698 research outputs found

    Event tracking for real-time unaware sensitivity analysis (EventTracker)

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.This paper introduces a platform for online Sensitivity Analysis (SA) that is applicable in large scale real-time data acquisition (DAQ) systems. Here we use the term real-time in the context of a system that has to respond to externally generated input stimuli within a finite and specified period. Complex industrial systems such as manufacturing, healthcare, transport, and finance require high quality information on which to base timely responses to events occurring in their volatile environments. The motivation for the proposed EventTracker platform is the assumption that modern industrial systems are able to capture data in real-time and have the necessary technological flexibility to adjust to changing system requirements. The flexibility to adapt can only be assured if data is succinctly interpreted and translated into corrective actions in a timely manner. An important factor that facilitates data interpretation and information modelling is an appreciation of the affect system inputs have on each output at the time of occurrence. Many existing sensitivity analysis methods appear to hamper efficient and timely analysis due to a reliance on historical data, or sluggishness in providing a timely solution that would be of use in real-time applications. This inefficiency is further compounded by computational limitations and the complexity of some existing models. In dealing with real-time event driven systems, the underpinning logic of the proposed method is based on the assumption that in the vast majority of cases changes in input variables will trigger events. Every single or combination of events could subsequently result in a change to the system state. The proposed event tracking sensitivity analysis method describes variables and the system state as a collection of events. The higher the numeric occurrence of an input variable at the trigger level during an event monitoring interval, the greater is its impact on the final analysis of the system state. Experiments were designed to compare the proposed event tracking sensitivity analysis method with a comparable method (that of Entropy). An improvement of 10% in computational efficiency without loss in accuracy was observed. The comparison also showed that the time taken to perform the sensitivity analysis was 0.5% of that required when using the comparable Entropy based method.EPSR

    Low cost attitude control system scanwheel development

    Get PDF
    In order to satisfy a growing demand for low cost attitude control systems for small spacecraft, development of low cost scanning horizon sensor coupled to a low cost/low power consumption Reaction Wheel Assembly was initiated. This report addresses the details of the versatile design resulting from this effort. Tradeoff analyses for each of the major components are included, as well as test data from an engineering prototype of the hardware

    Video guidance, landing, and imaging systems

    Get PDF
    The adaptive potential of video guidance technology for earth orbital and interplanetary missions was explored. The application of video acquisition, pointing, tracking, and navigation technology was considered to three primary missions: planetary landing, earth resources satellite, and spacecraft rendezvous and docking. It was found that an imaging system can be mechanized to provide a spacecraft or satellite with a considerable amount of adaptability with respect to its environment. It also provides a level of autonomy essential to many future missions and enhances their data gathering ability. The feasibility of an autonomous video guidance system capable of observing a planetary surface during terminal descent and selecting the most acceptable landing site was successfully demonstrated in the laboratory. The techniques developed for acquisition, pointing, and tracking show promise for recognizing and tracking coastlines, rivers, and other constituents of interest. Routines were written and checked for rendezvous, docking, and station-keeping functions

    CMOS digital pixel sensor array with time domain analogue to digital conversion

    Get PDF
    This thesis presents a digital pixel sensor array, which is the first stage of an ongoing project to produce a CMOS image sensor with on-chip image processing. The analogue to digital conversion is performed at the pixel level, with the result stored in pixel memory. This architecture allows fast, reliable access to the image data and simplifies the integration of the image array and the processing logic. Each pixel contains a photodiode sensor, a comparator, memory and addressing logic. The photodiode sensor operates in integrating mode, where the photodiode junction capacitance is first charged to an initial voltage, and then discharged by the photodiode leakage current, which is comprised mainly of optically generated carriers. The analogue to digital conversion is performed by measuring the time taken for the photodiode cathode voltage to fall from its initial voltage, to the comparator reference voltage. This triggers the 8-bit pixel memory, which stores a data value representative of the time. The trigger signal also resets the photodiode, which conserves the charge stored in the junction capacitance, and also prevents blooming. An on-chip control circuit generates the digital data that is distributed globally to the array. The control circuit compensates for the inverse relationship between the integration time and the photocurrent by adjusting the data clock timing. The period of the data clock is increased at the same rate as the integration time, resulting in a linear relationship between the digital data and the photocurrent. The design is realised as a 64 x 64 pixel array, manufactured in O.35µm 3.3 V CMOS technology. Each pixel occupies an area of 45µm x 45µm with a 12.3% fill factor, and the entire pixel array and control circuit measures 3.7mm x 3.9mm. Experimental results confirm the operation of the digital pixel, and the linearising control circuit. The digital pixel has a dynamic range of 85dB, and can be adapted to different lighting conditions by varying a single clock frequency. The data captured by the array can be randomly accessed, and is read from the array nondestructivcly

    Controlled-source electromagnetic and seismic delineation of sub-seafloor fluid flow structures in a gas hydrate province, offshore Norway

    Get PDF
    Deep sea pockmarks underlain by chimney-like or pipe structures that contain methane hydrate are abundant along the Norwegian continental margin. In such hydrate provinces the interaction between hydrate formation and fluid flow has significance for benthic ecosystems and possibly climate change. The Nyegga region, situated on the western Norwegian continental slope, is characterized by an extensive pockmark field known to accommodate substantial methane gas hydrate deposits. The aim of this study is to detect and delineate both the gas hydrate and free gas reservoirs at one of Nyegga's pockmarks. In 2012, a marine controlled-source electromagnetic (CSEM) survey was performed at a pockmark in this region, where high-resolution three-dimensional seismic data were previously collected in 2006. Two-dimensional CSEM inversions were computed using the data acquired by ocean bottom electrical field receivers. Our results, derived from unconstrained and seismically constrained CSEM inversions, suggest the presence of two distinctive resistivity anomalies beneath the pockmark: a shallow vertical anomaly at the underlying pipe structure, likely due to gas hydrate accumulation, and a laterally extensive anomaly attributed to a free gas zone below the base of the gas hydrate stability zone. This work contributes to a robust characterization of gas hydrate deposits within sub-seafloor fluid flow pipe structures

    Design and implementation of variable speed wind energy induction generator systems for fault studies

    Get PDF
    Includes bibliographical references (leaves [136]-139).Due to the economical and environmental benefits, Wind Energy Conversion Systems (WECS) have received tremendous growth in the past decade. The increased interest in wind energy has made it necessary to model and experimentally evaluate entire WECS, so as to attain a better understanding and to assess the performance of various systems. As a direct consequence of the increase in wind generation systems, comes the need for the reduction of operational and maintenance costs of these wind generators. The most efficient way of reducing these costs is by the early detection of the degeneration of these generators health, thus facilitating a proactive response, minimizing downtime, and maximizing productivity. The more common induction machine failures are caused by the deterioration of the stator insulation and by the breaking of rotor bars. The thesis describes the design, modeling and implementation of two different variable speed induction generator systems for studying faults in wind energy applications. This project served as a platform for further research into the development and evaluation of a non-stationary fault detection technique suitable for wind energy induction generator purposes. Some common faults are implemented on the wind generators in an attempt to identify them from measurements and by using a steady state fault analysis technique (Motor Current Signature Analysis). For variable speed wind generation, there are two systems using induction generators. The first consist of a squirrel cage induction generator, which uses back-to-back converters in the stator circuit, as shown in Fig. 0.1. The second consists of a wound rotor induction generator, whereby the stator is directly connected to the grid and the rotor circuit consists of back-to-back converters, as shown in Fig. 0.2. When both the rotor and stator are capable of delivering power as with the wound rotor induction generator, they are known as doubly-fed induction generators (DFIG)

    A Structured Approach to Modelling Lean Batch Production

    Get PDF
    A problem relating to the manufacture of automotive body panels concerns the appropriate choice of production size or batch quantity of a body panel production run that ensures a minimum inventory profile is maintained while not compromising production efficiency. Due to underlying variation within the body panel production process it is difficult to determine a relationship between the batch quantity and production efficiency.This thesis determines the appropriate production batch size through the creation of an iterative modelling methodology that initially examines the nature of the variation within the panel production process. Further iterations of the methodology apply appropriate analytical modelling methods until a satisfactory solution is achieved. The modelling construction is designed so that it is potentially applicable to a wider range of manufacturing problems. As there is variation inherent within the system, regression analysis, experimental design (traditional and Taguchi) are considered. Since an objective of creating the modelling methodology is the potential of apply the methodology to a wider variety of manufacturing problems, additional modelling methods are assessed. These include the operational research methods of mathematical programming (linear and non-linear and dynamic programming) and queuing systems. To model discrete and continuous behaviour of a manufacturing system, the application of hybrid automata is considered. Thus a suite of methodologies are assessed that assess variation, optimisation and networks of manufacturing systems. Through the iterative stages of the modelling approach, these analytical methods can be applied as appropriate to converge on to the appropriate solution for the problem under investigation. The appropriate methods identified to quantify a relationship between the batch production quantity and production efficiency include regression modelling and traditional experimental design. The conclusion drawn from the application of both methods is that relative to the inherent variation present in the production system, lower batch quantities can be chosen for production runs without affecting the production performance. Consequently, a minimum inventory profile can be maintained satisfying the objective of a lean system
    • …
    corecore