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Abstract 

This report describes the evaluation of the architecture synthesis tooi Phideo. Phideo is 
developed by Philips and is used to design high throughput Digital Signal Processing 
applications. Typical properties of these applications are repetitions, dedicated hard
ware which is o:ften pipelined and large communication requirements. The synthesis 
and allocation of distributed memories play an important role in Phideo. 

Phideo design method is basedon the analysis of the manual design process and the 
different design decision that are taken. Phideo is not a fully automated push-button 
system, but important design decisions are le:ft to the designer. The input of Phideo is 
written at high level in Phideo Input Language (PIF). Phideo generates a design and 
provides the necessary feedback to evaluate and improve the design iteratively by de
fining constraints which drive the scheduling process and the memory synthesis. The fi
nal output of Phideo is a synthesizable Register Transfer Level VHDL description. 

As a test-case for Phideo a pan of an MPEG2 decoder is used. The research goal and 
conclusions are based on design time, quality of the design and applicability in a prod
uct development environment. 

KeyWords 

PHIDEO, Architecture synthesis, High Level synthesis, DSP, 
MPEG-2, IDCf, IQ, IZZS 
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Summary 

To cope with the increasing complexity and shorter design times in IC~design, it is necessary to use 
a well structured design strategy. In the digital video processing group at the Product Concept and 
Application Laboratory of Philips in Eindhoven a hierarchical design flow has been developed dur
ing the past years. This report describes the evaluation ofthe architecture synthesis tooi Phideo (ver
sion 2.0), which automatespart ofthe design flow. Phideo is a tooi which is application driven and is 
used in the design of high throughput Digital Signal Processing applications. With Phideo, the de
sign time of digital circuits can be decreased, while the achievable quality of designs is compared to 
manual design. 

The Phideo design method is based on the analysis of the manual design process and the different 
design decisions that are taken. Phideo is nota fully autornaled push~button system. User interaction 
is of major importance. Phideo automates large part of the design actions, but important design dec i
sions are left to the designer. This way Phideo combines the advantages of design automation with 
the qualities of the human designer. 

The input of Phideo is a high level behavioural description in the Phideo Input Format together with 
constraints to steer the synthesis process. Phideo generates an implementation of the design together 
with the necessary feedback, such as schematic and estimated resource requirements, to evaluate the 
design and to improve the design iteratively. The final output of Phideo is a Register Transfer Level 
VHDL description which can be synthesised by existing RT~Level synthesis tools. 

The architecture synthesis tooi Phideo has been evaluated with the design of partsofan MPEG-2 
video decoder. MPEG-2 is a video coding standard which is likely to replace the current analog 
standards in order to enhance the number of transmilled television programs and to enable new seJV
ices. Some partsof the MPEG-2 decoder with the highest computation complexity were chosen to 
be implemented by Phideo, i.e. the Inverse Discrete Cosine Transform the Inverse Scan and the In

verse Quantisation. 

In this report a number of different video decoder architectures are presented in order to reduce the 
required off-chip memory. These architectures imposes constraints on the throughput of the IDCT 
the IS and the IQ. After an extensive study ofthe Inverse Discrete Cosine Transform, implementa
tions for the different video decoder architectures are made with Phideo. The resulting designs are 
compared to similar designs which are constructed manually. 

It can be concluded that using Phideo, the quality of the designs in terms of chip-area is oomparabie 
to the quality of manual designs. In contrast, the design time can be decreased significantly. As a re
sult the designer is able to evaluate different alternatives which results in a better exploration of the 
design space. Disadvantages are the input language of Phideo which cannot be executed and is not 
compatible with VHDL, the scarcely available manuals and documentations. Furthermore it can be 
very hard to de fine the right pragmas to get Phideo to do what the designer desires. This canSome
times because Phideo does not find a suitable solution, somelimes because the designer wants some
thing which is not possible. 
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During my research I encountered a relevant anecdote. lt is called "The banana becomes open to 
question". It goes as follows: One takes a cage with apes. At the top ofthe cage a banana is hung up, 
undemeath a stair is placed. After a while one of the apes tries to climb the stair, but as soon as he 
puts his feeton it, all the apes are squired with water. Shortly thereafter another or the same ape tries 
to climb the stairs again, with the same result: all apes wet. From now on, if an ape tries to climb the 
stairs the others will prevent that. Now we remove one ape from the cage and replace it by a new 
ape. This one sees the banana and tries to climb the stairs. At his fright all apes threaten him. After 
another attempt he knows: if he tri es to climb the stairs he will get a beating. Then we replace a sec
ond ape. The newcomer goes to the stairs and gets a beating. The last newcomer participates enthu
siastically. A third goes out, a third comes in, goes to the stairs and gets a beating. Two of the apes 
that threaten him have no idea why it is not allowed to climb the stairs. Old ape out new ape in, until 
all apes who ever got wet are replaced. Nevertheless no ape tries to climb the stairs. "Why not, sir?" 
"We simply don't do that over here, young man." 

Though experience is substantial and indispensable, it could yield a narrow-minded way and preju
dieed way of thinking. I believe that self-learning and trail and error are the best ways to gain expe
rience. Philips offered a pleasent environment conduct the research for my master thesis, providing 
the necessary liberty to do the research. When assistance or a second opinion was needed there was 
always someone willing to lent a helping hand. 
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Chapter 1: Introduetion 

Chapter 1 

Introduetion 

In the past decades the art of integrated circuit (IC) design has evo1ved rapidly. In the early days I Cs 
consistedof a small number of transistors which had to be designed by drawing the layout ofthe sil
icon layers. Nowadays the complexity and the number of transistors on a single IC has increased ex
plosively. With millions of transistors on a single IC and growing complexity of the system to be 
designed, it has become impossible to design such an IC without automation tools. On top of that, 
the design time has decreased. Due to growing competition and shorter life times of products the 
time-to-rnarket has become an important issue in the design of an IC. To meet all these design re
quirements, design automation is necessary in all stages of the design path. 

In this report a new high-level design tool is studied and evaluated. As a test-case for this tool, the 
design of an MPEG-2 decoder is chosen which is used in a Digital Video Broadcasting system. In 
the next sections a brief introduetion is given on Digital Video Broadcasting foliowed by a brief in
troduction of MPEG-2 in the succeeding section. Next we descri he the design steps of the develop
ment of an IC and possibilities to automate this design. Since part of the study was to evaluated the 
new tool and determine whether or not it fits the approach ofPCALE (a department ofPhilips Sem
iconductors where the research was done ), the design flow at PCALE is described. The succeeding 
sections concern the architecture synthesis tool Phideo which is the subject of the research. After a 
brief introduetion on Phideo, the research goals are given and explained. At the end of this introdue
tion chapter an overview of the structure of this report is given. 

1.1 Digital Video Broadcasting 

The number of television programmes has increased significantly during the last decade. All these 
programmes have to be transmitted on the existing channels. This becomes a problem since the 
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available bandwidth on the current cable, satelite and terrestrial networks is becoming too small to 
transmit all the programmes, containing video, audio and data (e.g. teletext). With the analog trans
mission standards every programme occupies one channel with a bandwidth of 6 MHz. With digital 
compression techniques it is possible to put between 4 and 10 programmes (video, audio and data) 
on the same channel. The number of programmes that can be transmitted on a single channel de
pends on the quality ofthe pictures and sound and the amount of data. With digital television stand
arcts it is therefore possible to increase the number of programmes to be broadcasted without 
expensive modifications and extensions of the transmission channels, like cable networks and satel
lite links. 

Besides the increasing number of programmes and the reduced costs, digital television has more ad
vantages. The picture quality of the programme can be varled between low resolution and high defi
nition, depending on the requirement. The different programmes can be multiplexed easily, which 
makes a better bandwidth utilization possible. Sound quality can also be varled and multilingual 
sound and multilingual subtitling is possible. Digital data can easily be encrypted, which opens pos
sihilities for video on demand and pay per view. Interactive television is also feasible and there are 
many other possibilities such as, home shopping, video games etc. 

In figure 1.1 a model of a Digital Video Broadcasting system is depicted. The systems consists of 
two parts: the souree coding part and the channel coding part. 

MPEG-2 
en co der 

MPEG-2 
encoder 

MPEG-2 
decoder 

Forward Error 
Multiplexer 1---1~ Correction 

Selection of 
one programme 

t 

Modulator 

Forward Error 
1...,.1---1 Correction ....-----1 Demodulator 

Souree Coding Channel Coding 

---, 

r-I-, 
I I 
I Transmission I 

Channel 

Figure 1.1 Model of a Digital Video Broadcasting system 

The souree image is successively coded by a souree encoder foliowed by a channel encoder before it 
is transmitted. The task of the souree encoder is to reduces the number of bits of the souree message 
using the characteristics of the specific source. In case of souree encoding television programmes 
(digital video infonnation and associated audio) the MPEG-2 algorithm can be used which is dis
cussed in the next section. After multiplexing different programmes in one bitstream, it is coded by 
the channel encoder. 
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The task of the channel encoder is to tune the message to the channel characteristics and to proteet 
the message against transmission errors introduced by the channel. There are three common chan
nels to transmit digital video information: cable, satellite and terrestrial. For satellite communica
tion, a Forward Error Correction (FEC) can be used which consists of two stages: first a Reed
Solomon algorithm foliowed by a Vtterbi algorithm. These two stages are necessary because of the 
low signal to noise ratio in satellite transmission. The resulting signal can be modulated using Qua
temary Phase Shift Keying (QPSK). For terrestrial and cable transmission a FEC can be used which 
only consists of a Reed-Solomon algorithm. The modulation techniques which can be used are 
among others Orthogonal Frequency Division Multiplexing (OFDM) for terrestrial and 64-Quater
nary Amplitude Modulation (64-QAM) for cable transmission. 

At the receiver side the same process is carried out in reversed order. After demodulation and error 
correction the bitstream is demultiplexed and the selected programme is decoded. 

1.2 A brief introduetion to MPEG 

MPEG is a standard of the International Standards Organization (ISO) for coded representation of 
moving pictures, associated audio, and their combination. MPEG is short for Moving Pictures Ex
pert Group and is named after the expert group who developed it. 

The MPEG standard is developed for the compression and decompression of moving pictures (vid
eo) and sound (audio) and the formation of a multiplexed common data stream that includes the 
compressed video and audio data plus any associated service data. Furthermore the MPEG standard 
provides means for synchronization of the video, audio, and service data during the playback of the 
decompressed signals. It is intended to serve a wide variety of applications and services such as dig
ital storage media and television. 

The first MPEG standard (MPEG-1) was capable of compressing SIF video (352x288 at a framerate 
of 30Hz) and compact disc audio at a combined coded bitrate of 1.5 Mbit/s, approximated the per
ceptual quality of consumer video tape (VCR). A second standard (MPEG-2) aimed at efficient cod
ing of broadcast quality video. The major difference between MPEG-1 and MPEG-2 are the higher 
picture quality if desired and the representation of interlaced video signals. 

The MPEG-2 standard is an extremely ftexible one. It is intended to be genetic in the sense that it 
serves a wide range of applications, bitrates, resolutions, qualities and services. The MPEG-2 stand
ard provides a set of defined compression and systemization algorithms and techniques all combined 
in a single syntax. MPEG-2 defines a number of subsets of the syntax and a set of constraints on the 
parameters in the bitstteam by means of profile and level. For example main level at main profile 
provides compression of Standard Definition TeleVtsion (SDTV) with coded bitrates up to 15 Mbit/ 
s and High level at main profile is used for High Definition Tele Vtson (HDTV) with coded bitrates 
up to 80 Mbit/s. 

More about the MPEG-2 standard and the applied compression techniques can be found in 
Chapter 3 on page 33. 
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1.3 Design automation 

Due to the rapid technological development of the last decades, designers have come to rely on au
tomatic or semiautomatic CAD systems for the design of complex ICs containing over a miltion 
transistors. In the early days, design automation was mainly concemed with design verification (cir
cuit and logic simulation, layout verification), later on also design automation tools became feasible 
that allow for the specification ordescription of a system at various levels of abstraction and for the 
automated or even automatic implementation of a design. The transformation of a description or 
specification from one level of abstraction into another is called synthesis. This can done be either 
by hand or automated with the use of sythesis tools. 

The first synthesis tools we re designed for a full automatic placement and routing of a gate-level de
sign description. The next step was the introduetion of logie-level synthesis and optimization tech
niques allowing for automatic translation of truth tables into minimized networks of logic gates. 
Nowadays a lot of commercial software forthese synthesis steps are available. However, the forces 
of time-to-rnarket and growing system complexity demand the use of high-level, automated meth
ods and tools. At this moment a lot of effort is put into synthesis methods, tools, and systems that 
transform a high-level design description, or even specification, into an adequate implementation. 
Moving up to higher levels of abstraction results in a further reduction of design cost and time-to
rnarket Another advantage is the reduction of design errors, since the design flow becomes highly 
automated which should yield less errors. Also working at higher levels of abstraction is less prone 
to error than dealing with the little details of lower levels. More a bout synthesis approach to digital 
system design can be found in [1]. 

The goal of design automation for electronic systems is to automate the transformation of a specifi
cation given at the highest level of abstraction into a description at the lowest level, e.g. the mask 
geometry which provides the interface to fabrication. A software system that can provide this trans
formation is called a silicon compiler. In tigure 1.2 an overview ofthe subtasks in a silicon complil
er is shown. The nomendature of the various level of description are conform "The synthesis 
approach to digital system designs" by P.Michel [1] .. 

At the highest level of abstraction, the system level, the system is specified by its functionality and 
a set of constraints to be met (e.g. speed, power consumption, fabrication cost). The description is 
mostly on paper. 

The first synthesis step is System-Level synthesis. The result is a partitioning of the system into sub
systems, and the synthesis of the behavioural description for each of these subsystems. The behav
ioural description (or algorithmic description) at the Algorithmic Level defines a precise procedure 
for the computational solution of a problem. 1t specifies behaviour in terms of operations and com
putation sequences on inputs to produce the required output. Basic elements of the description are 
similar to those of programming languages, like arithmetic and logic operations applied to v ariables, 
and control structures such as loops, and procedure calls. In this synthesis step the first optimization 
takes place. By altering the algorithm the number of operations and computation complexity can be 
reduced. Currently, both partitioning and specification of subsystems are performed manually. 
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System Level 

,, System-L evel Synthesis 

Algorithmic Level or 
High Level 

Architecru , re Synthesis 

Register-Transfer Level 

1r RT- Level Synthesis 

Logic Level 

r Logic Syn thesis 

Circuit Level 

1 
Layout S ynthesis 

Figure 1.2 Design flow of a Silicon Compiler 

A behavioural description (or algorithmic description) at the Algorithmic Level provides the start
ing point for architecture synthesis. In architecture synthesis (also called high-level or algorith
mic-level synthesis), three different subtasks can be distinguished: 

• resource allocation: functional units of appropriate type and number have to be se
lected 

• scheduling: operations have to be assigned to time slots 

• resource assignment: operations need to be assigned to specHic functional units. 

At this level a time/area trade-off (allocating more resources allows for more parallel execution of 
operations, giving higher perfonnance at higher hardware cost) is be made. 

The result of high-level synthesis is an initia! description at the Register Transfer Level (RTL) of a 
data path and a controller. An RT-Level description is a system definition in tenns of registers, mul
tiplexers, and operations. In this description an initia! assignment of operations to clock cycles has 
been made. The synthesis of the controller and the translation of the system into states and state 
transitions are typical tasks ofthe Register-Transfer-Level synthesis. 

The result is a design at Logie-Level specified in tenns ofblocks of combinationallogic and storage 
elements. The optimization and mapping of these block onto a gate-level hardware structure is the 
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task of Logic Level synthesis (also called Library or Technology Mapping). Four subtasks can be 

distinguished in logic synthesis: state encoding, logic optimization, technology mapping and gate 

si zing. State encoding assigns binary codes to the states to minimize the final implementation of the 

state machine. In logic optimization the combinational circuit is optimized. During this optimization 

a trade-off between speed, area and power of the resulting circuit is made.Technology mapping 

maps the optimized circuit to matching physicallibrary cells of a given target technology. In order to 

speed-up the circuit, gates on the critica! path in the circuit can be sized. Finallyin the layout syn

thesis these cells and their interconneet are placed and routed. 

1.4 PCALE design flow 

At Philips Concept and Application Laboratory Eindhoven (PCALE) a design flow is developed for 

the design of digital integrated circuits [2]. The PCALE design flow is top-down design flow, and is 

characterized by a number of description levels (see tigure 1.3 ). The highest description levels are 

an abstract specification of the system to be developed. It only describes the functionality of the de

signs in a unambiguous manoer and is independent of the implementation which is chosen. The 

highest level is used to verify each level in the system on it's functional correctness. Starting with 

the highest level of description, each level adds more details, implementation aspects and or timing 

aspects. Each time the correctness of the description is verified against the previous level. Until at 

the lowest level a layout is obtained which is transferred to the foundry where the first prototypes of 

the IC are manufactured. 

All the levels are described in VHDL (Very high speed integrated circuit Hardware Description Lan

guage). It is a high level description language for system and circuit design. The language supports a 

wide range of description styles. These include structural descriptions, dataflow descriptions and be

havioural descriptions. The structural and dataflow descriptions show a concurrent behaviour. That 

is, all statements are executed concurrently, and the order of the statements is not relevant. On the 

other hand behavioural descriptions are executed sequentially in processes, procedures and func

tions, which resembie high-level programming languages. All descriptions in VHDL can be simu

lated, which is indispensable for verification purposes. 

When using the appropriate style (e.g. limit the number of different processes and limit the use of 

signals) the simulation speed of high-levelVHDLis notsignificant slow er than other high-level pro

gramming languages like C. In highest levels of description, all implementation details are omitted 

and therefore the execution and simulation speeds of these levels can be very high. This yields the 

greatest advantage of the PCALE design flow. With these high simulation speeds, extensive func

tional testing of the complete design is possible and functional errors or bottlenecks can be recog

nized in an early stage. At lower levels in the design the simulation speeds are much lower and the 

designs contain much more detail. At this level simulation of the complete design of complex sys

tems is very slow and therefore restricted to a small number of tests. At this stage it takes a much 

more effort to track down functional errors. 

The advantage of the use of one language for each level of design is that it is possible to test parts of 

the design from different levels of description at the same time. This way it easy to compare a sub

block from a lower level of description with the sameblockat a higher leveland verify it by com-
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Specification 

Algorithmic 
Specification 

(Algorithmic Level Behavioural Level 
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Register Transfer 

Level (RTL) 

Logic Level (LL) 

Circuit Level 

Layout 

$ Bit-wise Comparison ~ Loosy Comparison 

* The classifications of the levels as used by [ 1] and described in the previmJS section. 

Figure 1.3 Verification at the various description levels. 

paring their behaviour. Another advantage is that it is possible to conneet a subblock of the design 
which is described at a low level of abstraction to the rest of the design which is described at a high
er level. As a result only part of the system is at a low level, so the simulation remains high. This 
way a subblock from a lower level can be tested in the complete system insteadof stand alone only. 
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In the next sections the description style of the various levels in the PCALE design flow are further 

explained, the characteristics of each level is summarized in table l.I. 

The design flow starts with a specification which is mostly on paper. Since a description in english 

language is ambiguous and not executable, the implications for the resulting design are not very 

clear. Therefore the design is tirst transformed into a formal description, an Algorithmic Specifica

tion. The advantage of an algorithm is that it is unambiguous, and executable. This way, only one 

interpretation is possible and thus no confusion. Since an algorithm is executable the results of eer

taio requirement and constraints can be evaluated. If not satisfactory the algorithm can be adjusted 

or retined. In the Algorithmic Specitication abstract data types like reals and integers are allowed, 

implementation details are omitted were possible. 

At the Behavioural Level the design is divided into subsystems. The behaviour of each subsystems 

is described by means of input and output relation. At this level also a notion of time is introduced. 

The communication between the subsystems is clock cycle true regarding the inputs and outputs, i.e. 

all the inputs and outputs occur exactly at the same clock cycle as they will occur in the target de

sign. This way a functional veritication of the complete system of the design is possible. Since the 

intern behaviour of the subsystems is not yet related to the clock, very high simu1ation can be 

achieved. This way extensive tests and veritications can be performed which reduces the probability 

of functional errors. 

Note the difference between this Behavioural Level and the High Level of the previous sectionsec

tion (tigure 1.2)! In this Behavioural Level a notion of time is introduced in contractietion to the 

High Level of the previous section. Another important difference is the intemal of the subsystems. 

Whereas the High Level of the previous section specities the precise procedure for the computation 

of the outputs, the Behavioural Level only specities the outputs. 

Since abstract data types cannot be represented in hardware without rounding errors, only bit-com

posite types (e.g. bit-veetors and boolean types) are used at this level. At this point the effects of ti
nite precision calculations and tinite word length calcu1ations can be evaluated, and the required 

word length can be derived. The veritication of the behavioural algorithm is done by means of a 

loosely comparison of the output results of the Behavioural Algorithm and the Algorithmic Speciti

cation on a a specitic input sequence (see tigure 1.1). The behavioural algorithm is correct if all dif
ferences can be ascribed only to the finite precision calculation and round off errors. 

At the behaviourallevel all the inputs and outputs of the subsystems and the communication be

tween the subsystems are exact the same as they are in the target design, this is called bit-true re

garding its inputs and outputs. The behaviourallevel is used as a reference for the lower levels in the 

design flow. These levelscan be veritied by means of a bit-by-bit comparison to the behaviour of 
this level. 

Note that the nomendature of the levels of the PCALE design flow are confusing in relation to the 
these of tigure 1.1 in the previous subsection. The Specitication as wellas the Algorithmic Speciti

cation fall under the System Level of the previous subsection which is illustrated in tigure 1.3. In 
Hurk [2] this level was originally called the Algorithm Level, in this report it is referred to as Algo-
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rithmic Specification to prevent mistakes. The Behavioural Level resembles the Algorithmic Level 
or High Level of tigure 1.2. The other levels are conform the nomendature of tigure 1.2. 

At the Register Transfer Level the interlor ofthe subsystems are designed. For each subblock a im
plementation is written in, using registers, functional units, and multiplexers. Functional units of ap
propriate type and number have to be selected. and the operations have to be assigned to time-slots 
and to specific units. The implementation of a subblockis bit-wise compared to the behavioural de
scription. At this moment this step is done manually, which is very time consuming. Automation of 
this step results in a great reduction of design time and effort and therefore a significant faster time
to-rnarket Architecture synthesis tools like Phideo ( described in the next section) and Mistra12 auto
mate parts of this level. They translate a high-level (HL) description or behavioural description into 
a Register Transfer Level description while providing the necessary user interaction to control this 
process. This report describes the study of the applicability of the architecture synthesis tooi Phideo 
in the design of complex ICs. A similar study of the architecture synthesis tooi Mistral-2 is per
formed, which is described in [3]. 

The translation from a descriptions at the Register Transfer Level to Logic Level and further down 
to layout is fully automated. A lot of commercial synthesis tools like Synergy (Cadence), Synopsis 
or Campass are available. At PCALE Synergy is used for the translation ofRT-Level VHDL to gate 
Level or Library Level. To verify the results of this step the resulting RT-Level VHDL is compared 
to the Algorithmic Specification. Since already extensive testing is done on the functional correct
ness of the system the tests can be focused on the subblocks. At this point the Design Flow of 
PCALE ends and the RT-Level description is transferredtoa Production Centre where the transla
tion into layout is done and finally the prototype of the IC is manufactured. 
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Description Application Characteristics Translation to Higher 
Level of Descrlption 

Algorithmic Functional system develop- • executable behavioural de- manual 
Specification ment, evaluation, verifica- scription (VHDL) 

tion, and specification 
• causal timing, unclocked 

• abstract data types (e.g. re-
als, integers) 

• V ery high execution speeds 

Behavioural or Executable functional refer- • executable behavioural manual or 
High Level (HL) ence (forma! specification) description (VHDL) 

High Level Synthesis Tools 
for system verification 

• composite bit data types (e.g. (e.g. Phideo, Mistral2) 
ranged integers, bit vectors) 

• High simulation speeds 

• clock-cycle-true and bit-true 
regarding inputs and outputs 

RegisterTransfer Input to Logic Synthesis • executable behavioural Logic Synthesis Tools 
Level (RTL) Tools, design verification description (VHDL) (e.g. Synergy, Synopsis or 

• composite bit data types 
Compass) 

• clock -cycle-true and bit-true 

Gate or Logic Input to Technology Map- • executable behavioural Technology Mapping Tools 
Level (LL) ping, performance and tim- description (VHDL) succeeded by Layout Syn-

ing analysis and design 
• propagation delay based tim-

thesis Tools 
verification 

ing 

• bit value data types 

Table 1.1 Characteristics and application fields of the various description levels 

1.5 A brief introduetion to Phideo 

With increasing levels of complexity, the design time of one chip generation can be close to the life
time of that generation. This is where architecture synthesis becomes important. Automating this 
part of the design flow results in a great reduction of design time and time-to-rnarket This is espe
cially important when many possible alternative implementations have to be explored. Another 
main motivation for architecture synthesis is that it allows the designer to concentrare on a compact, 
well documented description of the design which makes abstraction from all the details of the imple
mentation possible. Furthermore decisions at these levels have a much higher impact on the final re
sults than decisions at the lower levels. 

The architecture synthesis tools in the literature can be classified into two groups: general-purpose 
approaches and DSP domain specific approaches. General-purpose approaches often result in archi
tectural bottlenecks or suboptimal solutions. Instead of trying to build one universa! compiler, an ap
proach which is driven by the application will generate more efficient architectures. DSP compilers 
exploit domain-specific knowledge. DSP algorithms are characterized by a repetition of the same al
gorithm over and over again on new input data. Each execution of the algorithm must be completed 
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within a fixed time interval. The mapping of input signals onto output signals must be done at the 
rate of the input signal arrival, not slower and not faster. The goal of a DSP designs is to minimize 
area (=goal) within the above mentioned timing constraint. This makes it different from general
purpose numerical processing, where the timing is an optimization goal, not a constraint. 

The Phideo (PHllips viDEO) system is an architecture synthesis tool which is application driven and 
aims at high-speed video applications [7][8][9]. Video algorithms such as HDTV are characterised 
by the fact that sampling frequencies are close to the achievable clock freqencies on chip. As a con
sequence it is not possible to execute many operations on the same hardware. Therefore these algo
rithms are usually implemented on clusters of heavily pipelined datapatbs with a low multiplex 
factor. The amount of resource sharing is limited. In Phideo these clusters are mapped upon so 
called processing units (PUs). 

Traditionally most attention is paid to bottlenecks in the arithmetic units ofthe chip. This can lead to 
the introduetion of processing units which are tuned to the application. In high-speed video applica
tions the bottlenecks are situated at totally different resources. The area consumed by memories can 
be much larger than the area of processing units. Also communication problems (for example be

tween memories and processing units) can be a bottleneck. The orderand speed at which 1/0 com
munication takes place can have a drastic impact on the overall design. Therefore Phideo 
concentrates on memory allocation and communication, which is reftected in the target architecture 
model within Phideo. 

Phideo is based on an analysis of the manual design process and the different design decisions that 
are taken. It was found that some design actions are of a bookkeeping nature and are repeated over 
and over again. For other design actions an accurate cost function could be formulated and the prob
lem cou1d be solved formally. These two types of design actions can be automated. But other design 
decisions are left to the responsibility of the designer. In the Phideo system tools are used for sub
problems in the design which have a well defined optimization goal and which deal with an amount 
of data which is too large for a human designer. The Phideo is an iterative system where the user in
teraction is very important. The designer remains responsible for guiding the exploration of the de
sign space. U sing this Phideo a significant reduction of the design time and design effort is possible. 
More about Phideo can be found in Chapter 2 on page 13. 

1.6 Research Goal and Metbod 

The goal of this master thesis is to evaluate the applicability of the architecture synthesis tool Phideo 
in a product development environment. As a test case, a part of an MPEG2 video decoder is taken. 
Since Phideo is developed to design high-throughput video applications, some parts of the decoder 
are chosen which have the highest throughput and the highest data rate. In the MPEG2 video decod
er these are amongst others the Inverse Discrete Cosine Transform (IDCT), the Inverse Zig Zag 
Scan (IZZS) and the Inverse Quantizer (IQ). In these components the sample frequencies are ap
proximate 13.5 MHz. With a clock frequency of 27 MHz this is one sample every second clock cy
cle. 
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eonventional MPEG2 decoder implementations need a lot of memory to decode standard format 
video sequences. In this paper an architecture proposal is described which reduces these memory re
quirements (see ehapter 4: "Video Decoder Architecture Study"). A consequence of this architec
ture proposal is the need for a higher speed decompressor. This implies an IDCT, an IQ and an IZZS 
which can operate at about twice the conventional speed. In this case the data rate approximates the 
clock rate, so approximately every clock cycle one sample must be processed. 

The IDCT, IQ and IZZS of the MPEG2 decoder are designed with Phideo. The resulting design and 
the design method are evaluated and compared to conventional design methods, using the following 
criteria: 

1. design time: - how much time does it take to make a design? 

2. quality of the design: - how good is the design in terms of chip area? 

3. applicability - what kind of designs can be implemenled successfully? 

4. design method: -does it fit in the PeALE design flow? 

At the end ofthe research, it should be clear what category of designscan be implemenled efficient
ly using Phideo, and whether the output ofthe Phideo, an RT-Level VHDL description is ready to be 
synthesized using existing RTL synthesis tools. And finally is it useful to use Phideo in the design of 
high-throughput video applications? 

1. 7 Report Overview 

In ehapter 2: "Phideo" the architecture level synthesis tools Phideo is described. In ehapter 3: 
"MPEG-2" an introduetion is given to the MPEG2 video compression standard, which is the souree 
of the test-case. In Chapter 4: "Video Decoder Architecture Study" a video decoder architecture is 
presented which reduces the memory requirements. This architecture imposes a number of con
straillts and performance requirements on the computational units that must be designed. In 

ehapter 5: "Discrete eosine Transform" discusses the transform and different algorithms to com
pute the Discrete eosine Transform. Chapter 6: "Implementation of the IDCT with PHIDEO" dis
cusses the implementation aspectsof the IDCT with PHIDEO. In ehapter 7: "eonclusions on the 
use ofPhideo" Phideo is evaluated and the advantages and disadvantages as wellas the applicability 
are discussed. 
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Chapter 2 

Phideo 

The Phideo design metbod is based on an analysis of tbe manual design process and tbe different de
sign decisions tbat are taken. It was found that some design actions are of a bookkeeping nature and 
are repeated over and over again. For some otber design actions an accurate cost function could he 
formulated and tbe problem cou1d he solved formally. These two tY{X!s of design actions can he au
tomated. But otber design decisions are left to tbe responsibility oftbe designer, to exploit tbe expe
rience and tbe creativity of the human designer. This has led to a new design metbod which is 
iterative and where tbe user interaction is very important. Using tbis new metbod a significant re
duction of the design time and design effort is possible. 

Architecture synthesis is very time consuming in the case of a manual design. This is especially im
portant when many possible alternative implementations have to be explored. Indeed, tbe infiuence 
of design choices on tbe resu1t is often not known at the timetbat the decisions are made. This could 
lead to backtracking on some decisions which is time consuming, or to a non-exploration of a part of 
tbe design space which cou1d lead to suboptimal resu1ts. For this reason the development of tools is 
relevant to help tbe designer in this decision making process. 

As a result the designer can concentrare on a compact, well documented description of tbe design at 
a high level of abstraction, which makes abstraction from all tbe details of the implementation. 
These decisions at this high level have a much higher impact on tbe final resu1ts than decisions at the 
lower levels. 

Phideo is not a fully automated push-button system. User interaction is of major importance. Phideo 
automates large part of the design actions. But important design decisions are left to the designer. 
Phideo constructs a salution and provide the necessary information with this solution to adjust and 
improve it iteratively. 
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. This chapter discusses the global concepts and motivations of the Phideo design method. First a 
general introduetion to architecture synthesis and the basic concepts and definitions are given. Next 
the characteristics of high throughput DSP (Digital Signal Processing) applications, the Phideo 
model of periodic operations and the target architecture of Phideo are discussed. This is foliowed by 
an oveiView of Phideo and its design method. More about Phideo can be found in [7][8][9][ 10]. 

2.1 Architecture synthesis 

The input of architecture synthesis (also called high-level synthesis) is a behavioural specification 
(see tigure 2.1). The behaviour is precisely described in tenns of operations and computation se
quences on the inputs to produce the required output. Architecture synthesis translates the behav
ioural specification into a description at Register Transfer Level. The position of architecture 
synthesis in the design path is described in "Design automation" on page 4. 

Behavioural Speci.fication 

Architecture Synthesis 

Register Transfer Level description 

Figure 2.1 Architecture synthesis 

As shown before, , three different subtasks can be distinguished in architecture synthesis : 

• resource allocation 

• scheduling 

• resource assignment 

Resource allocation is the selection of the number and type of functional units which will be used, 
this includes the allocation of memories and registers. Scheduling is the assignment of each opera
tion to a cycle step in which it will be executed. Furthennore each operation must be mapped on one 
of the allocated functional units, to define on which unit each operation will be executed (resource 
assignment). In case of memories, variables must be assigned to exact memory locations to define 
where in the memory these variables are stored Qocation assignment), which is also a part of re
source assignment. 

These three subtasks are not independent. A scheduler must know in advance which functional units 
or modules are available. The allocation process must know how many operation of a eertaio type 
must be executed at the same time to prevent confticts. The resource assignment must know at what 
cycle step a unit is occupied to prevent confticts in module usage. Hence scheduling and allocation 
are closely related toeach other, and their results heavily depend on each other. 
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The following example illustrates the different tasks within the architecture synthesis. Consicter the 
following behavioural specification: 

e=a+b+c+d 

In tigure 2.2 two different schedules are given for this example. The number of operations with the 
same type in the same cycle detennine the number of modules that are necessary to implement this 
schedule. We can describe these resource needs by means of a distribution function. This function 
gives the number of operations which are executed simultaneous. Only the maximum number of op
erations is relevant to detennine the resource requirement, since it reftects the maximal number of 
simultaneous operations which determines the minimal resource requirements. The allocator must 
select enough modules to perfarm these operations. The schedule of tigure 2.2a needs at least two 
adders and can be executed in 2 cycle steps. The schedule of tigure 2.2b needs only one adder but 
takes 3 cycles to execute. 

e 
2 

e 

#adders #adders 

îiL_ 
0 1 2 Cycle step 

î~ 
0 1 2 Cyclestep 

(a) (b) 

Figure 2.2 Two different schedules and distribution functions 

The number of clock cycles that a function needs to be executed is called the latency. The latency of 
an actdition in the example is 1 cycle. The complete function bas a latency of 2 and 3 cycles, respec
tively. It is possible to pipeline the function. Pipelined modulescan start a new execution befare the 
previous execution bas finished. This means that the module can contain more than one data value at 
the same time. In the example new data could be inserted in the function after the execution of the 
operations in cycle step 0. The frame is the time between two successive executions, which is also 
called the data introduetion interval (Dil), in this case the data introduetion interval is 1 clock cycle. 
The throughput of a function is the number of executions of this function per cycle. Although the la
tency of the function of tigure 2.2a is 2 cycles the throughput is 1 execution per cycle. 
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2.2 Application driven architecture synthesis 

Traditionally most attention is paid to bottlenecks in the arithmetic units of the chip. This can lead to 

the introduetion of processing units which are tuned to the application. But there also exist designs 

where the bottlenecks are situated at totally different resources. For example, for realtime video ap

plications the area consumed by memories can be much larger than the area of processing units. 

Also communication problems (for example between memories and processing units) can be a bot

tleneck. The order and speed at which I/0 communication takes place can have a large impact on the 

overall design. The identification of bottlenecks is important because it is very useful to design this 

part first. The less critical parts are designed afterwards. For example in the case of arithmetic bot

tlenecks, the designer may decide to design the processing kemel ofthe IC first. This can be done in 

much detail (possibly at the layout level) before the rest of the chip is designed. 

Each specific application domain has its typical properties and its own bottlenecks. Instead of trying 

to build one universa! compiler, the Phideo approach is driven by the application, which has great 

advantages. Typical properties of the application domain that are exploited by the designers are re

flected in the design method and in the design flow. 

The design of an application driven architecure synthesis tool starts from an analysis of the applica

tion field. Important decisions are taken at the architecturallevel. So the characteristics of the appli

cation domain are reflected in a target architecture. The target architecture must allow enough 

flexibility so that it can span the complete target application domain. Several target architectmes ex

ists for DSP. They can be classified dependent on the application domain and the corresponding 

sampling frequency. 

1. For linear filters in the audio, speech and telecommunication applications with relative 

low sampling frequencies a hard-wired bit serlal approach is often used. Signals are 

processed bit by bit, least significant bit first. The data rate approximates the clock rate 

divided by the word length, e.g. 10 MHz clock and 16 bit words imply a data rate of 660 

kHz. 

2. For complex decision-making applications with low to medium sampling frequencies 

(10kHz up to 1 MHz) microcoded approaches are used. Typical architectures use a lim

ited number of general-purpose arithmetic building blocks (such as an ALU with 32 dif

ferent instructions) and a limited number of on-chip memories. 

3. For high-throughput DSP applications, likereal-time video applications, with high sam

pling frequencies (up to 100 MHz) more parallelism is needed. This is reflected in the ar

chitecture because distributed processing and storage elements will be used. Typical 

applications are real-time video and image processing. 

2.3 High throughput DSP applications 

High throughput Digital Signal Processing algorithms are characterized by a repetition of the same 

algorithm over and over again on new input data. Each execution of the algorithm must be complet

ed within a fixed time interval. In case ofpipelined units, not the latency ofthe algorithm is of inter-
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est but the throughput. The unit must be able to execute the algorithm once per fixed time interval. 
The mapping of input signals onto output signals must be done at the ra te of the input signal arrival, 
not slower and not faster, to prevent additional buffering requirements. The goal of a DSP design is 
to minimize area (=goal) within the above mentioned timing constraint. This makes it different 
from general-purpose numerical processing, where the timing is an optimization goal, not a con
straint. 

Video processing algorithms are characterised by the fact that sampling frequencies are close to the 
achievable clock freqencies on chip. As a consequence it is not possible to execute many operations 
on the same hardware. Por video applications we need much more parallelism in the architecture. 
Furthermore the arithmetic units become much more dedicated, and will be used to perform one 
function over and over again. Complete clusters of operations are mapped on one processing unit 
(PU) which can be heavily pipelined. The amount of resource sharing is limited. As a consequence 
we also need distributed memories because otherwise we would have a communication bottleneck 
in the architecture. This is different from the centralized memory approach for low and medium 
throughput applications 

Since communication is an important bottleneck in high throughput DSP applications, Phideo con
centrates on the communication bottlenecks. The synthesis and allocation of distributed memories 
play an important role in Phideo. This is reflected in the target architecture of Phideo. Also the need 
for heavily pipelined dedicated units to provide the required throughput is recognized and reflected 
in the target architecture. 

In the next section the Phideo model of perioctic operations is discussed which plays an important 
role in the description of repetitions in high throughput applications. Foliowed by the target archi
tecture which is used as the skeleton for Phideo designs. 

2.4 Phideo model of periodic operations 

In video applications many different rates occur. Input and output rates are defined in the specifica
tion. For intemal signals an optimum rate can be chosen. In figure 2.3 a small example is given. 
Half of the output samples are computed by an operator proc. The output is the original signal 
merged with the computed signal which results in a double output rate. 

t.t.t.t. tttttttt 
~T---------~line 

input 
merge 

output 

proc 

for i= 0 to 3 
begin 

o[2i]= input(); 
o[2i+ 1] = proc ( o[2i] ); 

end 
for j = 0 to 7 

output( o[j] ); 

Figure 2.3 Small multi-rate example 
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In tigure 2.4 two possible schedules are given. Figure 2.4a interprets the loop in a procedural way 
although the functional specification allows more parallelisrn. This way the first loop has to be fin
isbed before the second loop can start. The solid lines in the tigure denote the borders of the loops, 
and the dashed lines denote the borders of the iterations within the loops. Ho wever, these borders are 
artificial constraints, which corne on top of the true data dependency constraints. Such a solution 
rnay be acceptable for low throughput applications, but is far frorn optirnal for high throughput ap
plications. 

Figure 2.4b shows an irnplernentation with overlapping loop executions. Also the repetition tirnes 
are different for operations within one loop, e.g. for operation proc and input. The second irnple
rnentation shows less latency. This leads to smaller memory requirernents since the life-tirnes of the 
variables are shorter. For real-life examples with a large nurnber of samples insteadof only 4 sam
ples, the difference becornes quite large. This optirnization across loop boundaries is essential for an 
efficient irnplernentation. 

time input proc output time input proc output 

0 o[O] 0 o[O] 
1 r- - - oj_ll 1 
2 o[2] 2 o[2] 
3 -- ol_3l 3 
4 o[4] 4 o[4] o[l]~ut[O] 
5 __ o[5] 5 o[3] out[l] 
6 o[6] 6 o[6] o[5] out[2] 
7 o[7] 7 ~o[7] out[3] 
8 out[O] 8 out[4] 
9 out(Ij 9 out[5] 
10 out[2] 10 out[6] 
11 out[3] 11 out[7] 
12 out[4] 12 
13 out[5] 13 
14 out[6] 14 
15 - out[7] 15 

(a) (b) 

Figure 2.4 Two schedules of the exarnple of tigure 2.3 

Within Phideo this problern is solved as follows. First each operation in the specification is consid
ered as a separate design entity. Second the assurnption is made that executions of the same opera
tion are periodical in time, which is inspired by the nature of video signals. This leads to the model 

of periodic operations which is a basic concept of Phideo. 

Perioctic operations can be rnultidirnensional. The translation frorn loops to perioctic operations is 
done as follows. All individual operations in a loop body are translated to separate perioctic opera
tions in order to decouple those operations. The nurnber of dirnensions of a perioctic operation is 
equal to the nurnber of enclosing loops. The nurnber of executions in a perioctic operation is given 
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by the iteration bounds of the enclosing loops. Each perioctic operation can be defined by the start 
time and the periods. The periods are defined by the user, the start time is determined by the sched
uler. All operations are handled as separate entities and thus may be scheduled concurrently. 

In tigure 2.5 an example of a periodic operation with two dimensions is given. For the example in 
tigure 2.4. we have three perioctic operations with one dimeosion each indicated as input, proc and 
output. For the proc operation we have 4 executions, a start time of 4 and period of 1. 

0000 0000 
time ltl I I I I I I I I I I I I I I I I I I I I I 1 .. 

Start 

Figure 2.5 Example of a perioctic operation with two dimensions, pl and p2 denote 
the two periods of the operations. 

With this model the originalloop hierarchy is replaced by a new hierarchy, in which all operations 
are independent concerning their periodicity and iteration bounds. It would have been hard to obtain 
the same results by unfolding and splitting the loops. 

2.5 Target Architecture of Phideo 

Processing units (PUs) play an important role in Phideo. They can become complex and irregular 
because data-conditionat operations are included. For performance and area reasoos these opera
tions are moved from the controller into the PUs in Phideo. The user must identify clusters of tightly 
coupled operations in the specification that can be mapped on the same processing unit. These clus
ters are handled as single operations and an abstraction of the PU made for the use in the rest of 
Phideo. 

Figure 2.6 shows an overview of the target architecture model of Phideo. A number of PUs (PUI, 
PU2, .. PUk), a number of memories (Ml, M2, .. Mn) and a number of address generators (AG 1, 
AG2, .. AGm) and a controller can be distinguished. Input and output terminals can be considered 
as simple PUs. All types of memories can be used in the architecture, including static RAMs, dy
namic RAMS, register files and single registers. The role of the memories is to transport data from 
producing PUs to consuming PUs. The number of allocated PUs and memoriescan be different. In 
genera!, the PUs are active simultaneously. 

Generally, all PUs can have access to the samememory locations. The interconnections take care of 
the data transport between PUs and memories. Similarly the role of the address generators is to gen
erale the correct addresses for the memories at the correct points in time. Again interconnections 
take care of the transport of addresses to the memories. 
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The controller generates the signals which perform the selection of the function of a PU, read/write 
signals for the memories, next address signals for the address generators and the control of the mul
tiplexers in both communication networks. These control signals are perioctic as well which is re
ftected in the use of counters in the multidimensional controller. 

AGl AG2 

interconnections 14---i c 
~r--------r----------~ 0 

M2 

PUI 

N 
T 

14---1 R 

0 
L 

Figure 2.6 The Phideo architectural model, which allows freedom with respect to the 
number and types of processing unit (PUl, PU2, ... PUk), 
memories (Ml, M2, ... Mn) and address generators (AGl, AG2, ... AGm) 

2.6 Overview of Phideo 

Phideo consists of a set of tools which can be executed in succession. The development of the tools 
within Phideo is driven by the architectural model, which include a scheduler to define the start 
times of the perioctic operations and a set of tools for memory synthesis, including address genera
tion and controller generation tools. 

The first part of the design process is the clustering of operations ( tigure 2.7). The selection of the 
operations that are mapped onto so called Processing Units (PUs) is performed manually and is an 
important task for the user. Groups of operations which are tightly coupled and which often contain 
the main arithmetic complexity of an algorithm are selected to be implemenled in a processing unit. 
The scheduler handles such a cluster as single operations. 

The next step is the definition of the algorithm in PIF (Phideo Input Format). Functions and Process
ing Units are declared and the algorithm is defined. With pragmas, user defined constraints can be 
defined to drive the scheduling process and the memory synthesis. Phideo makes a schedule and 
gives additional information like distribution functions, number of variables alive at the same time 
and the number of simultaneous memory accesses. The user can use this information to adjust the 
clustering process or to steer the scheduler by defining additional constraints. 

20 Philips Semiconductors I Technical University Eindhoven 



Chapter 2: Phideo 
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Figure 2. 7 Overview of Phideo 

lf the schedule and the memory and PU-allocation are perfonned satisfactory, the assignement of 
variables to exact memory locations can be made together with address generators to provide the 
memories with the proper addresses. Finally the controller can be constructed which is partly gener
ated by all the tools in Phideo. In the next section an overview ofthe synthesis tasks can be found. 
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2.6.1 Processing Units design 

The design of the processing units is done using RT level synthesis or by manual design. Because of 
the high sampling frequencies that occur in the application, these units are often pipelined to meet 
the high throughput requirements. It is also possible to design the processing units with Phideo. In 
that case the processing unit contains a complete Phideo designs can be used hierachically in a high
er level design. 

Phideo makes an abstract model of a processing unit which is called a time shape. The time shape 
detines the timing of inputs and outputs, relative to the tirst input. An example of a time shape of a 
PU with 4 inputs and 1 output is shown in tigure 2.8. The time shape is used by the scheduler in the 
next step. 

ol 

i1 
time 

• 

Figure 2.8 Time shape of a PU with 4 inputs and 1 output 

Instead of designing a PU at RT level, it is possible to detine the time shape without designing the 
complete PU. The timing ofthe inputs and outputscan be based upon an estimation. At a later stage 
when a preliminary feasibility study with Phideo has provided enough information, a real imple
mentation can be made. This way unnecessary effon can be saved if the design proved to be infeasi
ble. In order to simulate the designs the intemal behaviour of the processing unit can be described at 
a behaviourallevel containing integer and real value operations. 

Figure 2.9 and tigure 2.10 illustrate the construction of a time shape for two different implementa
tions of the tunetion e = a + b + c + d. The two different time shapes F and G are used in the next 
section as an example. 
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Time shapeF 

Figure 2.9 Implementation of a PU with the function e =a+ b + c + d, with the distribution 
function of the adders and the corresponding time shape F of this PU. 
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Figure 2.10 Another implementation of a PU with the function e =a+ b + c + d, with the 

distri bution function and the corresponding time shape G of this PU. 
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2.6.2 Scheduling and PU-allocation 

The scheduling and PU-allocation are perfonned by the tooi called Jason. Jason selects the neces
sary units (PU allocation) and generates a schedule. Furthennore feedback is given on this schedule 
to evaluate the results and improve the schedule and PU-allocation by defining additional con
straints in tenns of pragmas. The feedback consists of the distribution functions, memory require
ment functions and memory access functions which are explained later on .. 

The schedule of Jason defines which data is written to memories at which times. In the following 
PIF example the function F is used with the time shape defined in tigure 2.9. An input and an output 
tenninals is defined. The global period is 4 which defines that the algorithm must be repeated every 
4 doek cycles. The inputs are read with a period of 1, so every cycle an input is read. Function F 
adds these 4 inputs and the result is passed to the output. 

infunc input = in term; 
outfunc output out_term; 

func F( a, b, c, d ) e = F_pu; 

{4} /* global period */ 

(i: 0 .. 3) {1} .. 
{in} in[i] =input (); /* a,b,c,d, resp. */ 

{func} e = F(in[O], in[l], in[2], in[3]); 

{out} output(e) 

Every time an operation is executed a new instanee of the time shape is generated. Because of the 
model of periodic operations, consecutive executions of the same operation are equidistant in time. 
Different operations can have independent start times and different periods, the global period is 
equal for all operations. 

The task of the scheduler (Jason) in Phideo is to select the start times of the operations. The defini
tion of the periods is still a manual step. Figure 2.11 shows the schedule with the matching func
tions. The distribution function is used to represent the resource requirements as a function of time. 

The memory requirement function represents the number of variables which are alive simultaneous
ly. This function is used as a measure for the required memory size, since these variables need to be 
stored in a memory. The memory access function reflects the communication bandwidth and is an 
indication for the number of memories needed for implementation. 

The schedule shows that the variables on the input which arive in sequence, are not used immediate
ly. These have to be stored temporarily which is reflected in the memory requirement function and 
the memory access function. These variables are retrieved from the memory and passed to function 
F at cycle 4. After a latency of 2 cycles the result is sent to the output. 

If another implementation of the function Fis used, i.e. the implementation with time shape G, the 
schedule of tigure 2.12 is generated. This leads to different access profiles and different memory re
quirements. Note that although the throughput of the implementation with time shape F is higher 
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(i.e. once execution per two cycles) the use of the implementation with time shape G (throughput of 
one per three cycles) results in a better schedule since the number of variables and number of ac
cesses are smaller. Note that the function G is scheduled before the loop which takes in the inputs is 
finish ed. 
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Figure 2.11 Schedule generated by Phideo using time shape F, together with a distribution 
function, the memory requirement function and the memory access function. 
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Figure 2.12 Schedule generated by Phideo using time shape G, together with a distribution 
function, the memory requirement function and the memory access function. 

Pipelined schedule 

The main dUferenee between an conventional scheduler and the scheduler in Phideo is that the 

schedule which is generaled by Phideo can be a pipelined schedule. The scheduler in Phideo gener
ales a schedule which is to be repeated with a defined period, the so called frame period. lfthe lalen
cy of the algorithm is larger than the frame period, the schedule is designed to be pipelined with a 
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data introduetion interval equal to the frame period. The schedule is folded to detennine the re
source needs and memory requirements in each cycle step. 

In figure 2.13 an example of a pipelined schedule is given. The function F: e =(a+ b) * c + d is 
scheduled with a frame period of 2 cycles. Since the function is repeated every two cycles several 
instances of the function F (i.e. F 1, F0, F1, F2, ... F5) are depicted. It can be seen ( distri bution func
tion) that the implementation of this schedule requires 2 adders. When a constraint on the number of 
adders is given, Phideo wilt optimise this schedule by moving the last actdition of the function and 
the outputto the next cycle step (illustrated by the arrows). As aresult each cycle step only comains 
one actdition and the schedule can be implemented using only one adder. The cost of this adaptation 
is two register since both inputs ofthe actdition must be stored for one doek cycle. Note that it is not 
relevant that the latency has increased by one cycle, since the throughput remains the same (i.e. once 
per two cycles)! 

Cycle step 
I 0 I 1 2 3 4 6 7 8 

#adders 

2 
1 

0 1 2 3 4 5 6 7 8 Cycle step 
# multipliers 

2 
1 

0 1 2 3 4 5 6 7 8 Cycle step 

Figure 2.13 Pipelined schedule, global period is 2 clock cycles. 
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2.6.3 Memory synthesis 

Given the schedule of Jason, Medea detennines the number of memories needed to imptement the 
communication requirements (Memory Allocation) and decides which data is to be written in which 
memory (Memory Assignment) to solve communication bottlenecks. The result is a complete data 
path, consisting of processing units and memory units. 

The memory allocation and memory assignment is subjected to the constraints which are defined by 
the memory types. The available memories can be all types of memories including random accessi
bie memories, registers and register files. The memories can be characterised by the number of read 
ports (R), the number of write ports (W) and the number of bidirectional ports (RW). For example, a 
single port RAM is characterised by R=W=O and RW=l and a two-port register file by R=W=l and 
RW=O. For every type the maximum and minimum size and the access times (in clock cycles) are 
specified. 

Medea designs a memory architecture and optimizes the estimated size of the memories and the 
number of memories. At this point the exact sizes of the different memories are not yet known. Also 
the precise locations of the variables in these memories are not known. These are defined by the ad
dress synthesis which is described in the next section. During the address synthesis also the address 
generators are constructed. The controller is partly specified in each tooi and is synthesized after
wards by the controller synthesis tooi. 

2.6.4 Address synthesis 

The address synthesis process is perfonned by the tooi Matchbox. Matchbox takes as input the 
schedule and the memory allocation infonnation generated by Jason and Medea. At this stage the 
number and the type of memories which are required is exactly known. Forthermore it is known 
which data has to be stored in or retrieved from which memories as well as the exact timing. Match
box must assign the data samples to exact location in each memory (location assignment) and gener
ate the address generators which must produce the required address sequences (address generation). 

As a result of the Phideo model of periodic operations the data that is produced by the PUs (and the 
data that is consumed by the PUs have a very regular and periodic nature as well. Therefore the ad
dress generators are based upon counters. During the location assignment a trade-off between the re
quired memory size and the complexity of the address generator is applied. At this moment three 
different types of address generators are available which offers a good trade-off. 

2.6.5 Controller synthesis 

After the address synthesis, all parts of the netlist generated by the different tools are connected and 
a controller is generated by the controller synthesis tooi Paris. From this netlist automatically a syn
thesizable RT-level VHDL description is generated. Also a schematic drawing of the complete de
sign can be shown, which can be very useful as feedback to the designer. 
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2. 7 Phideo Input Format 

PIF is a temporary interfacetoa number ofPhideo tools (scheduler, memory synthesis, address gen
eration). In the near future PIF should be replaced by another language (possibly VHDL extended 
with additional commands). In this chapter a brieflist ofthe most commonly used commands is giv
en. 

An exarnple of a PIF description is shown below: 

/* delarations */ 

infunc input = interm; 
outfunc output = outterm; 
func +(input1, input2) output 

signa1 a,b,x 8; 

/* algorithm */ 

adder; 

{16} : [0, 16] /* global period */ 

(i: 0 .. 7} {1} :: 

{out} 

{ina} 
{inb} 

begin 

end; 

= output(x[i]}; 
x[i] a[i] + b[7-i]; 
a[i] input(}; 
b[i] = input(}; 

A PIF de scription consists of two main parts: a deelaralive part and an algorithmic part. Furthermore 
additional constraints or pragmas can be defined to steer the synthesis process. With the declarations 
processing units are defined by means of functions and the input and output terminals can be defined 
as well as signals and their widths. The algorithmic part describes the algorithm in terms of loops, 
assignments and function calls. Finally the pragmas are used to impose constraint on the schedule 
and the allocation process. More about PIF can be found in appendix A. 

2.8 Phideo hierarchy 

lt is possible to use a Phideo design hierarchically in a higher level design. At this moment a lower 
level Phideo design must be included by means of a macro. The Phideo design is simply substituted 
in the new design. This way Phideo's hierarchy is not very clear and certainly not transparent In fu
ture releases hierarchy is planned to be expanded. 

After running Jason a bounding box is generated which contains a description of the time shape of 
the PIF design. The input and outputs terminals are modelled by functions and the input and output 
order and period of the signals is copied. This bounding box can be used in the higher level design. 

Usualy the narnes and the index of variables are transparant and not of any inftuence. This is not true 
in this case! When the macro is used at a higher level, the Phideo preprocessor substitutes the narnes 
of the variables in the macro. The orderand period of the signal remain the sarne. As a re sult the in
tema! index order of the input and output variables are used for the substituted variables as well. 
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When familiar with this phenomenon, the hierarchy by means of rnacros can be used safely. An ex

ample of the use of a macro in Phideo given in appendix B. 

2.9 Testing and simulating Phideo designs 

Within the Phideo design path three levels of abstraction can be distinguished as shown in 

tigure 2.7: 

1. Algorithmic specification (PIF) 

2. Behavioural Level description (VHDL) 

3. Register Transfer Level description (VHDL) 

At the lower levels of abstraction the design contains much more detail which leads to slower simu

lation times and it takes much more effort to track down functional errors. It is desired that the de

sign can be tested at the higher levels of abstractions as well. 

At this point it is not possible to simulate the initial PIF description directly. Though the initial PIF 

description is very transparent and easy to be read, typing errors and other small errors can corrupt 

the design. First a initial pass through Phideo is needed, to generate a Behavioural Level VHDL 

which can be verified. This can be done quite quickly since no optimization is needed. lt would be 

useful if the PIF algorithm would be made executable so that a simple functional test can be per

formed. At this point it is to recommended to test the design after the first passage before starting the 
iteration process, in order to verify the PIF algorithm at an early stage. Otherwise a lot of unneces

sary time can bespent in optimising a design iteratively. 

The Behavioural Level VHDL description which is generated by Phideo is of major importance in 
the design path. This description contains all the functionality of the target design and is clock-cycle 

true regarding its inputs and outputs. The memories which are allocated during the scheduling proc

ess are simulated by a behavioural model. At this point it is known which variabie are to be stored in 

which memories. The exact location within the memories and the address generation for storage and 

retrieval of the data in these memories not is not implemented at this stage. This way the simulation 

speed of the behavioural VHDL can be kept much higher, so that extensive testing is possible. 

Another way of increasing the simulation speed at this level is the definition of the Processing Units. 

The intemal behaviour of these PUs can bedescribed at a behaviourallevel as well. Arithmetic op

erations like multiplications or additions can be described using integers and reals. The only con

stmint is that the inputs and outputs of the PUs must be clock-cycle true compared to the final 

design. At a later stage the intemal of the PUs can be translated into Register Transfer Level. This 
part can be verified by means of a one-on-one comparison of the outputs as described in "PCALE 

design flow" on page 6. 

After memory synthesis the Register Transfer Level VHDL can be verified. Since extensive testing 

are performed at the higher levels most functional errors will be removed already, so the number of 

test at these lower levels can be limited. 
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2.10 General conclusions 

With increasing complexity and design time of Integrated Circuit architecture synthesis becomes 
important. Architecture synthesis can reduce the design time and the time-to-rnarket To avoid archi
tectural bottlenecks the architecture synthesis tools Phideo is driven by the application. It aims at 
high throughput DSP applications. Phideo concentrates on the memory allocation and communica
tion, imposed by the traditional bottlenecks of these high throughput applications. 

Phideo is not a push-button design system, user interaction is very important. Several design steps 
are automated. These include bookkeeping tasks and tasks which could be optimized formally. With 
Phideo it is possible to explore the design space by comparing alternative implementations. Not 
only the solution to a problem is of importance, the necessary information to judge and improve the 
design iteratively are at least as important. Phideo provides this information and offers the possibili
ty to interact and steer the synthesis process. Phideo is a powerlul design metbod that gives the de
signer the opportunity and tools to explore the design space and to implement a design in a short 
time. 
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Chapter 3 

MPEG-2 

3.1 Standardization effort 

Standardization of video compression techniques bas become a high priority because only a stand
ard can reduce the high cost of video compression encoders/decoders and resolve the critical prob
lem of interoperability of equipment from different manufacturers. The existence of a standard is 
often the trigger to the volume production of integrated circuits (VLSI) necessary for significant cost 
reductions. 

International standardization committees have been working on the specification of several com
pression algorithms. The Joint Photographic Experts Group (JPEG) of the International Standards 
Organization (ISO) has specified an algorithm for compression of still images [17]. The Internation
al Telecommunication Union (ITU, fonner CCITT) proposed the H.261 Standard for video telepho
ny and video conference [15]. The Moving Pictures Expert Group (MPEG) was established in 1988 
in the framework of the Joint ISO/IEC Teehoical Committee. MPEG was established to develop 
standards for coded representation of moving pictures, associated audio, and their combination 
when used for storage and retrieval on digital storage media (i.e. CD-ROM, DAT, tape, VCR) as 
wellas transmission on telecommunication channels (i.e. cable networks and satellite links). 

The motionPictures experts Group (MPEG) of ISO has completed its first standard MPEG-1 [18], 
which can be used for interactive video and provides a picture quality comparable to VCR quality. 
Currently MPEG is working on the second (MPEG-2 [11]-[14]), which will provide audiovisual 
quality of both broadcast TV and HDTV. Originally the need for a third standard was foreseen 
(MPEG-3), which was intended for HDTV, but this standard was dropped when it became apparent 
that the functionality supported by the MPEG-2 requirements made this standard redundant. A 
fourth MPEG standard (MPEG-4) targets at coding audio and video signals at very low bitrates. 
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The major characteristics of image formats and coding standards are listed in table 3.1 and table 3.2. 

These tables are not complete. They should give just some indications of image formats, and appli

cation fields. 

Video Format Frame Size Frame Frame Store 
Luminanee Ra te (luminance only) 

HDTV (16:9) 1920xll52 50Hz 17Mb 

HDTV (4:3) 1440xll52 50Hz 13Mb 

ITU-R-601 720x576 (PAL) or 25Hz 3.2Mb 
(farmer CCIR -60 1) 720x480 (NTSC) 30Hz 2.6 Mb 

CIF/SIF 352x288 30Hz 0.8Mb 

QCIF 172x144 30Hz 0.2Mb 

Table 3.1 Digital Video Formats 

Name Typical Typ ie al Coded Bit Rate 
Application Image Format 

JPEG (ISO) Photo-CD, Any size 0.25 .. 2.25 b/pel 
Photovideotext 8 b/pel 

H.261 (ITU) Video telephony, QCIF,CIF p x 64 kb/s 1 ~ p ~ 30 
Video conference 10Hz .. 30Hz 

MPEG-1 (ISO) CD-ROM, CD-I, SIF ~ 1.5 Mb/s 
Computer 25Hz, 30Hz 

applications 

MPEG-2 (ISO) Braadcast TV ITU-R-601 ~ 100 Mb/s 
HDTV 

Table 3.2 Video Coding Standards 

The MPEG activity was not started without consideration to other standards committees. The activ
ities of JPEG (Joint Photographic Expert Group) played an important role in the beginning of 

MPEG. Although JPEG focused exclusively on still-image compression, the distinction between 
still and moving image is thin; a video sequence can be thought of as a sequence of still images to be 

coded individually, but displayed sequentially at video rate. However the "sequence of still images" 

approach has the disadvantage that it fails to take into consideration the extensive frame-to-frame 

redundancy present in all video sequences. MPEG aims at this potential additional factor of three in 
compression exploiting the temporal redundancy. More about the MPEG standardization approach 

can be found in [19]. 
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3.2 Levels and Profiles 

The MPEG-2 standard is intended to be generic in the sense that it setves a wide range of applica

tions, bit rates, resolutions, qualities and setvices. Applications should cover, among other things, 

digital storage media, relevision broadcasting and cornrnunications. Considering the various require

rnents prornpted by the different applications, necessary algorithrnic elernents have been developed, 

and they have been integrated into a single syntax. Hence this standard facilitates the bitstrearn in

terchange among different applications. 

However the irnplernentation of the fu1l syntax of the specification is not very practical. Not all ap

plications need all the features and since the inclusion of a feature introduces additional costs (more 

memory, faster processing, etc.), this is not desired. The MPEG-2 standard therefore defines a 

nurnber of subsets of the syntax indicated by rneans of profile and level. 

A profile is a defined subset of the entire MPEG-2 syntax. A level is defined as a set of constraints 

irnposed on parameters in the bit stream. The constraints rnay include lirnits on the values of the pa

rameters, such as lirnits on the picture resolution and frame rate. 

The MPEG-2 standard foresees five profiles: 

• Main profile: 

• Simpte profile: 

• SNR scalabie profile: 

with no scalability and maximurn quality 

sarne as Main, but without interpolated pictures (B-pictures, 

see "Ternporal Redundancy Reduction" on page 38) in order 

to save memory 

an improverneut over Main giving scalability in signal-to

noise ratio 

• Spatially scalabie profile: also scalability in spatial picture resolution is supported and 

• High profile: supporting 4:2:2 (see "Source coding format" on page 36) 

and full scalability. 

Levels are associated toeach Profile. MPEG-2 identifies four levels: 

• Low Level: 

• Main Level: 

• High 1440 Level: 

• High Level: 

simHar to CIF of ITU-T Rec. H.261 or SIP of MPEG-1 

conesponding to conventional television 

roughly corresponding to HDTV with 1440 samples per line 

roughly corresponding to HDTV with 1920 samples per line 

In order to maximise interoperability, only a subset of all perrnutations are perrnitted. Those combi

nadons which are allowed are shown in table 3.3. 
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Simp Ie Ma in SNR Spatially High Maximum 
Profile Prolfile Scalabie Scalabie Profile Frame-Size, 

Profile Profile Frame-rate 

High x x 1920x1152 
Level 60Hz 

High-1440 x x x 1440x1152 
Level 60Hz 

Main x x x x 720x576 
Level 30Hz 

Low x x 352x288 
Level 30Hz 

Table 3.3 Allowed profile/level combinations and upper bounds for frame-size and 
frame-rate 

3.3 The MPEG-2 compression algorithm 

The MPEG compression algorithm consists of three stages: 

• bandwidth reduction: by matching the souree resolution to the MPEG souree format 

• the compression algorithm itself, 
- removal of spatial and temporal redundancy by means of wavcform analysis and 

subjectively adapted quantization 
- foliowed by lossless compression using entropy coding ( variabie length codes) 

• mapping of the resulting information losslessly into a bitstream by way of a syntax. 

The MPEG video compression algorithm relies on two basic techniques: block based motion com
pensation for the reduction of the temporal redundancy and transform domaio (Discrete Cosine 
Transform) based compression for the reduction of spatial redundancy. Temporal prediction tech
niques with motion compensation are used to exploit the strong temporal correlation of video sig
nals. Temporal prediction is applied with both causal (pure predictive coding) and non-causal 
(interpolative coding). The remaining signal (prediction error) is further compressed with spatial re
dundancy reduction (8x8 DCT). The information relative to motion is basedon 16x16 blocks and is 
compressed using variabie length codes to achieve maximum efficiency. Most of this chapter is 
based upon the MPEG standard [12] and publications [19]-[24]. 

3.3.1 Souree coding format 

A television image consists of pixels. Each pixel cao be characterised by its colour (chrominance) 
and the intensity (luminance). The pixels on one row are called a line. All the lines in an image form 
a picture or frame. By displayinga large number of pictures in succession at a high rate, the impres
sion of moving images is obtained. 
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In television images also the notion of interlacement is introduced. An interlaced picture/frame is 
composed of two fields. One field contains the odd lines and the other field the even lines 
(figure 3.1). The two fields are displayed altemately and they are separatedintime by a field period. 
Between displaying two fields a small blank period called field blanking is inserted. The time inter
val between to pixels in a line is constant and equals the sampling period. The lines are separated by 
a so called line blank.ing. 

- C'l - C'l 
"0 "0 "0 "0 
"i) "i) "i) "i) Frame 1 
p:; p:; p:; p:; 

=> 
•o•o 

=> •o•o •o•o •o•o •o•o •o•o 

--------
--------

I 
--------

FramL1 I r-~-~-~-~-~-~-~-):::~Field2 ________ .J------1 
________ .J------1 

--------

--------
-
Field 1 ..,. Field period 

+-+ 
Field 2 Frame period 

Field 1 

Figure 3.1 Example of an interlaced video sequence 

The MPEG-2 specification deals with coding ofboth progressive and interlaced sequences. The out
put of the decoding process, for interlaced sequences, consists of a series of fields that are separated 
in time by a field period. The two fields of a frame may be coded separately (field-pictures) or to
gether as a frame (frame-pictures). 

In genera!, a digitized picture is characterized by the following elements: 

• the resolution (the number of lines and the number of pixels per line) 

• the format, which is determined by the sample frequency of respectively the luminanee 
and the chrominance, and their spatial position. 

• the aspect ratio, which depends on characteristics of the sampling process (the distance 
between two pixel samples and the distance between two lines) and the resolution. 

A frame can be represented by three rectangular matrices of integers; a luminanee matrix (Y), and 
two chrominance matrices (U, V). The relation between these Y, U and V components and the pri
mary (analogue) Red, Green and Blue signals can be specified intheMPEG stream. 

MPEG-2 uses the same colour space (Y, U, V) as the ITU recommendation 601. Three different 
cbrominanee formats can be used: 4:2:0, 4:2:2 and 4:4:4 (figure 3.2). In format 4:4:4 all pixels are 
encoded by three samples. Format 4:2:2 uses only half the sample frequency in horizontal direction 
for cbrominanee samples. Format 4:2:0 uses half the sample frequency in vertical direction as well. 
The respective spatiallocations of the luminanee and cbrominanee samples is specified by MPEG 
and appropriate care has to be taken for the design of the filters. 
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Format 4:2:0 Format 4:2:2 Format 4:4:4 

x luminanee (Y) 0 cbrominanee (U, V) 

Figure 3.2 Position of luminanee and cbrominanee samples; formats 4:2:0, 4:2:2 and 4:4:4 

At Main Level at Main Profile MPEG-2 the souree coding format has a frame rate of 25 Hz and the 
resolution of the pictures is 720x576 which corresponds to PAL (respectively 30 Hz, 720x480, 
NTSC). The cbrominanee format is 4:2:0. 

3.3.2 Temporal Redundancy Rednetion 

The MPEG standard takes advantage of temporal redundancy (the fact that much of the information 
in a picture within a video sequence may be similar to the information in adjacent pictures) to repre
sent some pictures in terms of their differences from a reference picture. This way part of the picture 
can be predicted using data from reference pictures and only the differential information has to be 
transmitted (figure 3.3). 

Motion 
Veetors Datafrom m 

Reference 
Frame 

Coded--M Variabie 
Data ~g 1--D-a-ta---------IN 

from 
Bitstream 

To 
Display 

Figure 3.3 Differential coding of picture data 

In MPEG-2 three types of pictures are considered: Intra-pictures (I), Predicted pictures (P) and In
terpolated pictures (B - for bidirectional prediction). Intra pictures provide access points for random 
access but only with moderate compression, the complete picture is encoded without reference in
formation. Predictive pictures are coded with reference to a past picture (Intra or Predicted). Bidi-
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rectional Pictures provide the highest amount of compression but require both a past and a future 
reference for prediction, in addition Bidirectional pictures are never used as reference. In all cases 
when a picture is coded with respect to a reference, motion compensation is used to improve the 
coding efficiency. The relationship between the three pictures types is illustrated in tigure 3.6. 

Bidirectional Interpolation 

Forward Prediction 

Figure 3.4 Example of temporal picture structure 

Before decoding and displaying the Bidirectional pictures the reference pictures, I- or P- pictures 
must be decoded. Therefore the order of the coded frames in the bitstream is different from the dis
play order. The P-pictures must be sent prior to the associated B-pictures. The MPEG decoder must 
reorder these frames before displaying them. 

Video stream order: 

Displaying order 

Figure 3.5 Reordering of pictures 

Motion Compensation 

Motion compensated prediction assumes that "locally" the current picture can be modelled as a 
translation of the pictures at some previous time. Locally means that the amplitude and the direction 
of the displacement need not be the same everywhere in the picture. Motion compensation is block 
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based and is perfonned on blocks of 16x16 pixels, aso called Macroblocks. Each macroblock is 

coded using one or two motion veetors depending on the prediction mode. The motion veetors refer 

to picture data of previous or future pictures and re sult in a predicted macroblock. Together with the 

differentlal data from the bitstream the macroblock can be reconstructed. MPEG doesn't specify 

how theses veetors must be computed however block-matching techniques are likely to be used. In 

block-matching techniques; the motion vector can be obtained by minimizing a cost function meas

uring the mismatch between a block and each predicted candidate. 

In MPEG, four possible prediction modes are possible for motion compensation: 

• Intra-coded, no motion compensation data is used 

• Forward prediction, in which the ciosest prior I- or P-picture serves as the reference 

• Backward prediction, in which the ciosest future I- or P-picture serves as the reference 

• Bidirectional prediction, in which two pictures serve as the reference, one being the 

ciosest prior I- or P-picture one the ciosest future I- or P-picture. 

_.. - forward motion vector 
_.. " I 

----~~=------ / 

\ 
\ I 

backward motion vector 

I = Intra coded 

P =Forward predictive coded 

B = Backward predictive coded, Bidirectionally coded 

Figure 3.6 The prediction modes in the 3 picture types. 

In the predicted pictures the macroblock can be either Intra or predicted, Intra is reserved for use 

when the temporal prediction process fails for example when new elements appears in the picture. 

Bidirectional and backward predictive coded macroblocks may only be used in B-pictures. In 

table 3.3 the pennitted prediction modes and related macroblock types for each picture type are list

ed. 
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MacroBlock type I-picture P-picture B-picture 

Intra coded x x x 
Forward predielive coded x x 
Backward predictive coded x 
Bidirectional coded x 

Table 3.1 Permitted macroblock types in I-, P- and B-pictures 

3.3.3 Spatial Redundancy Reduction 

Both still image and prediction error signals have a very high spatlal redundancy. Because of the 
block based nature of the motion compensation process, a block based redundancy reduction tech
niques is used. In MPEG transform coding techniques with a combination of visually weighted sca
lar quantization and run length coding is applied. The compression consistsof three stages (see 
tigure 3.7): 

1. Computation of the transform coefficients 

2. Quantization of the transform coefficients 

3. Conversion of the transform coefficients into {run- amplitude} pairs aftcr reorganisation 
of the data in a zig zag scanning order 

Image samples 

DCT 

Transform Coefficients 

/ 
Quantization, 
Zig-Zag Scan, 
Run-length coding 

{Run -length} symbols 

Figure 3.7 Transform Coding, Quantization and Run-length Coding 
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Discrete Cosine Transform 

The discrete eosine transfonn is selected because it bas a certain number of advantages over other 
transfonns. The discrete eosine transfonn is an orthogonal transfonn. Orthogonal transfonns are fil
ter-bank-oriented (i.e., they have a frequency domain interpretation). The samples in a 8 x 8 block 
are sufficient to compute 64 transfonn coefficients and no overlap of blocks is needed. The oer is 
the best of the orthogonal transfonns withafast algorithm and very close approximation to the opti
ma! for a large class of images. More about the discrete eosine transfonn and its fast algorithms can 
be found in Chapter 5 on page 55. 

In MPEG-2 the discrete eosine transfonn bas inputs in the range [-255, 255] because prediction er
ror signals are used and output signals in the range [-2048, 2047], to provide enough accuracy. The 
accuracy ofthe inverse transfonn must meet the ITU-T Recommendation H.261 [17]. 

Quantization 

Afteroer the transfonned coefficients are quantized. Quantization in MPEG-2 is a key operation 
since it is the combination of quantization and run-length coding which is responsible for most of 
the compression. Furthennore through quantization the encoder is able to match its output to a given 
bitrate. 

Subjective perception of quantization error greatly varles with the frequency. It possible to use 
coarser quantizers for the higher frequencies, so the related coefficients can be encoded using a 
smaller number of bits at the cost of a smaller accuracy. The lower frequencies and the OC-compo
nent can use a finer quantizer and encoded with a larger number of bits. The exact quantization is de
fined in the so called quantization matrix which defines the quantization for each coefficient. It is 
possible to define a rustorn matrix for eertaio sequences, these can be sent together with the com
pressed video. If no custom matrix is defined, a default quantization matrix is used. 

3.3.4 Entropy coding 

In order to further increase the compression, variabie length coding is used. A Huffman like table 
for the oer coefficients is used to code events corresponding to a pair {Run, Length}. 

The Run Length Codes are used to eneode the large number of zeroes occurring in the OCT coeffi
cients. This large number ofzeroes can be expected as a direct result ofthe oer combined with the 
quantization. In order to group the occurring zeroes of the quantized coefficient matrix the coeffi
cients are ordered using the zig zag scan The zig zag scan orders the coefficients in deseending or
der of frequency, since most of the zeroes occur in the larger frequencies components. In figure 3.8. 
an example is given of {Run, Length} encoding. 

Only those {Run, Length} codes with a high probability of occurrence are coded with a Variabie 
Length Code. The events with the highest probability are encoded with the shortest codewords. The 
less likely events are coded with an escape symbol foliowed by a fixed length code, so as to avoid 
extremely long codewords. 
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Transfarm Coefficients => {Run , length} symbols 

Figure 3.8 Example of Run Length encoding 

3.3.5 Layered structures; Syntax and bitstream 

The MPEG-2 syntax specifies a hierarchical structure, starting with a Transport Stteam (TS) consist

ing of packets of 188 bytes each. These packets contain a 4 byte header, and 184 byte payload. The 

payload contains sections with data, or partsof a Packetized Elementary Stream (PES). Each type of 

data (audio, video, teletext, etc.) is represented withits own Packet IDentification (PID). This way 

several MPEG bitstteams from different television programmes and their associated audio can be 

multiplexed into one Transport Stteam. In case of an MPEG-2 video bitstream the data in the Pack

etized Elementary Stream contains a Video Sequence. 

Transport Stream 

Packetized Elementary 
Stream 

Video Sequence 

/ 

/ --~ -
Figure 3.9 MPEG-2 hierarchical structure 

The syntax of an MPEG-2 video bitstteam contains six layers. Each layer supports a definite func

tion: either a signa! processing function (DCf, Motion Compensation) or a logica! function (Resyn

chronization, random access point). The following six layers can be distinguished: 

• Sequence layer (Random access unit: Context) 

• Group of pictures layer (Random access unit: Video coding) 

• Picture layer (Primary coding unit) 

• Slice layer (Resynchronization unit) 

• Macroblock layer (Motion compensation unit) 

• Block layer (DCT unit) 
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The contents of the various layers is visualised and depicted in tigure 3.10. The highest syntactical 
structure of the coded video bitstream is the video sequence. A video sequence starts with a se
quence header foliowed by a group of pictures header and by one or more coded frames. The order 
of the coded frames in the coded bitstream is the order in which the decoder processes them but not 
necessarily the order in which they are displayed. The video sequence is terminated by a 
sequence_end_code. 

Each layer starts with a header which contains the necessary additional information for the decading 
process at that level. Foliowed by the data of the lower levels. The sequence he ader contains for ex
ample the aspect_ratio _information and can contain custom quantization matrices. The Group of 
Picture header comains a time_code to provide random access. A picture or frame consists of slices 
which are basically a series of macroblocks. The motion veetors are needed for the reconstruction of 
the single macroblocks and therefore are contained in the macroblock header. 

Group of Picture 
(GOP) 

Picture (Frame) 

Slice 

MacroBlock 

Block 
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• • • 

D D 
U V 

8 pixels x 8 pixels 

Figure 3.10 MPEG-2 video data hierarchy 
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Each macroblock contains 4 luminanee blocks. Depending on the macroblock structure a macro
block can contain 2, 4 or 8 cbrominanee blocks (see tigure 3.11). At Main Profile at Main Level 
macroblock format 4:2:0 is used. 

y U V y U V y u V 

Format 4:2:0 Format 4:2:2 Format 4:4:4 

Figure 3.11 Macroblock structures; formats 4:2:0, 4:2:2 and 4:4:4 

MPEG-2 can deal with coding ofboth progressive and interlaced sequences. For interlaced sequenc
es the output of the decoder consists of two fields, which are displayed separated by a field period. 
The two fieldsof a frame may be coded separately (field pictures) or altematively the two fields may 
be coded together as a frame (frame picture). In frame pictures, macroblocks can be either frame or 
field DCT coded. In case of frame DCT coding the macroblock is composed of lines from the two 
field are altemately ( tigure 3.12a). In case of field DCT coding each block shall be composed from 
lines from only one of the two fields (figure 3.12b). In field pictures the macroblock only contains 
lines form one field. In this case the macroblock always are field DCT coded. 

r-
~ 

~ 
I"""" 

I"""" 

1--

r-

1--
~ 

r- -
(a) frame DCT coding 

(b) field DCT coding 

Figure 3.12 Luminanee macroblock structure 

Philips Semiconductors I Technical University Eindhoven 45 



Chapter 3: MPEG-2 

3.4 Decoding process 

The MPEG-2 standard defines the decoding process, nota decoder. There are many ways to impie

ment a decoder. The decoder structure of tigure 3.13 is a typical decoder structure with a buffer at 

the input ofthe decoder. The minimum buffer size necessary to decode the bitstreamof a eertaio lev

eland profile is specified in the MPEG-2 specification. 

Coded 
Data Buffer 

I 
QFS[n] QF[v][u] 

I 
/ :...... 

Variabie 
~ Inverse ~&=~) Length Scan 

f-1----
Decoding store 

Memory 

! 
Inverse 

Inverse 
Motion 

Quanti- ~ oer \ 
Compen-

\ sarion sarion 

\ I \ 
F[v][u] fly][x] d[y][x] 

Figure 3.13 Simplified video decoding process 

Decoded 
samples 

First the bitstream is demultipiexed into overhead information such as motion information, quantiz
er step size, macrobiock type and coded DCf coefficients. The coded DCf coefficients are decoded 

by the Variabie Length Decoding process which includes the Run-Length Decoding. After reorder
ing by the Inverse Scan the quantized DCT coefficients are dequantized and input to the Inverse Co

sine Transform (IDCT). The reconstructed blocks from the IDCf is added to the result of the 

prediction from the reference pictures. 

Since the Inverse Scan, the Inverse Quantization and the Inverse Discrete Cosine Transform are 
used as the design objective in this report, the algorithms defining these processes are discussed be

low. 

Inverse Scan 

The Inverse Scan converts the output of the Variabie Length decoder, i.e. one-dimensional data 

QFS[n] with n in the range 0 to 63, into a two dimensional array of coefficients denoted by QF[v][u] 

(3.1). 

for (v=O; v<8; v++) 
for (u=O; u<8; u++) 

QF[v][u] = QFS[scan[aitemate_scan][v][u]] (3.1) 

Two scan pattems are defined. The scan that shall be used is determined by altemate_scan which is 

encoded in the picture header. Figure 3.14 defines scan[altemate_scan][v][u]. 
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Figure 3.14 Definition of scan[alternate_scan][u][v] 

Inverse Quantization 

The two-dimensional array of coefficients, QF[v][u], is inverse quantized to produce the recon

structed Der coefficients. This process is essentially a multiplication by the Quantizer step size. 

The Quantizer step size is defined in two ways: a weighting matrix is used to modify the step size 

within a block and a scale factor is used to scale the complete block. 

QF[v][u] F"[v][u] F'[v][u] F[v ][u] 
I I I I 
I Inverse 

I Mismatch I Quantisation Saturation Control Arithmetic 

W[w][v ][u] 

quant_scale_code 

Figure 3.15 Inverse Quantization process 

The DC coefficients of intra coded blocks shall be inverse quantized in a different manner to all oth

er coefficients. In intra blocks F"[O][O] shall be obtained by multiplying QF[O][O] by a constant 

multiplier intra de muit which is specified in the bitstream (3.2). 

F"[O][O] = intra_dc_mult x QF[O][O] (3.2) 
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All coefficients other than the DC coefficient of an intra block shall be inverse quantized using the 
following reconstruction fonnula. 

F"[v][u]= ((2 x QF[v][u] + k) x W[w][v][u] x quantiser _scale)/32 {3.3) 

where: 

k = { 0 
Sign (QF [v] [u]) 

intra blocks 

non-intra blocks 

When 4:2:0 data is used two weighting matrices are used. One is used for intra blocks, W[O][v][u], 
the other is used fornon-intra blocks, W[l][v][u]. When macroblock fonnat4:2:2 and 4:4:4 is used, 
two additional weighting matrices are used for cbrominanee blocks. 

After inverse quantization of the resulting coefficients F" [u] [ v] are saturated to lie in the range 
[ -2048, +2047]. Furthennore mismatch control checks if the sum of all coefficients F'[u][v] is even 
and if not, a correction shall be made to coefficient F[7] [7] which comes down to increasing or de
creasing F[7][7] by one. 

Inverse Discrete Cosine Transform 

Once the DCT coefficients, F[v][u], are reconstructed, the inverse DCT transfonn defined in the for
mula below is applied to obtain the inverse transfonned values, f[y][x]. 

N-1 N-1 

f[x] [y] = & L LC(u)C(v)F[u] [v]cos<2x;~)mtcos< 2Y;~)vn (3.4) 

u=Ov=O 

with u,v,x,y = 0,1,2, ... N-1 

where x,y are coordinates in the sample domain 
u, v are coordinates in the transfonn domain 

{ 

1 
- foru,v =0 

C(u),C(v) = ,fi 
I otherwise 

The resulting values must be saturated so that: -256:::; f [y] [x] :::; 255, for all x, y. The N by N in
verse discrete transfonn shall confonn to ITU-T Recommendation H.261 [15]. 
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Chapter 4 

Video Decoder Architecture Study 

This chapter focuses on the architecture of the MPEG-2 video decoder. The design objectives are 
given. Three architecture proposals are given and discussed to reduce the memory requirements re
sulting in a cheaper implementation of the video decoder. Forthermore the implications for the In
verse Qantisation, the Inverse Scan and the Inverse Discrete eosine Transform are discussed. 

4.1 Requirements 

The design objective is an MPEG-2 video decoder conform the specifications of the MPEG-2 stand
ard. Apart from correct functionality, the design must meet the following requirements: 

• clock rate = 27 MHz 

• Full macroblock decoding has to be supported for Main Profile at Main Level MPEG-2 

The clock rate of 27 MHz is derived from 13.5 MHz which is a common clock rate in video applica
tions. The clock rate of 13.5 MHz originates from the pixel rate in PAL and NTSC video (4.1) and is 
used in MPEG as well. Due to the high throughput of parts of the MPEG-2 video decoder a clock 
rate of 27 MHz is chosen which is twice as high. 

Video pixel rate: 

full PAL resolution x frames I sec (864 x 625) x 50 = 13.5 MHz 

full NTCS resolution x frames I sec = (858 x 525) x 60 = 13.5 MHz (4.1) 

At Main Leveland Main profile MPEG-2 a frame consistsof 1620 Macroblocks and the macroblock 
cbrominanee format 4:2:0 is used, thus each Macroblock consistsof 6 blocks. With a clock rate of 
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27 MHz the number of clock cycle per macroblockis 666 and the number of clock cycles per block 

is 111 ( 4.2). 

clock rate = 27 MHz, 25 frames per second 

clock cycles per frame = clock rate I frames per second 

= 27 .ooo.ooo I 25 = 1.080.000 

Using line blanking and field blanking: 

clock cycles per Macroblock = clock cycles per frame I Macroblocks per frame 

1.080.000 I 1620 = 666 

clock cycles per block = clock cycles per Macroblock I blocks per Macroblock 

= 666 I 6 = 111 (4.2) 

4.2 Conventional video decoder architecture 

The conventional approach for MPEG-2 decoding is depicted in figure 4.1. According to the 

MPEG-2 specification, which assumes instantanteous decoding, an input buffer of 1.8 Mbit is need

ed. In practical decoders at least 2.7 Mbit. Furthermore two frame buffers are needed for motion 

compensation which require 5 Mbit each (4.3). At the end of the decoder a display buffer is needed 

which requires also 5 Mbit to buffer an entire frame. 

MPEG 
input 

Frame buffer size: 

Macroblocks per frame x blocks per Macroblock x pixels per block x bits per pixel = 

1620 x 6 x 64 x 8 = 5 Mbit 

5 Mbit 

5 Mbit 

(4.3) 

Motion YUV 
1---~Compen-1--'-•t.':isplii·J·I ~~ Up- 1--.~ 4:2:2 VLD 

sation BUffer sampling Output 

2.7 Mbit 5 Mbit 

Figure 4.1 Memory requirements in a conventional MPEG-2 video decoder. 

In total the required memory is about 17.7 Mbit (3 x 5 + 2.7), whichjust exceeds the limit of 16 
Mbit imposed by the size of available memory elements. 
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Using a Philips patent the required memory can be reduced to about 16.2 Mbit. This is realised by 
re-using the memory locations used by a line, immediately after this line bas been sent to the dis
play. This metbod requires only a more complex control of the display buffer. 

4.3 Reduced memory video decoder architecture 

The display buffer is used to store a frame and bridge the time between decoding and displaying the 
fieldsof a frame. It is possible to reduce this display buffer by applying a more complex control of 
the display buffer. In this section a new approach is presented which makes the display buffer redun
dant. The only fields that need to be stored in the display buffer are B-fields since the I-frames and 
P-frames are already stored in the reference buffers. If both B-fields cou1d be decoded separately the 
display buffer cou1d be omitted. This can be realised in the following way: 

1. decode the data from input buffer 

2. use the odd field for display and discard the even field 

3. decode the data from the input buffer again 

4. use the even field for display and discard the odd field 

This approach is often refered to as B-on-the-fly. It implies however that the data needs to be kept in 
the input buffer one field period longer, which requires a larger input buffer. With a bitrate of 
15Mbit/sec at the input of the input buffer of the video decoder, the buffer must be increased by 
about 300kbit (15Mbit/sec * 20 msec). 

When decoded blocks are displayed on-the-fty it is not desirabie tostart decodingin the field blank
ing. because this introduces large additional buffering requirements. When the field blanking is not 
used and only the line blanking is used the number of clock cycles available per macroblockis 614 
and the number of clock cycles perblockis 102 (4.4). 

Using only line blank:ing, no field blanking: 

clock cycles per Macroblock = clock cycles per frame I Macroblocks per frame 

= 1.080.000 x (5761625) 11620 = 614 

clock cycles per block = clock cycles per Macroblock I blocks per Macroblock 

= 61416=102 (4.4) 

The decoder hardware of this new architecture must have the double throughput, since the data from 
the input buffer must be processed twice. With a clock rate of 27 MHz the number of clock cycles to 
process a blockof 64 coefficients is only 55 (4.5). When the field blanking is not used to prevent ad
ditional buffering the number of clock cycles is only 51 (4.6). 

U sing line blank:ing and field blank:ing, clock ra te = 27 MHz: 

clock cycles per block 

= 111 clock cyc1es 12 = 55 
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U sing only line blanking, no field blanking, clock rate = 27 MHz: 

clock cycles per (half) block 

= 102 clock cycles I 2 = 51 (4.6) 

One way to realise this throughput is by increasing the doek rate. A second and higher doek rate in 

the system in not desirable. An alternative is pipelining the decoder or double part of the hardware 

to process data in parallel. Though this could be very expensive in tenns of chip area, it is possible 

for the IDCf, the IS and the IQ. Unfortunately this solution cannot be applied to the VLD. The VLD 

doesn't know in advance how many bits are to be taken from the input stream each clock cyde, 

since the encoded data has a variabie length. Only after decoding it knows how many bits may be 

ftushed. If the VLD would knowin advance where the next data starts or the next macroblock, two 

VLDs could be used in parallel. This information can be obtained by using a single speed VLD to 

preparse the data and store the Macroblock header and the length of the encoded macroblock. In the 

second stage two VLDs in parallel could be used to increase the throughput. The architecture for 

this reduced memory video decoder is depicted in tigure 4.2. 

input 

1.8 Mbit+ 
ca0.3 Mbit 

ca 0.3 Mbit 

5Mbit 

5Mbit 

Figure 4.2 Architecture for the reduced memory MPEG-2 video decoder. 

YUV 
4:2:2 
Output 

The second stage VLD and the IS, IQ and IDCf must process the data at real time to prevent addi

tional buffering. The impHeation for the second stage VLD is that it must be of a fixed output rate 
type. Since the header infonnation takes only about 200 bits per macroblock this infonnation can be 

stored in a small buffer of about 0.3 Mbit (1620 x 200 bits). This way the first stage VLD can be of 

a fixed input rate type which can be implemented by a small and efficient finite state machine. 

After the first stage VLD in this two stage VLD architecture it is know which parts of the data con

tains header infonnation and which parts contain coefficient data. Now it is possible to send that part 

of the data containing the coefficients to the second stage VLD. Note that the data from the input 

buffer must be read twice since this each block is processed twice, which implied an increase of the 

input buffer by 300 kbit. 
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4.4 Low cost video decoder architecture 

The previous section described a two stage decoding architecture that requires extra decoding hard
ware, but less memory than conventional architectures. The second stage VLD needs to process 
31.104.000 coefficients per second (4.7). If one fixed output rate VLD would be used it would a 
clock rate of32 MHz. 

coefficients per frame = 

2 x 1620 Macroblocks x 6 blocks x 64 coefficients = 1.244.160 

coefficients per second = 

25 frames per second x 1.244.160 coefficients = 31.104.000 (4.7) 

Introducing a second clock in the system is not desired, and the alternative of using two parallel 
VLDs is very expensive. Another solution is to look at the average case. The double speed decoding 
was only required for B-frames since I- and P-frames were stored in the reference frame buffers an
yway. In general B-frames contain much less data than I- and P-frames. The relation between the 
number of bits in B-frames and the number of bits in 1- and P-frames is expected to lie in the range: 

B:P:I = 1:2:4 ... 1:3:9 

The blocks are encoded in the frequency domain and ordered according to the so called zig zag scan 
which implies that the highest frequency components are positioned at the end of the blocks. The 
coefficients containing the highest frequency components are less significant than the lower fre
quency components and the DC component since they represent the detail information. 

At a clock rate of 27 MHz, the average number of bits available to process a block of 64 coefficients 
was 51 clock cycles when field blanking is not used (4.5). What could be doneis the following: 

1. use one second stage VLD running at 27 MHz 

2. decode 51 coefficients of each block 

3. skipthelast 13 coefficients, which if present contain the detail information 

lt is very unlikely that all coefficients of blocks from B-frames are encoded en present in the block. 
If present the loss of quality by discarting the last coefficients is small since these coefficients con
tain only detail information. It is possible toskip the last few coefficients because it is known where 
the next block starts, thanks to the preparser. Even in worst case situation, the B-frames can be proc
essed and displayed on-the-fty as well, albeit with some lossof quality. In general this lossof quality 
is unlikely and will be small. In case of I- and P-frames all coefficients can be decoded like in the 
conventional architecture sincethe decoding result is not directly required for display or as refer
ence. 

4.5 Overview 

Three different architectures have been described in this chapter. Each architectures puts constraints 
on the VLD and the IDCf, IQ and IS. 
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1. Conventional video decoder architecture: 

• The display buffer must store two fields per frame which requires 5 Mbit. 

• 1620 Macroblocks per frame must be processed. 

• At a clock rate of 27 MHz, the VLD and the IQ, IS and IDCT require a throughput of 
one block every 102 clock cycles. 

• VLD must be of fixed output rate type, to prevent buffering between the VLD and 
the IQ, IS and IDCT 

2. Reduced memory video decoder architecture 

• I- and P-pictures are treated conventially. Both fieldsof B-pictures are processed at real 
time and displayed on-the-fly. The display buffer is not required, the input buffer must 
be enlarged to retain the input data one field-period langer. 

• Each macroblock from B-pictures is processed twice, once the lines from the even field 

is used the next time the lines from the odd field. 

• At a clock rate of 27 MHz, the VLD and the IQ, IS and IDCT require a throughput of 

one block every 51 clock cycles. 

• Either a VLD running at 32 MHz is required or when using a clock rate of 27 MHz a 

two stage VLD is required. 
The first stage VLD is used to preparse the input and decode the header information 

and the block lengths. Th is VLD can be of the fixed input ra te type which can be imple
menled very efficiently. 

The second stage VLD requires a clock rate of 32 MHz or could consist of two paral
lel VLDs. The second stage VLD requires a fixed output rate to prevent buffering be

tween the VLD and the IQ, IS and IDCT. 

• A small buffer is required to store the header information and the block lengths. 

3. Low cost video decoder architecture: 

• Also requires the two stage VLD. 
Now the second stage consists of one VLD running at 27 MHz. By skipping the least 
significant coefficients in case of B-frames, the throughput is met at the costof a small 
loss in quality. 

• At a clock rate of 27 MHz, the VLD and the IQ, IS and IDCT require a throughput of 
one block per 51 clock cycles. 

The following chapters of this report focus on the implementation of the IQ, IS and the IDCT. In the 
next chapter the DCT is discussed. Foliowed by an architecture study and implementation ofthe IQ, 

IS and the IDCT. Both for the conventional video decoder architecture and the low cost video de
coder architecture. The implementation of the VLD for the conventional architecture and the two 

stage VLD for the low cost architecture will not be discussed further in this report. A more detailed 
study of this part of the video decoder can be found in "MPEG-2 as a test case for the high-level 
synthesis tooi Mistral2" by E.J. van Dalen [3]. 
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Chapter 5 

Discrete Cosine Transform 

In this chapter a short introduetion on transfonn coding is given, in the next section the definition of 
the one-dimensional and the two-dimensional Discrete eosine Transfonn (DCf) is given and dis
cussed. In the following sections the computation of the DCf is discussed and fast algorithms are 
given to decrease the computation complexity. Finally these algorithms are evaluated and compared 
with respect to implementation on silicon. 

5.1 Transform coding 

In the last years, transfonn coding has become one of the most attractive systems for data compres
sion in storage applications and transmission. In spatial transform coding, the input signa! is seg
mented into small blocks of, mostly 8x8 or 16x16 samples. The transform attempts to remove 
spatial correlation by converting the block to components which are more or less uncorrelated. By 
applying the inverse transfonn the original block can be retrieved, apart fonn changes due to finite 
precision calculation. The utility of transfonnations in image data compression is based on the par
ticular ability of the transfonn to reduce the image energy of the samples by removing the statistica! 
dependency of the data and concentrate most of the energy into fewer samples. Many algorithms 
have been designed using transform techniques to compress infonnation. However a major step in 
data reduction is generally obtained by also applying block quantization, by means of the suppres
sion of irrelevant signa! components. 

Numerous transfonns have been proposed for transform coding, such as the Walsh-Hadamar trans
form (WHT). the discrete Fourier transfonn (DFT), the Haar transfonn (HT). the Slant transform 
(Sn and the Discrete eosine Transfonn (DCf). The perfonnance of these transforms is generally 
compared with that of the Karhunen-Loève transfonn (KLn which is known to be theoretically op-
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timal for tirst-order Markov stationary random data with respect to the following performance meas
ures: varianee distribution, estimation using the mean-square error criterion, and the rate-distortion 
function [26]. Although the KLT is optimal, there is nogeneral algorithm that enables its fast com
putation. Ahmed [26] showed that the performance of the DCT compares more closely to the KLT 
relative to the performances of the DFf, WHT and the HT. 

5.2 Discrete Cosine Transform 

The Discrete eosine Transform (DCT) was first introduced in 1974 by Ahmed et al [25]. Primarily 
applied to real data values, this transform has found wide applications in speech and image process
ing, data compression, filtering, and other fields. 

The one-dimensional DCT (1-D DCT) is carried out on a vector of N samples and is defined as: 

N-1 
~ (2x+ 1)mt 

F(u) = KnCT · C(u) L}(x) cos 2N (5.1) 

x=O 

with U,X = 0,1,2, ... N-1 

1 

1 
- foru,v=O 

C(u),C(v)= Ji 
1 otherwise 

The one-dimensional Inverse DCT (1-D IDCT) is defined as: 

N-1 
~ (2x + 1) mt 

f (x) = KmcT L" C (u) F (u) cos 
2

N (5.2) 

u=O 

In order to prohibit amplitude sealing, the constants KoeTand KmcT must satisfy equation (5.3). In 

the MPEG-2 standard [12] these constants are chosen to be KncT = KmcT = ../21N. 

(5.3) 

The 2-D DCT is carried out on an array ofNxN input samples. The result ofthe transformation is an 
array of NxN coefficients representing the frequency contents of the given block. The DCT coeffi
cient value intheupper left corner of the 2-D array represents the energy of the zero-frequency or 
direct current (de) term. (For example, if the original image has a constant value, then only the de 
term in the transformed domain is nonzero.) The other coefficients are nonzero-frequency coeffi
cients. They correspond to the signal terms with increasing horizontal frequency from left to right 
and for terms with increasing vertical frequency from top to bottom. 

The NxN two-dimensional DCT (2-D DCT) conform the MPEG-2 standard is defined as: 

N-1 N-1 

F(u,v) = ~C(u)C(v) L Lf(x,y)cos( 2x;~)mtcos(2x;~)v1t (5.4) 
x=Oy=O 
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with u,v,x,y = 0,1,2, ... N-l 

where x,y are coordinates in the sample domain 
u,v are coordinates in the transform domain 

{ 

1 
- foru,v=O 

C (u), C (v) = Jï 
1 otherwise 

The two dimensional inverse DCT (2-D IDCT) is defined as: 

N-1 N-1 

f(x,y) = ~ ~ ~C( )C( )F( ) (2x+1)U1t (2y+1)v1t 
N LJ LJ u V u, V cos 2N cos 2N 

u=Ov=O 

5.3 DCT computation 

(5.5) 

Let us now have a close look at the definition of the IDCT (5.2). This equation can be represented by 
a matrix multiplication of an NxN matrix containing constant coefficients times a vector F of length 
N. With N=8 this results in the following equation: 

f (0) koo kOl koz koo k04 kos k06 k07 F (0) 

f ( 1) kw ku k12 kl3 kl4 klS kl6 kl7 F ( 1) 

f(2) k20 k21 ~2 k23 k24 k25 k26 k27 F (2) 

f(3) k30 k31 k32 k33 k34 k3S k36 k37 F (3) 
(5.6) = 

f(4) k40 k41 k42 k43 k44 k4S k46 k47 F (4) 

f(5) kso ksl ks2 ks3 ks4 kss ks6 ks7 F (5) 

f (6) k60 k61 k62 k63 k64 k6S k66 k67 F (6) 

f(7) k70 ~1 ~2 k73 k74 k7S k76 k77 F (7) 

With· k = C (u) (2x + 1) u1t 
• ux 2 cos 16 

After rewriting the coefficients of this matrix multiplication we obtain the matrix of equation (5.7). 
To compute the 8 point 1-D IDCT defined in (5.2), the input DCT vector has to be multiplicated by 
the matrix shown below. 

f (0) c4 cl c2 c3 c4 Cs c6 c7 F (0) 

f (1) c4 c3 c6 -c7 -c4 -cl -c2 -cs F ( 1) 

f (2) c4 Cs -c6 -cl -c4 c7 c2 c3 F(2) 

f(3) 1 c4 c7 -c2 -es c4 c3 -c6 -cl F(3) 
=-. 

f(4) 2 c4 -c7 -c2 Cs c4 -c3 -c6 cl F(4) 
(5.7) 

f(5) c4 -Cs -c6 cl -c4 -c7 C2 -c3 F(5) 

f(6) c4 -c3 c6 c7 -c4 cl -c2 Cs F(6) 

f(7) c4 -cl C2 -c3 c4 -Cs c6 -c7 F(7) 
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This result can also be written as follows represented by f = l/2 · [C] · F. In other tenns a vector f 
can be transformed by applying the matrix 1/2 · [C] . The inverse transfonn can be perfonned by 
applying the inverse matrix 1/2 · [C] -I. Since the discrete eosine transfonn has a real nonsingular 
transfonn matrix, the transform matrix is orthogonal, its inverse is easily obtained as its transpose! 
The DCT is a so called orthogonal transform. The inverse transform can therefore be perfonned by 
applying the transposed matrix, F = 112 · [C] T · f. 

In terros of computation complexity, this comes down to a matrix multiplication of an NxN matrix. 
Since the computation complexity of a multiplication is much larger than the computation complex
ity of an addition, the complexity of DCT algorithms is often measured in number of multiplications 
needed. The number of multiplications needed to compute an N-points one-dimensional DCT is N2 

multiplications. 

5.4 Twowdimensional DCT by reduction to one-dimensional DCT 

According to the definition of the two-dimensional DCT (5.4), the number of multiplications needed 
to compute an NxN two-dimensional DCT straightforwardly is N4 multiplications (N2 picture ele
ments times N2 multiplications per element). 

Instead of a direct computation, the 2-D DCT can also be obtained by decomposing the transfonn 
into a series of one dimensional DCTs, in horizontal direction and in vertical direction. This proper
ty is valid for any separable transform such as DCT, WHT, DFr, ST, HT, etc. Using this property an 
(NxN) point 2-D DCT can be implemented by applying first a 1-D DCT on each row foliowed by a 
1-D DCT on each column ofthe input data matrix orvisa versa, as illustrated in figure 5.1. Hence an 
NxN 2-D DCT is equivalent to 2xN 1-D DCTs. This way the number of multiplications necessary to 
compute a 2D-DCT can be reduced by a factor N{2, which leads to 2N3 multiplications! 

Another advantage of this property is the use of the one-dimensional DCT itself. Since the one-di
mensional DCT is studied intensity, many fast algorithms are know to compute a one-dimensional 
DCT with reduced computation complexity. 
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f(x,y) 

•
.. 

___. _..., 

!!!!!!!l 

F(u,v) 

1-DDCT 

2-DDCT 

Figure 5.1 Computation of a two dimensional DCT using 2xN one-dimensional DCTs 

5.5 Fast DCT algorithms 

Due to the computation intensity of the DCT many fast computational algorithms are developed 
which reduce the complexity of the DCT algorithm by reducing the number of multiplications re

quired. The development of efficient algorithms for the computation of DCT began soon after 

Ahmed [25]. Initial attempts focused on the computation ofthe DCT by using the fast Fourier trans

form (FFT) algorithms, due to its relation to the discrete Fourier transform (DFT) [27]. Fast algo

rithms can also be obtained by considering the factorization of the DCT matrix. When the 

components of this factorization are sparse, the decomposition represents a fast algorithm. Since 
matrix factorization is not unique there exist a lot of fast algorithms [28][29][30]. Other algorithms 

can be obtained through the computation of other discrete transforms, or through recursive compu
tation [31 ]. 

As mentioned before the DCT is a orthogonal transform, the inverse transform is performed by ap

plying the transposed matrix. Therefore if a fast algorithm for the DCT is known, also a fast algo

rithm for the IDCT with the same computation complexity is known. Since an MPEG decoder 

contains an 8 points IDCT, the following sections concentrale on fast algorithms for a 8 points ID

CT. 

A DCT algorithm can be represented by matrices and matrix-multiplication. Another way common 

way to represent a DCT algorithm is by means of a so called data flow graph. In the next section the 

notation and symbols used in these data flow graphs is illustrated. In the following sections five al

gorithms are discussed. First a simple well known algorithm (Butterfly) is discussed to illustrate 
possible simplification in the algorithm. Next an algorithm is discussed with minimal number of 

multiplications, and a varlation of this algorithm with parallel multiplications and unfortunately an 
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additional multiplication. In the last section these algorithms are compared regarding computation 
complexity and suitability for implementation with Phideo. 

5.5.1 Graphical representation of an algorithm 

Another way of representing an algorithm insteadof a matrix-multiplication is by means of a data 
flow graph. The purpose of this section is not to define a formal way of representing an algorithm 
but is meant to define some symbols and notations to explain and simplify the graphical representa
tion used in the following sections. 

Figure 5.2 depiets the symbols together with their arithmetical meaning. The edges represem data 
signals, the nodes represent operations. There are three different operations, an addition/substraction 
which is represented by a dot (a), a tixed-coefticient-multiplication which is represented by a circle 
containing the coefficient (b), and a rotation which itself contains a number of operation (c). When
ever the edge which is connected to an operation is dotted, the negated data value must be used (i.e. 
an actdition becomes a substraction). 

Operation: Symbol: Equation: 

substraction ::x:: a) addition/ 

b) multiplication Io-@- Oo 

c) rotation 

mt . (N -n) 1t 
with: C0 = cos

2
N = sm lN and N = 8 

Figure 5.2 Symbols used to represent the algorithm structures 

The rotation of tigure 5.2 can be computed using 4 multiplications and 2 additions (see tigure 5.3a). 
Another way to compute the rotation is shown in tigure 5.3b, this way only 3 multiplications and 3 
additions are needed to compute the rotation. 
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[~~ = [ e, -eN-]. [I~ [~J = [-(eN-;+ e,) en 

eN_:_J l]O~ ]1 eN-n en 11 en 

Io Oo Io Oo 
ml = -(eN-n +en) 

m2 = en 

01 01 
m3 = eN-n -en 

11 11 

(a) (b) 

Figure 5.3 Rotation with 4 multiplications (2 different coefficients) and 2 additions (a), 

resp. 3 multiplications (3 different coefficients) and 3 additions (b). 

A convenient characteristic resulting from the orthogonality property of the discrete eosine trans

form is the following. The inverse transform can be graphically determined using the data flow 

graph representation of the transfonn. 'Reading' the data flow graph in opposite direction (from 

right-to-left instead ofleft-to-right) leads totheinverse transform. At each point where a data signal 

is split in two, a addition/substraction is added. Each existing addition/substraction bas to removed 
and mustbeseen as a split of the data signal. The fixed-coefficient-multiplications and the rotation 

remaio the same with equal coefficients and parameters. 

5.5.2 Butterfly 

The straightforward implementation of a 8-point IDCT needs N2=64 multiplications. Looking more 

closely to equation (5.7) a lot of symmetry can be found, which can be used to reduce the number of 

multiplications to compute the algorithm. In figure 5.4 the so called butterfly algorithm is shown 

which exploits these symmetries. In the graphical representation these symmetry result in so called 

butterfly structures. In equation (5.8) the sparse matrix factorization is given, which matches the 

butterfly algorithm. The reduction Note the additional factor 0.5, which can be implemented by a 

simple shift operation or by sealing the coefficients. 

The resulting algorithm comains only 22 multiplications and 28 additions. The multiplications of 

the odd part of the algorithm consists of four rotations. Using the implementation of figure 5.3b on 

61 for the rotations, only 17 multiplications and 33 additions are needed. 
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Stage 1 Stage 2 Stage 3 Stage 4 

Figure 5.4 8-point fast IDCT butterfly a1gorithm 

F(O) c4 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 f(O) 
F(4) c4 

1 -1 -1 1 1 -1 -1 1 f ( 1) 
F(2) 0 0 c6 Cz 0 0 0 0 

0 1 -1 0 0 -1 1 0 f(2) 
F(6) 1 0 0 -cz c6 0 0 0 0 1 0 0 -1 -1 0 0 1 f(3) = (5.8) 
F(l) 2 0 0 0 0 c7 Cs c3 cl 0 0 0 1 -1 0 0 0 f(4) 
F(3) 0 0 0 0 -<:s -cl -c7 c3 0 0 1 0 0 -1 0 0 f (5) 

F(S) 0 0 0 0 c3 c7 --<:1 Cs 0 1 0 0 0 0 -1 0 f(6) 

F(7) 0 0 0 0 -cl c3 -<:s 
0 0 0 0 0 0 -1 f(7) 

c7 

5.5.3 Loeffier 

Loeffler[32] presentedan algorithm to compute the discrete eosine transform with only 11 multipli-
cations and 29 additions/substractions. Loeffier referred to publications which showed that this 
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number of multiplications is the theoreticallower bound for a 8-point oer. The algorithm exploits 
among others the freedom to choose the constants Koerand Kmcr in the definition of the oer 
(5.1)(5.2). In Loeffler's algorithm both constants are defined as follows: Koer= Kmcr = 112Jï. 

After forward and inverse transformation the original signal times 8 is obtained. The remaining fac
tor 8 can be easily implemented by right-shifting the transformed signal. Since MPEG-2 defines the 
constants (5.3) different, this algorithm seems unusable. Howeverusing this 1-dimensional inverse 
transfarm in both horizontal and vertical to imptement the 2-dimensional transfarm the original sig
nal times 8 (= (l/2,fï) 

2
) is obtained. After right-shifting the result the original signalis retrieved! 

Stage 1 Stage 2 Stage 3 Stage4 

Figure 5.5 8-point 10-IDCT with 11 multiplications and 29 additions, 
for symbols see tigure 5.2 

A withdraw of this algorithm is the length of the critical path in this algorithm which contains two 
multiplications instead of one. Therefore a varlation on this algorithm is given in the next section 
with parallel multiplications. 
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1 0 0 0 0 0 0 0 
F (0) 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 f (0) 
F (4) 0 0 Jic6 Jicz 0 0 0 0 1 -1 -1 1 1 -1 -1 1 f ( 1) 
F(2) 

-Jicz Jic6 
0 1 -1 0 0 -1 1 0 f (2) 

F(6) 1 0 0 0 0 0 0 
1 0 0 -1 -1 0 0 1 f (3) =-

F (7) 2Ji 0 0 0 0 - c3- Cs cl+ c7 cl- c7 c3 -es 0 0 0 1 -1 0 0 0 f (4) 
F (3) 0 0 0 0 -Jics -Jicl -Jic? ./2c3 0 0 1 0 0 -1 0 0 f (5) 
F(S) 

0 0 0 0 Jic3 Jic? -Jicl ./Ïcs 0 1 0 0 0 0 -1 0 f (6) 
F ( 1) 1 0 0 0 0 0 0 -1 f (7) 

0 0 0 0 c3 -es c7 -cl cl+ c7 c3 +Cs 

(5.9) 

5.5.4 Loeffier with parallel multiplications 

The critical path in Loefter's algorithm contained two multiplications. In this section an algorithm is 

presented which critical path contains only one multiplication. The algorithm uses a different imple-

mentation for the first three stages in the odd part of the former algorithm, which is depicted in 

tigure 5.6. The price for having at most one multiplication per path is, one additional multiplication 

and 3 additions. 

64 

F(7) 

F(3) --+--~-+------1 

F(5) 

F(l) 

with: 

a= (-c1 +c3+cs-c7)Ji 

b = ( c1 + c3- Cs+ c7) Ji 
c = ( c1 + c3 +Cs- c7) Ji 
d = ( c1 +C3-Cs-C7)Ji 
e = (- c3 + c7 ) Ji 

f = (-c1 -c3).[i 
g = (-c3-cs)Ji 
h = (- c3 + es) Ji 
i = c3Ji 

f'(4) 

f'(5) 

>+-- f'(6) 

f'(7) 

07t 
and: C

0 
= cos 

16 

Figure 5.6 variation of stage 1 to 3 of the odd part with parallel multiplications 
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5.6 lmplementation 

In this chapter a few algorithms to compute the DCT/IDCT have been discussed. It can beseen that 
the number of operations needed to compute the transfonn can be reduced by using a fast algorithm. 
This reduction is an important optimization step in the implementation of an algorithm. Usually 
High-Level synthesis tools start with a fixed algorithm and don't optimize the algorithm. The 
number of operations the length of the critical path and the signal width are therefore predefined and 
must be optimized before High-Level synthesis. An additional profit of the reduction in number of 
operations is the reduction in power dissipation. 

In table 5.1 the algorithms and their characteristics are summarized. Loeftier's algorithm needs the 
smallest number of operation and seems to be the best candidate for implementation with the High
Level Synthesis tooi Phideo. If the length of the critical path would appear to be a bottleneck, the 
variant with parallel multiplications can be used. In the table also the number of different coeffi
cients of the multiplications is listed. If fixed-coefficient multipliers could be used, the area could be 
reduced since these are much smaller than normal multiplications. In this case the number of differ
ent coefficients is of importance since only multiplications with the same coefficient can be mapped 
onto the same multiplier. When a implementation with fixed-coefficient multipliers is chosen, the 
Butterfly algorithm with seven different coefficients could possibly be a better option. 

lD-IDCT #Multiplications #Additions #different Critical Path 
algorithm coefficients 

straight-forward N2 =64 N(N-1)= 56 7 1 mult, 3 additions 

Butterfly (a) 22 28 7 1 mult, 3 additions 

Butterfly (b) 17 33 8 1 mult, 4 additions 

Loeffier 11 29 10 2 mult, 4 additions 

Loeffier with 12 32 12 1 mult, 5 additions 
parallel 
mu1tiplications 

Table 5.1 Computation complexity IDCT algorithms 
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Chapter 6 

Implementation of the IDCT with 
PHIDEO 

In the Phideo design path several subtasks are defined (see tigure 2. 7 on page 21 ). The following 
tasks must be performed: 

1. PU design; 

2. algorithm design 

3. pragmas 

The design of the PUs include the clustering of operations and the definition of the time shape of the 
PU. At this point also the subdivision of the design into hierarchical b1ocks is made. lf a cluster of 
operations is very large, the user can decide to design tbis unit in Phideo as well. The algorithm is 
described in PIF in terms of loops and PUs. After running Phideo, the output of Phideo can be inter
preled and the user can de fine pragmas and restart Phideo until the result is satisfactory. 

At first sight is seems that the order of the subtasks is very light. The opposite is true. It is possible 
and often desired to apply top-down design in Phideo. Many times it is desired to design the bottle
necks first, without concerning about the implementation of detailed PUs. The user can define a 
function called unit with an estimated latency and use it as if it were available. lf the higher level de
sign seems feasible, a real implementation can be made, small changes in latency or pipelines can be 
taken care of in some additional iterations of Phideo. It is even possible to define and use complete 
hierarchical levels without implementing them. The only thing that must be specified is the time 
shape, defining when signals arrive at the input and when the outputs are generated. This time shape 
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can be based u pon an estimation. With the assumption that such kind of PU or hierarchical design 

can be realised, the higher level design can be evaluated and bottlenecks can be examined. 

The implementations in this chapter are made with Phideo version 2.0. At the time the research after 

Phideo was conducted, the work on this version was stopped, since a new release of Phideo was be

ing developed which contained substantial modifications conceming parametrie designs generation. 

The main functionality of the previous release was intended to be preserved in this newer version. 

At this point still no proper manual for either of the releases is available and error messages contain 

a lot of uninteresting and unclear messages which are not documented as well. 

Part of the functionality of release 2.0 was added in last stages of the design and is not completely 

functional. This primarily concerns the final synthesis stage of the design. As a result designs could 

be made which could not be synthesised completely. For example conditional constrocts could be 

designed up to the memory synthesis. Ho wever the controller which had to control these conditio na! 

construct was not adapted yet, so that the final VHDL design contained unconnected signals and the 

design could not be verified completely. These incompletions did not stand in the way of a proper 

evaluation, and hopefully these problems will be solved in the near future release. 

In this chapter first an architecture study is made for the implementation of the Inverse Discrete Co

sine Transfarm (IDCT) the Inverse Quantisation (IQ) and the Inverse Scan (IS). This is done for 

three different video decoder architectures which are described in Chapter 4. All these architectmes 

impose their own requirements and constraints on the design. In the second part of this chapter the 

implementation of the IDCT with Phideo is discussed which encloses the three subtasks as de
scribed before. Finally the design flow is discussed. 

6.1 Architecture study IS, IQ and IDCT 

The video decoding process (as described in paragraph 3.4 on page 46) comains an Inverse Scan fol

Iowed by an Inverse Quantisation and a two-dimensional Inverse DCT. In figure 6.1 a diagram of 

this part of the video decoding process is depicted. The decoding process is block based. 

~ 1111 1111 1111 -- --- --- --- -
IS+ 

IQ lD-IDCf lD-IDCf Transpose 

QFS[n] QFS[v][u] F[v][u] f[y][x] 

Figure 6.1 Inverse Quantisation, Inverse Scan and Inverse DCT 

To reduce the number of operation the decomposition ofthe two-dimensional IDCT (as described in 

paragraph 5.4 on page 58) is used, which uses two series of one-dimensional IDCT. First the 10-
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IDCf has to be performed on each column foliowed by the 1D-IDCf on each row or vice versa. Be
tween the two 1D-IDCf a transposition memory (MT) is placed totranspose the coefficient matrix. 

The data of a blockat the output of the variabie length decoder is denoted by QFS[n], nis in the 
range 0 to 63. Two scan pattems are defined to convert the one-dimensional data QFS[n] into a two
dimensional array of coefficients denoted by QF[v][u], u and v both in the range 0 to 7. Since the 
1D-IDCf is performed on the columns first, the scan can be combined with the transposition of the 
two-dimensional array to save an additional transposition memory. In reality the two-dimensional 
data is transmitted in series column by column or row by row. 

Each block which has to be decoded contains 64 coefficients. Each block must be decoded within 
102 clock cycles (4.4). With a cycle budget of 102 clock cycles each coefficient must be decoded in 
l clock cycle. The minimum Data Introduetion Interval (Dil) for the blocks is 64 clock cycles, i.e. 
every 64 clock cycles the data of a new block can be inserted. Since it is highly likely that the func
tional units will be pipelined, data of different blocks will be present at the same time. 

When two one-dimensional IDCfs are used each lD-IDCf must perform eight lD-IDCf, one per 
row respectively one per column. In that case the data introduetion interval ofthe lD-IDCT must be 
Dil= 8. 

6.1.1 Conventional video decoder architecture 

In the decoder described in the previous section two one-dimensional IDCf with Dil = 8 were need
ed. lf one 1D-IDCf could be used for both the horizontal as wellas the vertical IDCT the hardware 
requirements could be reduced. Figure 6.2 shows an architecture with one 1D-IDCT. With a data in
troduction interval of 8 for the 1D-IDCf, the data introduetion interval of the 2D-IDCT would be 
16 x 8 = 128 which is to large to fit the cycle budget of 102 clock cycles. 

{8} 

lD-IDCf 1----r----• 

Figure 6.2 2D-IDCT with Dil = 128, using one 1D-IDCT with Dil = 8 

If one 1D-IDCT is to be used it must process two coefficients per clock cycle and the data introdue
tion interval must be Dil = 4. This means that two coefficients in parallel must be transferred at the 
input as well as at the output For the transposition memory this means that two coefficients must be 
read at the same time and another two weitten at the same time. lf only 2-port memories are availa
ble, the memory must be split to increase the memory bandwidth. In tigure 6.3 the diagram of such a 
two-dimensional IDCf using only one one-dimensional IDCf is depicted. The minimum data intro
duetion interval is 64. Since 102 clock cycles are available wait cycles are introduced. 
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Figure 6.3 2D-IDCT with Dil= 64, using one 1D-IDCT with Dil = 4 

The block is divided into four parts. The top four rows of the block are represented by two coloured 

parts containing number 1 and 2 (each numbered part contains 64/4=16 coefficients). Note that the 

two-dimensional array at the input is already transposed, the arrows indicate the transmission order 

of the data in the blocks. First the columns are processed by the lD-IDCT. The first four coefficients 

of each column (part 1 and 2) are transferred tothetop-input of the lD-IDCT and the other four co

efficients of each column (part 3 and 4) are transferred tothetop-input of the lD-IDCT. The output 

of the lD-IDCT is written in the transposition memories Mn - MT4. After transposition the rows 
are processed by the 1D-IDCT, the first coefficients (part 1 and 3) and the last four coefficients of 

each row (part 2 and 4) are transferred to the lD-IDCT. 

At the output of the 1D-IDCT before transposition, part 1 and 3 are produced at the sametime and 

therefore must be written in different memories. The same holds for part 2 and 4. At the input of the 

lD-IDCT after transposition, part 1 and 2 (and part 2 and 4) are consumed at the sametime and 

therefore must be read from different memories. This results in four different memories, each con

taining the coefficients of one of the parts 1 to 4 and named Mn - MT4. 

The Serlal/Parallel converter and the Parallel/Serial converter are needed to reorder and buffer the 

input and output data and can be implemenred by a small memory. The next section describes the 

consequenses for the Inverse Quantisation and the Inverse Scan. To save memory the Serlal/Parallel 

converter at the input of the IDCT can be combined with the Inverse Scan. This can be realised by 

reversing the order of the Inverse Quantisation and the Inverse Scan ( tigure 6.4). 
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Figure 6.4 Inverse Quantisation and Inverse Scan in reverse order, Dil = 64 

Inverse Quantisation, Inverse Scan 

This section describes the consequences for the Inverse Scan and the Inverse Quantisation when 
these are applied in reversed in order and combined with the Serlal/Parallel buffer as described in 
the previous section. 

Since the Inverse Scan must produce two coefficients each clock cycle, the Inverse Scan requires 
two memories (see figure 6.5). One memory (Ml) is used to store the top four rows and one (M2) to 
store the bottorn four rows. By writing the coefficients into the memory in a different order then 
reading them, the Inverse Scan is performed. At the same time the block transposition is performed. 

Figure 6.5 Inverse Scan, Transpose and Serial-Parallel converter, Dil= 64 

IntheInverse Quantisation (see figure 6.6), each coefficient has to be multiplicated by an element of 
the quantisation matrix. When 4:2:0 data is used, two quantisation matrices are used. One for intra 
blocks and one for non-intra blocks. Each matrix bas a default set of values which may be overwrit
ten by downloading a user defined matrix. When the matrices are downloaded they are encoded in 
the bitstream in a scan order that is identical to one that is used for coefficients. For matrix down
loading the scan defined in figure 3.14 (e.g. scan[O][v][u]) is always used. 
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~orêM Inverse 
Mismatch 

----------+1 Quantisation 1---~Saturation 1--~ Control t-------• 
Arithmetic 

~orêM 

~ scan[O][v][u] 

alternate _scan êM scan[1][v][u] 

Figure 6.6 Inverse Quantisation when placed before Inverse Scan, 011=64 

When the coefficients are encoded by the same scan order the weighting matrix can be written and 

read in the same order they arrive. In this case the address generator cou1d be a simple counter (i.e. 

addrl). When the other scan order is used for the coefficients (i.e. scan[l][v][u], the coefficients 

have to be read in a different order. In this case a second address generator is needed. Since the in

coming and outgoing order are completely different a look-up table bas to be used. 

6.1.2 Low cost video decoder architecture 

In the low cost video decoder architecture the target was to reduce the output buffer. This could be 

realised by decoding each block from B-pictures twice.The first time only the lines of the odd field 

are used and displayed directly and the second time (one field later) the lines of theeven field are 

used. In this new architecture the number of clock cycles available to decode a blockis 51 (6.1). 

U sing only line blanking, no field blanking: 

clock cycles per (half) block 

= 102 clock cycles I 2 = 51 (6.1) 

Since the two-dimensional IDCT is decomposed into two series of one-dimensional IDCTs, it is not 

necessary to compute two complete IDCTs. Conventionally eight lD-IDCfs bas to be performed on 

the columns and eight on the rows. In the new architecture only half the rows have to be decoded. 

This means that only 8+4=12 lD-IDCT have to performed in the available clock cycles. Therefore 

the number of clock cycles per lD-IDCT is 4 (6.2). 

clock cycles per 1D-IDCT = clock cycles per (half) block I 1D-IDCTs per half block 

=51112=4 (6.2) 

Since only have the rows have to be decoded, each column bas to be stored half in the transposition 

memory. Therefore only two transposition memories are needed (Mn13 and MT2/~· In figure 6.7 the 
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new architecture is depicted. The minimal data introduetion interval ofthis 20-IDer is 48. Since 51 

clock cycles per block are available, three wait cycles are introduced. 

m<;l~ 
EEt~ 

[i][l:] 

= = = = 

{4} 

lD-IDCf 

= = ----

Figure 6.7 New Architecture 20-IDCT with Dil= 51, using one 10-IDCT with Dil= 4 

To decode a block from a 1- or P-picture the data can be read from the memory intheInverse Scan 

twice, and the block can be decoded in two parts. A withdraw of this method is that the one-dimen

sional IDer over the columns are computed twice. Since the hardware is available this only results 

in some additional power dissipation. If power dissipation has to optimized, this can be prevented by 

introducing two additional transposition memories like in the conventional decoder architecture 

(figure 6.3). 

A small problem remains to be solved. After the series of 10-IDCTs over the columns the proper 

lines have to be selected to be transposed. There are two different luminanee macroblock structures 

(paragraph 3.3.5 on page 43), frame Der coding and field oer coding. When frame oer coding is 

used (figure 6.8a) a block contains lines of even fields altemated with lines of odd fields. When field 

DCT coding is used a block comains only data fonn one field (figure 6.8b). 

20-IDCT 
or ~ 

,.,. A Even lines Odd lines 

(a) frame DCT coded block (64 coefficients) 

20-IDCT 
or ~ 

Top four lines Bottom four lines 

(b) field DCT coded block 

Figure 6.8 2D-IDCT decoding for the new video decoder architecture 
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When the blockis field DCT coded parts 1 and 2 (respectively parts 3 and 4) must be stored. This 
selection can easily be made with a multiplexer (figure 6.7). 

When frame DCT coding is used this selection is more complex. Unfortunately the coefficients of 
theeven lines arrive two-by-two simultaneous, because both part 1 and part 2 contain even lines (the 
same for the odd lines coefficients). In this casetheeven lines coefficients must be delayed and writ
ten during the arrival of the odd lines coefficients and vice versa. 

Inverse Quantisation, Inverse Scan 

The Inverse Quantisation and the Inverse Scan in the low cost architecture can be implemenled sirn
ilar to the conventional architecture except for the smaller data introduetion interval (figure 6.9). 

In case of blocks from B-pictures, the data introduetion interval in the low cost architecture is 51. 
Since the number of coefficients is 64 either more than one coefficient in parallel has to be processed 
or a number of coefficients have to be omitted. 

----..~1 IQ 

-[IIT] :··rn == ·-- :::::: 
: 4 =: 

Figure 6.9 Inverse Quantisation and Inverse Scan in reverse order, Dil= 51/102 

In case of blocks from 1- and P-pictures both halves of one block can be computed in sequence. 
Therefore the Inverse Quantisation and Inverse Scan have to be computed only once for this block 
and they may use 64 clock cycles, with a data introduetion interval of 102 clock cycles instead of 51. 
Since the IDCT decodes only half a block each time, the data must be read from the memory of the 
Inverse Scan twice. 

In tigure 6.10 an implementation of the Inverse Scan is presented which meets these requirements. 
In case of blocks from 1- and P-pictures the coefficients are written into the memories in 64 clock 
cycles. This data is read from these memories twice and send to the IDCT, once to compute the lines 
from the odd field and once for the lines of the even field. This is repeated every 102 clock cycles, 
Dil= 102. 
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G 3 
. 

~ 
zero --

Figure 6.10 Inverse Scan, Transpose and Serial-Parallel converter, Dil= 51/102 

In case of B-pictures only 51 coefficients are written into the memories. The missing coefficients are 
stuffed with zeroes. This process is repeated every 51 clock cycles, Dil = 51. 

The Inverse Quantisation unit is equal to the one from the conventional architecture (figure 6.6). In 
case ofl- and P-picture 64 coefficients are computed with a data introduetion interval of 102. In case 
of B-pictures only 51 coefficients are computed with a data introduetion interval of 51. 

6.1.3 Reduced memory video decoder architecture 

The reduced memory video decoder architecture imposes a number of performance requirements on 
the Variabie Length Decoding and Inverse Scan, Inverse Quantisation and the IDCT. The low cost 
video decoder architecture is a low cost solution forthese requirements at the cost of a small quality 
loss. If this quality loss is not acceptable, the reduced memory video decoder architecture can be 
used. This section discusses the implications for the IDCf, the Inverse Scan and the Inverse Quanti
sation. 

The reduced memory video decoder architecture must be able to decode half a block in 51 clockcy
cles similar to the requirements for the low oost video decoder ( 6.1 ). The IDCT of the low co st video 
decoder as described in the previous section already meets these requirements. 

The back -end of the Inverse Scan of the low cost video decoder is able to produce 64 coefficients in 
51 clockcycles as described in the previous section. The bottleneck for the Inverse Scan is the input. 
lf the Inverse Scan must be able to decode a complete block of 64 coefficients the input must arrive 
in parallel. If the Inverse Quantisation would produce two coefficients in parallel this Inverse Scan 
satisfies the requirements. 

The only real extension bas to bemadein the Inverse Quantisation. This module would require ad
ditional hardware to meet the higher throughput requirements. 
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6.2 The implementation of the IDCT with Phideo 

6.2.1 Arithmetic precision 

MPEG-2 specities most ofthe signal ranges and the number of bitstorepresent these signals. How
ever the intemal si goals of the IDCT are oot specified. The accuracy of the IDCT is defined in terms 
of meao, meao square and peak error rates. The IEEE standani specifications for the implementa
tions of 8 x 8 Inverse Discrete eosine Transfoons[l6] describes an exact procedure to generate test 
sequences and to mcasure these criteria. The high accuracy requirements are needed to control the 
accumulation of mismatch errors, since every macroblock cao be coded 132 times as predictive 
macroblocks. Macroblocks in B-pictures are excluded from the summmation because they do oot 
lead to the accumulation of errors. 

After superficial testing of to the implementation of the Inverse Discrete eosine Transfoon using the 
transfoon decomposition (section 5.4) and Loeffter's algorithm (section 5.5.3), an estimation of the 
signal widths is made. The neT coefficients in the algorithm are to be represented by 17 bits, from 
which 3 to represent fractions. The coefficients in the algorithm are to be represented by 14 bits. The 
inputs of the IDCT must therefore be scaled by a factor 8 before inverse transfoonation. In addition 
the multiplier and adders must apply proper rounding on temporary results. Saturation of results 
should oot be necessary since signal widths should be large enough to prohibit overflow of signals. 
In the VHDL code an error message is generated in case of overflow for testing purposes. 

Instead of rounding all temporary results, it might be cheaper to postpone the rounding of the results 
from additions and substractions and increase the number of bits of these signals by two bits (at 
most 3 additions or substractions in a row). Now a separate rounding unit cao be used to round the 
final results and the temporary results, which are used as an input to the multiplications. 

6.2.2 PUs design 

The implementation of a PU has to be done manually. The PU must be described at Register Trans
fer Level in VHDL. Since this part of the design process remains the same it is only discussed brief
ly. In appendix e some examples of PUs which were used to implcment the IDCT, are presented. 

For the implementation of the one-dimensional IDCT two main PUs are needed, i.c. a multiplier and 
an adder. Both PUs must contain a proper rounding, which comes down to an extra addition before 
truncating. For the implementation of the multiplier a gencric parametrie multiplier with Booth en
coding and carry save Wallacetree construction is used. For the interested reader, more about Booth 
encoding and Wallacetrees cao be found in [36] and [37]. 

6.2.3 One-dimensional IDCT 

For the implementation of the two-dimensional IDCT in the conventional and the low cost video de
coder, two types of one-dimensional IDCT were needed. The conventional video decoder needed 
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one one-dimensional IDCf with a data introduetion interval of Dil = 8. The low cost video decoder 
architecture needed a one-dimensional IDCf with Dil = 4, which requires parallel inputs. 

lD-IDCT Loeffler, DII=8 

Before implementing an algorithm, the algorithm must be optimized. Phideo doesn't optimise the 
algorithm but only implements the given algorithm. Insection 5.5 Loeffter's algorithm is described 
which only requires 11 multiplications. Since resource requirements are an important criterion, this 
algorithm was chosen to be implemented. First the algorithm was described in terms of multiplica
tions and additions/substractions. The data introduetion interval was specified by choosing the glo
bal frame time. Furthermore the time shape of the design had to be specified. To reduce the 
bandwidth requirements for the memories in the global design, the inputs must arrive in serial. Since 
8 cycles are available for 8 inputs this was possible. The implementation required 4 adders/substrac
tors, 2 multipliers and 59 registers. An example ofthe PIF description of a one-dimensional IDCT is 
given in appendix D. 

An alternative implementation was the use of fixed-coefficient multipliers. Since the multiplicand is 
known in advance, this multiplier can be implemented very efficiently. The use of fixed-coefficient 
multipliers could be defined in Phideo by enforcing each different multiplication to be mapped upon 
a unique multiplier. This could be done by means of an assign pragma. Afterwards these allocated 
multipliers can be replaced by fixed-coefficient multipliers. A fier another iteration of Phideo, a new 
schedule was generated which required 10 fixed-coefficient multipliers. A fixed-coefficient multipli
er is about 4 times smaller than a general multiplier depending on the fixed-coefficient. Since two 
general purpose multipliers will probably smaller than 10 fixed-coefficient multipliers, the imple
mentation with general multipliers will probably result in a smaller design. 

lD-IDCT Loeffler, DII=4 

For the implementation of the one-dimensional IDCf with a data introduetion interval of 4, the 
same PIF algorithm could be used. The only difference was the implementation ofthe inputs and the 
outputs. Since only 4 clock cycles were available to insert 8 inputs the inputs are imported in serlal 
over two parallel input ports as described in section 6.1.1. The same applies to the outputs. After one 
iteration of Phideo, a new schedule was generated. The implementation of that schedule required 3 
multipliers, 8 adders/substractors and 47 registers. When using fixed-coefficient multiplications, 10 
fixed-coefficient multipliers, 8 adders/substractors and 39 registers were needed. Using the fixed-co
efficient multipliers probably results in a smaller implementation. 

lD-IDCT butterfly, 011=4 

When writing this report, another solution was found. The butterfly algorithm requires 22 multipli
cations and 28 additions (see section 5.6). Furthermore, the butterfly algorithm uses only 7 coeffi
cients for the multiplications. All multiplications with the same coefficient are used maximally 
4 times. If this algorithm is implemented with fixed-coefficient multipliers, still only 7 multipliers 
are needed. The required number of adders/substractors is 7 or 8 (28 additions/substractions per 4 

Philips Semiconductors I Technica/ University Eindhoven 77 



Chapter 6: Implementation of the IDCT with PHIDEO 

cycles is at least 7 additions/substractions in parallel). The number of registers in not expected to 
differ a lot from the previous designs. Though the number of operations and in special multiplica
tions is not minimal, the overall solution will be smaller since resource utilization will be better. 
Note that the optimization ofthe number of operation is not the only important criterion! 

Gate count 

The size of a design measured in micron is not a very good criterion to compare design sizes, since 
it highly depends on the applied fabrication technology. A better measure is a gate count, this can be 
found by dividing the total chip area in a certain technology by the area of a NAND-port in that 
techno1ogy. This way a gate count in NAND equivalentsis obtained which is technology independ
ent. 

In table 6.1 an estimation of the size of different implementation for the lD-IDCT is given as wellas 
the estimation of the size of an addition/substraction and multiplier and a fixed-coefficient multipier. 
At this point and with release 2.0, Prudeo's designs were not fully synthesizable yet, for example the 
memories and registers were not link:ed to a library in the RT-level VHDL. Only the size of the 
memories in words and a model descrihing the behaviour in terms of access times and number of 
read/write pons, were available. This made it very hard to obtain an accurate gate count. The sizes 
of the memories are estimated by measuring the equivalent amount of memory in flip-flops which 
should give an upper bound estimation. 

Design Dil resources & gate-count 

adder/substractor {1} 17x17 = 300 gates 300 

multiplier { 1} 17x14 = 2700 gates 2700 

fixed-coeff-mult {1} 17x14 = 2700/4? 700? 

1D-IDCT11_8 {8} Ctrl, AG, Mux = 2650 13100 
Loeffier 59 Registers = 3850 

2 mult=5400 
4 add/sub = 1200 

1D-IDCT11_ 4 {4} Ctrl, AG, Mux, Reg= 1700 13800 
Loeffier 39 Registers = 2700 

10 fixed-coeff-mult = 7000 
8 add/sub = 2400 

1D-IDCT11_ 4 {4} Ctrl , AG, Mux, Reg = ? 1700 11700? 
Butterfly 39 Registers = ? 2700 

7 fixed-coeff-mult = 4900 
8 add/sub = ? 2400 

Table 6.1 Estimated of the size of different implementations for the 1D-IDCT. 
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6.2.4 Two-dimensional IDCT 

In this section the implementation of four different designs is discussed. The first is a conventional 

two-dimensional IDCf with a data introduetion interval of 011=128. The throughput of this imple

mentation, when using a doek rate of 27Mhz, is not sufficient to be used in the video decoder archi

tectures which are described in Chapter 4. In this section two more implementations for the two

dimensional IDCf are discussed, these are the following and correspond to the video decoder archi

tectures with the same name: 

• Conventional 20-IDCT with Dil = 64 

• New architecture 20-IDCT with 011=48 

Conventional 2D-IDCT, DII=l28 

A two-dimensional IDCf can be described in PIF very easily if a one-dimensional IDCT is availa

ble.ln this case one lD-IDCf is to be used, which is a hierarchical design. Ifthis was not the case a 

simple function or macro could have been designed which describes the time shape ofthe 10-IDCf. 

In this case a unit which impons eight samples in serlal at the input and after a cenain latency ex

pons the results in serlal at the output. The exact size of the latency does not substantially alter the 

design but does inftuence the memory requirements. The 1 D-IDCT is now included in the higher 

level design. The 10-IDCf must be invoked eight times for the rows and eight times for the col

umns (see figure 6.2). The transposition of the data is imposed by the different order of consumption 

of the second series of 10-IDCfs. To address these signals an alias for the identifier had to be de

fined which contained the two-dimensional data in transposed organization. Phideo allocated mem

ory to perform the transposition and took care of the address generation. 

Instead of a memory size equal to the size of 64 samples, Phideo allocated a larger transposition 

memory which could contain 104 samples. After intetpreting the results it became clear that this is a 

result of the pipeline in the design. This is clarified in tigure 6.11. The inputs and the outputs of the 

first series of 10-IDCfs are indicated by h_idct_in and h_idct_out, the inputs and outputs of the 

transposition memory are indicated by transp _in and transp _out. The interconnecting lines indicate 

the preeedenee relations. The latency of the first series of IOCI's followed by the transposition pro

hibited the second series of IDCTs (v idct) to start immediately after the completion of the first se

ries ofiDCfs. As aresult a second 10-IDCf is needed, which is shown by the distribution function. 

If the second series of lD-IDCf is postponed, as illustrated by the arrow, only one 10-IDCf is 

needed. This results in a larger transposition memory since the samples of the second invocation ar

rive before the processing ofthe previous samples by the IDCT is completed. In appendixDan ex

ample of the PIF description is given. 
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Figure 6.11 Implications for the scbedule of a 2D-IDCT wben using only one lD-IDCT 

Conventional 2D·IDCT, 011=64 

To increase the througbput at a given doek rate the 2D-IDCT architecture of tigure 6.3 can be used, 
whicb bas a data introduetion interval of DII=64. In this case a 1D-IDCT with DII=4 is required. At 
the input a serlal/parallel converter is needed and at the output a parallel/serial converter is needed. 
These conveners can be implemented by a small memory, because the only thing that bas to be done 
is the buffering of some signal values. By descrihing the input orderand rate and descrihing the out
put orderand rate (see example below), Phideo introduces two memories together with the address 
generators. 

(x: 0 •• 7} {8} :: 
(y 0 . . 7} {1} : : 

serial_in[x] [y] input (}; 

(x : 0 •• 7} {4} :: 
(y 0 • • 3} {1} : : 
begin 

outputl(serial in[x] [y ]); 
output2(serial=in[x] [y+4]}; 

end; 

The PIF input of Phideo consists of a description of the algorithm defining exactly whicb data is 
processed by the lD-IDCf and in wbat order. Subsequently, Pbideo generates a scbedule and intro
duces distributed memories and registers to apply the required signals to the specified units at the 
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correct time. By specifying constraints by means ofpragmas, the signal can be mapped upon speci
fied memories. This way the memory architecture of figure 6.3 can be obtained. Phideo's initia! so
lution required about the same amount of memory but used more and smaller memories. 

As was found in the implementation of the conventional 2D-IDCf in the previous section as well, 
again the overall size of the memories was larger than expected. Instead of a memory size equal to 
the size of a block which contains 64 samples, a memory with the size of 112 samples was allocated. 
Again the pipeline in the design was the cause. The second series of ID-IDCI's was scheduled one 
frame period later and so that data from the next block arrived before the data of the previous block 
was processed. 

If this design was made manually, this design problem probably was detected at a late stage in the 
design process. This could lead to backtracking and redesigning part of the implementation. The u se 
of Phideo resulted in a fast insight in the consequences of eertaio design decisions, which can save a 
lot of time. 

New architecture 2D-IDCT, DII=48 

The new architecture as described in figure 6.7 is basically the same as the architecture of the previ
ous section. The major difference are related to the second series of lD-IDCf. Insteadof 8 rows, 
only the rows from one of the fields are processed, e.g. only 4 rows. As a result the transposition 
memory can be reduced since only half the block is processed by the ID-IDCf for the second time. 
This results in a small change in the PIF input. To start with, the frame period had to be changed 
to48. 

The main effort in designing this architecture is the selection of the samples which need to be trans
posed and processed for the second time. This depends on two conditions. The field which must be 
decoded and the type of the macroblock structure which is used. In case of frame DCf coding either 
the even lines or the odd lines must be decoded (see figure 6.8). In case of field DCf coding either 
the top four lines or the bottorn four lines must be decoded. 

This selection of these video lines can be described by means of a conditional construct in PIF as 
shown below. 

control alternate scan <0,1>; /* O=field, l=frame */ 
control even odd <O,l>; /* O=even, l=odd */ 
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case alternate scan of 
begin -

end; 

0: /*field*/ 
case even odd of 
begin 
0: /*even*/ 
1: /*odd*/ 
end; 

1: /*frame*/ 
case even odd of 
begin 
0: /*even*/ 
1: /*odd*/ 
end; 

Under each of the conditions another group of video lines can be selected to send to the transposi
tion memories. In this case Phideo did not detect the resemblance between the different cases auto
maticaly. As a result Phideo allocates memory and generales address generators for each 
combination of conditions. The size of the memory allocated by Phideo is determined by the maxi
mal number of memory locations required under one of the conditions. When using a pragma to as
sign the signals from both cases to one memory, additional memories were allocated to facilitate the 
imposed constraint. 

1t was very difficult to map the lines which were selected by the case statement under various condi
tions onto the same memories. The solution is an additional dummy instruction, which defines an 
alias for a given signal stream. This is illustrated by the following example: 

case ctrl of 
begin 

{cO ev} 
{cO=od} 

{cl} 
end; 

{rev} 

0: (i: 0 •• 3) {2} 
begin 

c[2*1 ]= 
c[2*i+l]= 

end; 
1: (i: 0 .. 7) {1} 

c[i] 

(i : 0 •• 7) {1} 
d[i] c[7-i]; 

In the case statement the signal stream c is depending on the ctrl signal fitled by either one stream 
with period 1 or by two streams with period 2 and a smaller number of iterations. This is foliowed 
by an assignment which reverses the signal, which imposes a small memory. Unfortunately Phideo 
doesn 't detect the similarity of the two cases, since the period enclosing the streams in both cases 
differ. As a result Phideo allocates two small memories, while one would be sufficient. This can be 
prevented by introducing a dummy signal assignment, an alias, which combines the result of the 
two cases into one signal stream (sec below). 

(i : 0 •• 7) {1} 
{alias} tmp_c [i] c [i]; 
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This statement can be inserted between the case statement and the reverse operation { rev}, using 

tmp _ c instead of c in the succeeding assignments. Since the output order and period equals the input 

of the alias, no memory is neededat the input of the alias. Now Phideo has to deal with a single sig

na! and introduces only one memory instead of two. 

As cou1d be expected, the resulting design generated by Phideo required only half the amount of 

memory compared to the conventional implementation. In this case a memory which could contain 

51 samples was required. 

Gate count 

In table 6.1 an estimation ofthe size of different implementation for the 20-IDCf is given. The two

dimensional IDCTs use the lD-IDCf with 011=4, make use of the estimation of the lD-IDCf im
plementation containing Loeftier's algorithm. lt is likely that the implementation of the lD-IDCf 

with the butterfly will resu1t in a cheaper solution. lfthe estimations are accurate the sizes ofthe im
plementations must be decreased by 2100 gates! 

Design Dil Hardware & gate-count 

2D-IDCT_8 {128} Orl , AG, Mux, Reg= 560 19700 
(8 x row, Transpose, 1D-IDCf11_8 = 13100 

8 x column) 104 Registers = 6000 

20-IDCT _ 4_conv {64} Orl , AG, Mux, Reg= 700 20800 
(8 x row, Transpose, lD-IDCfll_ 4 = 13800 

8 x column) 112 Registers= 6300 

20-IDCf _ 4_new {48} 8 x row, Transpose, 4 x column 18500 
Orl, AG, Mux, Reg= 1800 
lD-IDCTll_ 4 = 13800 
51 RegistersFile = 2900 

Table 6.1 Estimated of the size of different implementations for the 2D-IDCT. 

6.3 Comments on the design flow 

Phideo is an architecture level synthesis tool which requires the interaction of the designer. lt is not 

a push-button design tool. Therefore it is essential to design a global architecture and specify the re

quirements, inputs and outputs before starting with Phideo. When applied correctly Phideo can be 

very helpful and takes care of lots of time consuming tasks. Phideo combines the advantages of de

sign automation with the qualities ofthe human designer. 

Phideo can be used to implement algorithms but cannot be used to optimise an algorithm. Before us

ing Phideo it is needed to optimise an algorithm. For example the definition of an 8x8 one-dimen

sional IDCT uses 512 multiplications. When this algorithm is implemented with Phideo, enough 
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multiplications are allocated to execute all multiplications in the specified time. lf on the other hand 
an optimized algorithm for the one-dimensional IDCT is used, only 11 multiplications have to be 
executed. This will surely result in a cheaper solution since a smaller number of multiplications are 
needed for the implementation. 

The reduction of the number of opera ti ons in an algorithm is not the only important criterion, as can 
be seen in the implementation of the butterfly algorithm (77). The utilization of the resources is also 
of major importance. Though the butterfly algorithm needed more operations, less resources were 
needed to implcment the algorithm. If only a small number of operations are needed but all opera
tions differ, then these cannot be mapped upon the same resource. This way the total number of re
sources could be larger while the utilization of the resources is very low. When another algorithm 
requires more operations and these operations can be shared, the total number of resources can be 
smaller because the resource utilization is better. 

What algorithm is best suited to be implemenled by Phideo can not be defined precisely. In general 
the number of operations must be reduced as far as possible. It is possible to evaluated different op
ti ons. Some times bottlenecks in the implementation can be solved by adapting the input algorithm. 
These design decisions can not be autornaled and require the creativity and experience of the design
ers. 

Phideo is very suitable to evaluate the feasibility of eertaio designs. It is possible to apply a top
down design method. The Processing Units which are needed and even complete hierarchical sub
designs can be described superficiaily in terms of time shape defining the order and timing of the in
puts and outputs. This way the higher level design can be evaluated and bottlenecks in the 
architecture can be detected and solved in an early stage of the design process. 

The use of pragmas makes it possible to evaluate different variants of an algorithm and to evaluate 
consequences of eertaio design decisions, without rewritting large parts of the implementation. The 
algorithmic description is defined at a high leveland is defined only once. The rest of the work pri
marily consistsof defining pragmas tosteer the synthesis process. It is not necessary to rewrite the 
souree time after time. With the definition of a single pragma, the effects of reduction of available 
resources or the effects of pipeliDing the design can be studied. Phideo takes care of lots of time con
suming tasks and the designer can concentrale on the important design decisions and their conse
quences. 

Though the amount of work to define additional constraints and to evaluate different implementa
tions is limited to the definition of a number of pragmas, it can be very hard to steer Phideo. It is of
ten hard to teil the consequences of the ioclusion of a constraint on the output of Phideo. This has 
two reasons. First it is hard to teil the reason of eertaio choices or decisions by Phideo, where the ex
act bottlenecks were and why Phideo allocated the eertaio amount of resources. Secondly, it is hard 
to teil beforehand what the consequences of user defined constraints will be. Sometimes it costs a lot 
to satisfy the constraints, resulting in a worse implementation. 

Overall, it can take a lot of time to get Phideo to do what the designer wishes. Sometimes the design
er wants something that is not possible, somelimes the pragmas are insufficient or Phideo simply 
does not find the desired solution. The user interaction is of major importance, the experience and 

84 Philips Semiconductors I Technica[ University Eindhoven 



Chapter 6: Implementation of the IDCT with PHIDEO 

the creativity of the designer are indispensable. Therefore the feedback of Phideo to evaluate the 
temporary results are very important. Most of the times the resulting designs when using Phideo are 
comparable to the results the designer could achieve with manual design. Using Phideo does not 
make him a better designer. Nevertheless, the shorter design time and the possibility to evaluate the 
consequences of design decisions easier results in a better explomtion of the design space. This can 
lead to better implementation since good alternatives could have been overlooked. 
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Chapter 7 

Conclusions on the use of Phideo 

The implementations and research of this report concern Phideo release 2.0. At the time of the re
sarch the workon this release had been stopped, since simultaneous a new release ofPhideo was be
ing developed which demanded all the effort. Part of the functionality concerning the controller 
generation was not implemented completely and still no proper manual or documented error mes
sages were available. Fortunately this was no obstacle to evaluate Phideo. Hopefully these incom
pletions and imperfections will be revised in the near future. 

Though immature and not completed fully, the main functionality ofPhideo was already implement
ed and cou1d be tested. As was described in "Research Goal and Method" on page 11, the goal of 
this report was to evaluate Phideo and judge the resu1ts according the following criteria: 

1. design time: - how much time does it take to make a design? 

2. quality of the design: - how good is the design in termsof chip area? 

3. applicability - what kind of designs can be implemented successfully? 

4. design method: - does it fit in the PCALE design flow? 

In the next sections these criteria are discussed one by one. Foliowed by a section which discusses 
suggestions for improvements and finally the overall conclusions. 

7.1 Design time 

When starting from scratch, withno experience with Phideo, it takes a several weeks to become fa
miliar with the Phideo design methods and to gain experience. It is an advantage to be familiar with 
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architecture synthesis, and the main objectives and problems involved. Phideo's design metbod dif
fers substantially from common general purpose synthesis approaches. Phideo is based upon perioct
ic operations, algorithms are repeated at a regular rate and the generated schedules are pipelined. 

The input of Phideo is at a high level of description which can be compared to behavioural VHOL. 
The design time of an algorithm in PIF is similar to the design time of a behavioural description. 
The main effort is not the design of the algorithm but the ioclusion of contraints described in prag
mas. The pragmas are designed in a iterative process and are used to steer the synthesis process. The 
task ofthe user is to interpret the results ofPhideo and fine tune the tools by defining additional con
straints. This involves only small modifications of the souree code, which remains orderly and sim
ple. This is a great advantage over a manual design flow which includes multi-levels of handwntten 
VHOL. This is in contrast to the design of RT-level descriptions, which would require a complete re
designing of all functional blocks in VHOL at a lower and more complex level. 

Pragmas can be a very powerful instrument. The exploration of the design space can be done by 
changing or enclosing pragmas. This way it is very easy to oompare different altematives. With the 
modification of the frame period, the design can be pipelined and the data introduetion interval can 
be changed. Pragmas can be used to assign matching signals to one memory or at a eertaio process
ing unit. At this point the experience ofthe user is very important. The strength ofhuman insight can 
be exploited and main architectural decisions can be imposed by the user. 

The implementation of an algorithm at Register Transfer Level starring with a Algorithmic Specifi
cation can be done in several hours to a few days depending on the complexity of the design. An es
timation is of the total design time needed for an experienced user to create a design is given in 
table 7.1. Since the designs are not implemented manually, the design times for manual designs are 
only rough estimations based upon experience gained by manual design. The design times include 
the design of the PUs and the evaluation of several altematives. The 8 one-dimensional IOCT, con
taining 4 variations of two different algorithms. Both algorithms are designed with 2 different data 
introduetion intervals (011=4 and 011=8) and using fixed-coefficient multipliers or normal multipli
ers. The two-dimensional IOCT is designed with a data introduetion interval of 011=64 and once 
with 011=51, additionally a design was made which combined the two previous designs. 

Design name Manual design time Design time using 
Phideo 

8 one-dimensional IOCTs 8 weeks 2 weeks 

3 types of 10 weeks 3 weeks 
two-dimensional IOCTs 

Inverse Scan 2 weeks 3 days 

Inverse Quantisation 3 weeks 1 week 

Table 7.1 Estimated design time ofvarious manual designs and Phideo designs. 
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7.2 Quality of the design 

The quality of a design can be measured in silicon area, since the optimization goal is the size of the 
design. Since IC fabrication technology is subject to rapid changes, the size of a design measured in 
microns is not fixed and depends on the technology. A better measure is a gate count, this can be 
found by dividing the total chip area in a eertaio technology by the area of a NAND-port in that 
technology. This way a gate count in NAND equivalents is obtained which is more technology inde
pendent. 

At this point and with release 2.0, Prudeo's designs were not fully synthesizable yet, for example the 
memories and flip-flops were not linked intheRT-level VHDLand conditional constrocts allocated 
separate memories for each condition. This made it very hard to obtain an accurate gate count. The 
area size of the memories had to be estimated by expressing the number of memory locations in flip
flop equivalents. The estimations of the manually designed equivalents are based u pon implementa
tions studies made at another group within Philips. Since the precise implementation was not availa
ble these estimations are based u pon numbers from intemal papers. The estimations in table 7.1 
must be seen in this perspective. 

Design name Dil Manually generaled Phideo 

one-dimensional IDCf {8} 12000 gates 13000 gates 

two-dimensional IDCf {128} 20000 gates 20000 gates 

Table 7.2 Estimated design size in gates 

Another measure for the quality of the design is the following. Since the user plays an important part 
in the design process and the design decision are transparent to the user, it is possible to value the re
sulting design. The designer can compare each decision with the one he or she would have made in 
case of manual design. Even more, the designer can impose the same decision on the Phideo design. 
The main task of Phideo is the automatic generation of the schedules and the results. This way a de
sign can be made with comparable quality but in less time. 

7.3 Applicability 

Phideo was designed to be used in the design of high throughput DSP applications. It should not be 
a surprise that Phideo works well for the implementation ofthis kind of algorithms. Especially when 
pipelined designs are concemed, Phideo can be of great help since manual design can be complex. 

Phideo is not designed to optimise algorithms. Before using Phideo the algorithm needs to be opti
mized. All operations which are specified in the algorithm are scheduled by Phideo and enough re
sources are allocated to execute all operations under the given timing constraints. The algorithm 
optimisation is still a task of the human designer. 

Nothing Phideo does cannot be done manually. Moreover this is not the primairy goal of Phideo. 
The main advantage of Phideo is the automation of lots of bookkeeping-like tasks. A simple sched-
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ule can be generated by every designer, though with Phideo it can be done much quicker and it is 
much easier to evaluate different altematives. The main effort is changing pragmas and steering the 
tool. 

In this perspeelive Phideo can be used for other applications. The implementation of a simple algo
rithm with sample frequencies smaller than the clock frequency can also be implemenled with 
Phideo. Phideo takes care of the generation of the controller and the synthesis of the data path with 
its interconneet Furthermore, Phideo takes care of the introduetion of registers when a signal is de
layed and the allocation of memories complete with address generation and control signals when 
more signals are concemed. Possibly Phideo has to be told to map a number of signals onto one 
memory instead of using distributed memories. lf the memory construction and the location assign
ment of the signals is a task the user wants to do manually, a Processing Unit can be defined by the 
user which contains this functionality. 

A large backdraw of designing algorithms with small sample rates, i.e. smaller than one sample per 
clock cycle, is that Phideo is not able to optimise accross hierarchical boundaries. If resources are 
used in a PU, this resource cannot be shared and used in another PU or at another hierarcbic al level. 
This way resources could be used very excessively. A processor like design with all purpose units 
very likely will result in better resource utilization. For this kind of applications the architecture lev
el synthesis tool Mistral-2 [3] would be much more adequate. 

Another application can be the generation of a memory unit which stores and retrieves signals which 
arrive in regular order and at regular times. In this case it can be suftleient to describe the time shape 
of the incoming and outgoing signals. When Phideo knows when signals arrive and at what time 
they have to be retrieved, it can generate the hardware including the memory and the actdressing log
ie to perform this task. Such a simple design can be made within an hour! 

A class of application which is not suited for implementation with Phideo are algorithms which have 
an irregular data flow, like a Variabie Length Decoder, or algorithms were the data flow depends 
highly on the processed data. In Phideo, conditional flows must be encapsulated in processing units 
as much as possible. The resulting data flows of those irregular algorithms very likely will produce 
data which must be stored independently in a memory. As a result Phideo will not able to generate 
efficient address generators and is not equiped to solve this kind of design problems otherwise. 

Algorithms implemented with Phideo are designed to be repeated regularily in time. Of course it is 
possible to execute the algorithm only once or once in a while. Ifthe algorithm is pipelined, the out
puts of a previous execution will be available after the introduetion of the inputs of the next execu
tion. An new execution can be restarted each frame period. It is also possible to stop or delay the 
complete design by masking the clock, and proceed when desired. 

7.4 Design metbod 

At PCALE a design metbod is used which bas proven to be very fruitful. Phideo is suited to be ap
plied in this design method. The algorithmic specification can be translated to an initial PIF descrip
tion easily since both description are at the same level of description but in a different formalism. 
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Especially the intermediale output of Phideo which is at the Behavioural Level can be very useful 
for simulation and verification purposes. The intermediate output of Phideo is, as well as the final 
output, VHDL which makes it easier to run mixed simulations. Since memories are modelled by 
variables and address generation and storage and retrieval of data from memories is not needed in 
this model, the simulation speedscan be very high. Forthermore the inputs and outputs are bit-truc 
and clock-cycle truc which makes it suitable to be used as Behavioural Level VHDL in the PCALE 
design flow (section 1.4). 

7.5 Suggestions for improvement 

There are two points which can be improved in future releases of Phideo. 

1. Phideo should take VHDL as an input language 

2. Hierarchical Design should be extended 

It would be an improvement over PIF, if VHDL could be used as an input language. This way the in
put could be executed and simulated to track downandremove functional errorsatan early stage. 
At this moment a quick run bas to be made without the need for optimizations, whereafter the first 
results can be verified. lf correct, the input of Phideo was also correct. Another advantage of VHDL 
over PIF is that the translation of the Algorithmic Specification into the Phideo 's input would be
come much easier. 

The other improvement concerns Prudeo's hierarchy. At this point hierarchy is Iimitted totheuse of 
rnacros which are substituted in the higher level design. This way Prudeo's hierarchy is not very 
clear and certainly not transparent. When truc hierarchy was possible, this would be a real improv
ent 

Forthermore a few small improvements can be made. The first one is embraces the graphical repre
sentation of preeedenee relations in the schedule generaled by Phideo which is already implcment
ed. This way it beoomes clear to the designer why certain units are scheduled the way they are and 
what operations are submitted to critical preeedenee relations. The user can determine how many 
preeedenee relations must be displayed, most time only the critical preeedenee relations are of inter
est to the designer. 

Another improvement also involves the information given by Phideo on the schedule. Right now it 
is not displayed which operation in the schedule is assigned to which PU. The distribution function 
of a single PU, when several are allocated, cannot be obtained either. This way it is difficult to deter
mine the resource utilization, which can be a measure for the efficiency of the implementation. 

7.6 Overall conclusions 

In this section the main advantages and disadvantages of Phideo are summarized, which were de
scribed in the comments on the design flow in the previous chapter and the previous paragraphs in 
this chapter. 
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The main advantages of Phideo are the following: 

• Short design times. lt is possible to implement a design in a relative short time and to 
obtain an estimation of the resource requirements, like number of operations and mem
ory requirements (registers, RAM). 

• Better exploration of the design space. Since the design time is short, it is possible to 
compare different architectmes and designs within a given period of time. 

• High Level of description. The input of Phideo is at a very high level. This way the 

designer can concentrale on a compact and orderly design. The designer can dissociate 
from lots of implementation details and focus on the bottlenecks of the design first. 

• Quality comparable to manual designs. This is a direct result of the extensive user 
interaction which can intervene with all processes and decisions in the design process. 
The designer can make the design the same as a manual design, inshorter time. Possi
bly even better results could achieved since a better exploration of the design space can 
be made which would be impractical with manual design because that would take to 
much time. 

• Pipelined schedules can be generated. A importantstrengthof Phideo is the schedul
er Jason, which generates a schedule with a pipeline, so the design can be restarted be
fore it is completely executed. Since the data introduetion interval is smaller than the 
overall latency, a better occupation of the resources can be realized. This way a high 
throughput can be achieved with less resources. 

• Automated allocation of memory and construction of address generators. Another 
strength of Phideo is the address generator Matchbox. The only thing which has to be 
known is the input and output order and period of the variables, this is extracted from 
the design automatically. Phideo minimizes the overall memory by choosing a smart lo
cation assignment and generales address generators. 

• Phideo generates also a Behavioural VHDL. The Behavioural Level VHDL can be 
used as a behavioural model for verification purposes. Since memories are modelled by 
variables and address generation and storage and retrieval of data from memories is not 
needed, the simulation speeds can be very high. Furthermore the inputs and outputs are 
bit-true and clock-cycle true which makes it suitable to be used as Behavioural Level VHDL 
in the PCALE design flow. 

A few disadvantages of Phideo are at this moment: 

• Often hard to steer Phideo. Phideo can be steered by means of the definition of con
straints in terms of pragmas. 1t is often difficult to oversee all the consequences of the 
ioclusion of a eertaio constraint. This can result in additional hardware since Phideo 
will try to meet the additional constraints. Somelimes this is the blaim of the designer 
whowants something what is not possible, sometimes Phideo simply does not find the 
solution. This emphasizes the importance of the feedback. This feedback must provide 
the user with enough information to improve the design if possible. The better the feed
back the better the designer can evaluate and improved the designs. 
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• Little documentation and unclear error messa ges. Simultaneous with the work of this 
report a new release of Phideo was being developed. As a result the work on the previous re
lease had been stopped, since at that time all effort was put into the designs ofthe new release. 
At this point still no proper manual for either of the releases exists and error messages contain 
a lot of uninteresting and unclear messages which are not documented as well. Hopefully this 
will be improved in the future. 

• VHDL cannot be used as input language. The Phideo Input Language can not be exe
cuted directly. At this moment with Phideo release-2.0 the input of Phideo can not be 
executed. To circumvent this problem it is possible to carry through Phideo without op
timization and verify the first result on its functional correctness. lf so, the algorithmic 
input of Phideo was correct. It would be a great advantage if PIF would be replaced by 
VHDLas soon as possible. 

• Hierarchy in Phideo is not transparent. Phideo doesnotsupport true hierarchy. Hierar
chy is limited to the use of rnacros which are substituted in the higher level design. This way 
Phideo's hierarchy is not very clear and certainly not transparent. In future releases hierarchy 
is planned to be expanded. 

High throughput DSP applications are best suited to be designed by Phideo, as could be expected 
since Phideo is designed for these applications. Unfortunately not all types of applications can be 
designed. When lower freqencies and smaller throughput are required other tools will probably be 
much more efficient. Phideo has a large number of advantages but still has to mature. At this mo
ment manuals are not available and error messages are not documented. The main reason for this is 
that the tool is still in the development stage, this will surely improve in time. In time I expect 
Phideo to develop into a very valuable and efficient tool, which it largely already is. 
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Appendix A Phideo Input Language (PIF) 

A PIF description consists of two main parts: a declarative part and an algorithmic part. Furthennore 
additional constraints or pragmas can be defined to steer the synthesis process. 

Declarations 

There are three kinds of declarations: 

1. Input and output tenninals: 

infunc input = in term; 
outfunc output = out_term; 

The 1/0-tenninals with the narnes input of type in_tenn and output of type out_tenn are created. 

2. Processing units and their functions 

func +(inl, in2) out = add pu; 
func *(inl, in2) out= mult pu; 
func some func(a,b,c) x,y =-some pu; 
func multi_cycle(a,b) x= {2} a_pu; 

func add(inl, in2) out <sel=O:*> = addsub pu; 
func sub(inl, in2) out <sel=l:*> = addsub=pu; 

The identifiers between parenthesis specify the inputs of the function the succeeding identifiers 
specify the outputs. The identifier succeeding the equality sign defines the processing units. These 
PUs should be defined in VHDL. An example of a Processing Unit in VHDL can be found in 
appendix C. 

A number between brackets preceding the Processing Units denotes the data introduetion interval or 
restart time. The functions add and sub are mapped upon the same PU, addsub_pu. An additional in
put se! is created to control the function of this unit. 

3. Signals and their widths 

signal a,b = 8; 
signal c = 14; 

With this declarations signals and their widths in bits can be defined. 
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Algorithm 

The algorithmic pan of the design starts with the definition of the global period and execution inter
val: 

{4} : [0,100] 

The algorithm should be restarted every 4 doek cycles, the data introduetion interval is 4. All oper
ations should start between cycle 0 and cycle 100. By adjusting global period the data introduetion 
interval of the algorithm can be changed. If the data introduetion interval is made smaller than the 
latency, a pipelined unit is designed. 

The algorithmic pan consist of a description of the algorithm in termsof the declared PU-functions. 
Each assignment is threaded as a single assignment. Ordering of statements has no meaning, the or
dering of operations is determined by the data dependencies. Only one function call per statement is 
allowed, so: 

a b + c + d; 
y f ( g (x) ) ; are not allowed! 

Three types of function calls are possible: 

1. Input functions: 

result = funcname(}; 

a = input(}; 

2. Output functions: 

funcname(arg}; 

output (a}; 

3. PU functions: 

results = func(args); 
result = argl operator arg2; 

u,v some func(x,y,z}; 
a = b + c;-

All functions calls may be preceded by a label 

{lbl} a = b + c; 

Iterations or loops in Phideo describe a 'time' loop! All iterations of a single assignment or function 
within the loop will be mapped upon the sameProcessing Unit. The operations are scheduled with a 
fixed period conform the Phideo model of periodic operations. 

(iterator : minval .. maxval) {period} 
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(y 0 .. 312) {864} :: 
(x : 0 •• 719) {1} :: 
begin 

a[i] =a func(b[i]); 
x[i+10] ~ other_func(a[i],y[2*i]); 

end; 

The iterator is incremented every period clock cycles. 

Conditional partsof the algorithm can be found at two levels. In the Processing Units and in the al
gorithm. It is preferred to implcment the conditional parts of the algorithm in Processing Units as 
much as possible since this reduces the complexity of the scheduling process. The conditional con
stmets in the algorithm which are not mapped upon a Processing Unit are submitted to a constraint. 
The control value of this conditional construct must be know at the start of the algorithm. It is not 
possible to use a variabie which is computed within the algorithm as the control value. This control 
value must be declared with as follows: 

contro~ cname <values>; 

contro~ select = <0,1,2,3,4,5,6> 

An extra terminal called select is created wide enough to represem the values (in this case 3 bits). 
The conditional assignment bas the following construct: 

case sig of 
v1: ... 
<v2,v3>: 
e~se ... 
esac: 

case select of 
1: a= f(b); 
<2,3>: a= g(b,c); 
e~se a= h(b,c,d); 
esac: 

Pragmas 

In actdition to the assignments to describe the algorithm, a number of commands are defined to give 
additional constraints and hints to the Phideo synthesis tools. These commands or pragmas can be 
use in the iteration loop of the Phideo design method to steer the scheduler and the allocation proc
ess. 

The sequence pragma puts constraints on the scheduling time points of operations. With sequence 
pragmas either the exact schedule time of a operadon or the relative schedule time of two operations 
can be specified. The arguments of the sequence pragmas denote the labels of operations. 

%ina = 5; 
%inb - ina = 2; 

The assign pragma poses assignment constraints to operation. In its first form (one '@'), several op
erations of the sameresource type can be mapped on the sameunit by assigning the same value. The 
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second fonn (two '@ '), all operations with the same assignment value are mapped to a uniquely for 
these operations reserved unit. 

%ml, m2 @1 
%a @@2 

MemAlloc pragma and signa/Mem pragma are used to pre-allocate a memory of a certain type and 
to assign a signal (array) to an pre-allocated memory. The available types should be in the Phideo 
memory library file, e.g. Regfile or SRAM. The name of the memory is defined between double 
quotes. The number of read and write pons and access times are defined in the library file. 

%memory "one" = SRAM; 
%memory "two" = REGFILE; 
%temp = "one" ; 

A pre-allocation for the number of Processing Units of a certain type can be defined in the declara
tion of a function. With square brackets enclosing a number, the number of Processing Units can be 
specified. 

func *(inl, in2) out mult_pu[3]; 
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Appendix B Hierarchical design in PIF 

To illustrate the use of hierarchy in PIF, two PIF descriptions are given below. Both algorithms are 
designed to reverse the order of 4 successive samples. The goal is to design a component which re
verses the order of eight successive samples. Below two PIF routines are showed, Reverse 1 and 
Reverse2, which realize this function. 

Reverse1: 

{in} 
(i: 0 .. 3) {1} :: 

x [i] = input(); 

(i: 0 .• 3) {1} :: 
y[i] = x[i]; 

(i: 0 .. 3) {1} :: 
{out = output(y[3-i]); 

Reverse2: 

{in} 
(i: 0 .• 3) {1} :: 

x[3-i] =input(); 

(i: 0 •. 3) {1} :: 
y[i] = x[i]; 

(i: 0 •• 3) {1} :: 
{out = output(y[i]); 

x[O] 
x[l] 

x[2] 
x[3] 

y[O] 
y[l] 

y[2] 
y[3] 

y[O] 
y[l] 

y[2] 
y[3] 

The only difference between the two descriptions is the index order ofthe inputs and outputs. Usual
ly narnes and the index of variabie are transparent and not of any inftuence. This is not true in this 
case! When the macro is used at a higher level, the Phideo preprocessor substitutes the narnes of the 
variables in the macro. The order and period of the signal remain the same. As a result the intemal 
index order of the input and output variables are used for the substituted variables as well. 

The macro of description Reverse2 is shown below. Note that the variables x and y originate from 
the PIF description and therefore must differ! 

MACRO reverse2_bbx(label, instanee ,y ,x) 

(i: 0 .• 3) {1} :: 
{func_in} func_in(x[7-i]); 

(i: 0 •. 3) {1} :: 
{func_out} func_out(y[i]); 

At a higher level of hierarchy this file can be used in another PIF description. The .bbx file can be in
cluded as shown bellow (not foliowed by a semicolon!), now the macro can be used like a function 
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as shown in the following example. The input and output parameters a and bare substituted. The la

bel of the function is Reverse and the instanee number is 1. 

#include ~file name.bbx" 
( i : 0 -. . 3 ) { 1 } 

{in} a[i] =input(); 

file_name_bbx (reverse, 1, b, a); 

(i: 3 .. 0) {1} :: 
{out} = output(b[i]); 

When the macro Reverse2 is used the order and period of the variabie a and b are determined by the 

macro. The order of a will be a[3-i] with (i: 0 .. 3) and period { 1}. The order of b will be b[i] with (i: 

0 .. 3) and period { 1}. Since the production order of the input does not match the consumption order 

of the macro 'reverse', Phideo inserts an additional to match the production and consumption of the 

data (figure 7.1). The same can beseen between the output ofthe macro 'reverse' and the output ter

minal. 

input 

'

a[O] . 

a [ 1] 

:1~~ 

Figure 7.1 Time shapes of the input, the output and the function Reverse, and 

the resulting schematic when using Reverse2. 

The use of the macro Reverse1 in the previous example will result in the schematic of tigure 7.2. 

Note that the order and period of the signal produced by the input and the signal consumed by 

Reverse 1 match, therefore no additional memory is necessary. 

100 

Figure 7.2 Time shapes of the input, the output and the function reverse, and 

the resulting schematic when using Reverse 1. 
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Appendix C Example of user-defined PUs 

PUs used for one-dimensional IDCT 

"idctll_ B_pus. vhd" 

PUs for one-dimensional IDCT 
used for: 
idctll B.pif, DII=B and 
idct11=4.pif, DII =4 

library ieee; 
use ieee.std_logic_1164.all; 

package idctll 4 pus is 
component mul t pu 
port( -

) ; 

ck : in std ulogic; 
inputl, input2: in std ulogic vector; 
output : out std_ulogic_vector 

end component; 

component addsub pu 
port ( -

) ; 

ck : in std ulogic; 
inputl, input2: in std ulogic vector; 
output : out std ulogic vector; 
c : in std_ulogic -

end component; 

component lut pu 
port ( -

) ; 

ck : in std ulogic; 
output : out-std ulogic vector(13 downto 0); 
addr : in std_uiogic_vector(3 downto 0) 

end component; 
end idct11_4_pus; 

library ieee; 
use ieee.std_logic_1164.all; 

library synergy; 
use synergy.constraints.all; 

entity mult_pu is 
port ( 

) ; 

ck : in std ulogic; 
inputl, input2: in std ulogic vector; 
output : out std_ulogic_vector 

attribute preserve of mult_pu: entity is true; 
end mult_pu; 
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architecture behaviour of mult_pu is 
BEGIN 
END behaviour; 

102 

library ieee; 
use ieee.std_logic_ll64.all; 

library synergy; 
use synergy.constraints.all; 

entity addsub_pu is 
port ( 

) ; 

ck : in std ulogic; 
inputl: in std ulogic vector(l6 DOWNTO 0); 
input2: in std-ulogic-vector(l6 DOWNTO 0); 
output : out std ulogic vector(l6 DOWNTO 0); 
c : in std_ulogic -

attribute preserve of addsub pu: entity is true; 
end addsub_pu; -

use ieee.std_logic_arith.all; 

architecture behaviour of addsub_pu is 
BEGIN 

add: PROCESS (inputl, input2, c) 
VARIABLE opl, op2, t: std ulogic vector(l7 DOWNTO 0); 

BEGIN - -
IF is x(inputl) OR is x(input2) OR is x(c) TBEN 

output<= (OTBERS~>'X'); -
ELSE 

opl := inputl(l6) & inputl(l6 DOWNTO 0); 
op2 := input2(16) & input2(16 DOWNTO 0); 
IF (c='l') TBEN t := opl+op2; ELSE t := opl-op2; 
END IF; 

saturation 
IF NOT(t(l7)=t(l6}) TBEN 

ASSERT (t(l7)='1') REPORT "Positive overflow 
in addsub_pu" SEVERITY warning; 

ASSERT (t(l7)='0') REPORT "Negative overflow 
in addsub_pu" SEVERITY warning; 

t(l5 DOWNTO 0) := (OTBERS=> NOT(t(l7})}; 
END IF; 
output<= t(l7) & t(l5 DOWNTO 0); 

END IF; 
END PROCESS add; 

END behaviour; 
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PUs used for two-dimensional IDCT 

"idct_ B_pus. vhd" 

PUs for two-dimensional IDCT 
used for: 
idct 8.pif, DII=128 and 
idct-4 x conv.pif, DII = 64 and 
idct_4_x-nieuw.pif, DII = 51 and 
idct=4=x=both.pif, DII =64 resp. DII= 51 

library ieee; 
use ieee.std_logic_1164.all; 

package idct 4 x pus is 
component ldct11_4 port ( 

ck : in std ulogic; 
in1 term: In std ulogic vector (16 downto 0); 
in2-term: in std-ulogic-vector (16 downto 0); 
outi term: out std ulogic vector (16 downto 0); 
out2-term: out std-ulogic-vector (16 downto 0); 
global reset : in std uloglc); 

end component; -

component times8_pu 
port ( 

) ; 

ck : in std ulogic; 
input : in std ulogic vector; 
output : out std_uloglc_vector 

end component; 

component divide64 pu 
port ( -

) ; 

ck : in std ulogic; 
input : in std ulogic vector; 
output : out std_ulogic_vector 

end component; 
end idct_4_x_pus; 

library ieee; 
use ieee.std_logic_1164.a11; 

library synergy; 
use synergy.constraints.all; 

entity idct11 4 is 
port ( -

ck : in std ulogic; 
in1 term: In std ulogic vector (16 downto 0); 
in2-term: in std-ulogic-vector (16 downto 0); 
outi term: out std ulogic vector (16 downto 0); 
out2-term: out std-ulogic-vector (16 downto 0); 
global reset : in std ulogic 
) ; - -

attribute preserve of idct11 4: entity is true; 
end idct11 4; 
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ARCHITECTURE behaviour OF idct11 4 IS 
BEGIN 
END behaviour; 

library ieee; 
use ieee.std_logic_1164.all; 

entity times8_pu is 
port ( 

) ; 

ck : in std ulogic; 
input : in std ulogic vector; 
output : out std_ulogic_vector 

end times8_pu; 

ARCHITECTURE behaviour OF times8_pu IS 
BEGIN 

times8: PROCESS (input) 
CONSTANT m: natural := input'LENGTH-1; 
VARIABLE tmp: std ulogic vector(m DOWNTO 0); 

~~N - -
tmp := input(m} & input(m-4 DOWNTO 0) & "000"; 
IF NOT( (input(m)=input(m-1)) AND 

(input(m)=input(m-2)) AND 
(input(m}=input(m-3)) ) THEN 

ASSERT (input(m)='1') REPORT "Positive overflow 
in times8 pu" SEVERITY error; 

- ASSERT (input(m)='O') REPORT "Negative overflow 
in times8 pu" SEVERITY error; 

- tmp(m-1 DOWNTO 0) := (OTHERS=> NOT(input(m))); 
END IF; 
output <= tmp; 

END PROCESS times8; 
END behaviour; 

library ieee; 
use ieee.std_logic_1164.all; 

entity divide64 pu is 
port ( -

) ; 

ck : in std ulogic; 
input : in std ulogic vector; 
output : out std_ulogic_vector 

end divide64_pu; 

USE ieee.std_logic_arith.ALL; 

ARCHITECTURE behaviour OF divide64_pu IS 
BEGIN 

divide64: PROCESS (input) 
CONSTANT m: natural := 16; -- input'length-1; 
VARIABLE rnd: std ulogic vector(m+1 DOWNTO 0); 
VARIABLE sat : std-ulogic-vector(m DOWNTO 0); 
VARIABLE pos overflow, no-neg overflow std ulogic; 

BEGIN - - - -
IF is_x(input) THEN 

output<= (OTHERS=>'X'); 
ELSE 
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divide by 64, keep 1 extra bit for rounding 
rnd := input(m) & input(m) & input(m) & 

input(m) & input(m) & input(m) & 
input(m DOWNTO 5); 

rnd := rnd + 1; 
sat := rnd(m+1 DOWNTO 1); 

saturation 
pos overflow:= '0'; 
no neg overflow := '1'; 
FOR i IN 15 DOWNTO 8 LOOP 

pos overflow:= pos overflow OR sat(i); 
no neg overflow:= no neg overflow AND sat(i); 

END LOOP; - - -

IF (((sat(16)='0') AND (pos overflow='1')) OR 
((sat(16)='1') AND (no_neg_overflow='O')) 

THEN 
ASSERT (sat(16)='1') REPORT "Positive 

overflow in div64 pu" SEVERITY warning; 
- ASSERT (sat(16)='0') REPORT "Negative 

overflow in div64 pu" SEVERITY warning; 
sat(15 DOWNTO 8) := (OTHERS=> sat(16)); 
sat( 7 DOWNTO 0) := (OTHERS=> NOT(sat(16))); 

END IF; 

output<= sat(16 DOWNTO 0); 
END IF; 

END PROCESS divide64; 
END behaviour; 
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Appendix D Example of PIF design 

11 ~idct11_8.pif" 

11 uses PUs:~idct11_8_pus.vhd" 

11 One dimensional IDCT 
11 algorithm: loeffler with 11 multiplications 
11 Data Introduetion Interval= 8 

11 declarations 

infunc input1 =in term [1]; 
outfunc output1 = out1_term [1]; 

func + (input1, input2) output {1} <c=1:*> = addsub_pu [4]; 
func- (input1, input2) output {1} <c=O:*> = addsub_pu [4]; 
func * (input1, input2) output {1} mult_pu [10]; 

signa1 idct in, idct out 17; 
signa1 hulp~ m, d, a~ b, c = 17; 
signa1 coeff = 14; 

11 algorithm 

{8} : [0, 100] 

{in1} 
(i: 0 .. 7) {1} :: 

idct_in[i] = input1(); 

{ a4} 
{aS} 
{a6} 
{a7} 

a[4] 
a [ S] 
a [ 6] 
a [ 7] 

idct in[1]- idct in[7]; 
idct-in[3] * coeff; 
idct-in[S] * coeff; 
idct=in[1] + idct_in[7]; 

{oO} 
{o1} 

idct out[O] 
idct=out[1] 

c[7] + c[O]; 
c[6] + c[1]; 

{o7} idct_out[7] = c[O] - c[7]; 

(i 
{out1} 

11 pragmas 

0 •• 7) {1} :: 
output1(idct_out[i]); 

% out2 - out1 = 0; 

%m1 @@1; %m2 @@2; %m3 @@3; %m4 @@4; %mS @@S; 
%m6 @@6; %m7 @@7; %m8 @@8; %m9 @@9; 
%aS, a6 @@10; 
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11 ~idct11_4.pif" 

11 uses PUs:~idct11_4_pus.vhd" 

11 One dimensional IDCT 
11 algorithm: loeffler with 11 multiplications 
11 Data Introduetion Interval= 4 
11 => two input and two output terminals 

11 declarations 

infunc input1 = 
infunc input2 = 
outfunc output1 
outfunc output2 

in1 term [1]; 
in2-term [1]; 

out1 term [1]; 
= out2=term [1]; 

func + (input1, input2) output {1} <c=1:*> = addsub pu [8]; 
func- (input1, input2) output {1} <c=O:*> = addsub-pu [8]; 
func * (input1, input2) output {1} = mult_pu [10];-

signal idct in top, idct in bot= 17; 
signalidct-out top, idct out bot= 17; 
signal m, d~ a,-b, c = 17; 
signal coeff = 14; 

11 algorithm 

{4} : [0, 100] 

(i : 0 .• 3) {1} .. 
begin 

{in1} 
{in2} 

{a4} 
{aS} 
{a6} 
{ a7} 

end; 

a [ 4] 
a [ 5] 
a [ 6] 
a [ 7] 

idct in top[i] 
idct=in=bot[i] 

idct in top[1 
idct-in-top[3 ] 
idct-in-bot[S-4] 
idct=in=top[1 ] 

input1(); 
input2 (); 

- idct in bot[7-4]; 
* coeff; -
* coeff; 
+ idct_in_bot[7-4]; 

{oO} 
{o1} 

idct out top[O 
idct=out=top[1 

c[7] + c[O]; 
c[6] + c[1]; 

{o7} idct_out_bot[7-4] 

(i : 0 .• 3) {1} :: 
begin 

c[O] - c[7]; 

{out1} 
{out2} 

output1(idct out top[i]); 
output2(idct=out=bot[i]); 

end; 

11 pragmas 
% out2 - out1 = 0; 
%m1 @@1; %m2 @@2; %m3 @@3; %m4 @@4; %m5 @@5; 
%m6 @@6; %m7 @@7; %m8 @@8; %m9 @@9; 
%a5, a6 @@10; 
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11 idct 8.pif 

11 Two-dimensional IDCT 
11 using idct 11 8.pif, one-dimensional IDCT with DII=8 
11 Data Introduetion Interval= 128 
11 (8 * idct_row + 8 * idct row = 128) 

11 declarations 

infunc input= in term [1]; 
outfunc output= out_term [1]; 

func times8 (input) output= times8 pu [1]; 
func divide64 (input) output divide64_pu [1]; 

#include "idct11 8.bbx" 

signa1 in1, in8, out1, out64 = 17; 
signa1 v_idct, v_idct_t, h idct= 17; 

11 algorithm 

{128} : [0, 2*128] 

{in1} 
{in8} 

%in1 = 0; 

(x : 0 • . 7) { 8} : : 
(y : 0 •. 7) {1} :: 
begin 

in1[x] [y] input(); 
in8 [x] [y] = times8 (in1 [x] [y]); 

end; 

(x 0 .. 7) { 8} : : 
idct11_8_bbx(v_idct,1, in8[x], v_idct[x]); 

(x: 0 •• 7) {8} :: 
(y: 0 •• 7) {1} :: 

{transp} v idct t[x] [y] v_idct[y] [x]; 
%transp : alap; - -

(x 0 .. 7) {8} :: 
idct11_8_bbx(h_idct,1, v_idct_t[x], h_idct[x]); 

{out64} 
{out1} 

(x: 0 •• 7) {8} :: 
(y: 0 •• 7) {1} :: 
begin 

end; 

out64[x] [y] = divide64(h idct[x] [y]); 
output(out64[x] [y]); -
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address generation ............................................................................................................. 28 
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bit true ................................................................................................................................. 8 
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B-pictures; bidirectional pictures ....................................................................................... 39 

butterfly ............................................................................................................................. 61 
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eeiTT see ITU 
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DeT; Discrete eosine Transform ............................................................................. 41,42,55 
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DFf; Discrete Fourier Transform ....................................................................................... 55 
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DSP; Digital Signal Processing ..................................................................................... 16,16 
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frame (picture) .................................................................................................................. 37 
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GOP; Group Of Pictures; group of picture layer ................................................................ 43 

1-pictures; Interpolative pictures ........................................................................................ 39 

HDTV; High Definition Tele Vision ...................................................................................... 3 

high throughput DSP application ....................................................................................... 16 

High Level; High Level Synthesis .................................................................................... 4,7 

HT; Haar Transform .......................................................................................................... 55 
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ISO; International Standards Organization ......................................................................... 33 

IQ; Inverse Quantization ............................................................................................... 46,47 
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RLC; Run Length Co ding .................................................................................................. 41 
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System Level; System Level Synthesis ................................................................................ 4 
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