with the K-means algorithm, the similarity between patches
is measured with the Euclidean distance. Therefore, when
reconstructing a test patch, the algorithm tends to use a basis
computed with patches that have similar intensity values. The
nonuniformity of the pixel intensities along the black stripes
of the LR Butterfly image thus propagates to the reconstructed
HR image as well, which produces the phantom bands on the
wing (due to the too low resolution, the black stripes on the LR
image contain periodically appearing clear pixels contaminated
by the yellow plain regions on the wing). Similarly, in the Hat
image, the clusters used in learning a basis for reconstructing
the plain regions on the cap contain also patches extracted
from the wall, which have a similar intensity with the cap.

This reproduces the shadowy patterns of the wall also on the
cap. On the other hand, the AGNN method groups together
patches that have a connection on the data graph. As the
patches are extracted with overlapping windows shifting by
one pixel, AGNN and GOC may have a stronger tendency than
K-means for favoring patches from nearby or similar regions
on the image that all share a common structure, which is also
confirmed by the experiment in Section VI-A. The proposed
methods yield local bases better fitted to the characteristics of
patches, therefore, less artifacts are observed.

In Table I the performance of the compared clustering
methods are measured with the PSNR and the SSIM metrics.
Graph-based methods are generally seen to yield a better
performance than methods based on Euclidean distance. This
confirms the intuition that motivates our study; when selecting
neighborhoods for learning local models, the geometry of the
data should be respected. As far as the average performance is
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TABLE I: PSNR (top row, in dB) and SSIM (bottom row) results for the luminance components of super-resolved HR images for different clustering or neighborhood selection
approaches: Spectral Clustering (SC) [20]; Fuzzy C-means clustering algorithm (FCM) [32]; K-means clustering (Kmeans); Replicator Graph Clustering (RGC) [18]; kNN search
with Dijkstra Algorithm (GeoD) [37]; and our methods GOC and AGNN.

Images Butterfly Bike Hat Plants Girl Parrot Parthenon Raccoon Leaves Flower Average

SC [20]
28.15 24.73 31.28 33.98 33.65 30.45 27.19 29.24 27.50 29.45 29.56

0.9193 0.8026 0.8723 0.9198 0.8255 0.9170 0.7509 0.7659 0.9242 0.8567 0.8554

FCM [32]
28.20 24.76 31.25 33.99 33.65 30.47 27.25 29.25 27.68 29.50 29.60

0.9205 0.8040 0.8726 0.9205 0.8256 0.9174 0.7531 0.7663 0.9271 0.8575 0.8565

Kmeans
28.14 24.79 31.31 34.07 33.64 30.53 27.20 29.28 27.67 29.47 29.61

0.9204 0.8050 0.8730 0.9213 0.8254 0.9178 0.7517 0.7668 0.9265 0.8567 0.8565

RGC [18]
28.45 24.80 31.37 34.20 33.65 30.57 27.22 29.27 27.90 29.50 29.69

0.9234 0.8061 0.8739 0.9219 0.8254 0.9181 0.7525 0.7658 0.9317 0.8576 0.8576

GeoD [37]
28.61 24.82 31.42 34.16 33.63 30.44 27.24 29.25 27.98 29.54 29.71

0.9257 0.8070 0.8746 0.9219 0.8250 0.9178 0.7530 0.7650 0.9323 0.8587 0.8581

avGOC
28.34 24.85 31.42 34.17 33.66 30.68 27.23 29.28 27.89 29.55 29.71

0.9222 0.8076 0.8747 0.9224 0.8258 0.9191 0.7528 0.7668 0.9317 0.8591 0.8582

aGOC
28.46 24.85 31.44 34.18 33.65 30.63 27.23 29.27 27.92 29.54 29.72

0.9239 0.8082 0.8744 0.9227 0.8257 0.9187 0.7530 0.7663 0.9324 0.8588 0.8584

mGOC
28.54 24.90 31.43 34.20 33.67 30.71 27.25 29.28 27.95 29.55 29.75

0.9251 0.8085 0.8748 0.9222 0.8261 0.9192 0.7530 0.7671 0.9324 0.8593 0.8588

AGNN
28.78 24.87 31.46 34.16 33.67 30.60 27.29 29.26 28.01 29.61 29.77

0.9266 0.8081 0.8749 0.9218 0.8260 0.9188 0.7540 0.7661 0.9324 0.8601 0.8589

concerned, the AGNN method gives the highest reconstruction
quality and is followed by the GOC method. The performance
difference between AGNN and GOC can be justified with
the fact that the training subset selection is adaptive to the
test patches in AGNN, while GOC is a nonadaptive method
that offers a less complex solution. In particular, with a non-
optimized implementation of our algorithms, we have observed
that GOC has roughly the same computation time as K-means,
while the computation time of AGNN is around three times
K-means and GOC in the tested images on an Intel Core i5
2.6GHz under the Matlab R2015a programming environment,
as shown in Table III. After the proposed AGNN and GOC
methods, GeoD gives the best average performance. While
this adaptive method ensures a good reconstruction quality,
it requires the computation of the geodesic distance between
each test patch and all training patches. Therefore, it is com-
putationally very complex. Although several works such as
[27] and [28] provide solutions for fast approximations of the
geodesic distance, we observe that in terms of reconstruction
quality AGNN performs better than GeoD in most images.
This suggests that using a globally consistent affinity measure
optimized with respect to the entire graph topology provides
a more refined and precise similarity metric than the geodesic
distance, which only takes into account the shortest paths
between samples.

Concerning the performances of the clustering methods
on the individual images, an important conclusion is that
geometry-based methods yield a better performance especially
for images that contain patches of rich texture. The AGNN
and GOC methods provide a performance gain of respectively
0.64 dB and 0.4 dB over K-means (used in the original NCSR
method) for the Butterfly image. Meanwhile, all clustering
methods give similar reconstruction qualities for the Girl

image. This discrepancy can be explained with the difference
in the characteristics of the patch manifolds of these two
images. The patches of the Butterfly image contain high-
frequency textures; therefore, the patch manifold has a large
curvature (see, e.g., [38] for a study of the relation between
the manifold curvature and the image characteristics). Conse-
quently, the proposed methods adapted to the local geometry
of the manifold perform better on this image. On the other
hand, the Girl image mostly contains weakly textured low-
frequency patches, which generate a rather flat patch manifold
of small curvature. The Euclidean distance is more reliable as
a dissimilarity measure on flat manifolds compared to curved
manifolds as it gets closer to the geodesic distance. Hence, the
performance gain of geometry-based methods over K-means
is much smaller on the Girl image compared to Butterfly.

Next, the comparison of the three modes of the GOC
algorithm shows that aGOC and avGOC yield reconstruction
qualities that are close to that of the oracle method mGOC.
This suggests that setting the parameters L and K with respect
to the PCA coefficient decay rates as proposed in Algorithm 2
provides an efficient strategy for the automatic determination
of cluster sizes. While the average performances of aGOC
and avGOC are quite close, interestingly, aGOC performs
better than avGOC on Butterfly and Leaves. Both of these
two images contain patches of quite varying characteristics,
e.g., highly textured regions formed by repetitive edges as
well as weakly textured regions. As the structures of the
patches change significantly among different clusters in these
images, optimizing the cluster size parameters individually for
each cluster in aGOC has an advantage over using common
parameters in avGOC.

2) Improvements over the State of the Art in super-
resolution: In this section, we present an experimental com-
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TABLE II: PSNR (top row, in dB) and SSIM (bottom row) results for the luminance components of super-resolved HR images for different super-resolution algorithms: Bicubic
Interpolation; SPSR (Peleg et al.) [19]; ASDS (Dong et al.) [2]; NCSR (Dong et al.) [1]; NCSR with proposed GOC; NCSR with proposed AGNN.

Images Butterfly Bike Hat Plants Leaves Average Parrot Parthenon Raccoon Girl Flower Average

Bicubic
22.41 21.77 28.22 29.69 21.73 24.76 26.54 25.20 27.54 31.65 26.16 27.42

0.7705 0.6299 0.8056 0.8286 0.7302 0.7530 0.8493 0.6528 0.6737 0.7671 0.7295 0.7345

SPSR [19]
26.74 24.31 30.84 32.83 25.84 28.11 29.68 26.77 29.00 33.40 28.89 29.55

0.8973 0.7830 0.8674 0.9036 0.8892 0.8681 0.9089 0.7310 0.7562 0.8211 0.8415 0.8117

ASDS [2]
27.34 24.62 30.93 33.47 26.80 28.63 30.00 26.83 29.24 33.53 29.19 29.76

0.9047 0.7962 0.8706 0.9095 0.9058 0.8774 0.9093 0.7349 0.7677 0.8242 0.8480 0.8168

NCSR [1]
28.07 24.74 31.29 34.05 27.46 29.12 30.49 27.18 29.27 33.66 29.50 30.02

0.9156 0.8031 0.8704 0.9188 0.9219 0.8860 0.9147 0.7510 0.7707 0.8276 0.8563 0.8241

NCSR-GOC
28.47 24.85 31.44 34.16 28.05 29.39 30.71 27.23 29.28 33.65 29.58 30.09

0.9241 0.8084 0.8747 0.9232 0.9339 0.8929 0.9192 0.7526 0.7666 0.8257 0.8600 0.8248

NCSR-AGNN
28.81 24.86 31.47 34.19 28.06 29.48 30.60 27.30 29.27 33.67 29.60 30.09

0.9273 0.8080 0.8755 0.9223 0.9332 0.8933 0.9189 0.7546 0.7662 0.8261 0.8601 0.8252

TABLE III: Time (s) results for the luminance components of super-resolved HR images for NCSR (Dong et al.) [1]; NCSR with proposed GOC; NCSR with proposed AGNN.

Images Butterfly Bike Hat Plants Leaves Parrot Parthenon Raccoon Girl Flower Average

NCSR [1] 261 229 213 229 233 220 481 362 213 226 267

NCSR-GOC 271 266 253 261 278 256 518 383 246 264 299

NCSR-AGNN 960 1039 467 578 1146 505 2541 1637 416 830 1012

parison of several popular super-resolution algorithms; namely,
the bicubic interpolation algorithm, ASDS [2], SPSR [19],
and NCSR [1]. We evaluate the performance of the NCSR
algorithm under three different settings where the local bases
are computed with K-means, AGNN, and GOC. The GOC
method is used as in Algorithm 2 (denoted as aGOC in the
previous experiments).

The experiments are conducted on the same images as in
the previous set of experiments. The total number of iterations
and the number of PCA basis updates of NCSR are selected
respectively as 960 and 6, while the other parameters are
chosen as before. The results presented in Table II show that
the state of the art in super-resolution is led by the NCSR
method [1]. The performance of NCSR is improved when it is
coupled with the AGNN and GOC strategies for selecting local
models. In Table II the images are divided into two categories
as those with high-frequency and low-frequency content.
The average PSNR and SSIM metrics are reported in both
groups. It can be observed that the advantage of the proposed
neighborhood selection strategies over K-means is especially
significant for high-frequency images. In images with low-
frequency content, K-means gives the same performance as the
proposed methods. As the patch manifold gets flatter, clusters
obtained with K-means and the proposed methods get similar.
Hence, we may conclude that the proposed geometry-based
neighborhood selection methods can be successfully used for
improving the state of the art in image super-resolution, whose
efficacy is especially observable for sharp images rich in high-
frequency texture.

C. Applicability to other restoration problems

The methods proposed in this paper aim to determine patch
similarity in a geometry-aware manner and can potentially be

used in other image restoration applications than superresolu-
tion as well. We now briefly overview the applicability of our
algorithms to other problems.

We first evaluate our method in the image deblurring
application. We compare GOC with the K-means clustering
algorithm within the framework of the NCSR method [1]. The
algorithms are tested on the images shown in Figure 9. A
Gaussian blur kernel of standard deviation 1.6 pixels is used.
Along with the blurring, the images are also corrupted with an
additive white Gaussian noise of standard deviation

√
2. The

parameters of GOC are set as C = 64 (number of clusters),
c3 = 0.5 (threshold defining the decay function), γ = 150,
and r = 8 (parameters for selecting a PCA basis for each test
patch). All the general parameters for the NCSR algorithm are
selected as Dong et al. [1] in order to maintain the consistency.

The PSNR and FSIM [39] measures of the reconstruction
qualities are presented in Table IV. The results obtained with
the image restoration algorithms FISTA (Portilla et al.) [40]
and ASDS (Dong et al.) [2] reported in [1] for the same experi-
ments are also given for the purpose of comparison. The results
show that the proposed GOC algorithm can be effectively used
for improving the image reconstruction quality of the NCSR
method in deblurring applications. The GOC method either
outperforms the K-means clustering algorithm or yields a quite
close performance when coupled with NCSR. Moreover, one
can observe that the best average PSNR value is given by the
proposed method, whose benefits are especially observable for
images with significant high-frequency components such as
Butterfly, Cameraman, and Leaves. More detailed results on
image deblurring can be found in the accompanying technical
report [41], where the algorithms are also tested with a uniform
blur kernel and their performance comparison is observed to
be similar.
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TABLE IV: PSNR (top row, in dB) and FSIM (bottom row) results for the luminance components of deblurred images for different deblurring algorithms for a Gaussian blur
kernel of standard deviation 1.6 pixels and an additive white Gaussian noise of standard deviation

√
2: FISTA (Portilla et al.) [40]; ASDS (Dong et al.) [2]; NCSR (Dong et al.)

[1]; NCSR with proposed GOC.

Images Butterfly Boats C. Man House Parrot Lena Barbara Starfish Peppers Leaves Average

FISTA [40]
30.36 29.36 26.81 31.50 31.23 29.47 25.03 29.65 29.42 29.36 29.22

0.9452 0.9024 0.8845 0.8968 0.9290 0.9011 0.8415 0.9256 0.9057 0.9393 0.9071

ASDS [2]
29.83 30.27 27.29 31.87 32.93 30.36 27.05 31.91 28.95 30.62 30.11

0.9126 0.9064 0.8637 0.8978 0.9576 0.9058 0.8881 0.9491 0.9039 0.9304 0.9115

NCSR [1]
30.84 31.37 28.27 33.69 33.40 31.17 28.02 32.23 30.01 31.62 31.06

0.9379 0.9348 0.9044 0.9339 0.9589 0.9360 0.9108 0.9533 0.9300 0.9514 0.9351

NCSR-GOC
31.32 31.48 28.44 33.80 33.45 31.28 27.45 32.27 30.27 32.04 31.18

0.9486 0.9413 0.9153 0.9375 0.9594 0.9429 0.9014 0.9554 0.9389 0.9587 0.9399

Fig. 9: Test images for deblurring: Butterfly, Boats, Cameraman, House, Parrot, Lena,
Barbara, Starfish, Peppers, Leaves.

Next, we discuss the applicability of our methods to image
denoising. In the technical report [41], we present experi-
mental results where we test our AGNN algorithm in image
denoising. We refer the reader to [41] for a detailed discussion
of the results and briefly overview our findings here. The
AGNN algorithm is compared to K-means for the clustering of
the image patches in image denoising with the NCSR method
[1]. The two versions of the NCSR algorithm, coupled with
K-means and AGNN, are also compared with several other
denoising methods on a set of images corrupted with Gaussian
noise of standard deviation σ = [5 10 15 20 50 100]. While
the overall performances of the compared algorithms are
close, SAPCA-BM3D [42] usually gives the best denoising
performance. The proposed NCSR-AGNN algorithm yields a
very similar performance to NCSR. A very slight improvement
in average PSNR is obtained over NCSR at small noise levels
(smaller than σ = 20), while this small advantage is lost
at larger noise levels. The results show that the performance
of NCSR-AGNN tends to be better than NCSR on images
with strong and oscillatory high-frequency textures. This may
be due to the particular geometry of the patch manifold in
such images, which is easier to identify under noise, so that
the consideration of the geometry in assigning the similarities
helps improve the denoising performance.

VII. CONCLUSION

In this paper, we have focused on the problem of selecting
local subsets of training data samples that can be used for
learning local models for image super-resolution. This study
has been motivated by the observation that the Euclidean
distance may not always be a good dissimilarity measure

for comparing data samples lying on a manifold. We have
proposed two methods for data subset selection by taking into
account the geometry of the data, which is assumed to lie on a
manifold. Although the addressed problem has close links with
manifold clustering, it differs by the fact that the goal here is
not to obtain a partitioning of data, but instead select a local
subset of training data that can be used for learning a good
model for sparse reconstruction of a given input test sample.
The performance of the methods has been demonstrated in
a super-resolution application leading to a novel single-image
super-resolution algorithm which outperforms reference meth-
ods. The applicability to other restoration problems has also
been discussed.
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