417 research outputs found

    Exposing the Limitations of Molecular Machine Learning with Activity Cliffs

    Get PDF
    Machine learning has become a crucial tool in drug discovery and chemistry at large, e.g., to predict molecular properties, such as bioactivity, with high levels of accuracy. However, activity cliffs – pairs of molecules that are highly similar in their structure but exhibit large differences in potency – have been underinvestigated for their effect on model performance. Not only are these edge cases informative for molecule discovery and optimization, but models that are well-equipped to accurately predict the potency of activity cliffs have an increased potential for prospective applications. Our work aims to fill the current knowledge gap on best-practice machine learning methods in the presence of activity cliffs. We benchmarked more than 20 machine and deep learning approaches on curated bioactivity data from 30 macromolecular targets for their performance on activity cliff compounds. While all methods struggled in the presence of activity cliffs, machine learning approaches based on molecular descriptors outperformed more complex deep learning methods. These results advocate for (a) the inclusion of dedicated “activity-cliff-centered” metrics during model development and evaluation, and (b) the development of novel algorithms to better predict the properties of activity cliff. To this end, the methods, metrics, and results of this study have been encapsulated into an open-access benchmarking platform named MoleculeACE (Activity Cliff Estimation, available on GitHub at: https://github.com/molML/MoleculeACE). MoleculeACE is designed to steer the community towards addressing the pressing but overlooked limitation of molecular machine learning models posed by activity cliffs. This data deposit contains all trained models and the data used to train them. All models can be easily loaded and used to predict bioactivity on new molecules with MoleculeACE. Since models are target-specific, models are provided for all 30 data sets. Every model is accompanied by a configure file that describes its (optimized) hyperparameters

    Robust recognition and exploratory analysis of crystal structures using machine learning

    Get PDF
    In den Materialwissenschaften läuten Künstliche-Intelligenz Methoden einen Paradigmenwechsel in Richtung Big-data zentrierter Forschung ein. Datenbanken mit Millionen von Einträgen, sowie hochauflösende Experimente, z.B. Elektronenmikroskopie, enthalten eine Fülle wachsender Information. Um diese ungenützten, wertvollen Daten für die Entdeckung verborgener Muster und Physik zu nutzen, müssen automatische analytische Methoden entwickelt werden. Die Kristallstruktur-Klassifizierung ist essentiell für die Charakterisierung eines Materials. Vorhandene Daten bieten vielfältige atomare Strukturen, enthalten jedoch oft Defekte und sind unvollständig. Eine geeignete Methode sollte diesbezüglich robust sein und gleichzeitig viele Systeme klassifizieren können, was für verfügbare Methoden nicht zutrifft. In dieser Arbeit entwickeln wir ARISE, eine Methode, die auf Bayesian deep learning basiert und mehr als 100 Strukturklassen robust und ohne festzulegende Schwellwerte klassifiziert. Die einfach erweiterbare Strukturauswahl ist breit gefächert und umfasst nicht nur Bulk-, sondern auch zwei- und ein-dimensionale Systeme. Für die lokale Untersuchung von großen, polykristallinen Systemen, führen wir die strided pattern matching Methode ein. Obwohl nur auf perfekte Strukturen trainiert, kann ARISE stark gestörte mono- und polykristalline Systeme synthetischen als auch experimentellen Ursprungs charakterisieren. Das Model basiert auf Bayesian deep learning und ist somit probabilistisch, was die systematische Berechnung von Unsicherheiten erlaubt, welche mit der Kristallordnung von metallischen Nanopartikeln in Elektronentomographie-Experimenten korrelieren. Die Anwendung von unüberwachtem Lernen auf interne Darstellungen des neuronalen Netzes enthüllt Korngrenzen und nicht ersichtliche Regionen, die über interpretierbare geometrische Eigenschaften verknüpft sind. Diese Arbeit ermöglicht die Analyse atomarer Strukturen mit starken Rauschquellen auf bisher nicht mögliche Weise.In materials science, artificial-intelligence tools are driving a paradigm shift towards big data-centric research. Large computational databases with millions of entries and high-resolution experiments such as electron microscopy contain large and growing amount of information. To leverage this under-utilized - yet very valuable - data, automatic analytical methods need to be developed. The classification of the crystal structure of a material is essential for its characterization. The available data is structurally diverse but often defective and incomplete. A suitable method should therefore be robust with respect to sources of inaccuracy, while being able to treat multiple systems. Available methods do not fulfill both criteria at the same time. In this work, we introduce ARISE, a Bayesian-deep-learning based framework that can treat more than 100 structural classes in robust fashion, without any predefined threshold. The selection of structural classes, which can be easily extended on demand, encompasses a wide range of materials, in particular, not only bulk but also two- and one-dimensional systems. For the local study of large, polycrystalline samples, we extend ARISE by introducing so-called strided pattern matching. While being trained on ideal structures only, ARISE correctly characterizes strongly perturbed single- and polycrystalline systems, from both synthetic and experimental resources. The probabilistic nature of the Bayesian-deep-learning model allows to obtain principled uncertainty estimates which are found to be correlated with crystalline order of metallic nanoparticles in electron-tomography experiments. Applying unsupervised learning to the internal neural-network representations reveals grain boundaries and (unapparent) structural regions sharing easily interpretable geometrical properties. This work enables the hitherto hindered analysis of noisy atomic structural data

    PubChem atom environments

    Get PDF

    ToDD: Topological Compound Fingerprinting in Computer-Aided Drug Discovery

    Full text link
    In computer-aided drug discovery (CADD), virtual screening (VS) is used for identifying the drug candidates that are most likely to bind to a molecular target in a large library of compounds. Most VS methods to date have focused on using canonical compound representations (e.g., SMILES strings, Morgan fingerprints) or generating alternative fingerprints of the compounds by training progressively more complex variational autoencoders (VAEs) and graph neural networks (GNNs). Although VAEs and GNNs led to significant improvements in VS performance, these methods suffer from reduced performance when scaling to large virtual compound datasets. The performance of these methods has shown only incremental improvements in the past few years. To address this problem, we developed a novel method using multiparameter persistence (MP) homology that produces topological fingerprints of the compounds as multidimensional vectors. Our primary contribution is framing the VS process as a new topology-based graph ranking problem by partitioning a compound into chemical substructures informed by the periodic properties of its atoms and extracting their persistent homology features at multiple resolution levels. We show that the margin loss fine-tuning of pretrained Triplet networks attains highly competitive results in differentiating between compounds in the embedding space and ranking their likelihood of becoming effective drug candidates. We further establish theoretical guarantees for the stability properties of our proposed MP signatures, and demonstrate that our models, enhanced by the MP signatures, outperform state-of-the-art methods on benchmark datasets by a wide and highly statistically significant margin (e.g., 93% gain for Cleves-Jain and 54% gain for DUD-E Diverse dataset).Comment: NeurIPS, 2022 (36th Conference on Neural Information Processing Systems

    Reduced collision fingerprints and pairwise molecular comparisons for explainable property prediction using Deep Learning

    Full text link
    Les relations entre la structure des composés chimiques et leurs propriétés sont complexes et à haute dimension. Dans le processus de développement de médicaments, plusieurs proprié- tés d’un composé doivent souvent être optimisées simultanément, ce qui complique encore la tâche. Ce travail explore deux représentations des composés chimiques pour les tâches de prédiction des propriétés. L’objectif de ces représentations proposées est d’améliorer l’explicabilité afin de faciliter le processus d’optimisation des propriétés des composés. Pre- mièrement, nous décomposons l’algorithme ECFP (Extended connectivity Fingerprint) et le rendons plus simple pour la compréhension humaine. Nous remplaçons une fonction de hachage sujet aux collisions par une relation univoque de sous structure à bit. Nous consta- tons que ce changement ne se traduit pas par une meilleure performance prédictive d’un perceptron multicouche par rapport à l’ECFP. Toutefois, si la capacité du prédicteur est ra- menée à celle d’un prédicteur linéaire, ses performances sont meilleures que celles de l’ECFP. Deuxièmement, nous appliquons l’apprentissage automatique à l’analyse des paires molécu- laires appariées (MMPA), un paradigme de conception du développement de médicaments. La MMPA compare des paires de composés très similaires, dont la structure diffère par une modification sur un site. Nous formons des modèles de prédiction sur des paires de com- posés afin de prédire les différences d’activité. Nous utilisons des contraintes de similarité par paires comme MMPA, mais nous utilisons également des paires échantillonnées de façon aléatoire pour entraîner les modèles. Nous constatons que les modèles sont plus performants sur des paires choisies au hasard que sur des paires avec des contraintes de similarité strictes. Cependant, les meilleurs modèles par paires ne sont pas capables de battre les performances de prédiction du modèle simple de base. Ces deux études, RCFP et comparaisons par paires, visent à aborder la prédiction des propriétés d’une manière plus compréhensible. En utili- sant l’intuition et l’expérience des chimistes médicinaux dans le cadre de la modélisation prédictive, nous espérons encourager l’explicabilité en tant que composante nécessaire des modèles cheminformatiques prédictifs.The relationships between the structure of chemical compounds and their properties are complex and high dimensional. In the drug development process, multiple properties of a compound often need to be optimized simultaneously, further complicating the task. This work explores two representations of chemical compounds for property prediction tasks. The goal of these suggested representations is improved explainability to better understand the compound property optimization process. First, we decompose the Extended Connectivity Fingerprint (ECFP) algorithm and make it more straightforward for human understanding. We replace a collision-prone hash function with a one-to-one substructure-to-bit relationship. We find that this change which does not translate to higher predictive performance of a multi- layer perceptron compared to ECFP. However, if the capacity of the predictor is lowered to that of a linear predictor, it does perform better than ECFP. Second, we apply machine learning to Matched Molecular Pair Analysis (MMPA), a drug development design paradigm. MMPA compares pairs of highly similar compounds, differing in structure by modification at one site. We train prediction models on pairs of compounds to predict differences in activity. We use pairwise similarity constraints like MMPA, but also use randomly sampled pairs to train the models. We find that models perform better on randomly chosen pairs than on pairs with strict similarity constraints. However, the best pairwise models are not able to beat the prediction performance of the simpler baseline single model. Both of these investigations, RCFP and pairwise comparisons, aim to approach property prediction in a more explainable way. By using intuition and experience of medicinal chemists within predictive modelling, we hope to encourage explainability as a necessary component of predictive cheminformatic models

    Machine Learning for Kinase Drug Discovery

    Get PDF
    Cancer is one of the major public health issues, causing several million losses every year. Although anti-cancer drugs have been developed and are globally administered, mild to severe side effects are known to occur during treatment. Computer-aided drug discovery has become a cornerstone for unveiling treatments of existing as well as emerging diseases. Computational methods aim to not only speed up the drug design process, but to also reduce time-consuming, costly experiments, as well as in vivo animal testing. In this context, over the last decade especially, deep learning began to play a prominent role in the prediction of molecular activity, property and toxicity. However, there are still major challenges when applying deep learning models in drug discovery. Those challenges include data scarcity for physicochemical tasks, the difficulty of interpreting the prediction made by deep neural networks, and the necessity of open-source and robust workflows to ensure reproducibility and reusability. In this thesis, after reviewing the state-of-the-art in deep learning applied to virtual screening, we address the previously mentioned challenges as follows: Regarding data scarcity in the context of deep learning applied to small molecules, we developed data augmentation techniques based on the SMILES encoding. This linear string notation enumerates the atoms present in a compound by following a path along the molecule graph. Multiplicity of SMILES for a single compound can be reached by traversing the graph using different paths. We applied the developed augmentation techniques to three different deep learning models, including convolutional and recurrent neural networks, and to four property and activity data sets. The results show that augmentation improves the model accuracy independently of the deep learning model, as well as of the data set size. Moreover, we computed the uncertainty of a model by using augmentation at inference time. In this regard, we have shown that the more confident the model is in its prediction, the smaller is the error, implying that a given prediction can be trusted and is close to the target value. The software and associated documentation allows making predictions for novel compounds and have been made freely available. Trusting predictions blindly from algorithms may have serious consequences in areas of healthcare. In this context, better understanding how a neural network classifies a compound based on its input features is highly beneficial by helping to de-risk and optimize compounds. In this research project, we decomposed the inner layers of a deep neural network to identify the toxic substructures, the toxicophores, of a compound that led to the toxicity classification. Using molecular fingerprints —vectors that indicate the presence or absence of a particular atomic environment —we were able to map a toxicity score to each of these substructures. Moreover, we developed a method to visualize in 2D the toxicophores within a compound, the so- called cytotoxicity maps, which could be of great use to medicinal chemists in identifying ways to modify molecules to eliminate toxicity. Not only does the deep learning model reach state-of-the-art results, but the identified toxicophores confirm known toxic substructures, as well as expand new potential candidates. In order to speed up the drug discovery process, the accessibility to robust and modular workflows is extremely advantageous. In this context, the fully open-source TeachOpenCADD project was developed. Significant tasks in both cheminformatics and bioinformatics are implemented in a pedagogical fashion, allowing the material to be used for teaching as well as the starting point for novel research. In this framework, a special pipeline is dedicated to kinases, a family of proteins which are known to be involved in diseases such as cancer. The aim is to gain insights into off-targets, i.e. proteins that are unintentionally affected by a compound, and that can cause adverse effects in treatments. Four measures of kinase similarity are implemented, taking into account sequence, and structural information, as well as protein-ligand interaction, and ligand profiling data. The workflow provides clustering of a set of kinases, which can be further analyzed to understand off-target effects of inhibitors. Results show that analyzing kinases using several perspectives is crucial for the insight into off-target prediction, and gaining a global perspective of the kinome. These novel methods can be exploited in the discovery of new drugs, and more specifically diseases involved in the dysregulation of kinases, such as cancer

    Advances in De Novo Drug Design : From Conventional to Machine Learning Methods

    Get PDF
    De novo drug design is a computational approach that generates novel molecular structures from atomic building blocks with no a priori relationships. Conventional methods include structure-based and ligand-based design, which depend on the properties of the active site of a biological target or its known active binders, respectively. Artificial intelligence, including ma-chine learning, is an emerging field that has positively impacted the drug discovery process. Deep reinforcement learning is a subdivision of machine learning that combines artificial neural networks with reinforcement-learning architectures. This method has successfully been em-ployed to develop novel de novo drug design approaches using a variety of artificial networks including recurrent neural networks, convolutional neural networks, generative adversarial networks, and autoencoders. This review article summarizes advances in de novo drug design, from conventional growth algorithms to advanced machine-learning methodologies and high-lights hot topics for further development.Peer reviewe
    • …
    corecore