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1 INTRODUCTION

ONE of the most common assumptions made in Machine Learning
is that the observation vectors are independently and identically
distributed (i.i.d.). This is a reasonable assumption in a wide range
of scenarios and provides useful simplifications that enable the
development of efficient learning algorithms. Nonetheless, there
are lots of areas where this assumption is far from being valid. For
example, sometimes, the useful information is encoded in the way
that data vectors evolve along time, so emphasis is required in
modeling the system dynamics. Clearly, this cannot be optimally
done from an i.i.d. perspective: It requires a sequential approach,
where the minimal meaningful unit is not a data vector but a
sequence of vectors. Moreover, each of these sequences can have a
different length, this being an additional difficulty for the
traditional machine learning methods, which mostly rely on
comparing patterns living in the same vector space.

A first step toward the development of efficient machine

learning techniques to address these problems is obtaining an

adequate modeling that enables pattern comparison. There has

been a lot of research in generative models for sequential data,

some of the most well-known and successful paradigms being the

hidden Markov models (HMMs) [1] and their extensions:

hierarchical HMMs [2], buried Markov models [3], etc. They offer

a good trade-off between computational complexity and expres-

sive power, while at the same time being adequate models for lots

of real-life processes.
In this work, we address the problem of clustering sequential

data. Clustering is one of the most common and useful tasks in

machine learning, so it is a well-studied problem. Many efficient

algorithms exist for the usual case of equal-length feature vectors,

and, among them, Spectral clustering (SC) [4] stands out as a state-

of-the-art nonparametric technique that allows unsupervised

classification without making any assumption about the under-

lying distribution of the data. Hierarchical clustering (HC) [5] is

another widely used technique, especially when real hierarchical

relations exist in the data. Results obtained by this clustering

procedure can be highly descriptive and informative.

In order to apply these well-known clustering methods to the
sequential data scenario, we face the difficulty of defining a
meaningful distance measure for sequences. A popular framework
is to first generate adequate models for the individual sequences in
the data set and then use these models to obtain likelihood-based
distances between sequences [6]. Based on this work, several other
distance measures based on a likelihood matrix have been proposed
[7], [8], [9], all of them being very similar in their philosophy.

We propose exploring a different approach and define a
distance measure between sequences under the aforementioned
framework by looking at the likelihood matrix from a probabilistic
perspective. We regard the patterns created by the likelihoods of
each of the sequences under the trained models as samples from
the conditional likelihoods of the models given the data. This point
of view differs largely from the existing distances. One of its
differentiating properties is that it embeds information from the
whole data set or just a subset of it into each pairwise distance
between sequences. This gives rise to highly structured distance
matrices, which can be exploited by spectral methods to give a
very high performance in comparison with previous proposals.
Moreover, we also tackle the issue of selecting an adequate
representative subset of models, proposing a simple method for
that purpose when using SC. This greatly increases the quality of
the clustering in those scenarios where the underlying dynamics of
the sequences do not adhere well to the employed models.

The rest of this paper is organized as follows: In Section 2, we
review the general framework for clustering sequential data,
together with the most employed tools within that framework,
namely HMMs as generative models and hierarchical and SC,
whose main characteristics are briefly outlined. The existing
algorithms under this framework are also reviewed. Section 3
introduces our proposal of a new distance measure between
sequences. Performance comparisons are carried out in Section 4,
using both synthetic and real-world data. Finally, Section 5 collects
the main conclusions of this work and sketches some promising
lines for future research.

2 A FRAMEWORK FOR CLUSTERING SEQUENTIAL DATA

The work of Smyth [6] proposes a probabilistic model-based
framework for sequence clustering. Given a data set S ¼
S1; . . . ; SNf g of N sequences, it assumes that each of them is

generated by a single model from a discrete pool. The main idea
behind this framework is to model the individual sequences and
then use the resulting models to obtain a length-normalized log-
likelihood matrix L, whose ijth element lij is defined as

lij ¼ log pij ¼
1

lengthðSjÞ
log fSðSj; �iÞ; 1 � i; j � N; ð1Þ

where Sj is the jth sequence, �i is the model trained for the
ith sequence, and fSð�; �iÞ is the probability density function (pdf)
over sequences according to model �i. Based on this matrix, a
distance matrix D can be obtained so that the original variable-
length sequence clustering problem is reduced to a typical
similarity-based one.

The following sections will describe the most usual tools under
this framework: HMMs for the individual sequence models and
hierarchical and SC for the actual partitioning of the data set. Then,
we briefly address the existing algorithms in the literature under
this framework.

2.1 Hidden Markov Models

HMMs [1] are a type of parametric discrete state-space model,
widely employed in signal processing and pattern recognition.
Their success comes mainly from their relative low complexity
compared to their expressive power and their ability to model
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naturally occurring phenomena. Its main field of application has

traditionally been speech recognition [1], but they have also found
success in a wide range of areas, from bioinformatics [10] to video

analysis [11].
In an HMM, the (possibly multidimensional) observation yt at a

given time instant t (living in a space Y) is generated according to

a conditional pdf fYðytjqtÞ, with qt being the hidden state at time t.
These states follow a time-homogeneous first-order Markov chain

so that P ðqtjqt�1; qt�2; . . . ; q0Þ ¼ P ðqtjqt�1Þ. Bearing this in mind, an
HMM � can be completely defined by the following parameters:

. The discrete and finite set of K possible states
X ¼ x1; x2; . . . ; xKf g.

. The state transition matrix A ¼ faijg, where each aij
represents the probability of a transition between two
states: aij ¼ P qtþ1 ¼ xjjqt ¼ xi

� �
; 1 � i; j � K.

. The emission pdf fYðytjqtÞ.

. The initial probabilities vector � ¼ �if g, where 1 � i � K
and �i ¼ P q0 ¼ xið Þ.

The parameters of an HMM are traditionally learned using the
Baum-Welch algorithm [1], which represents a particularization of

the well-known Expectation-Maximization (EM) algorithm [12]. Its
complexity is OðK2T Þ per iteration, with T being the length of the

training sequence. An HMM can be seen as a simple Dynamic

Bayesian Network (DBN) [13], an interpretation that provides an
alternative way of training this kind of models by applying the

standard algorithms for DBNs. This allows for a unified way of
inference in HMMs and their generalizations.

2.2 Hierarchical Clustering

HC [5] algorithms organize the data into a hierarchical (tree)
structure. The clustering proceeds in an iterative fashion in the

following two ways: Agglomerative methods start by assigning
each datum to a different cluster, and then merging similar clusters

up to arriving at a single cluster that includes all data. Divisive
methods initially consider the whole data set as a unique cluster that

is recursively partitioned in such a way that the resulting clusters

are maximally distant. In both cases, the resulting binary tree can be
stopped at a certain depth to yield the desired number of clusters.

2.3 Spectral Clustering

Spectral clustering (SC) [4] casts the clustering problem into a graph
partitioning one. Data instances form the nodes of a weighted graph

whose edges represent the adjacency between data. The clusters are
the partitions of the graph that optimize certain criteria. These

criteria include the normalized cut that takes into account the ratio
between the cut of a partition and the total connection of the

generated clusters. To find these optimal partitions is an NP-hard

problem, which can be relaxed to a generalized eigenvalue problem
on the Laplacian matrix of the graph.

The spectral techniques have the additional advantage of
providing a clear and well-founded way of determining the

optimal number of clusters for a data set, based on the eigengap of
the similarity matrix [14].

2.4 Existing Algorithms

The initial proposal for model-based sequential data clustering of
[6] aims at fitting a single generative model to the entire set S of

sequences. The clustering itself is part of the initialization
procedure of the model. In the initialization step, each sequence

Si is modeled with an HMM �i. Then, the distance between two

sequences Si and Sj is defined based on the log-likelihood of each
sequence, given the model generated for the other sequence

dijSYM ¼
1

2
lij þ lji
� �

; ð2Þ

where lij represents the (length normalized) log-likelihood of
sequence Sj under model �i. In fact, this is the symmetrized
distance previously proposed in [15]. Given these distances, the
data are partitioned using agglomerative HC with the “furthest-
neighbor” merging heuristic.

The work in [7] inherits this framework for sequence clustering
but introduces a new dissimilarity measure, called the BP metric

dijBP ¼
1

2

lij � lii
lii

þ lji � ljj
ljj

� �
: ð3Þ

The BP metric takes into account how well a model represents the
sequence it has been trained on, so it is expected to perform better
than the symmetrized distance in cases where the quality of the
models may vary along different sequences.

Another alternative distance within this framework is proposed
in [8], namely,

dijPOR ¼ pij þ pji � pii � pjj
�� ��; ð4Þ

with pij as defined in (1).
Recently, the popularity of SC has motivated work in which

these kinds of techniques are applied to the clustering of
sequences. Yin and Yang [9] propose a distance measure
resembling the BP metric,

dijY Y ¼ lii þ ljj � lij � lji
�� ��; ð5Þ

and then apply SC on a similarity matrix derived from the distance
matrix by means of a Gaussian kernel. They reported good results
in comparison to traditional parametric methods using initializa-
tions such as those proposed in [6] and [16], called Dynamic Time
Warping (DTW).

Another example of applying SC to sequential data can be
found in [17]. In this novel approach, the similarities between
the probability distributions defined by the different HMMs
are measured via a probability product kernel (PPK). This
way, the calculation of the likelihood matrix is avoided and
the similarity between two sequences is obtained using just the
parameters of the models trained on each of them. Hence, this
method falls out of the scope of the present paper.

3 PROPOSED ALGORITHM

Our proposal is based on the observation that the aforementioned
methods define the distance between two sequences Si and Sj
solely using the models trained on them (�i and �j). We expect a
better performance if we add into the distance some global
characteristics of the data set. Moreover, since distances under this
framework are obtained from a likelihood matrix, it seems natural
to take the probabilistic nature of this matrix into account when
selecting adequate distance measures.

Bearing this in mind, we propose a novel sequence distance
measure based on the Kullback-Leibler (KL) divergence [18],
which is a standard measure for the similarity between probability
density functions.

The first step of our algorithm involves obtaining the like-
lihood matrix L as in (1) (we will assume at first that an HMM is
trained for each sequence). The ith column of L represents the
likelihood of the sequence Si under each of the trained models.
These models can be regarded as a set of “intelligently” sampled
points from the model space, in the sense that they have been
obtained according to the sequences in the data set. This way, they
are expected to lie in the area of the model space �� surrounding
the HMMs that actually span the data space. Therefore, these
trained models become a good discrete approximation ~�� ¼
�1; . . . ; �Nf g to the model subspace of interest. If we normalize

the likelihood matrix so that each column adds up to one, we get a
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new matrix LN whose columns can be seen as the probability

density functions over the approximated model space conditioned

on each of the individual sequences

LN ¼ fS1

~��
ð�Þ; . . . ; fSN~��

ð�Þ
h i

:

This interpretation leads to the familiar notion of dissimilarity

measurement between probability density functions, the KL

divergence being a natural choice for this purpose. Its formulation

for the discrete case is as follows:

DKLðfPkfQÞ ¼
X
i

fP ðiÞ log
fP ðiÞ
fQðiÞ

; ð6Þ

where fP and fQ are two discrete pdfs. Since the KL divergence is

not a proper distance because of its asymmetry, a symmetrized

version is used

DKLSYM
ðfPkfQÞ ¼

1

2
DKL fPkfQ

� �
þDKL fQkfP

� �� �
: ð7Þ

This way, the distance between the sequences Si and Sj can be

defined simply as

dij ¼ DKLSYM
fSi~��
kfSj~��

	 

: ð8Þ

This implies a change of focus from the probability of the

sequences under the models to the likelihood of the models, given

the sequences. Distances defined this way are obtained according

to the patterns created by each sequence in the probability space

spanned by the different models. With this approach, the distance

measure between two sequences Si and Sj involves information

related to the rest of the data sequences, represented by their

corresponding models.
This redundancy can be used to define a representative subset

Q � S of the sequences, so that ~�� ¼ f�Q1
; . . . ; �QP

g; P � N . In this

way, instead of using the whole data set for the calculation of the

distances, only the models trained with sequences belonging to Q
will be taken into account for that purpose. The advantage of

defining such a subset is twofold: on the one hand, computational

load can be reduced since the number of models to train is reduced

to P and the posterior probability calculations drop from N �N to

P �N . On the other hand, if the data set is prone to outliers or the

models suffer from overfitting, the stability of the distance

measures and the clustering performance can be improved if Q
is carefully chosen. Examples of both of these approaches are

shown in the experiments included in Section 4. Obtaining this

measure involves the calculation of NðN � 1Þ KL divergences,

with a complexity linear in the number of elements in the

representative subset. Therefore, its time complexity is

OðPNðN � 1ÞÞ. Nevertheless, it is remarkable that the processing

time devoted to the distance calculation is minimal in comparison

to those involved in training the models and evaluating the

likelihoods.

Finally, before applying an SC, the distance matrix D ¼ dij
� �

must be transformed into a similarity matrix A. A commonly used

procedure is to apply a Gaussian kernel so that aij ¼ expð�d
2
ij

2�2 Þ, with

� being a free parameter representing the kernel width. Next, a

standard normalized-cut algorithm is applied to matrix A,

resulting in the actual clustering of the sequences in the data set.

In the sequel, we will refer to this combination of our proposed

KL-based distance and SC as KL+SC.

4 EXPERIMENTAL RESULTS

This section presents some experimental results concerning several
synthetic and real-world sequence clustering problems. Synthetic
data experiments aim at illustrating the performance of the
different sequence clustering algorithms under tough separability
conditions but fulfilling the assumption that the sequences are
generated by HMMs. This way, we focus the analysis on the
impact of the distance measures as we isolate the adequateness of
the modeling (except in overfitting). Besides, we also use two real-
world scenarios, namely, speech data and electroencephalogram
(EEG) data, to show a sample application of sequence clustering in
two fields where HMMs have typically been used as rough
approximate generative models.

The different methods to be compared are the following:

. SYM—Symmetrized distance (2)

. BP—BP distance (3)

. POR—Porikli distance (4)

. YY—Yin-Yang distance (5)

. KL—Proposed KL distance (8).

All of them will be paired with both an agglomerative HC using
the furthest neighbor merging heuristic, as in [6], and a normal-
ized-cut SC. For the SC algorithm, the value of parameter � of the
Gaussian kernel is selected empirically in a completely unsuper-
vised fashion as the one that maximizes the eigengap for each
distance measure in each case (as proposed in [14]). It is also
remarkable that the k-means part of the SC algorithm, due to its
strong dependence on the initialization, is run 10 times at each
iteration and we choose as the most adequate partition the one
with the minimal intracluster distortion, defined as

Dcluster ¼
XK
k¼1

X
i2Ck
kxi � ckk2;

where K is the number of clusters, Ck is the set of the indexes of
points belonging to the kth cluster, ck is the centroid of that cluster,
and xi is the ith data point. This distortion can be seen as the
“tightness” of the resulting clusters, and it is also well known that
this minimum distortion criterion implies a maximum separation
among centroids [19].

Both the code and the data sets for the following experiments
can be found at the authors’ website.1

4.1 Synthetic Data

The first scenario under which the comparison is carried out is the
original example from [6]: Each sequence in the data set is
generated with equal probability by one of two possible HMMs �1

and �2, each one of them having two hidden states (m ¼ 2).
Transition matrices for the generating HMMs are given by

A1 ¼
0:6 0:4
0:4 0:6

 �
; A2 ¼

0:4 0:6
0:6 0:4

 �
:

Initial states are equiprobable and emission probabilities are the
same in both models, specifically Nð0; 1Þ in the first state and
Nð3; 1Þ in the second. This scenario represents a very appropriate
test bed for sequence clustering techniques since the only way to
differentiate sequences generated by each model is to attend to
their dynamical characteristics. These, in turn, are very similar,
making this a hard clustering task. The length of each individual
sequence is obtained by sampling a uniform pdf in the range
�Lð1� V =100Þ �Lð1þ V =100Þ½ �, where �L is the sequence’s mean

length and V is a parameter which we will refer to as the
percentage of variation in the length. All the given results are
averaged over 50 randomly generated data sets.
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Fig. 1 shows the results of the performance comparison of the

different distance measures and clustering methods against

variations of the mean length �L of the data sequences for a fixed

length variation V of 40 percent in a data set comprised N ¼ 80

sequences. It can be seen that, as expected, the longer the

sequences the more accurate the clustering. It is also clear that

our proposed distance measure outperforms the previous propo-

sals under both hierarchical and SC, attaining specially good

results using the latter technique. Specifically, the proposed

KL+SC method yields the best performance for every mean

sequence length, showing consistent improvements which are

more dramatic for short mean sequence lengths (�L < 200). Models

trained with such short sequences suffer from severe overfitting,

not being able to adequately capture the underlying dynamics, and

thus giving unrealistic results when evaluated using the sequences

in the data set. This results into incoherent distance matrices using

the typical methods which render the use of SC algorithms

unproductive. Nonetheless, our proposal is more resilient against

this issue since it takes a global view on the data set that allows for

the correct clustering of sequences even if the models are rather

poor. Evaluating the sequences on a large enough number of

individually inadequate models can generate patterns that our

distance measure can capture, which translates into a consistent

distance matrix very suitable for applying spectral methods. This

shows that our approach is efficient even when the models are

poor so they cannot be expected to correctly sample the model

space. In these scenarios, the probabilistic interpretation of the

proposed distance is not clear and it takes more of a pattern

matching role.

Agglomerative HC is more forgiving of loosely structured

distance matrix since it merges clusters based on pairwise distance

comparisons instead of taking a global view. Therefore, it seems

more suitable than SC methods for its use with the previously

proposed model-based sequence distances. On the other hand, it

also implies that it cannot benefit from the use of our proposed

distance as much as spectral techniques can.
Fig. 2 displays the evolution of the error along the number of

sequences in the data set. As more sequences are present in the

data set, the aforementioned problems of the previous proposals in

combination with SC become clearer, while our method manages

to improve its performance. Using HC, all the distances achieve

stable results irrespective of the number of sequences, but once

again, this comes at the expense of an inferior performance

compared to the KL+SC combination.
Fig. 3 shows the results for a multiclass clustering with K ¼ 3

classes. The sequences being clustered were generated using the

two previously employed HMMs (�1 and �2) and a third one �3 that

differs only from them in the transition matrix. Specifically,

A3 ¼
0:7 0:3
0:3 0:7

 �
:

The additional class makes this a harder problem than the two-

class scenario, so it is logical to assume that lengthier sequences are

required to achieve comparable results. Nonetheless, the use of our

proposed distance still shows significant improvements over the

rest of the distances, all of which give almost identical results.
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4.2 Real-World Data

In this section, different sequential-data clustering algorithms will

be evaluated on real-world scenarios. The first scenario is speaker

clustering: We are given a set of audio files, each one of them

containing speech from a single speaker, and the task is to group

together files coming from the same speaker (two speakers per

experiment). Two different databases are employed, namely,

. AHUMADA [20]. A database specially tailored for speaker
identification. We use a free subset2 consisting of
25 speakers and choose the isolated digits task: each
speaker records 24 digits, which are further concatenated
in groups of two, giving 12 sequences per user with a mean
length of 0.7 seconds.

. GPM-UC3M. A database recorded at the Multimedia
Processing Group of the University Carlos III of Madrid
using a PDA. It consists of 30 speakers with 50 isolated
words for each one of them. Every single word is
considered an individual sequence and its mean length is
around 1.3 seconds.

The audio files were processed using the freely available HTK

software,3 a standard parametrization consisting of 12 Mel-

frequency cepstral coefficients (MFCCs), an energy term, and their

respective increments (�), giving a total of 26 parameters. These

parameters were obtained every 10 ms with a 25-ms analysis

window. The resulting 26-dimensional sequences were fed into the

different clustering algorithms without any further processing.
The other scenario used for testing purposes is clustering of

EEG signals. We employ the database recorded by Zak Keirn at

Purdue University.4 This database consists of EEG recordings of

seven subjects performing five different mental tasks, namely,

baseline (rest), math calculations, composing a letter, rotating a

geometrical figure, and counting. Each recording comprises

measures taken from seven channels at 250 Hz for 10 seconds.

We divide them into sequences of l25 samples, and the only

preprocessing applied to them is a first-order derivative so they

adjust better to a Markov model. Given a subject, the purpose

is to find clusters of sequences representing the same activity.

Concretely, we perform seven clusterings (one for each subject)

of 50 sequences (10 per mental activity, randomly chosen) into

five groups.
Since real-world data are inherently noisy and the sequences

do not perfectly fit a Markovian generative model, the property of

embedding information about the entire set of sequences in each

pairwise distance can become performance-degrading. Thus, it

becomes interesting to select only an adequate subset of the
models for obtaining the distance matrix. This way, we will be
performing the clustering in a reduced subspace spanned just by
the chosen models.

For this purpose, we propose a simple method to determine
which models to include in the KL+SC method: First, since models
coming from lengthier sequences are expected to be less influenced
by outliers and to provide more information about the underlying
processes, the general heuristic is to keep these models. The
remaining question is, how many models should be considered?
To answer this, the percentage of modeled sequences is swept and
at each step a heuristic h is obtained as

h ¼ �Kþ1

�N
; ð9Þ

where �j is the jth eigenvalue of the SC GEV problem, sorted by
increasing magnitude. Intuitively, this value can be seen as
representing a normalized measure of the energy preserved by
taking only K eigenvalues, and can therefore be regarded as a
measure of the clustering quality. It is then natural to select as the
appropriate percentage of sequences to model the one that
maximizes h. Similar approaches can be found in the PCA
literature for selecting the optimum number of principal compo-
nents to retain [21]. As previously stated, this is a simple method
with no aspirations of being optimum but developed just for
illustrating that an adequate selection of models can be advanta-
geous, or even necessary, for attaining good clustering results. It is
also worth noting that, using this method, the model selection is
carried out based on a likelihood matrix obtained using all the
sequences in the data set. We refer to the KL+SC method coupled
with this model selection scheme as KL+SC+MS.

Table 1 shows the results (averaged over 15 iterations) of the
compared methods in the different data sets using SC. HC results
are not shown because of space restrictions, but they were clearly
inferior to those attained via SC. Agglomerative methods fail in
these scenarios because the relationships among the data that must
be exploited in order to obtain an adequate partition are impossible
to capture in a pairwise fashion. Results are given under varying
number of hidden states in the range where the different methods
perform best for each data set.

All in all, the KL+SC+MS combination noticeably outperforms
the alternatives, specially in the speech data sets. The use of KL+SC
without model selection does not work as well as in the synthetic
experiments because sequences belonging to the same cluster are
not actually drawn from a unique HMM. The clustering just relies
on the assumption that these sequences lead to similar models. In
this scenario, there are no such things as “true” HMMs generating
the data set, so the interpretation of the likelihood matrix that gives
birth to our proposal loses much of its strength. However, it can be
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seen that if the KL+SC combination is coupled with the proposed
model selection method, it produces convincing results even in
such adverse conditions.

A remarkable fact is that the previously proposed distances
suffer from a severe performance loss in the speaker clustering
tasks as the number of hidden states increases. This is caused by
the models overfitting the sequences in these data sets because
of the high dimensionality of the data and the short mean length
of the sequences. The evaluation of likelihoods under these
models produces results that does not reflect the underlying
structure of the data. This distortion severely undermines the
performance of previously proposed distances, yielding poorly
structured distance matrices that seriously hinders the SC. The
use of our proposed KL distance, specially in combination with
model selection, has a smoothing effect on the distance matrices.
This effect makes it less sensitive to overfit models, resulting in
an improved performance relative to the other distances as
overfitting becomes more noticeable. This robustness is a very
useful property of our proposal since, in practice, it is usually
hard to determine the optimum model structure and overfitting
is likely to occur. It is also worth noting that the advantage of
using our method is clearer in the GPM-UC3M data set because
the number of sequences considered in each clustering task is
larger. This agrees with the conclusions drawn from the
experiments with synthetic data.

The dimensionality of the data in the EEG data set is lower than
those in the speaker verification ones. This allows for an increase in
the number of hidden states without suffering from overfitting.
The KL+SC+MS method also performs best in this data set,
followed closely by the YY distance. It is remarkable that the
improvement in performance due to the use of model selection is
less dramatic in this scenario because of both the absence of
overfitting and the equal length of all sequences.

In Table 2, we show the number of models chosen for
consideration by the model selection algorithm in each of the
clustering tasks. Notice how in the three cases as the complexity of
the models (in terms of number of hidden states) increases, the
model selection scheme picks a larger number of them. In general,
more complex models lead to more varying probabilities when

evaluated on the different sequences. This way, the effective
dimension of the model-induced subspace where the sequences lie
grows with the complexity of the models, which agrees with the
aforementioned behavior of the model selection scheme.

5 CONCLUSIONS AND FUTURE WORK

We have proposed a new distance measure for sequential data

clustering based on the KL divergence. It embeds information of

the whole data set into each element of the distance matrix,

introducing a structure that makes it specially suitable for its use in

combination with SC techniques. This measure also allows for the

use of a reduced representative subset of models, which, if chosen

properly, can give an increase in performance in real-world

scenarios potentially containing outliers and misleading data.
A model selection scheme for this task has also been presented

in the paper with very encouraging results, especially in the

presence of overfitting. This method works from a likelihood

matrix L constructed using all the sequences in the data set. If the

selection could be done directly on the sequences, reduced

computational cost would be achieved, by not having to fit a

model for each sequence in the data set.
The reported results have been obtained using HMMs as

generative models for the individual sequences, although the

method is independent of this selection. In fact, exploring more

expressive models is a straightforward and promising future line

of research in order to successfully apply this clustering technique

to a wider range of problems, such as video event detection, text

mining, etc.
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