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Abstract—This paper introduces a platform for online 

Sensitivity Analysis (SA) that is applicable in large scale real-time 

data acquisition (DAQ) systems. Here we use the term real-time 

in the context of a system that has to respond to externally 

generated input stimuli within a finite and specified period. 

Complex industrial systems such as manufacturing, healthcare, 

transport, and finance require high quality information on which 

to base timely responses to events occurring in their volatile 

environments. The motivation for the proposed EventTracker 

platform is the assumption that modern industrial systems are 

able to capture data in real-time and have the necessary 

technological flexibility to adjust to changing system 

requirements. The flexibility to adapt can only be assured if data 

is succinctly interpreted and translated into corrective actions in 

a timely manner. An important factor that facilitates data 

interpretation and information modelling is an appreciation of 

the affect system inputs have on each output at the time of 

occurrence. Many existing sensitivity analysis methods appear to 

hamper efficient and timely analysis due to a reliance on 

historical data, or sluggishness in providing a timely solution that 

would be of use in real-time applications. This inefficiency is 

further compounded by computational limitations and the 

complexity of some existing models. 

In dealing with real-time event driven systems, the 

underpinning logic of the proposed method is based on the 

assumption that in the vast majority of cases changes in input 

variables will trigger events. Every single or combination of 

events could subsequently result in a change to the system state. 

The proposed event tracking sensitivity analysis method 

describes variables and the system state as a collection of events. 

The higher the numeric occurrence of an input variable at the 

trigger level during an event monitoring interval, the greater is 

its impact on the final analysis of the system state. 

 Experiments were designed to compare the proposed event 

tracking sensitivity analysis method with a comparable method 

(that of Entropy). An improvement of 10% in computational 

efficiency without loss in accuracy was observed. The comparison 

also showed that the time taken to perform the sensitivity 

analysis was 0.5% of that required when using the comparable 

Entropy based method. 

 
Index Terms—Discrete Event Systems, Event Tracking, Real-

Time Systems, Sensitivity, Supervisory Control and Data 

Acquisition 

I. INTRODUCTION 

ATA acquisition systems that deal with large quantities 

of input variables and have higher sampling frequencies 

result in high bandwidth communication and place a heavy 

computational load on the higher tier data processing and 

information systems within their hierarchy. The focus of 

researchers and practitioners in this area has been to 

minimize this computational overhead by eliminating input 

variables that have the least impact on the system, this so 

called sensitivity analysis is discussed in [1]-[6]. Sensitivity 

analysis techniques help system analysts to focus on the 

most valuable information, information that most 

significantly impacts on system behaviour. Sensitivity 

indexing is a systematic approach for expressing the impact 

that any input variable has on the output parameters in a 

system. From the same perspective, sensitivity analysis is a 

systematic approach for expressing relationships between 

inputs and outputs of a system. Determining the true impact 

an input has on the output of a system is a real challenge due 

to the epistemic uncertainty that exists in the relationship 

between the respective variables. Selection of an appropriate 

method for sensitivity analysis depends on a number of 

factors and assumptions made with respect to this 

relationship. These factors are:  

A. The Analytical Relationship between the Input and the 

Output Data 

The majority of Sensitivity Analysis (SA) methods attempt 

to determine the impact of changes in one variable in relation 

to others by means of analytical models that describes the 

relationship that exists between them. Methods such as 

Differential Analysis, Coupled/Decoupled Direct and Green’s 

Function are classified among the analytical SA methods 

described in [7]. However, the non-linear and non-monotonic 

relationship between inputs and outputs of a given system may 

not necessarily lend themselves to the use of such analytical 

methods [8]. Situations pertain where the existence of a direct 

physical model in terms of mathematical equations does not 

exist between the respective system variables. In such cases a 

number of SA methods make use of statistical techniques in an 

attempt to extract relevant relationship features from the 

distribution of data series relating to input-output variables. 

For example Fourier Amplitude Sensitivity Test (FAST) [9], 

Morris [10], [18], Monte-Carlo [19] and Latin Hypercube [7] 

fall into this category of SA methods. The shortcomings of 

these methods lie in their reliance on historical data and the 

generation of data samples which the system analyst then fits 

to known probabilistic equations. One method that is less 

reliant on analytical methods for extracting sensitivity indices 

is the Entropy method [8]. In this respect the Entropy method 

is the most comparable and closest technique to the 

‘EventTracker’ method and will be used to establish the 
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sensitivity, accuracy and efficiency of the proposed method.  

B. The Statistical Distribution of Input Variables 

The sensitivity indices of a system are normally influenced 

by the distribution of the input data series. For example, 

nonlinear relationships between input and output series in a 

model cannot be recognized by correlation-based sensitivity 

analysis methods alone [20]. Variance-based and Entropy-

based indices are expected to be more sensitive to 

heteroscedastic data [8], whilst the homoscedasticity of data 

series can be higher in discrete signals and much higher 

between binary signals. 

C. The Computational Overhead 

Sensitivity analysis is a computationally hungry process. In 

domain-wide sensitivity analysis methods, large batches of 

input variables are captured in a specified periodic time 

interval and subsequently values of sensitivity are determined 

using historical data analysis. For example, sampling-based 

methods need to generate new and equivalent sized batches of 

sample values for both output and input data regardless of the 

original sampling rates. The magnitude of resources required 

by such algorithms and their associated data processing 

requirements are comparable to the expected savings resulting 

from their application. For example, in correlation-based 

methods [20] there is a dependency on equally sized data 

batches for both input and output series of the model. In such 

cases the sampled data series either needs interpolation or 

extrapolation to maintain equal batch sizes, this in itself places 

additional computational load on the system. 

 

In order to overcome some of the shortcomings found in 

existing methods, we introduce an effective and efficient way 

to perform sensitivity analysis of data in two time series. In 

the following sections, after a brief introduction to existing SA 

methods, a detailed description of event-driven data types and 

their impact on sensitivity analysis is provided. The proposed 

EventTracker method and its application in a case study are 

discussed. The advantages and application of EventTracker in 

an industrial case study is presented in the penultimate section. 

Conclusions are then drawn in the final section of the paper. 

II. RELATED WORK 

A. Differential Analysis 

In differential analysis the impact of an independent 

variable on the dependent variable is assessed by identification 

of the perturbation behaviour of the dependent variable due to 

the changes in the independent variable [21]. This is achieved 

by finding the coefficients of the differential equation that 

governs the relationship between the independent and 

dependent variables [21]. Methods like Neumann expansion 

[22] and perturbation method [23] can help when extracting 

these coefficients through the approximation of differential 

equation. However, it can never be guaranteed that the often 

complex and nonlinear relationship that exists between system 

variables can be approximated with a sufficiently low error 

margin using differential equations alone [7]. 

B. Green’s Function Method  

Due to their nonlinearity, the task of differentiating model 

equations is in itself a difficult process. Green’s function can 

act as a catalyst in helping achieve the sensitivity equations 

[7]. In this method, the task of performing differentiation is 

effectively replaced by the sequence of finding the impulse 

response of the model [24], and then implementing the 

subsequent integration operations.  

The concept of Green’s function stems from the fact that the 

total output of a linear time-invariant system can be 

formulated by a summation of terms that adds all outputs of 

the system for all single points [25]. In other words, each 

continuous function could be replaced by an infinite sum of 

delta functions whose distances approach zero. It is important 

to note that only a linear and time-invariant system can benefit 

from this approach. One further constraint in the application of 

Green’s function is that it only works with ordinary 

differential equations, equations that govern dependent 

variables with respect to independent variables. Often in real 

applications it is difficult to separate the relationship of 

independent and dependent variables. Additionally, working 

with one variable at a time for high dimensional systems could 

be computationally expensive and cumbersome. 

C. Coupled/Decoupled Direct Method 

In the coupled direct method, after differentiation of model 

equations, the subsequent sensitivity equations are solved 

together with the original model equations. In the decoupled 

direct method they are solved separately [7]. This gives the 

impression that decoupled direct method is advantageous in 

terms of computational cost. Although the decoupled direct 

method is reported to be more efficient than Green’s function 

method [7]. In common with other analytical methods, prior 

knowledge of the model equations is a requirement. The 

couple/decoupled methods’ also exhibit the feature of being 

model-oriented and expert-hungry, these features makes them 

less attractive for practical applications when compared to SA 

methods that do not require model equations. 

D. Monte Carlo and Latin Hypercube Methods 

Random data sample generation is the main characteristic of 

the Monte Carlo method. It provides the required values of 

independent variables from which dependent variables are 

produced [26]. The random sampling scheme occurs in no 

particular order, nor is it based on any criteria that would help 

with the efficiency of computation [7]. For example, in the 

Latin Hypercube Sampling (LHS) method [17], the range of 

each input parameter is divided into intervals of equal 

probability. Within sets of input parameter samples, each input 

parameter takes a random value from one of its intervals with 

the proviso that there is no repeat of that interval for a full 

sampling cycle [17]. In this way, there is a better chance and 

greater probability that all segments of data will be considered 

within the distribution; and that in doing so a more 

informative distribution of output parameters will be generated 

in a shorter period [7]. 
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In taking a general overview of the Monte Carlo method, as 

depicted in Figure 1, from the stream of available data, the 

probability distribution of input variables is first estimated (i.e. 

the curve fitting blocks). Then based on these distributions, 

random sample generation occurs, (i.e. sampler blocks). After 

the model is applied to the generated samples, the output 

values are processed for estimation and extraction of their 

distribution attributes [27]. 

 

Fig. 1 General view of Monte Carlo method for sensitivity analysis 

 

One significant challenge faced when applying Monte Carlo 

methods in real-time applications is the very effort required to 

estimate the distribution of the input variables prior to sample 

generation. In the application of the Monte Carlo sampling 

method to sensitivity analysis, in order to infer the impact of 

each input variable on the output variable, data samples of 

only one input variable (the checked box in Figure 1) is 

generated at a time whilst the other input variables (the cross-

marked boxes in Figure 1) are held at a fixed value; for 

example the average value. This cycle repeats for each input 

variable. Reference [29] refers to this feature as a ‘double-loop 

nested sampling procedure’ which can potentially be very 

computationally expensive, particularly with large numbers 

and higher dimension of input variables. 

E. Morris Method 

In the Morris method, as a parameter screening technique 

[17], changes in the value of an output variable is measured 

per changes in each input variable. Changes of only one input 

variable ( ) is applied to the equation 






)(y)(y
)(EEi


  to calculate values of the 

elementary effect ( iEE ), with input step change size dictated 

by  [10]. The resulting set of iEE  values are then processed 

for distribution estimation. Each cycle of output distribution 

estimation requires rn2M   model executions, where r  

represents the number of output values required for the 

estimation of a stable distribution and n is the number input 

variables [17]. More economical extensions of the Morris 

method can reduce the total number of cycles; for example by 

using each generated model output in more than one 

calculation [18]. However, a typically low value for M could 

be as high as 21000 executions (1000 output values and 20 

inputs applied to )1n(rM   in an improved Morris method 

[17]). Thus the Morris method cannot satisfy the requirements 

of sensitivity analysis in a time-constrained application. 

F. Analysis of Variance (ANOVA) Methods 

The One-At-a-Time (OAT) method of processing input 

variables may at times be incapable of capturing the 

complexity of the relationship that exists between multiple 

input variables (i.e. second and higher orders) and an output 

variable. By decomposing and measuring the variance of the 

output distribution, a number of SA methods separately relate 

individual input variables to output variables [6]. The 

ANOVA based SA methods follow this logic and are in 

general more computationally efficient [5]. 

To achieve the decomposition elements and determine the 

corresponding sensitivity indices, when no explicit 

relationship exists between inputs and output (i.e. when an 

analytical approach is not possible), a numerical approach that 

in general is based on sample generation (i.e. Monte Carlo) 

can be adopted [4]. Using this technique, the level of 

computational overhead, in terms of model runs required to 

produce output values per each input sample grows rapidly 

[6]. For example, with 10 input variables and 1000 samples, 

the number of model execution runs is 1,024,000; a 

significantly high value. Therefore this method is not 

attractive for use in real-time applications. 

G. Fourier Amplitude Sensitivity Test (FAST) 

Fourier Amplitude Sensitivity Test (FAST) [3] and its 

extended version [15] are examples of improvements in 

computational efficiency of the ANOVA-based SA methods. 

FAST (and extended FAST) are distinguishable from other 

ANOVA methods by their input data sample generation 

scheme, in which, samples for each input variable are 

generated according to a periodic function within the limits of 

the input variable [17]. In other words, in the FAST method 

the data distribution of input variables cannot be estimated 

from the acquired historical data. Instead, all distributions of 

input variables are considered to be uniform and within a 

specified range. The subsequently generated samples in this 

range follow a periodical function [30]. The periodic nature of 

the sample generation scheme (i.e. change of s ) causes the 

model output values (for each i ) to be periodic in terms of s . 

Therefore, by using numerical Fourier analysis on the values 

of the outputs, the magnitude of the Fourier spectrum at each 

frequency iw  represents the sensitivity index of the 

corresponding input variable. Components in this process are 

shown in Figure 2. 

 
Fig. 2 General view of FAST method for sensitivity analysis 



 4 

As is shown in Figure 2, some aspects of the computational 

cost that exist with the Monte Carlo method (i.e. the 

distribution estimation) is omitted by the FAST method and is 

replaced with the simpler tasks of boundary detection and 

frequency association. Furthermore, for finding the Fourier 

spectrum, the output value distribution estimation is also 

replaced by a numerical Fourier Transform (FT) method. In 

order to explicitly identify the power coefficient associated 

with the frequency of each input variable, the unique 

frequencies ( iw ) need to be correctly chosen. Typically the 

range of frequencies  iw  is divided into high and low ranges. 

A high frequency is assigned to the input variable subject to 

power spectrum coefficient identification and the remaining 

input variables are assigned a frequency from the low range. 

In this way the distance between the high frequency and all 

other low frequencies of inputs within the spectrum allows 

clear identification of the coefficient, or sensitivity indices. In 

Figure 2 the checked box representing the frequency 

association module shows that input variable number 1 has a 

high frequency of occurrence (in the generated sample) as 

compared to other input variables (depicted by crossed boxes). 

As a result the power coefficient of the frequency for input 

variable number 1 can be inferred with high confidence.  

Comparing FAST with sampling-based SA methods, it 

appears that the number of model executions required is high 

[30]. The reason for this can be attributed to the ‘double-loop’ 

nested sampling procedure [29]. On the other hand, the 

computational overhead of the FAST method is lower than 

sampling-based SA methods due to the simpler tasks involved 

in the nested loops.  Sample generation and Fourier transform 

in FAST are usually less computationally costly than the tasks 

of sample generation, distribution estimation, and distribution-

based function fitting (i.e. searching for a suitable model). 

References [28] and [29] tackle the issue associated with the 

computational cost of the ‘double loop sample generation 

strategy’ and the restrictive conditions that apply in the 

evaluation of dependent variables based on independent 

variables. In sampling-based SA methods this is addressed by 

proposing an approximation approach that measures the 

entropy of variable distributions from original samples. The 

method uses the same decomposition equation as discussed in 

section F, the only difference is that the determination of 

variance in the sample data distributions is replaced by 

determination of entropy. This appears to have helped in 

reducing computational overheads. 

H. Entropy-Based Epistemic Sensitivity Analysis 

In order to determine sensitivity indices then one only needs 

to establish the values of independent input variables (denoted 

by X ) and dependent output variables (denoted by Y ) [28]. 

The sensitivity indices using the Entropy method can then be 

calculated using )X|Y(H)Y(H  . Where )Y(H are the entropy 

values and )X|Y(H are the values of conditional entropy.  

The method replaces the time consuming sample generation 

of X  and evaluation of Y  by Simple-Random Sampling 

(SRS) using piecewise uniform density function estimations. 

Figure 3 shows that only a single execution is required to 

generate sufficient samples for estimation of the sensitivity 

indices. Reference [29] demonstrates the feasibility of the 

estimation approach in a test case with fifteen independent and 

two dependent variables. Reasonable results were achieved 

with far lower computational cost. However, obtaining the 

appropriate indicator functions for each independent variable 

requires prior knowledge of their probability distributions 

[29]. 

 
Fig. 3 General view of Entropy-based method for sensitivity analysis 

III. METHODOLOGY FOR EVENT TRACKING SENSITIVITY 

ANALYSIS (EVENTTRACKER) 

The proposed event tracking SA method uses an input-

output occurrence [+, -] matrix. This matrix is populated at 

predefined time intervals. The current platform is designed to 

allow a user (with domain knowledge) to set the initial system 

update time interval. For example, in safety sensitive systems 

such as power plant reactor monitoring, the rate of populating 

the data tables will be a short interval. Whereas in scenarios 

that employ less time critical systems, such as finance, then 

the interval will be longer. This matrix is designed to map the 

relationships between causes that trigger events (Trigger Data) 

and the data that describes the actual events (Event Data). In 

this way the ‘EventTracker’ method is able to construct a 

discrete event framework where events are loosely coupled 

with respect to their triggers for the purpose of sensitivity 

analysis. A description of Discrete Event System, Trigger 

Data, and Event Data are provided in the following 

subsections. 

A. Discrete Event Systems 

As opposed to continuous systems, a Discrete Event System 

(DES) is defined by the disparate occurrence of events in a 

specified time span. In other words, the state of the system 

changes when the input variables and consequently the outputs 

of the system change. Each state transition of the system is 

called an event. Therefore, in DES, only the attributes that 

represent the occurrence of an event are considered. These 

attributes are discussed in the following section. 

B. Trigger Data and Event Data 

Any input variable whose value results in the registration of 

an event is defined as Trigger Data (TD) in our DES. The 

series of data that represent the state of the system at a given 

time is described as Event Data (ED). It is possible that the 

numbers of EDs and TDs in a system are different. For 

example, a number of TD series may be responsible for 

changing a single ED series. It should be noted that various 
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TD series could have differing impact on specified ED series. 

}TD,...,TD,TD{ED n21     (1) 

This is because individual or combination of input variables 

may have different effects on different system outputs. 

C. An Example of a Baking Process 

Here an example of a baking process will be used to explain 

and illustrate the underpinning rationale for the proposed 

‘EventTracker’ method.  

One of the ways to detect system state transitions is to 

detect and track the changes in its input variables. Figure 4 is a 

simplified illustration of a baking machine with a single 

heater. Two light reflector sensors (S01 and S02) are installed 

on the machine; the sensors send signals to the EventTracker 

software model. Sensors S01 and S02 provide data relating to 

the entry and exit of ‘components’ into and from the baking 

machine. Their signal data either carries no voltage (i.e. binary 

0) or a pulse of voltage (i.e. binary 1) indicating the presence 

of a component entering or exiting the baking machine. The 

occurrence of these respective signals (i.e. events) determines 

the duration of the baking process (Baking Time).  

The combination of the data provided by the two sensors is 

used to measure a production process performance factor. This 

performance factor is the instantaneous resource utilization 

(RU) of the baking machine. The baking machine utilization is 

defined as the ratio of the total heater occupancy in relation to 

the overall capacity of the baking machine [11]. 

 

Fig. 4 An imaginary Baking System with two sensors 

Figure 5 shows the relationship between each event 

triggered by S01 and S02 with respect to changes in RU. Each 

change to the RU in a given time span can be expressed as an 

event and the positive value of the S01 and S02 sensor inputs 

as triggers, then RU can be defined as Event Data (ED). Both 

S01 and S02 can be considered as Trigger Data (TD).  

t
Event

1tt

t
Trigger

1tt

ED)RURU(if

TD)01S01S(if

 

 








       (2) 

  

Where, t01S is the S01 signal at time t,   is the signal 

change threshold, tRU
 
is the resource utilization at time t, 

and  is the utilization change threshold. 

 

Fig. 5 Causal relationship between two switch signal data S01, S02, and the 

performance factor RU 

D. Methods and Parameters for Event Tracking 

The EventTracker platform is based on four functional 

parameters that are initialised by a user with domain 

knowledge. The Search Slot (SS) and the Analysis Span (AS) 

parameters are about tracing the values of the acquired data 

series. Whereas the remaining two parameters Event 

Threshold (ET) and Trigger Threshold (TT) are about the 

magnitude of transition detection and the overall system state 

analysis. Subsequently these parameters are automatically 

optimised by the EventTracker platform as discussed further 

in sections V and VI.  

 Search Slot (SS) 

The SS is a fixed time slot within which batches of TD and 

ED are captured. It can also be described as the scan rate. The 

scan rate is determined by a system expert. 

 Analysis Span (AS)  

The AS is the time span within which a period of sensitivity 

analysis occurs. An analysis span is comprised of a number of 

consecutive SS. The number of TD and ED observation will 

then be used to determine and apply sensitivity indices at the 

end of an AS. The new sensitivity indices are assigned to the 

TD and carried forward, in other words there is a possibility 

that the sensitivity indices of tTD is different from 1tTD  (see 

Table II). 

 Event Threshold (ET) 

The fluctuations in the ED series that are interpreted as 

triggers are determined in comparison with the Event 

Threshold (ET). This value is expressed as a proportion of the 

overall range of ED series values occurring in an AS. It is 

expressed as a percentage.  

 Trigger Threshold (TT) 

The fluctuations in the TD series that are interpreted as 

triggers are determined in comparison with the Trigger 

Threshold (TT). TT (like ET) is expressed as a percentage of 

the overall range of TD series values occurring in an AS.  

These thresholds determine whether a signal represents a 

real change in the system state or not. Given the system state 

changes then it is assumed an event has occurred. 

E. The Assumptions of the Proposed Method 

The EventTracker method is based on a number of 

assumptions. These are listed as:  

Assumption 1- Triggers and Events: 

Only those fluctuations in the data series that are interpreted 

as triggers (TD data series) and as events (ED data series) are 

taken into account. The basis for this interpretation is the 

threshold (ET and TT) settings.  

Assumption 2- Thresholds: 

Thresholds are pre-specified, but there values are short lived 

and are dependent on signal fluctuation in the data series. ET 

and TT are evaluated once every AS on the assumption that 
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within that period a representative range of fluctuations in the 

data series is likely to occur. Therefore, a trigger or an event 

occurs when the difference between the maximum value and 

the minimum value of a data series within a SS exceeds the 

associated data series threshold. 

Assumption 3-Homogeneity of Data Series: 

The threshold value for each data series remains fixed for 

the period of the AS. This implies that in all search slots of a 

data series, the range of possible values in which a transition 

may occur is assumed to be a fixed co-variant. In other words, 

each data series is assumed to have the same probability 

distribution over all AS. 

F. EventTracker Algorithm 

The algorithm is designed to respond quickly and in essence 

has a life cycle that is equivalent to an AS. This life cycle is 

divided into several SS. Within each slot, TDs and EDs are 

captured from two time series and used to provide a value 

which is translated into a sensitivity index. This index is then 

added to the indices of subsequent search slots. At the end of 

each AS, the sensitivity indices of all data series are linearly 

normalized. The main functions of the EventTracker algorithm 

are depicted in figures 6 and 7. The main steps of the 

algorithm are as follows: 

Stepwise Scan 

A First-In-First-Out queue is allocated for every batch of 

data in a search slot. The size of the queues is unbounded. The 

content of the queues are flushed at the end of each search 

slot. The data is then passed to the EventTracker detection and 

scoring algorithm. The next search slot continues to fill the 

queue immediately. Using this technique no data is lost. 

Figure 6 shows a few stepwise scans and their analysis 

operations in the search slots. 

 

Fig. 6 Overall functionality diagram of EventTracker algorithm 
 

Trigger-Event Detection 

Figure 7 shows that within each SS a pair of {ED, TD} 

are examined for evidence of trigger and event. The batch 

of TD values is searched for fluctuations greater than the 

specified TT threshold, and ED values similarly checked for 

changes larger than the ET threshold. This functionality 

results in a true value being generated provided at least one 

of the above changes is found in a particular batch. 

 
Fig. 7 Trigger-Event Detection functionality on each Search Slot 

Two-way Matching Score 

In each SS the simultaneous existence or non-existence of a 

change in each pair of data batches is scored as +1, otherwise 

the score is -1. This operation is similar to a weighted logical 

Exclusive-NOR and is shown in Table I. This approach is 

adopted to better emphasize the impact of inputs on a given 

output rather than simply scoring +1 for existence and 0 for 

non-existence. 

TABLE I  
WEIGHTED EXCLUSIVE-NOR FUNCTIONALITY 

Input 1 Input 2 Output 

0 0 +1 
0 1 -1 
1 0 -1 
1 1 +1 

 

Summation of Two-way Matching Scores 

The +1 and -1 score for each SS is added to the overall 

score depicted by equation (3). Sensitivity Index (SI) of the 

measured ED and TD values after time t (or in discrete form 

after search slot n ). Where n  is the number of SS in an AS. 

SI can be calculated as: 


n

1
(t) Scores  SlotSearchSI       (3) 

The Normalization Process 

At the end of each SS the values of the sensitivity indices 

are linearly scaled to the unit range (4). In other words, given 

a lower bound l  and an upper bound u  for the set of all 

indices, each final value of sensitivity index is transformed to 

a value in the range [0,1]; thus: 

lu

lSI
S






~
   (4) 

 

A summary of the algorithm performance is shown in Table 

II. In this table the flow of matching scores and sensitivity 

indices (SI1, SI2, SI3) for one ED with respect to three TDs 

(TD1, TD2, TD3) over 10 SS is shown. Star symbols in Table 

II indicate a detected event or trigger in the values of ED, 

TD1, TD2 and TD3 within each search slot. Each value of S1, 

S2 and S3 is -1 or +1 depending on the exclusive match 
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between ED and TD1, TD2 and TD3 respectively. SIn1 to 

SIn3 represent Normalized Sensitivity Indices values for SI1 

to SI3. 

TABLE II  

AN EXAMPLE PRODUCTION OF SENSITIVITY INDEX BY EVENTTRACKER 

METHOD 
Search 

Slot 
0 1 2 3 4 5 6 7 8 9 10 

ED * *  *  * * *  * * 

TD1   *   *   * * * 

S1 -1 -1 -1 -1 1 1 -1 -1 -1 1 1 

SI1 -1 -2 -3 -4 -3 -2 -3 -4 -5 -4 -3 

SIn1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

TD2 *    * * * *  *  

S2 1 -1 1 -1 -1 1 1 1 1 1 -1 

SI2 1 0 1 0 -1 0 1 2 3 4 3 

SIn2 1.00 1.00 1.00 0.67 0.33 0.33 0.67 0.75 0.80 0.80 0.75 

TD3  *  *  *  *  *  

S3 -1 1 1 1 1 1 -1 1 1 1 -1 

SI3 -1 0 1 2 3 4 3 4 5 6 5 

SIn3 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

The normalized sensitivity indices (SIn) in Table II show 

that ED is the most sensitive to TD3 and least sensitive to 

TD1. Figure 8 shows the values of SIn. 

 

 
Fig. 8 Normalized sensitivity indices as in Table II 

 

The overall average SIn values are shown in figure 9, this 

figure illustrate the lateral movement of the respective values 

towards a value that is analogous to a steady state. 

 
Fig. 9 Averaged normalized sensitivity indices as in Table II 

In situations where normalized indices are not a desirable 

means to determine the values of sensitivity index, then the 

current or instantaneous value can alternately be used.  

IV. A CASE STUDY FOR EVENTTRACKER 

A side-panel manufacturing line in a refrigerator production 

plant was used in a real world application of the EventTracker 

platform. The process layout in this plant groups machines 

into six sequential operations. The four machines that process 

the material: GR-1 (Loader), GR-2 (Shearing Unit), GR-3A 

(Tilter) and GR-3(Forming Machine) were subject to this 

study [12]. Table III (appendix) summarizes the type and 

purpose of each input signal. All signals used in the side-panel 

manufacturing line carry binary data of either one or two bit 

magnitude. The following section discusses how these signals 

are interpreted as triggers and events that describe the 

production system. 

A. Side-panel Manufacturing Process Discrete-Event Model 

A real-time discrete-event model of the production process 

was developed to facilitate the measurement of a number of 

production performance parameters. The proposed scenario 

coupled with the signals and their location with respect to the 

model is depicted in the following Event-driven Process Chain 

(EPC) diagrams [figures 10-13]. Each diagram shows a 

process and its constituent operations. Also shown are the 

signals that trigger start and completion of tasks (i.e. events). 

The parameter chosen for production performance analysis is 

the Instantaneous Resource Utilization. 

 

Fig. 10 Loader processes and events 
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LS210C LS211B
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Sheet-in stop
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LS214A LS215B LS201B LS220

LS215A

LS201A

LS212B LS212A

Centring

on off

Roll

on off

Blanking Die 1

on off

Magnet 2

on off

Pincer

on off

Transport 2

on off

 
Fig. 11 Shearing Unit processes and events 

 

 
Fig. 12 Tilter Unit processes and events 

 

 
Fig. 13 Roll Forming Unit processes and events 

The input variables are represented by 28 signals generated 

from sensors installed on the production line. National 

Instruments LabVIEW software tool was used to develop the 

data acquisition platform to collect the signal data from the 
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shop floor. The acquired data is fed into a commercial discrete 

event simulation package (Arena™ Rockwell Automation). 

Previous integration work has addressed the need for direct 

translation of multiple input signals into inputs of the 

simulation model [13]. The so-called Real-time Model 

Matching Mechanism (R3M) [13] was implemented to clearly 

define the relationship between signals and processes in the 

model. For example, the model is capable of relating signals 

from LS301 and LS305 that relate to the start and end of the 

forming process shown in figure 13. However, it should be 

noted that this awareness is not used by the EventTracker 

method to estimate sensitivity indices. Simply that the model 

provides the means to validate the work, insomuch as each TD 

with a higher importance level is reported, whilst the less 

important TDs are classified as ‘false negatives’. 

B. Real-time Data Streaming into the Modeller 

The data from the side-panel manufacturing line is fed into 

the model in real-time during a period of 2 minutes (i.e. 500 

data points giving a rate of 5 samples per second). The event 

data collected was then used to measure the instantaneous 

utilization of 4 machines in the production line. The 28 TD 

input values were linked to four ED series.  

The implementation of EventTracker on the production line 

is shown in figure 14. The data modeller generates a two 

dimensional array of sensitivity indices in the time domain. To 

find the most suitable ET and TT values, production engineers 

were consulted and a number of production cycles were 

observed. One future improvement to the current platform is 

the provision of the necessary functionality to measure ETs 

and TTs automatically with respect to the collected data. 

 

Fig. 14 Implementation of EventTracker for multiple Input Variables and 

Output Parameters 

V. ASSESSMENT OF EFFICIENCY AND VALIDITY OF THE EVENT 

TRACKING SENSITIVITY PROCESS 

Efficiency tests for the EventTracker SA method were 

carried out to assess whether the method resulted in increased 

computational speed and reduced overheads. A validity test 

was also performed to ensure that the quality of analysis was 

as reliable and robust as that obtained when using a similar 

established SA method. The key objective of EventTracker is 

to record all events, but filter out the least important ones so 

that the optimum number of data points can be transferred to 

the data processing unit. 

The following steps were performed to validate the event 

filtering algorithm used in EventTracker: 

Step 1: Establish the maximum number of least important 

trigger data and eliminate them from the analysis.  

Step 2: Find the optimum SS, ET and TT values. 

Step 3: Compare the results with a scenario where the total 

number of TDs have been included in the analysis (i.e. no 

reduction in data load). 

This last step was used to validate the filtering process in 

steps 1 and 2.  

In order to determine the maximum number of the least 

important TD series, EventTracker was configured to read all 

28 TD series (see Table III, appendix) and generate sensitivity 

indices for the four ED series. ET and TT values of 50% and a 

SS period of 5 seconds were used in this example. The results 

are shown in figure 15. The four line charts represent the 

values of normalized sensitivity indices for the four ED series 

(machine utilization). The normalized sensitivity indices are 

scaled according to the vertical axis. 

 
Fig. 15 EventTracker Sensitivity Indices of 4 EDs with respect to 28 TDs 

Figure 15, show that the event data is not sensitive to all of 

the 28 TDs used in the example. This process allows us to 

eliminate the unimportant trigger data from the analysis. 

A cut-off threshold (CT) is defined for each series of 

indices within an ED series. Their values lie between the 

minimum and maximum index values for that range. As in (5): 

))SI(Min)SI(Max(CR)SI(MinCT EDED
*

ED   (5) 

 Where, CR is the Cut-off Ratio in the range 1CR0  . 

For example, if CR is 0.5, then the value of the cut-off 

thresholds are all in the middle of their associated sensitivity 

indices range. Figure 16 and 17 show the Normalized 

Sensitivity Indices (NSI) for ED series of the machines in the 

production line (i.e. RUGR1 the Loader and RUGR3-A the 

Tilter) respectively. These values show the importance of each 

sensor in calculating the utilisation of each machine. In both 

charts the NSI is in the range 0 to 1. The CT value for both 

series is 0.5 (and is depicted by the green dashed line). For a 

normalized range then the values of CT and CR are effectively 

the same. The chart in figure 16 shows that seven TDs (red 

bars) are below the threshold and are considered as least 

important for the ED series that are used to determine the 

utilisation of RUGR1. In figure 17, we can see that 10 TDs 
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(red bars) are below the threshold and are considered as least 

important for the ED series RUGR3A. Three TDs (i.e. LS302, 

LS303, and LS304) are common to both ED series as least 

important TDs.  

 
Fig. 16 Normalized sensitivity indices of RUGR1 with respect to 28 TDs 

 

 
Fig. 17 Normalized sensitivity indices of RUGR3-A with respect to 28 TDs 

Reviewing the results from figures 16 and 17, one may 

conclude that the sensitivity analysis may have generated false 

negatives. In particular we can observe that a number of the 

TDs (red bars) have NSI values greater than 0, but below the 

threshold.  

In order to measure and eliminate false negatives from the 

system a false negative test was conducted, the results of 

which are shown in figure 18.  This figure shows the 

percentage of least important TDs with respect to different 

values of CT. The higher the CT value, the greater is the 

percentage of TDs that have been filtered out.  

 
Fig. 18 Percentage of filtered TDs per CT and Ratio of False Negative  

 

Figure 18 shows the percentage of filtered TDs with respect 

to different CTs. For example, with a CT value of 70%, 39% 

of the TDS are filtered or considered as less important. But in 

reality, 1 of the TDs that is influential has also been filtered in 

this case (i.e. the ratio of 1/8 in the lower part of x axis, which 

shows the percentage of false negatives).  This percentage of 

false negative is high and undesirable. Experimentation 

revealed that for this industrial scenario, with a CT of 60%, 

the percentage of false negative falls to 0 In other words we 

have detected that at least one of the originally eliminated TDs 

has significant effect on our ED and should be re-instated for 

the purpose of sensitivity analysis. The results of the 

experimentation are reported in Table IV (appendix). 

A. Sensitivity of EventTracker Method to the Method 

Parameters 

In order to test the dependency of EventTracker on its 

parameters, sensitivity indices resulting from different values 

of ET, TT and SS were compared. Figure 19 shows the 

percentages of less important TDs based on different values of 

ET and TT over differing values of CR.  Figure 20 shows the 

percentages of less important TDs based on different values of 

SS over differing values of CR.  It appears from Figure 19
1
 

that ET and TT values do not make a significant difference to 

the indices, whilst SS values have a greater impact on the 

indices (Figure 20). The region of no false negatives (the three 

thicker line charts in figure 20) have at least 1 TD that needs 

to be considered for re-instatement (as per Figure 18).  Figure 

20 suggests that the SS value should not be shorter than 2 

seconds and not greater than 8 seconds in order to achieve the 

best savings in computational overhead. 

 

 
Fig. 19 Percentages of less important TDs per percentage of ET and TT with 

different CR values 

 

 
Fig. 20 Percentages of less important TDs per percentage of TS with different 

CR values 

B. EventTracker Method Before and After Input Variable 

Selection 

Following analysis 4 TDs were discarded, the remaining 24 

(Table IV, appendix) were used to measure the instantaneous 

machine utilization. The utilization of the 4 machines in the 

first instance with the full 28 TDs was compared with the 

short-listed 24 TDs. The results are shown in Figure 25 

(appendix). This figure shows that the accuracy of calculations 

was not compromised by using 24 rather than the full 28 TDs. 

With the full 28 TDs the EventTracker algorithm took 6.875 

 
1 Similarity of values of the data series caused matching line charts 
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seconds to calculate the utilizations, whereas when using 24 

TDs only 3.5625 seconds were spent to achieve the same 

results. By eliminating the 4 ‘redundant’ sensor values from 

the calculations, a reduction of approximately 52% was 

achieved in computation time. The average CPU utilization 

remained almost constant during the period of analysis. In 

addition to reducing the computational time, the algorithm 

achieved reductions in communication load and more 

importantly reduced the number of sensors required on the 

production line. This reduction in data acquisition equipment 

subsequently saves installation, maintenance and a reduction 

in the complexity of the supervisory control and data 

acquisition (SCADA) systems required by the industrial plant.  

VI. A COMPARISON BETWEEN EVENTTRACKER AND 

ENTROPY-BASED SENSITIVITY ANALYSIS (ESA) METHODS 

To validate the proposed sensitivity analysis method a 

comparison between EventTracker and an Entropy-based 

Sensitivity Analysis (ESA) method was conducted. The 

rational for choosing ESA over other SA techniques such as 

ANOVA, is the similarity that exists between EventTracker 

and ESA. EventTracker also does not have a reliance on the 

availability of statistically reliable or the homoscedasticity of 

historical data [15], [16], [17].   

An Entropy-based sensitivity analysis method had been 

proposed by [8]. In this method the sensitivity index of a 

model output with respect to a model input is defined as the 

reduction in the entropy of the output, given the input does not 

have any uncertainty (i.e. when its values are all known). 

Further details of the method can be found at [8]. Although 

this method (like ANOVA-based methods) needs analytical 

determination of the density functions associated with the  

input and output series, [8] has proposed a method for the 

direct estimation of the sensitivity index from samples. The 

ESA estimation method is implemented as part of this work 

for the purpose of performance analysis comparison with the 

EventTracker method. The results of the ESA method are 

shown in figures 21 and 22.  

 

 
Fig. 21 ESA Sensitivity Indices of 4 EDs with respect to 28 TDs 

 

 
Fig. 22 ESA Percentage of filtered TDs per CT 

 

The EventTracker and ESA methods are compared in figure 

23 based on the region of ‘no false negatives’. The figure 

shows that on average the ESA method filters out more of the 

TDs. It also shows that the ESA method produces more false 

negatives. The EventTracker method reports up to 14% of 

TDs as less important without any false negative, whereas the 

ESA method produces 37.5% false negatives (i.e. 3 out of 8). 
 

 
Fig. 23 Comparison of proportion of less important TDs with low false 

negative ratios on EventTracker and ESA methods 

 

In comparing the levels of CPU usage between the two 

methods, it was observed that the ESA method continuously 

took on average up to 50% of the available CPU output for a 

1348.87 seconds duration. The EventTracker method took 

55% of the available CPU output, but for a much shorter 

period of 6.875 seconds. With a typical sampling rate of five 

samples per second, the ESA method would appears to be less 

efficient in comparison to the EventTracker method when 

used for real-time analysis. 

VII. CONCLUSION 

This paper proposes a sensitivity analysis (SA) 

methodology for use in large scale ‘real-time’ data acquisition 

systems. The method in comparison to Entropy based SA 

(ESA) technique was shown to be faster, more accurate and 

less computationally burdensome. The reason that ESA was 

used as the basis for comparison is that like EventTracker, the 

ESA method is a SA method that relies least on historical data. 

The underpinning logic behind the EventTracker method is the 

capture of cause-effect relationships between input variables 

(triggers) and output variables (events) over a given period of 

time.  

EventTracker is an event-driven sensitivity analysis method 
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and not a probability-based approach. The process is 

deterministic in the sense that it is only instigated when an 

event with a pre-determined threshold is detected. There is no 

reliance on statistical or model based equations, only on the 

interpretation of transition between system states and in that 

sense the technique is completely “unaware”. 

One of the strengths of the proposed method is the freedom 

of choice it offers the user to specify a scan rate based on the 

very nature of the application itself. For example, applications 

such as weather or financial forecasting require longer 

intervals between events; whilst others such as reactor safety 

systems in power plants require a shorter scan interval. The 

platform in its current form provides the flexibility for a 

system analyst to choose an appropriate value based on their 

experience and local knowledge. As part of future work, one 

objective is to develop an autonomous and intelligent 

scheduling method that finds the optimal scan rate based on 

the data collected directly from the system.    

A key feature of the technique is its ability to rapidly filter 

inconsequential data, data that at times may very well 

overwhelm the data processing platform. With regard to the 

time domain, the EventTracker method may be classified as a 

Local Sensitivity Analysis (LSA) method. Moreover in 

estimating sensitivity indices, EventTracker does not require 

prior knowledge of the analytical or statistical relationship that 

may very well exist between input and output variables.  

EventTracker in this sense can be considered to be a truly 

Global Sensitivity Analysis method. The approach does not 

require any prior estimation of the data distribution (see figure 

24).  

 
Fig. 24 General view of EventTracker method for sensitivity analysis 

 

The performance model is capable of meeting the demands 

of ‘real-time’ execution. This approach to sensitivity analysis 

can be used in large scale distributed data analysis, such as 

climate change analysis, global manufacturing and logistics 

operations or interlinked financial applications.  

One key advantage of the method is the reduction in cost, 

complexity of installation and maintenance of any associated 

SCADA systems. 
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APPENDIX 

TABLE III: LIST OF SIGNALS FOR FOUR MACHINES OPERATIONS THE SIDE-PANEL MANUFACTURING LINE 

Task Group Signal Sensor/Actuator Role Data Type 

GR-1 

CP101 Actuator Manual loader up/down 2-bit digital 

LS101A Sensor Loader up 1-bit digital 

LS101B Sensor Loader down 1-bit digital 

LS102 Sensor Sheet presence (align) 1-bit digital 

LSDP Sensor Double sheet 1-bit digital 

M101 Actuator Transport frw/rev 2-bit digital 

M102 Actuator Manual trolley frw/rev 2-bit digital 

GR-2 

M201 Actuator Manual transport 1 2-bit digital 

M202 Actuator Manual transport 2 2-bit digital 

CP210 Actuator Sheet-in stopped up/down 2-bit digital 

LS210A Sensor Sheet-in stopped up 1-bit digital 

LS210B Sensor Sheet-in stopped down 1-bit digital 

LS210C Sensor Slowing stopped CP210 1-bit digital 

CP211 Actuator Manual magnet 1 up/down 2-bit digital 

LS211A Sensor Magnet 1 CP211 up 1-bit digital 

LS211B Sensor Magnet 1 CP211 down 1-bit digital 

CP212-213 Actuator Manual magnet 2 up/down 2-bit digital 

LS212A Sensor Magnet 2 CP212 up 1-bit digital 

LS212B Sensor Magnet 2 CP212 down 1-bit digital 

LS213A Sensor Magnet 2 CP213 up 1-bit digital 

LS213B Sensor Magnet 2 CP213 down 1-bit digital 

CP214 Actuator Manual centring forw/rev 2-bit digital 

LS214A Sensor Centring forw 1-bit digital 

LS214B Sensor Centring rev 1-bit digital 

CP215 Actuator Manual pincer open/close 2-bit digital 
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LS215A Sensor Pincer open 1-bit digital 

LS215B Sensor Pincer close 1-bit digital 

LS220 Sensor Out block 1-bit digital 

M203 Actuator Manual roll machine forw/rev 2-bit digital 

LS203C Sensor Axel manilpulator forw 1-bit digital 

LS203D Sensor Axel manilpulator rev 1-bit digital 

LS203E Sensor Axel manilpulator home 1-bit digital 

M204 Actuator Axel move guide forw/rev 2-bit digital 

LS204C Sensor Axel move guide forw 1-bit digital 

LS204D Sensor Axel move guide rev 1-bit digital 

LS204E Sensor Axel move guide home 1-bit digital 

M207 Actuator Axel centring forw/rev 2-bit digital 

LS207C Sensor Axel centring forw 1-bit digital 

LS207D Sensor Axel centring rev 1-bit digital 

LS207E Sensor Axel centring home 1-bit digital 

CO201 Actuator Manual blanking die up/down 2-bit digital 

LS201A Sensor Blanking cylinder CO201 up 1-bit digital 

LS201B Sensor Blanking cylinder CO201 down 1-bit digital 

GR-3A 

M303 Actuator Manual tip up transport forw/rev 2-bit digital 

M304 Actuator Manual tip up rotation forw/rev 2-bit digital 

CP305 Actuator Manual tip up block forw/rev 2-bit digital 

LS305A Sensor Tip up block forw 1-bit digital 

LS305I Sensor Tip up block rev 1-bit digital 

LS303A Sensor Tip up rotation up 1-bit digital 

LS303B Sensor Tip up rotation down 1-bit digital 

LS303C Sensor Tip up rotation slowing up 1-bit digital 

LS303D Sensor Tip up rotation slowing down 1-bit digital 

LS306 Sensor Tip up stop outside 1-bit digital 

LS307 Sensor Tip up stop inside 1-bit digital 

GR-3 

M301 Actuator Manual roll machine forw/rev 2-bit digital 

LS301 Sensor Roll machine location 1 1-bit digital 

LS302 Sensor Roll machine location 2 1-bit digital 

LS303 Sensor Roll machine location 3 1-bit digital 

LS304 Sensor Roll machine location 4 1-bit digital 

LS305 Sensor Roll machine location 5 1-bit digital 

M302 Actuator Move guide forw/rev 2-bit digital 

LS302C Sensor Move guide forw 1-bit digital 

LS302D Sensor Move guide rev 1-bit digital 

LS302E Sensor Move guide home 1-bit digital 
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TABLE IV: LIST OF MORE IMPORTANT TDS (GREEN CELLS) AND LESS IMPORTANT TDS (RED CELLS) REPORTED AFTER THE 

EVENTTRACKER METHOD HAD ANALYZED 28 PAIRS OF {ED, TD} WITH 60% CR. UNDERLINED NUMBERS INDICATE TRULY 

MORE IMPORTANT TDS ACCORDING TO THE MODEL STRUCTURE.  

 RU Loader RU 

Shearing 

Unit 

RU Tilter RU Roll 

Forming 

 

CP101 0.695652 0.789474 0.37838 0.325 More Important 

LS101A 0.652174 0.263158 0.48649 0.475 More Important 

LS101B 0.565217 0.684211 0.75676 0.675 More Important 

LS102 0.521739 0.631579 0.72973 0.65 More Important 

LS103 0.565217 0.473684 0.59459 0.475 Less Important 

LS201A 0.652174 0.263158 0.48649 0.475 More Important 

LS201B 0.652174 0.263158 0.64865 0.575 More Important 

LS210A 0.608696 0.210526 0.45946 0.35 More Important 

LS210B 0.565217 0.789474 0.7027 0.625 More Important 

LS210C 0.826087 0.473684 0.59459 0.525 More Important 

LS211A 0.608696 0.210526 0.45946 0.35 More Important 

LS211B 0.565217 1 0.75676 0.675 More Important 

LS212A 1 1 0.43243 0.375 More Important 

LS212B 0.652174 0.368421 0.75676 0.575 More Important 

LS214A 0.73913 0.263158 0.64865 0.575 More Important 

LS214B 0.652174 0.263158 0.43243 0.325 More Important 

LS215A 0.565217 0.263158 0.81081 0.625 More Important 

LS215B 0.826087 0.263158 0.7027 0.675 More Important 

LS220 0.565217 0.263158 0.7027 0.525 More Important 

LS301 0.173913 0 0.89189 1 More Important 

LS302 0.304348 0.052632 0 0.025 Less Important 

LS303 0.304348 0.052632 0 0.025 Less Important 

LS304 0.26087 0.105263 0.08108 0 Less Important 

LS305 0 0.105263 1 0.95 More Important 

LS306 0.652174 0.157895 0.7027 0.675 More Important 

LS307 0.478261 0.052632 0.86486 0.775 More Important 

LS3051 0.608696 0.105263 0.67568 0.65 More Important 

LS3059 0.347826 0.631579 0.89189 0.8 More Important 

FIG. 25 MATCHING ED VALUES BEFORE AND AFTER DE-SELECTION OF REPORTED LESS IMPORTANT TDS. EACH DIAGRAM HOLDS 

TWO IDENTICAL DATA SERIES  
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