
Robust recognition and exploratory analysis of crystal
structures using machine learning

Dissertation

zur Erlangung des akademischen Grades

Doctor rerum naturalium
(Dr. rer. nat.)

im Fach: Physik

Spezialisierung: Theoretische Physik

eingereicht an der Mathematisch-Naturwissenschaftlichen Fakultät
der Humboldt-Universität zu Berlin

von

M.Sc. Andreas Leitherer

Präsident (komm.) der Humboldt-Universität zu Berlin:
Prof. Dr. Peter Frensch

Dekanin der Mathematisch-Naturwissenschaftlichen Fakultät:
Prof. Dr. Caren Tischendorf

Gutachter/innen: 1. Prof. Dr. Matthias Scheffler
2. Prof. Dr. Dr. h.c. Claudia Draxl
3. Dr. Sergei V. Kalinin

Tag der mündlichen Prüfung: 25.05.2022

Abstract

Artificial intelligence (AI) has the potential to spark significant advances in multiple scientific
fields. In materials science, AI tools are driving a paradigm shift towards big data-centric
research. Large computational databases with millions of entries and high-resolution exper-
iments such as electron microscopy contain large (and growing) amount of information. To
leverage this under-utilized – yet very valuable – data towards discovering hidden patterns
and eventually novel physics, automatic analytical methods need to be developed. Artificial
neural networks are attractive candidates due to their ability to recognize complex patterns.
The classification of the crystal structure of a material is essential for its characterization.
Given an atomic structure, i.e., atomic coordinates labeled by chemical-species symbols, the
goal is to assign the most similar crystal structure (the so-called structural class) that is cur-
rently known. The available data is structurally diverse but often defective and incomplete.
Specifically, theoretical or experimental limitations result in large atomic displacements or
even substantial amount of missing atoms. A suitable method should therefore be robust
with respect to sources of inaccuracy, while being able to treat multiple systems. Available
methods are either robust or can treat a large number of systems, but do not fulfill both
criteria at the same time. Moreover, human intervention and case-by-case hand-tuning of ar-
bitrary tolerance parameters is often required to arrive at a satisfactory classification, which
is undesirable for big-data applications. In this work, we introduce ARISE, a Bayesian-
deep-learning based framework that can treat more than 100 structural classes in robust
fashion, without any predefined threshold. The selection of structural classes, which can be
easily extended on demand, encompasses a wide range of materials, in particular, not only
bulk but also two- and one-dimensional systems. For the local study of large and possibly
polycrystalline samples, we extend ARISE by introducing strided pattern matching (SPM).
While being trained on ideal structures only, ARISE correctly characterizes strongly per-
turbed single- and polycrystalline systems, from both synthetic and experimental resources.
The presented applications traverse multiple dimensions, including one- (carbon nanotubes),
two- (graphene and many other examples), three- (synthetic bulk systems and nanoparticle
measurements), and four-dimensional studies (time-resolved measurement of nanoparticles).
The probabilistic nature of the Bayesian-deep-learning model allows to obtain principled
uncertainty estimates which are found to be correlated with crystalline order of metallic
nanoparticles in electron-tomography experiments. Applying unsupervised learning to the
internal neural-network representations reveals grain boundaries and (unapparent) structural
regions sharing easily interpretable geometrical properties. The unsupervised analysis allows
to explain the trained model, addressing the topic of explainability in machine learning. This
work enables the hitherto hindered analysis of noisy atomic structural data.

i

Zusammenfassung

Künstliche Intelligenz besitzt großes Potential eine Vielfalt an wissenschaftlichen Feldern
signifikant zu beeinflussen. In der Materialwissenschaft läuten Methoden der Künstlichen-
Intelligenz wie z.B. künstliche neuronale Netze, einen Paradigmenwechsel in Richtung Big-
data zentrierter Forschung ein. Datenbanken enormer Größe mit Millionen von Einträgen,
sowie hochauflösende Experimente, z.B. Elektronenmikroskopie, enthalten ein Fülle an wach-
sender Information. Um diese ungenützten und doch wertvollen Daten für die Entdeckung
verborgener Muster und letztendlich neuartiger Physik zu benutzen, ist die Entwicklung au-
tomatischer analytischer Methoden notwendig. Die Klassifizierung der Kristallstruktur eines
Materials ist essentiell für dessen Charakterisierung. Gegeben eine atomare Struktur, d.h.
eine Liste von Koordinaten und deren dazugehörige chemische Identitäten, ist das Ziel die
ähnlichste momentan bekannte Kristallstruktur, die sogenannte Strukturklasse, zuzuweisen.
Die vorhandenen Kristallstruktur-Daten sind reichhaltig in der Komplexität der räumlichen
Anordnung der Atome, aber enthalten oft Defekte und sind unvollständig definiert. Speziell
sorgen theoretische oder experimentelle Einschränkungen dafür, dass Atome räumlich stark
versetzt sind oder in großen Teilen fehlen. Eine geeignete Methode sollte daher robust
bezüglich dieser Ungenauigkeiten sein, allerdings gleichzeitig die Fähigkeit besitzen viele
Systeme zu klassifizieren. Die verfügbaren Methoden sind entweder robust, oder können
eine große Anzahl an Systemen behandeln - erfüllen jedoch nicht beide Kriterien gleichzeitig.
Weiterhin ist es bei einigen Methoden nötig, beliebig wählbare Toleranz-Parameter per Hand
und von Fall zu Fall anzupassen, um eine zufriedenstellende Klassifizierung zu erreichen.
Dies ist vor allem von Nachteil bei Anwendungen auf große Datensätze. In dieser Arbeit
führen wir ARISE ein, eine Methode basierend auf Bayesian deep learning, die mehr als
100 Strukturklassen robust und ohne festzulegende Schwellwerte klassifizieren kann. Die
getroffene Auswahl an Strukturklassen, die einfach erweitert werden kann, enthält ein brei-
tes Spektrum an Materialien. Insbesondere sind nicht nur Bulk-Materialien enthalten, son-
dern auch zwei- und ein-dimensionale Systeme. Für die lokale Untersuchung von großen
und möglicherweise polykristallinen Systemen, erweitern wir ARISE über die “strided pat-
tern matching” Methode. Obwohl nur auf perfekte Strukturen trainiert, kann ARISE stark
gestörte einfach- und polykristalline Systeme synthetischen als auch experimentellen Ur-
sprungs charakterisieren. Die diskutierten Anwendungen umfassen mehrere Dimensionen,
insbesondere ein-dimensionale (Kohlenstoffnanoröhren), zwei-dimensionale (Graphen sowie
eine Vielzahl anderer Beispiele), drei-dimensionale (synthetische Bulk Systeme und Messun-
gen von Nanopartikeln), sowie vier-dimensionale Analysen (zeitaufgelöste Messungen von
Nanopartikeln). Das Model basiert auf Bayesian deep learning und ist dadurch proba-
bilistisch, was die Berechnung von Unsicherheiten auf systematische Art und Weise er-

iii

iv Zusammenfassung

laubt. Wir zeigen insbesondere, dass diese Unsicherheiten mit der Kristallordnung von
metallischen Nanopartikeln in Elektronentomographie-Experimenten korrelieren. Die An-
wendung von unüberwachtem Lernen auf die internen Darstellungen des neuronalen Netzes
enthüllt Korngrenzen und nicht ersichtliche Struktur-Regionen, die über einfach interpretier-
bare geometrische Eigenschaften miteinander verknüpft sind. Diese unüberwachte Analyse
ermöglicht das trainierte Modell zu erklären und geht insbesondere das Themenfeld explain-
ability innerhalb des maschinellen Lernens an. Diese Arbeit ermöglicht die Analyse atomarer
Strukturen mit starken Rauschquellen auf eine bisher nicht mögliche Weise.

Acknowledgements

First, I want to thank Prof. Dr. Matthias Scheffler for enabling and conceptualizing the
project and research direction. In particular, I am grateful for having the chance to work
at the Fritz Haber Institute and to make use of the fantastic resources – both human and
computational – that came along with this experience. Moreover, I want to thank very much
Prof. Dr. Claudia Draxl for agreeing to be my supervisor and supporting my thesis, allowing
me to finish my PhD at the Humboldt Universität zu Berlin.

A major thank goes to Dr. Luca Ghiringhelli for the supervision which included countless
meetings and discussions which have been inspiring and of direct use for the project and in
general for my scientific and general future. Extensive thanks goes to Dr. Angelo Ziletti,
which together with Luca has been the closest contact for me from day one, introducing me
to machine learning and in general providing me with countless useful tips for immediate
and long term problems. These remarks apply to both Luca and Angelo, and I am extremely
grateful to being given this opportunity, experiencing strong support and advice throughout
my PhD, which I assure is not taken for granted and recognized and valued highly by myself.
Notably, I feel like I have been granted a (scientific) revelation, lifting me from the status
of a student and bringing me closer to research life. I do not judge myself but hope that
with this work I am also objectively much closer to being a researcher. I have been told that
(the following is a citation, the original author may be guessed) instead of keep thinking in
terms of simple, catchy explanations, one should rather embrace the complexity and try to
ride the wave. While some want to “solve” a puzzle rather than provide tools for puzzles
one may have not yet dreamed of.

I want to thank all people that I met at FHI and Humboldt, accepting me in their commu-
nities and having fun experiences and exchanges during coffee breaks, BiGmax conferences
etc. etc. – this list of people in particular includes Emre Ahmetcik, Lucas Foppa, Benjamin
Regler, Marcel Langer, Florian Knoop, Yair Litman, Marcin Kryński, Maja-Olivia Lenz,
Luigi Sbailò at FHI as well as Martin Kuban, Maria Troppenz, Benedikt Hoock, Daniel
Speckhard at HU plus many more people, also from other institutes, that I had the chance
to meet and discuss with during my time at FHI. In particular, I want to thank Dr. Chris-
tian Liebscher from the Max Planck Institute for iron research in Düsseldorf, notably for
providing important, vital insight and discussion towards the end of my PhD.

People who supported me prior to my PhD shall not be left unnamed, in particular, Prof.
Kristina Giesel and Prof. Hanno Sahlmann (FAU Erlangen Nuremberg), and Prof. Gerd
Leuchs (Max Planck institute for the science of light at Erlangen) who supported me during
my search for a PhD and have been supervisors during my Master and Bachelor projects.
Further close collaborators that I want to mention and explicitly thank are for my Bachelor

v

vi Acknowledgements

time Dr. Christoph Marquardt, Gerhard Schunk, Michael Förtsch, Imran Khan, and for my
Master David Winnekens and all other members of the quantum-gravity department.

Die größte aller erdenklichen Danksagungen geht jedoch an meine Familie. Dies schließt
meine geliebten Eltern ein sowie meine geliebten Geschwister Peter, Susi, und Biene als auch
unseren Familienzuwachs Nico und Sven. Zu guter letzt bedanke ich mich bei allen die mich
auf meinem Weg bisher unterstützt haben, ich hoffe ihr erkennt unter anderem anhand dieser
Dissertation die Früchte eurer Arbeit.

Contents

Abstract i

Zusammenfassung iii

Acknowledgements v

List of Abbreviations and Symbols xi

1 Introduction 1

1.1 Artificial intelligence and its subfields . 2

1.2 Deep learning for materials science . 4

1.3 Crystal-structure recognition . 5

1.4 The importance of descriptors . 7

2 Deep learning 9

2.1 Fully connected neural networks . 9

2.1.1 The perceptron . 9

2.1.2 Multilayer perceptrons . 11

2.2 Training and optimization . 14

2.2.1 Loss functions . 15

2.2.2 Optimization strategies . 16

2.2.3 Regularization . 19

2.2.4 Hyperparameter tuning via Bayesian optimization 21

2.3 Bayesian deep learning . 22

2.3.1 Bayesian approach and variational inference 23

2.3.2 Monte Carlo Dropout . 25

3 Unsupervised learning 27

3.1 Clustering . 27

3.1.1 Density-based clustering . 27

3.1.2 DBSCAN . 30

3.1.3 HDBSCAN . 30

3.2 Dimensionality reduction . 33

3.2.1 UMAP . 34

vii

viii Contents

4 The Bayesian-deep-learning model ARISE 39
4.1 Which information can you obtain from ARISE? 39
4.2 Code and data availability . 41
4.3 Prediction workflow . 41

4.3.1 Isotropic scaling . 41
4.3.2 Materials representation . 43
4.3.3 The classification model . 44

5 Global crystal characterization using ARISE 53
5.1 Benchmarking . 53
5.2 Application to STEM experimental images 58
5.3 The Bain transformation path . 59
5.4 When the model is forced to fail: analysis of ARISE out-of-sample predictions 62

6 Polycrystal characterization using ARISE 65
6.1 The strided pattern matching framework . 66

6.1.1 Prediction workflow . 66
6.1.2 Parameter selection . 66

6.2 Synthetic example I: mono-species polycrystal 67
6.2.1 Supervised analysis . 67
6.2.2 Explainability of the black-box model via unsupervised learning . . . 68

6.3 Synthetic example II: Ni-based superalloy 70
6.4 Synthetic example III: grain-boundary system obtained via evolutionary struc-

ture search . 72
6.5 Application to STEM and HRTEM experimental images 72
6.6 Application to 3D atomic electron tomography data 73

6.6.1 Supervised analysis . 75
6.6.2 Exploratory analysis via unsupervised learning 75
6.6.3 Important parameters for the unsupervised explanatory and exploratory

analysis protocols . 77
6.7 Application to 4D atomic electron tomography data 78

7 Summary 81

8 Conclusions 87

A Benchmarking 91

B SOAP descriptor 95

C Bain path 97

D Local analysis via SPM and ARISE 99

Bibliography 105

List of Abbreviations and Symbols

Abbreviations

• ARISE = Artificial-Intelligence-based Structure Evaluation

• SPM = Strided Pattern Matching

• AI = Artificial Intelligence

• AGI = Artificial General Intelligence

• ML = Machine Learning

• DL = Deep Learning

• ANN(s) = Artificial Neural Network(s)

• NN(s) = Neural Network(s)

• MLP(s) = Multilayer Perceptron(s)

• ReLU = Rectified Linear Unit

• SGD = Stochastic Gradient Descent

• GMM(s) = Gaussian Mixture Model(s)

• TPE = Tree-structured Parzen estimator

• KL = Kullback–Leibler

• MC = Monte Carlo

• 1D = One-Dimensional

• 2D = Two-Dimensional

• 3D = Three-Dimensional

• 4D = Four-Dimensional

• fcc = face-centered cubic

ix

x List of Abbreviations and Symbols

• bcc = body-centered cubic

• hcp = hexagonal close-packed

• dhcp = double hexagonal close-packed

• CNT(s) = Carbon Nanotube(s)

• SOAP = Smooth Overlap of Atomic Positions

• HDBSCAN = Hierarchical Density-based Spatial Clustering Applications with Noise

• PCA = Principal Component Analysis

• t-SNE = t-distributed Stochastic Neighborhood Embedding

• UMAP = Uniform Manifold Approximation and Projection

• PTM = Polyhedral Template Matching

• CNA = Common Neighbor Analysis

• a-CNA = Adaptive Common Neighbor Analysis

• BAA = Bond Angle Analysis

• APT = Atom-Probe Tomography

• STEM = Scanning Transmission Electron Microscopy

• HAADF = High-Angle Annular Dark-Field Imaging

• HRTEM = High-Resolution Transmission Electron Microscopy

• AET = Atomic Electron Tomography

• i.i.d. = Independent and Identically Distributed

Symbols

• a Scalar

• a Vector

• A Matrix

• W Weight matrix

• D Dataset

• X Dataset inputs

List of Abbreviations and Symbols xi

• Y Dataset targets

• x(i) Input training example i

• y(i) Target training example i

• y
(i)
j Class j for target training example i

• ω Model parameters

Chapter 1

Introduction

Since its establishment as a scientific field in the 1950s, Artificial Intelligence (AI) has gone
through several waves of enthusiasm and disappointment [1,2]. The recent surge in interest
is due to a variety of advancements both in recent time and the last couple of centuries. One
major reason is the advancement of computational resources, i.e., new levels of parallelism
reached in high-performance computing [3], the introduction of graphics [4] and tensor [5]
processing units, and – in the near future – exascale computing. Moreover, big datasets
have become available in the course of digitalization (ImageNet [6], MNIST [7]) and multi-
ple algorithmic innovations have been made [8–11]. Especially in deep learning (DL) [12–14]
these advancements have enabled several breakthroughs, including record-breaking perfor-
mance in image [15] and speech [16] recognition, machine translation [17], the mastering of
highly complex games such as Go [18,19], and the generation of photo-realistic images [11].
These developments have strongly influenced the physical sciences [20] including materials
science [21]. In particular, big data-centric materials science is arising as a new paradigm
in materials research [22–25]. Several applications of AI in materials science are being ex-
plored, e.g., for materials property prediction. A general goal is to discover hidden patterns
and trends in data, ultimately yielding new physical insights that enable the design of novel
materials with application-tailored properties. The main topic of this thesis – characterizing
the crystal structure of a given material – is a crucial step in materials characterization.
In particular, deep neural networks have already been demonstrated to be powerful in this
setting [26].

In this introductory chapter, we first provide an overview of AI and its subfields in section
1.1, where we stress the main ideas behind the individual subdivisions and the AI techniques
used in this work. Section 1.2 provides a short overview of deep-learning applications in
materials science, a rapidly developing field. Then, we specialize to the problem of crystal-
structure recognition in section 1.3, where we introduce and motivate the general concept
of crystal-structure classification and how previous work can be improved using AI and in
particular deep learning. Finally, section 1.4 discusses the importance of so-called descriptors
in materials science and specifically crystal-structure identification.

1

2 Chapter 1. Introduction

Artificial intelligence

Machine learning

Deep learning

Supervised
learning

Reinforcement
learning

Unsupervised
learning

Machine learning

a b

Figure 1.1: Sketch of two common subdivisions of AI (a) and machine learning (b).

1.1 Artificial intelligence and its subfields

There are multiple ways to classify and subdivide AI. On the highest level, one may distin-
guish between “narrow AI” and Artificial General Intelligence (AGI) [1, 27]. AGI is aiming
at the development of AI systems that operate fully autonomously and solve various complex
problems that would normally require human intelligence (image and speech recognition, au-
tonomous driving) or even exceed it. Ideally, AGI systems should generalize across different
environments that are not part of their original training. Note that defining and quantifying
“intelligence” in machines is an involved topic that has intersections with various fields such
as philosophy and psychology [27–30]. In this thesis and generally in contemporary AI re-
search, “narrow AI” is the main focus, i.e., the development of tools that are specialized to
certain tasks and usually do not generalize across different domains (e.g., an AI system that
knows how to play chess will not know how to autonomously drive a car – without adding
new information and/or retraining). While such AI systems may sound too specialized, the
benefits become apparent from their record-breaking performance on tasks that are difficult
to formalize in a mathematical description – even though these tasks may seem intuitive for
humans (e.g., face recognition in images) [14].

A common subdivision of AI is sketched in Fig. 1.1a. One big subfield of AI is machine
learning (ML) [31, 32] that has its theoretical foundation in statistical learning theory [33,
34]. ML deals with algorithms that improve on a certain task with increasing amount
of knowledge (i.e., data) and make predictions “without being explicitly programmed” [35,
36]. More formally, Tom M. Mitchell defined ML algorithms the following way [37]: “A
computer program is said to learn from experience E with respect to some class of tasks T
and performance measure P if its performance at tasks in T, as measured by P, improves with
experience E.” The learning process can be summarized as a combination of representation,
evaluation and optimization [38]: First the problem must be expressed in a form that is
understandable to a computer. Specifically, one needs to define the space of possible functions

1.1. Artificial intelligence and its subfields 3

or hypotheses it can learn and – related to that – the input representation. Then, an
evaluation function (also called objective) needs to be defined that allows to differentiate
between well- and poorly performing models. Finally, the optimization method has to be
chosen, which allows to search for the model with highest score.

Usually, ML is further divided into the areas of supervised learning, unsupervised learn-
ing, and reinforcement learning (cf. Fig. 1.1b), which will be explained in the following. We
rely on supervised an unsupervised learning techniques in this thesis.

A supervised ML method aims at learning the functional dependence between inputs x
and outputs y given a set of training examples. The inputs may be seen as vectors of a certain
dimension, whose components are called features. As we will discuss in section 1.4, when
applying ML in a supervised setting to materials science problems and generally in physics,
including a-priori knowledge such as physically relevant symmetries can drastically improve
the performance of ML models. The development of a suitable, physically motivated input
representation, the descriptor, is of major importance [39]. The input x is not constrained
to take vectorial form but can also correspond, for instance, to the pixels of an image
or a graph representing molecules or crystals [40, 41]. Depending on the definition of the
outputs, supervised ML is further subdivided into regression (outputs are real numbers)
and classification problems (outputs correspond to a particular number of classes). A more
formal description can be found in section 2.2.

In unsupervised learning, the inputs are not labeled like in a supervised setting. The
goal is to find hidden patterns in the data, given the way it is represented by the features.
Clustering is one example of an unsupervised ML technique. Here, the data points are di-
vided into groups or clusters. The grouping is meaningful in the sense that points assigned
to the same cluster are more similar to each other than to points outside the cluster. This
establishes a notion of similarity that may be related to a physical concept, thus revealing
hidden regularities in the data. Unsupervised learning can also be used to reduce the di-
mensionality of the input feature space, allowing data visualizations in a compressed and
more comprehensible representation, e.g., in two-dimensional (2D) Euclidean space. The
dimensionality-reduced description may be used to boost model performance – since redun-
dant features are removed – or to reveal relations and similarities between data points. Both
clustering and dimensionality reduction is employed in this work, in particular to explain
the employed ML model (section 6.2.2) and to perform exploratory analysis (section 6.6.2).
Note that explainability is part of the controversially discussed topic of interpretability in
ML, i.e., how predictions of ML models, which can be complex and black-box like, can or
should be justified [42–44].

A further subfield of ML, reinforcement learning [45], has strongly influenced the public
perception of AI. In particular, the combination of reinforcement learning with tree search
and deep learning has lead to breakthroughs in game playing [18,19,46–48]. This has raised
significant attention, also in materials science [49–51]. In reinforcement learning, a so-called
agent is interacting with the environment by taking a (time) sequence of actions. At each
step of the sequence, an action is chosen based on the observed state of the environment.
This action is applied to change the environment state and a reward is calculated and
transmitted to the agent. Then, the agent receives a new observation of the environment
state and chooses a new action etc. (cf. chapter 1.3.4 of [52]). The goal of reinforcement

4 Chapter 1. Introduction

learning is to find a good policy, i.e., a function that maps environment observations to
actions and thus determines the agent’s behavior.

A highly relevant subclass of ML algorithms does not only learn the predictive model but
also representations of the data, starting from some initial input encoding. Deep learning [14],
which is a cornerstone of this work, and symbolic regression [53–55] are prominent examples.
Deep neural networks, like other ML algorithms, learn from experience. Notably, they extract
a hierarchy of concepts, where each concept is built out of simpler ones. This allows to learn
highly complex relationships. Depicting the extracted hierarchy as a graph, one would obtain
a deep graph with many layers – which is why this field is called deep learning [14].

Finally, one can distinguish AI methods that perform either exploratory or confirmatory
analysis [56]. The latter tools learn and predict from data as it is the case in supervised ML.
In an exploratory setting, the data is inspected via AI to infer regularities or rules that lead
not only to insights but also new questions, which itself lead to further studies. For example,
applying clustering (i.e., unsupervised learning) to a given dataset yields groups of similar
points. Based on this, one can conduct additional tests to find out if there is a physically
meaningful reason for the discovered grouping. In this thesis, we conduct exploratory analysis
using both unsupervised clustering methods and a supervised Bayesian neural network, a
sub-family of artificial neural networks (ANNs), cf. section 6.6.2.

1.2 Deep learning for materials science

In the following, we present an extraction of deep-learning related research in materials
science. More detailed reviews can be found in [21,57,58] and [59–61]. Training deep neural
networks typically requires an amount of data that is not always available in materials
science problems, in particular if time-consuming calculations are involved, e.g., density-
functional theory or molecular-dynamics simulations. Thus there is a substantial amount of
effort devoted to other, less data-demanding ML algorithms such as decision trees [40,62,63],
kernel ridge regression [64–66], subgroup discovery [67], and symbolic regression [54,55].

Already before ANNs had spiked attention, they have been employed to learn potential
energy surfaces: inspired by the pioneering work [68], ANNs have been applied to this task
in [69] and further developed since then [70–72]. ANNs can also be used to represent the
quantum many-body wave function, where the initial approach focused on discrete spin-
lattice systems [73]. This has been generalized to bosons in real space [74, 75] and even
electrons in real space [76]. Further improvements have recently been made with the so-
called PauliNet [77] and FermiNet [78] architectures. The highly complex and vital task
of protein structure prediction, specifically protein folding, has been substantially improved
using ANNs [79]. Closely related to this thesis, Ziletti et al. employed a convolutional neu-
ral network [80] for robust and interpretable crystal-structure classification, given Cartesian
coordinates labeled by chemical-species symbols [26]. For the analysis of high-resolution
microscopy data (in particular electron microscopy), Kalinin and coworkers have introduced
several DL frameworks [81–84]. For instance, AtomNet [81], allows to recognize atomic
positions from noisy scanning transmission electron microscopy (STEM) images (which is
employed in sections 5.2 and 6.5). The prediction of inorganic compound properties (such as
formation energy, volume per atom etc.) has been addressed with different input informa-

1.3. Crystal-structure recognition 5

tion (i.e., descriptors) and neural network architectures: The ElemNet architecture [85,86] or
CRYSPNet [87] use only chemical composition as input, while others use geometrical infor-
mation. For instance, variants of message-passing neural networks [88] such as Schnet [89,90]
can be employed for property prediction. These frameworks can also be used to predict po-
tential energy surfaces and force fields. Related to this, crystal-graph convolutional neural
networks [41] are based on a crystal graph representation [40], demonstrating strong per-
formance in materials property prediction, while the internal representations have also been
analyzed using unsupervised techniques [91]. Euclidean neural networks [92] have been de-
veloped for the analysis of three-dimensional (3D) geometries in a rotation-, translation-,
and permutation-equivariant fashion. Besides predictive models, generative models have
been applied in materials science as well (i.e., networks that generate inputs x from labels
y instead of taking the inverse, predictive route). For instance, generative neural networks
have been used for drug design [93], also in combination with reinforcement learning [49], as
well as the sampling of equilibrium states of many-body systems [94] or to learn embeddings
from molecular simulations data [95].

1.3 Crystal-structure recognition

The goal of crystal-structure identification is to assign a symmetry label (for instance, the
space group) to a given atomic structure (cf. Fig. 1.2). More generally, one wants to
find the most similar structure within a list of given known systems – the structural classes
(cf. section 4.3.3.2), identified by stoichiometry, space group, number of atoms in the unit
cell, and location of the atoms in the unit cell (the Wyckoff positions). This can help to
understand important physical properties such as the hardness of industrial steel [96]. In this
context, the importance of grain boundaries has been studied in numerous experiments [97],
also in combination with crystal-structure prediction [98]. Beyond bulk materials, two- (2D)
and one-dimensional (1D) systems have far-reaching technological applications, such as solar
energy storage, DNA sequencing, cancer therapy, or even space exploration [99,100].

fcc

bcc

diamond

Unknown
crystal structure

?

hcp

Figure 1.2: Schematic overview of the general crystal-structure recognition problem: assign
the most similar crystal prototype to a given unknown and possibly highly defective atomic
structure. Here, the set of reference structures to which the input system is compared to
are the face-centered cubic (fcc), body-centered cubic (bcc), diamond, and hexagonal close-
packed (hcp) structures.

6 Chapter 1. Introduction

Methods for automatic crystal-structure recognition are required to analyze the contin-
uously growing amount of geometrical information on crystal structures, from both experi-
mental and computational studies. Millions of crystal structures alongside calculated prop-
erties are available in large computational databases such as the NOvel MAterials Discovery
(NOMAD) Laboratory [23,24], AFLOW [101,102], the Open Quantum Materials Database
(OQMD) [103], Materials Project [104], or repositories specialized in 2D materials [105,106].
In STEM [107], atomic positions can be reconstructed from atomic-resolution images for spe-
cific systems, e.g., the 2D material graphene [81]. Three-dimensional atomic positions are
provided by atom probe tomography (APT) [108] and atomic electron tomography (AET)
experiments [109]. Still, substantial levels of noise due to experimental limitations and re-
construction errors are present in atomic positions, e.g., distortions beyond the physical
level or, in case of APT, large amount of missing atoms (at least 20%, due to the limited
detector efficiency [110]). Crystal-structure recognition schemes should be able to classify a
large number of structural classes (also beyond bulk materials) while at the same time be-
ing robust with respect to theoretical or experimental sources of inaccuracy and physically
driven deviations from ideal crystal symmetry (e.g., vacancies or thermal vibrations). Given
the large amount of data, the classification should be fully automatic and independent from
the manual selection of tolerance parameters (which quantify the deviation from an ideal
reference structure).

Current computational methods for crystal-structure recognition are based either on
space-group symmetry or local topology. For space-group-based approaches (notable ex-
amples being Spglib [111] and AFLOW-SYM [112]), the allowed symmetry operations are
calculated directly from the atomic positions to infer a space group label. For local-topology-
based approaches, the local atomic neighborhood of each individual atom is classified into
a prepared list of reference structures. This assignment may coincide with the space-group-
based classification. Examples of these methods are common neighbor analysis [113], adap-
tive common neighbor analysis [114], bond angle analysis [115], and polyhedral template
matching [116]. Concerning classification performance, space-group approaches can treat
all space groups but are limited with respect to noise, while local-topology methods can be
quite robust but only treat a handful of classes. Considering big data, a further limitation
of space-group-based methods such as spglib is threshold dependence, as the possible sym-
metry operations are determined based on user-specified tolerances for positions and angles.
Above a certain noise level, no symmetry beyond the identity operation (space group P1)
can be identified, regardless of the chosen threshold. This happens already for low noise
levels, e.g., removing only a few atoms, as shown in section 5.1. Moreover, none of the
available structure recognition schemes can recognize more complex nanostructures such as
nanotubes.

To improve on currently available crystal-structure identification methods, we can benefit
from advances in ML. In particular, artificial neural networks used in deep learning [12,
14] have outperformed state-of-the-art machine-learning models in numerous applications.
The distinguishing feature of neural networks is the ability to learn complex representation
directly from data; these representations become more abstract the deeper the network , i.e.,
the more layers it has. Due to their large model complexity, deep neural networks typically
require large amount of data to be trained. They are also hard to interpret as learning is

1.4. The importance of descriptors 7

performed in a distributed way with the information spread across millions of parameters
(the so-called network weights). Still, deep learning shows compelling success in problem
settings whose dimensionality exceeds the model complexity by far [117]. To understand
this statement, let us consider the binary classification example of distinguishing grayscale
pictures of dogs and cats. For images with 100 × 100 pixels, each pixel taking one out of
256 values, the space of possible images is 256100·100. Yet, networks with millions and thus
comparatively tiny amount of parameters can successfully solve this task. Similarly, the
space of possible crystalline solids is practically infinite and still ML methods can be applied
to predict physical properties, e.g., using neural networks [41]. Note that ML has already
been applied to crystal-structure recognition [118–121]. However, none of these works were
able to go beyond a handful of classes and show high robustness at the same time. We need
to extend previous work [26] which employed a convolutional neural network to distinguish
crystal structures based on a novel diffraction fingerprint. While being extremely robust
and providing interpretable predictions, this approach is restricted to elemental solids and a
limited number of space groups.

Here, we propose a robust, threshold-independent crystal-structure recognition frame-
work (ARtificial-Intelligence-based Structure Evaluation, short ARISE) [122] to classify a
diverse set of 108 structural classes, comprising bulk, 2D, and 1D materials. Bayesian neural
networks [123,124] are used, i.e., a recently developed family of neural networks that yields
not only a classification but also uncertainty estimates. These estimates are principled in
the sense that they approximate those of a well-known probabilistic model (the Gaussian
process). This allows to quantify prediction uncertainty, but also the degree of crystalline
order in a material. ARISE performance is compared with the current state of the art,
and then applied to various computational and experimental atomic structures. Crystal
characterization and identification of hidden patterns is performed using supervised learning
(ARISE) as well as the unsupervised analysis (via clustering and dimensionality reduction)
of the internal representations of ARISE.

1.4 The importance of descriptors

To apply ML to high-dimensional condensed matter and materials science problems, finding
a suitable mapping of the input onto a descriptor is crucial [39]. In particular, one needs to
ensure that physical requirements we know to be true (e.g., conservation laws, translational
or rotational invariance) are respected by construction.

In our setting of single-crystal classification, the starting point is a crystal structure,
represented by atomic positions and chemical-species symbols; the goal is to assign to this
structure its most similar crystallographic prototype. A-priori knowledge based on physical
requirements can greatly increase the quality of machine-learning models, and in particular
their generalization ability (i.e., the capability of models to not simply memorize the train-
ing data but also perform well on unseen examples). Let us take the example of rotational
invariance: two crystal structures that differ only by a rotation must have the same classi-
fication label. Clearly, atomic coordinates in real space are not rotationally invariant, and
thus are not a good representation (i.e., input) for machine-learning models. As an attempt
to fix this, one might include a discrete subset of orientations in the training set, hoping that

8 Chapter 1. Introduction

the model will generalize to unseen rotations. However, there is no guarantee that the model
will learn the rotational symmetry, and if it does not, it will fail to generalize and return
different predictions for symmetrically equivalent structures. In contrast, when a rotation-
ally invariant representation is used, only one crystal orientation needs to be included in the
training set and the model will generalize to all rotations by construction. This reasoning
readily applies to other physics requirements such as translational invariance, or permutation
invariance (for atoms with same chemical species).

Some of the most well-known descriptors in physics and materials science incorporate
these physical invariants: symmetry functions [125], the smooth-overlap-of-atomic-positions
descriptor (SOAP) [126, 127], the many-body tensor representation [128], and the moment
tensor potential representation [129]. We choose SOAP as materials representation, which
is a state-of-the-art descriptor for representing chemical environments that is invariant with
respect to translations, rotations and permutations of identical atoms. SOAP has been
successfully applied to numerous materials science problems: interatomic potentials fitting
[130], structural-similarity quantification using kernel functions [131], prediction of material
properties (for instance, formation enthalpy [132]) or grain-boundary characteristics such
as energy and mobility [133]. In this work, we construct the SOAP descriptor such that
a crystal structure is represented by a vector of fixed length, independently of the number
of atoms and chemical species (see 4.3.2 for more details). Note that any other suitable
descriptors (i.e., a descriptor respecting above-mentioned physical requirements) can be used
as input for our procedure. In particular, we provide the code framework ai4materials
(https://github.com/angeloziletti/ai4materials) into which alternative representations can
be readily integrated.

https://github.com/angeloziletti/ai4materials

Chapter 2

Deep learning

This chapter provides an introduction to deep learning. We mainly follow the two valuable
resources [14] and [52], where for the latter we refer to the chapters of the online version
(https://d2l.ai/index.html) while an arXiv preprint (with different section numbering) can
be found at [134]. Section 2.1 explains a standard ANN architecture – fully connected neural
networks. The most simple form, the so-called perceptron, is described in section 2.1.1 and
extended to multilayer perceptrons in section 2.1.2. Training and optimization of deep neural
networks is reviewed in section 2.2, where loss functions are discussed (in particular those
being relevant for classification tasks, cf. 2.2.1) as well as different strategies for optimization
(cf. 2.2.2) and regularization (cf. 2.2.3). Tuning of model hyperparameters is explained in
section 2.2.4, in particular Bayesian optimization strategies. Then, section 2.3 discusses
Bayesian deep learning, where first the fundamentals of Bayesian modeling in context of
ANNs are explained, including a short recap of so-called variational inference (cf. section
2.3.1), a method that can be employed to perform approximate Bayesian inference. Section
2.3.2 discusses Monte Carlo dropout, which is a practical and principled way to obtain
uncertainty estimates from deep neural networks. Online tutorials that complement sections
2.1 and 2.2 may be read in parallel and have been published at the NOMAD analytics
toolkit (https://nomad-lab.eu/aitoolkit). Alternatively, they can be found on github via
the URLs https://github.com/AndreasLeitherer/Tutorial multilayer perceptron and https:
//github.com/AndreasLeitherer/Tutorial CNN. For Bayesian deep learning (complementing
section 2.3), we uploaded a tutorial on ARISE, which is based on Bayesian neural networks, to
the NOMAD analytics toolkit (see https://analytics-toolkit.nomad-coe.eu/tutorial-ARISE
or on github https://github.com/AndreasLeitherer/Tutorial ARISE).

2.1 Fully connected neural networks

2.1.1 The perceptron

The origin of ANNs dates back to the early 1940’s. The most simple form of an ANN is
the perceptron, which was developed by Frank Rosenblatt in 1957 [135] and is biologically
motivated (see the simplifying sketch of a biological neuron in Fig. 2.1a). The output of
a perceptron is computed by first linearly combining the input features and then applying

9

https://d2l.ai/index.html
https://nomad-lab.eu/aitoolkit
https://github.com/AndreasLeitherer/Tutorial_multilayer_perceptron
https://github.com/AndreasLeitherer/Tutorial_CNN
https://github.com/AndreasLeitherer/Tutorial_CNN
https://analytics-toolkit.nomad-coe.eu/tutorial-ARISE
https://github.com/AndreasLeitherer/Tutorial_ARISE

10 Chapter 2. Deep learning

x1 w1

w2

w1 w2x1

x2

x2

z f y=f()z

z = + + b

Dendrites

Cell
body

Axon

Biological neuron Perceptron

x1

x2

10 0 10

0.0

0.5

1.0

f(
x
)

Perceptron for binary classification
(via Heaviside activation function)

2 0 2

0

1

f(x

Rectified linear unit (ReLU)

f(
x
)

x
10 0 10

0.0

0.5

1.0

Sigmoid activation function

f(
x
)

x
10 0 10

1

0

1

Tanh activation function

f(
x
)

x

a b

d

c

Figure 2.1: Introduction of the perceptron. a Sketch of a biological neuron. b Illustration
of a simple perceptron. c Heaviside activation function (left) employed in a simple binary
classification task (right). d Three popular activation functions.

a non-linear function (the so-called activation function). More formally, the output y of a
perceptron is computed as

y = f (z) := f

(
N∑
i=1

wixi + b

)
, (2.1.1.1)

where z denotes the linear combination of input features xi, i = 1, ..., N , w1, w2, ..., wN the
weights, b the bias, and f the activation function. An example for N = 2 is shown in Fig.
2.1b.

As a first example, let us consider a binary classification task in which two classes, marked
by circles and crosses in the right part of Fig. 2.1c, ought to be distinguished using two input
features x1, x2. This could represent a medical problem setting, where one wants to predict
if a patient has a certain disease based on two factors (e.g., age and height). As activation
function, the Heaviside function is employed, for which the model output is either 1 for
z > 0 or 0 otherwise. The possible output values correspond to the two classes. Given fixed
weights w1, w2, the bias term b defines when the neuron is firing (f(z) = 1) or not (f(z) = 0)
for given input features x1, x2. Training of a perceptron can be perceived as changing the
model parameters such that the optimal position of a straight line is found, which serves as
a decision boundary between the two classes (cf. Fig. 2.1c). We will discuss the training
and optimization procedure for modern neural networks in more detail in section 2.2. Note
that the Heaviside activation function is not used in modern deep-learning applications but
rather the Rectified Linear Unit (ReLU) or the sigmoid and hyperbolic-tanges functions (see
Fig. 2.1d). Employing the sigmoid function would yield a logistic regression problem (see

2.1. Fully connected neural networks 11

section 4.3 of [34])
The use of non-linear functions is essential: if no activation function was used (i.e., the

identity or linear activation function – reducing Eq. 2.1.1.1 to a linear regression problem),
the class of possible functions that the model can represent would be drastically reduced.

2.1.2 Multilayer perceptrons

Extending the idea of simple perceptrons, multilayer perceptrons (MLPs) are constructed
as a sequence of layers (cf. Fig. 2.2a). Each layer consists of a predefined number of
neurons, where the neurons of the first layer (the input layer) correspond to the input
features x = (x1, x2, ..., xd)

T ∈ Rd. The subsequent layers are called hidden layers and the
final neurons the output layer. The MLP shown in Fig. 2.2a has four output neurons,
each corresponding to a distinct class, i.e., we consider a multi-class classification problem.
Hidden and output neurons are a combination of all neurons from the previous layer (i.e.,
a fully connected neural network) which is indicated by the connections in Fig. 2.2a. For
instance, the so-called activation a1 ∈ R highlighted in Fig. 2.2b (for x ∈ R6) is computed
as

a1 = f(z1) = f(w1x1 + w2x2 + w3x3 + w4x4 + w5x5 + w6x6 + b1). (2.1.2.1)

Here, wi ∈ R, i = 1, ..., 6 are the weights and b1 ∈ R denotes the bias value. These constitute
the model parameters that are linearly combined with the input x to yield z1. Finally,
the activation function f is applied, resulting in the activation value a1. This process,
which is called forward propagation, is repeated for all neurons and layers until the output
o = (o1, o2, ..., oN) is obtained. Since there are no cycles in the connections, these networks
are called feedforward neural networks. In so-called recurrent neural networks this condition
is relaxed, leading to breakthrough results in natural language processing [8, 136].

Already at this level, one of the main characteristics of multilayer neural networks be-
comes clear: the ability to learn new representations [138]. This distinguishes neural networks
from other ML algorithms (e.g., decision trees). The extracted representations become more
abstract the deeper the network is, i.e., the more hidden layers it has. For instance, the input
features may correspond to the pixels of an image that needs to be classified into a certain
number of categories (e.g., if it contains a dog or a cat). In the first layers, the network
may extract features such as lines, while in later layers collection of edges and larger parts
can be detected. Note that the architecture shown in Fig. 2.2a has only one hidden layer
and thus would be called a shallow neural network. Models with multiple hidden layers are
called deep neural networks (cf. Fig. 2.2d).

To formalize forward propagation for an arbitrarily sized MLP, we consider the model in
Fig. 2.2a. The activation vector a ∈ R5 is defined as

a = f(Ax + b). (2.1.2.2)

This is essentially an affine transformation (defined by a 5 × 6 matrix A and bias vector
b ∈ R5) followed by element-wise application of the (non-linear) activation function f . The
weights of the linear combinations are collected in the matrix A and the offsets in the bias
vector. The output activations o are obtained by applying a further affine transformation

12 Chapter 2. Deep learning

a1

a2

a3

a4

a5

x1

x2

x3

x4

x5

x6

. . .

a1

a2

a3

a4

a5

x1

x2

x3

x4

x5

x6

Input
layer

Hidden
layer

Output
layer

o1

o2

o3

o4

o1

o2

o3

o4

Illustration of forward propagation

Regression

a1

a2

a3

a4

a5

x1

x2

x3

x4

x5

x6

P

Input
layer

Hidden
layer

Output
layer

Target property

Deep neural network

a1

a2

a3

a4

a5

x1

x2

x3

x4

x5

x6

Input
layer

Hidden
layer

Output
layer

o1

o2

o3

o4

Shallow neural networka b

c d

Figure 2.2: Introduction of fully connected neural networks (multilayer perceptrons). a
Shallow neural network with one hidden layer. The four output neurons may correspond to
four different classes (e.g., structural classes in a crystal-structure classification problem). b
Illustration of forward propagation for the first two neurons in the hidden layer. c Adaption
of the architecture of a,b for a regression task, i.e., the prediction of a scalar target property
P. d Example of a multilayer perceptron with three hidden layers, qualifying as a deep neural
network. Modern architectures can reach more than 50 layers [137].

2.1. Fully connected neural networks 13

(matrix A′, bias b′) and activation function f ′, which yields

o = f ′(A′a + b′). (2.1.2.3)

The final activation function f ′ is chosen in a specific way, usually depending on the task
being either regression or classification. We will address this in the last two paragraphs of
this section. To simplify the above expression for o, it is common to change the definition of
input vector and weight matrices such that the bias terms are incorporated into the mapping
matrix A. To illustrate this, we consider the simplified case of two input features and two
activations a1 = w11x1 +w12x2 + b1 and a2 = w21x1 +w22x2 + b2. Then, A and b are defined
as

A =

[
w11 w12

w21 w22

]
,b =

[
b1
b2

]
. (2.1.2.4)

Introducing the new definitions

W =

[
b1 w11 w12

b2 w21 w22

]
,x =

 1
x1
x2

 , (2.1.2.5)

allows to incorporate the bias term and replace Ax + b with Wx. Similarly, we introduce
weight matrices W, W′ for the MLP shown in Fig. 2.2a, which yields a compact expression
for the output given by

o = f ′(W′a) = f ′(W′f(Wx)). (2.1.2.6)

This equation makes it more clear that a multilayer perceptron is a concatenation of affine
and non-linear transformations, parametrized by a set of weights and biases which are opti-
mized to fit the task at hand. Eq. 2.1.2.6 is straightforward to generalize, which yields

o = fN(WNfN−1(WN−1...f 1(W1x)). (2.1.2.7)

An example of the case of N = 3 is shown in Fig. 2.2d, which is also called a 3-layer neural
network following the convention that only hidden layers count.

The class of functions a MLP can represent would be strongly diminished if linear instead
of non-linear activation functions are employed. In particular, the universal approximation
theorem guarantees that using a feed-forward neural network with at least one hidden layer
and any activation function (such as sigmoid), one can approximate any continuous function
with arbitrary precision – as long as the hidden layer contains sufficiently many neurons [139,
140]. The universal approximation theorem has initially been proven for activation functions
that converge to a constant for inputs tending to ±∞ while extensions cover also activation
functions that are usually employed today (such as the ReLU function [141]). Notably, the
universal approximation theorem does not provide guidance for architecture choices (number
of layers, neurons etc.). Moreover, no generalization guarantees are provided, i.e., how model
performance can be improved for data points that have not been included during training.

As discussed in context of Eq. 2.1.2.3, the final activation function is chosen depending
on the application. In a classification setting, the so-called softmax function is employed as
activation function for the final layer. This allows to obtain predictions ŷi := oi whose sum

14 Chapter 2. Deep learning

is normalized to one such that each yi can be interpreted as the classification probability of
class i. Denoting the linear combination of activations from the previous layer as z (cf. Eq.
2.1.2.1), the final predicted value can be obtained, using the softmax function, via

ŷi := oi = [fsoftmax(z)]i =
exp (zi)∑
k exp (zk)

. (2.1.2.8)

The predicted class label is inferred by selecting the most likely class, i.e., one computes

argmax
j

ŷj. (2.1.2.9)

Let us consider the case of a simplified crystal-structure classification sketched in Fig.
1.2, where the task is to assign the most similar crystal structure (out of a pool of reference
systems) to a given unknown crystal structure. Employing the multilayer perceptron archi-
tecture shown in Fig. 2.2a, each of the four output neurons correspond to a specific crystal
structure. Using the softmax function for the normalization of the output neurons, one can
interpret y = (1, 0, 0, 0) as the prediction of fcc symmetry with 100% probability. Similarly,
(0,1,0,0) may be associated with bcc symmetry etc. This is called one-hot encoding and
corresponds to representing a given number of N classes via the standard basis in RN , i.e.,
by N vectors ei = (0, ...0, 1, 0, ..., 0), i = 1, ..., N , where all components of ei are zero except
for the ith entry. Instead of one-hot encoding one may also encode the classes as integers
(i.e., predict a single integer that corresponds to a specific class). Since this introduces a
fictitious order between the classes, one-hot encoding is preferred. For regression problems,
only one output neuron is used (cf. Fig. 2.2c) and the output activation may be chosen
depending on the desired range of the target (cf. Fig. 2.1d).

2.2 Training and optimization

To establish a deep-learning method, one needs to specify dataset, model architecture, loss
function, and optimization protocol. While neural networks can be employed in an unsuper-
vised setting (cf. chapter 14 of [14]), the supervised-learning scenario is typically considered.
Here, the goal is to learn the functional relationship between inputs x and outputs y given
a set of m training examples D = {(x(i),y(i))

m

i=1}. A typical assumption is that the training
points are drawn independently from identical distributions, the so-called i.i.d. assumption.
This implies that the data is sampled without memory. Regarding the model, we employ
a MLP in this thesis which is essentially a non-linear function fω, parametrized by a set of
weight matrices ω := {Wi}i=1,...,N . For a given input x, the predictions are obtained via
ŷ = fω(x). The optimal set of parameters is found by minimizing a cost or loss function
J(ω) that quantifies the difference between ground truth and predictions. The loss func-
tion is minimized using gradient-descent based algorithms (cf. section 2.2.2). Typically one
obtains a collection of models, obtained from several optimization iterations, in which a dif-
ferent set of hyperparameters is tested, for instance, the number of layers and neurons in each
layer (cf. section 2.2.4). The selection of the optimal model is based on a suitable measure,
for instance, the classification accuracy in our case of crystal-structure identification. This
performance measure is only optimized indirectly, via minimizing the cost function. This

2.2. Training and optimization 15

distinguishes a ML problem from a pure optimization setting, in which minimization of the
loss would be the only goal.

2.2.1 Loss functions

Ideally, one would like to minimize [14]

J(ω) = Ex,y∼pdataL(fω(x),y), (2.2.1.1)

where L(fω(x),y) quantifies the loss for a single data point and pdata is the data-generating
distribution which x,y follow (denoted as x,y ∼ pdata). Unfortunately, one typically cannot
access this complex distribution, especially in materials science where the number of possible
materials is practically infinite. Thus, one minimizes the so-called empirical risk

Ĵ(ω) =
1

m

m∑
i=1

L(fω(x(i)),y(i)), (2.2.1.2)

i.e., the goal is to find the optimal parameters

ω̂ = argmin
ω

Ĵ(ω) = argmin
ω

1

m

m∑
i=1

L(fω(x(i)),y(i)). (2.2.1.3)

To obtain the model that generalizes best to unseen data, one typically splits the initial data
set D into training, validation and test set, denoted as Dtrain, Dval, and Dtest, respectively.
The model is trained on Dtrain, while the generalization error is estimated using Dval. In
particular, one can optimize model-specific hyperparameters using the validation set. In
case of deep neural networks, this may be the number of layers or the neurons in each layer
and one may select the architecture with the optimal performance measure on Dval. Other
strategies such as cross validation employ different splits during training (cf. section 7.10
of [33]). Specifically, k-fold cross validation divides the training set into k groups (after
splitting off a separate test set). Each group is considered as a hold-out test (or rather
validation) set while fitting the model to the remaining data points of the training set. This
yields k models trained on different splits whose performance measures may be averaged,
providing an improved measure of generalization ability. Due to the increased computational
cost, especially in case of deep learning, cross validation strategies are often avoided. Once
a satisfactory model is found, the performance measure is evaluated on Dtest.

For classification, a common loss function is the so-called cross-entropy loss which is
defined as [52]

Lcross-entropy(fω(x(i)),y(i)) := −
C∑
j=1

y
(i)
j log

[
fω(x(i))

]
j
, (2.2.1.4)

where C denotes the number of classes. This equation can be derived using the principle of
maximum likelihood as well as the i.i.d assumption. We refer to section 5.5 of [14] as well
as sections 18.7 and 18.11.5 of [52] for more details.

For regression, mean squared error is a popular loss function [14], which is defined as

Lmean-squared-error(fω(x(i)),y(i)) := ||fω(x(i))− y(i)||22, (2.2.1.5)

where ||.||2 is the Euclidean norm.

16 Chapter 2. Deep learning

2.2.2 Optimization strategies

This section overviews some of the most important optimization techniques that are em-
ployed in deep learning. This includes the Adam optimization algorithm that is used in this
thesis. We mainly follow section 8 of [14] and section 11 of [52].

Neural networks are essentially highly non-linear functions which is why the optimization
of a cost function is a non-convex problem. This comes with several pitfalls such as multiple
local minima that are far away from the global minimum and in which the optimization
algorithm might get stuck. Further possible problems are saddle points and vanishing gra-
dients (cf. section 11 in [52]), the latter being more frequently encountered in recurrent
neural networks [8,136]. Fortunately, several methods have been developed to address these
problems.

Start

w1

w2

Figure 2.3: Illustration of gradient descent ap-
plied to the minimization of a loss function
that is defined for a model with parameters
w1, w2. The steps from start (black cross) to
the global minimum (blue cross) via interme-
diate steps (gray crosses) are shown.

Typical optimization strategies in deep
learning rely on the gradient-descent algo-
rithm. This method can be used to minimize
a scalar function f : Rd → R, representing
the cost function. Specifically, the cost is
minimized by iteratively moving the model
parameters ω into the direction of the neg-
ative gradient via the update rule [14]

ω ← ω − η∇Ĵ(ω), (2.2.2.1)

where η denotes the learning rate. In simple
gradient descent, η is fixed for all iterations
and influences the step size, i.e., the pace at
which the minimum is approached. A large
learning rate might lead to divergence (i.e.,
a steady value of the loss function that may
correspond to a local minimum will never be
reached), while a tiny value will lead to long
convergence times. The backpropagation al-
gorithm [8] provides a computationally ef-
ficient way to compute the gradient in Eq.
2.2.2.1.

Using Eq. 2.2.2.1 as optimization proto-
col, which is also called batch gradient de-
scent, can be computationally costly. The gradient of the empirical loss has to be computed,
which involves a sum over all training points. In ML and in particular in deep learning, this
calculation is computationally expensive, since large training sets are often required for a
satisfactory generalization performance.

As an alternative to batch gradient descent, one can randomly select subsets of points
for the gradient computation in Eq. 2.2.2.1. In stochastic gradient descent (SGD), only one
randomly selected data point is used to approximate the gradient of the loss function. This
leads to a more noisy trajectory towards the minimum of the loss landscape. On the positive
side, this can help to avoid that the algorithm is trapped in local minima. On the downside,

2.2. Training and optimization 17

this strategy may prolong or even prohibit convergence. Notably, SGD is computationally
inefficient since the advantages of vectorization cannot be exploited on Central Processing
Units (CPUs) and Graphics Processing Units (GPUs), see also section 11.5.1 of [52]. That is
why so-called mini-batch gradient descent is often preferred, which lies between the extremes
of batch and stochastic gradient descent since the number of randomly selected data points
is greater than one but smaller than the whole training set.

The batch size, i.e., the number of training points we choose for mini-batch gradient
descent is a further hyperparameter in the mini-batch gradient descent algorithm. Estimating
the gradient from few examples might lead to a bad approximation of the gradient. However,
the standard error of the mean scales with 1/

√
n (cf. section 8.1.3 in [14]). i.e., the quality

of the gradient estimate does not even improve linearly with added computational cost.
Thus, in practice, selecting small batch sizes is possible, since the degrading in the gradient
approximation is usually acceptable. Typical values lie in the range [32, 256] and are powers
of 2, for which GPUs run faster. Moreover, small batches can provide regularization [142]:
for instance, mini-batch training can follow curves opposed to batch training which in one
epoch only takes a single step and thus a straight line.

SGD methods can be improved using so-called momentum [143]. Considering a physical
analogy, the negative gradient is representing a force that pushes a ”particle“ (the weight)
through space (the loss landscape) while respecting Newton’s law of motion. Assuming unit
mass, the velocity corresponds to the momentum. To move towards the minimum, one
employs the gradient to change the velocity rather than the position of the particle [144].
Compared to Eq. 2.2.2.1, the update rule changes to [14]

v← αv − ε∇Ĵ(ω), (2.2.2.2)

ω ← ω + v. (2.2.2.3)

By introducing momentum, information from previous gradients is included, as controlled
by the hyperparameters α and ε. This way, SGD finds directions based on a (leaky) weighted
average of past gradients. To gain intuition, one can perceive the optimization process as a
heavy ball rolling down a landscape, gaining momentum for steep descents and decelerating
for ascents. If previous gradients have all been pointing in similar directions, larger steps
will be taken and regions with high curvature will be strided faster. For instance, if the
error surface is simply a tilted plane, momentum will be much faster than standard gradient
descent. Information from previous gradients can also help to avoid directions where progress
will be much slower.

There is a class of optimization algorithms that adapt the learning rate differently for
each parameter. This is contrast to momentum, which applies uniform changes only. At
the heart of these approaches is the insight that different directions in parameter space are
associated with different sensitivity of the loss function. In a first simple approach (formalized
in the so-called delta-bar-delta algorithm [145]), one inspects the partial derivative of the
cost function with respect to each parameter and increases (decreases) the learning rate
if the sign is constant (is varying). In the so-called AdaGrad algorithm [146], parameters
corresponding to large (small) gradient receive significant down- (up-) scaling, resulting in
the update rule [14]

r← r +∇Ĵ(ω)�∇Ĵ(ω), (2.2.2.4)

18 Chapter 2. Deep learning

ω ← ω − η√
δ + r

�∇Ĵ(ω). (2.2.2.5)

Here, � denotes the element-wise product. Division and square root are applied element-
wise as well. For each iteration, the gradient is calculated and its squared value accumulated
in the variable r (cf. Eq. 2.2.2.4). The parameters are updated using an adaptive learning
rate (cf. 2.2.2.5) which is scaled differently for each parameter according to the accumulated
squared gradients. In Eq. 2.2.2.5, η is the learning rate and δ a constant that prohibits
division by zero. The goal of this scaling is to achieve greater advancement in directions
of parameter space that have a more gentle slope. While providing advantages in convex-
optimization problems, the reduction of the learning rate imposed by AdaGrad can bee too
restrictive in non-convex problems. This includes the optimization of deep neural networks,
whose loss landscape contains rich structure through which the learning trajectory can pass
before converging within a locally convex region. AdaGrad, however, may miss these convex
regions as it employs the full history of gradients that may decrease the learning rate too
strongly (cf. section 11.7 of [52]). In particular, the variable r increases in linear and
unbounded fashion which translates accordingly to the learning rate.

RMSProp [144] introduces means to forget more extreme parts of the accumulated gra-
dient history, enabling fast convergence after finding convex regions. To this end, an expo-
nentially weighted moving average is introduced via

r← ρr + (1− ρ)∇Ĵ(ω)�∇Ĵ(ω), (2.2.2.6)

ω ← ω − η√
δ + r

�∇Ĵ(ω). (2.2.2.7)

ρ is the decay rate, determining the length scale of the leaky or moving average, i.e., how
much of the history is considered. By iteratively applying Eq. 2.2.2.6, one finds that the
accumulate of gradients converges to 1/(1− ρ) (cf. section 11.8 in [52]), i.e., it is normalized
to one. Eq. 2.2.2.6 is similar to the leaky average used for momentum (cf. Eq. 2.2.2.2,
2.2.2.3).

Adam [10] is a robust optimization algorithm that borrows and extends characteristics
of the so-far discussed methodologies. Exponential weighted moving averages are used to
estimate momentum and second moment (the variance) of the gradient via

s← ρ1s + (1− ρ1)∇Ĵ(ω), (2.2.2.8)

r← ρ2r + (1− ρ2)∇Ĵ(ω)�∇Ĵ(ω). (2.2.2.9)

ρ1, ρ2 are two non-negative hyperparameters. Initializing v, s to the origin introduces a bias
to smaller values, leading to slow learning start. This bias is corrected by the rescaling

ŝ =
s

1− ρt1
, r̂ =

r

1− ρt2
. (2.2.2.10)

Here, t denotes the current iteration and ρti := (ρi)
t, i = 1, 2. While RMSProp also estimates

the variance, it does not include correction factors, thus being biased in early phases of the
training. Finally, the update of the parameters is performed via

ω ← ω − η ŝ√
r̂ + δ

. (2.2.2.11)

2.2. Training and optimization 19

Beyond Adam, further modifications are reported [147] including second order methods
such as Newton’s method, conjugate gradients, and the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithm [148], which is employed in materials science for local optimization of
atomic structures. We refer to section 8.6 of [14] for more details.

To conclude this section, we shortly want to discuss weight initialization. Let us consider
two hidden units that have the same biases as well as in- and outgoing weights. Then, their
gradients will be the same and thus it is not possible to learn that they are different features
[144]. Thus, symmetry must be broken, e.g., via random initialization. More advanced
techniques such as described in [149] sample from a uniform distribution, while limiting the
uniform distribution based on the number of input and output units.

2.2.3 Regularization

The ultimate goal is to design ML algorithms that generalize well to unseen data. This
amounts to reducing the (empirical) test error. Techniques that address this central task are
referred to as regularization methods. We mainly follow chapter 7 of [14] and section 3.2.2
of [124].

One way to regularize a ML model is to reduce model capacity via penalizing the param-
eters. Specifically, one adds a penalty term to the loss function, which yields

J̃(ω) := J(ω) + λΩ(ω). (2.2.3.1)

A common choice of penalty is Ω(ω) = 1
2
||ω||22, the `2 norm of the parameters which is

also called weight decay. Intuitively, this extra term pushes the weights closer to the origin.
Other alternatives are `1 regularization, ||ω||1 =

∑
i |ωi|, which leads to a preference of sparse

parameter settings. This property is being used for feature selection methods, such as the
so-called Least Absolute Shrinkage and Selection Operator (LASSO) [150].

Generalization ability can also be improved by augmenting the dataset. Considering
the example of image classification, a typical way to expand the training set is to include
differently rotated and scaled images. This way, the network can learn these invariances and
generalizes better to out-of-training samples. As we discussed in section 1.4 in a materials
science context, learning physical symmetries such as rotations via data augmentation is
unreliable. The addition of noise to training points is a further straightforward way to
increase the dataset size, for both training and test data. For instance, one may add Gaussian
noise to the images. In this thesis, we distort the atomic positions or remove atoms in random
fashion to generate the test set. For the training set, we employ different hyperparameter
settings of the materials representation (cf. section 4.3.3.2).

Injection of noise can be applied not only to the model inputs but also the model parame-
ters. This leads to the class of stochastic regularization techniques. A popular representative
is dropout [151,152] where neurons are randomly dropped in each layer during training (cf.
Fig. 2.4). Usually, dropout is only used at training time to reduce overfitting. Specifically,
the goal is to avoid over-specialization and co-adaption of individual neurons. Dropout is
related to the concept of ensemble methods, where the predictions of a set of possibly weak
and separately trained learners are combined (for instance, via averaging) to improve the
generalization error. For so-called bagging methods, n models are trained on n different

20 Chapter 2. Deep learning

datasets (sampled randomly with replacement). At test time, each participant of the en-
semble would have to be evaluated, which can be impractical for deep neural networks.
Dropout approximates bagging via the following modification of mini-batch stochastic gra-
dient descent. For each point i in each batch, a binary mask vector ml

i is sampled for all
user-defined layers l of the network (except the output layer). The components of ml

i are
sampled independently and are set to zero with a certain probability pi, a hyperparameter
that is called dropout ratio. The same masks are used for forward and backpropagation.

...

Figure 2.4: Illustration of dropout regulariza-
tion.

In contrast to bagging, dropout produces
models that are not independent and share
parameters that are random realizations
of a predefined parent architecture. This
way, exponentially many models can be rep-
resented with reasonable memory require-
ments. Similar to bagging, the dropout sub-
networks are trained on subsets, the batches,
corresponding to random samples with re-
placement. However, most of the subnet-
works are either not trained at all – since
they are missed by the random sampling – or only for a single step. Still, due to parameter
sharing, acceptable parameter settings can be reached for all subnetworks. To obtain a pre-
diction, bagging involves the combination of all submodel predictions, e.g., via averaging.
For dropout, this would involve an average of exponentially many submodels. A practical
approximation is the scaling of each unit i by 1/1− pi which accounts for the missing neu-
rons at training time. This way, one tries to approximately match the expected inputs to
unit i at test and training time. Dropout can also be applied at test time, which is referred
to as Monte Carlo (MC) dropout, allowing a Bayesian interpretation of the neural network
model. We will discuss this in more detail in section 2.3.2. Note that instead of sampling
the dropout masks from a Bernoulli distribution, one may also employ other probability
distributions, e.g., Gaussian multiplicative noise [152]. Using multiplicative noise enforces
a type of robustness that would not be guaranteed by using, for instance, additive noise.
Specifically, the neurons could adopt very large values during optimization such that the
added noise becomes negligible.

Finally, we want to discuss early stopping. A typical scenario is that at the beginning of
training, the validation error decreases simultaneously with the training error but then starts
to rise again, while the training error continues to decline. Thus, model parameters from
early training epochs might actually outperform those extracted from the end of training. In
early stopping, the model parameters are saved each time the validation error decreases. At
the end of training, the optimal set of parameters is returned. This simple strategy may be
extended by selecting a desired amount of increase in model performance for which model
parameters will be saved. One may even abort the training process if no improvement is
made for a predefined number of epochs. Intuitively, early stopping can be perceived as
restricting the volume of parameter space [153, 154] and is equivalent to weight decay for
linear models with quadratic cost function [14]. Section 4.3.3.3 discusses how we employ
early stopping in this thesis.

2.2. Training and optimization 21

2.2.4 Hyperparameter tuning via Bayesian optimization

A reoccurring scenario in ML is the optimal selection of hyperparameters. In particular,
these parameters are not fixed by the learning algorithm but can have significant influence
on model performance (both training and generalization error). In the previous sections, we
encountered multiple hyperparameters: architecture specifics (number of layers, number of
neurons), regularization parameters (weight decay, dropout ratio), or optimization-related
settings (learning rate and associated parameters for its adaption during training). After
a specific hyperparameter selection, training is performed and the quality of the choice is
evaluated using the error on the validation set. If the model performance is not satisfy-
ing, new hyperparameters may be selected. This hand-tuning approach to hyperparameter
optimization is heavily based on human intuition, hindering understandability and repro-
ducibility of research results. In particular, it is often hard to distinguish approaches that
are fundamentally improving or just involve more fine-tuning. Establishing algorithms for
automatic hyperparameter selection is a significant step towards addressing this important
problem [155].

A first step towards automatic hyperparameter search is to define a specific range of
values for each hyperparameter and compute the validation error for all possible combina-
tions. This is also referred to as grid search. Alternatively, one may randomly sample from
the predefined hyperparameter intervals, so-called random search [156]. This strategy often
outperforms grid search, in particular if the search space is large and testing every combina-
tion is computationally infeasible. Both grid and random search are prone to the probing of
uninteresting corners of search space, since no memory of previous samples or an estimate
of the expected reward is included. In particular in deep learning, cost functions are com-
putationally expensive due to large datasets and model complexity. Bayesian optimization
is an attempt to address these issues.

Bayesian optimization is a general approach for the global optimization of complex and
computationally expensive, black-box like functions f (see also [157–159] for more details).
In hyperparameter optimization, f may correspond to scores that depend on configurations
of hyperparameters, e.g., scalar performance measures such as the classification accuracy
defined with respect to a validation set and a specific model architecture. A central task is
to model the distribution of scores y given configurations x, i.e., p(y|x). This conditional
distribution is determined by updating a prior from a history of previously explored config-
urations and associated scores, denoted as H = {(x, f(x)}. The model for p(y|x) should be
computationally tractable to enable rapid evaluation. Gaussian processes [160] or decision
trees [161] may be used to model p(y|x) which is updated iteratively in a Bayesian fashion.
Since H changes the model, we denote the approximation of p(y|x) as pM(y|x,H). This
strategy relies on the evaluation and proposal of new candidate configurations, for which
expected improvement (EI) is a typical measure [162] that is defined as [155]

EIy∗(x) =

∫
y<y∗

y pM(y|x,H)dy. (2.2.4.1)

This expression approximates the expectation (according to the model pM(y|x,H)) that the
original, to be optimized function is below a certain threshold y∗ for a specific configuration x.
The established terms are employed in so-called sequential model-based global optimization

22 Chapter 2. Deep learning

algorithms [163]: The computationally costly function f is optimized for a predefined number
of iterations T by optimizing a surrogate model of f . Specifically, a new point x∗ is suggested
that optimizes the surrogate model, e.g., by maximizing the expected improvement. Then,
the function f is evaluated – only once per iteration – for the point x∗, yielding a new pair
(x∗, f(x∗)) that is added to the history H. This updated history is then used to fit a new
model, after which a new iteration starts.

The Tree-structured Parzen estimator (TPE) [155,163] is a specific hyperparameter opti-
mization algorithm. It assumes a tree structure in hyperparameter space where leaf variables
(such as the number of neurons in a layer) depend on the definition of the node variables
(such as the number of neural-network layers). After defining prior distributions for each
hyperparameter, TPE relies on the fitting of Gaussian mixture models (GMMs). In gen-
eral, GMMs estimate the density underlying a given dataset as a superposition of Gaussian
densities, which are defined by mean and covariance matrix (see section 6.8 in [33]). TPE
is implemented in the Python package hyperopt [164] which provides a general automatic
framework for hyperparameter optimization.

2.3 Bayesian deep learning

So far, we considered ML models only as learning systems that provide a prediction. In many
situations, it is useful to quantify the confidence associated with a particular prediction, i.e.,
how much one can trust the model (see also section 1 of [124]). For instance, let us consider
an image classifier that is trained on dogs and cats. When faced with a completely different
image, for instance, a jaguar, the model may predict ”cat“. In this case, it would be desirable
to have an additional indicator signaling that the model is not confident, i.e., one needs to
quantify the model uncertainty. One can distinguish two sources of uncertainty [124,165,166]:
So-called epistemic uncertainty (stemming from the Greek word “episteme” that is translated
as “knowledge”) corresponds to the lack of knowledge due to the model parameters being
insufficient to describe the data. Adding more data can reduce this kind of noise. Moreover,
so-called aleatoric uncertainty (from the Latin word “aleator” meaning “dice player”) is
caused by noise in the observations, e.g., due to experimental inaccuracies. Simply expanding
the dataset will not eliminate this uncertainty source.

Bayesian modeling can be employed to quantify the uncertainty of a ML model [158].
Applied to deep neural networks, this leads to the field of Bayesian deep learning. Standard
neural networks, as discussed in section 2.1, are unable to provide reliable model classi-
fication uncertainty [123]: Considering a classification setting, there is widespread use of
the probability provided by the last layer as uncertainty estimate. These probabilities are
typically obtained by normalizing the sum of output values using the so-called softmax ac-
tivation function (cf. Eq. 2.1.2.8). The class with maximal probability corresponds to the
final prediction (in this thesis, of a specific structural class). One may interpret the clas-
sification probability as quantification of model confidence. For instance, given a model
that is trained to distinguish dogs and cats, one may compare two predictions that differ in
classification probability and interpret the prediction with higher classification probability
as more reliable. However, this strategy is unreliable as standard neural networks tend to
erroneously assign unjustified high confidence to points for which a low confidence should be

2.3. Bayesian deep learning 23

Standard neural network
- deterministic output

Bayesian neural network
- probabilistic output

Figure 2.5: Illustration of the difference between parameters and output of standard (left)
and Bayesian neural networks (right). While in standard neural networks, parameters are
fixed and produce deterministic output, in Bayesian neural networks, distributions are placed
over the model parameters, resulting in probabilistic outputs.

returned instead. In particular, even if a model has high softmax output for a given input,
the predictive uncertainty can still be high [123]. The main reason for this behavior is that
standard-neural-network predictions are deterministic, with the softmax output providing
only point estimates of the true probability distribution of outputs. In Bayesian neural net-
works, this is addressed by placing distributions over model parameters (cf. Fig. 2.5). This
results in probabilistic outputs – in contrast to the point estimates from deterministic neural
networks– from which uncertainty estimates can be obtained. Gal and Ghahramani [123]
showed that high-quality uncertainty estimates (alongside predictions) can be calculated at
low cost using stochastic regularization techniques such as dropout [151,152]. In particular,
the uncertainty estimates are principled in the sense that they approximate those of a well-
known probabilistic model, the Gaussian process [160]. We will discuss this in section 2.3.2
in more detail.

2.3.1 Bayesian approach and variational inference

For the formalization of model uncertainty quantification, Bayesian modeling is employed.
We mainly follow section 2 of [124]. In a frequentist approach, the probability of a cer-
tain event corresponds to the relative frequency of the event as determined from repeated
experiments. Bayesian probability allows to incorporate prior knowledge or belief which is
encoded in the prior distribution. For instance, the assumption of a fair coin, i.e., p(heads)
= p(tails) = 0.5, is a reasonable prior. Specializing to a ML problem, we are given inputs
X and outputs Y. The goal is to find the most likely parameters ω of the model fω(x)
that generated the outputs. To apply Bayesian modeling, one first has to define a prior
distribution p(ω) over the model parameters, expressing the initial belief in the more likely
parameters before any data point is observed. With incoming observations, the prior is up-
dated via Bayes’ theorem to obtain the posterior distribution, which captures the most likely

24 Chapter 2. Deep learning

model parameters given the data. Specifically, the posterior distribution is determined via

p(ω|X,Y) =
p(Y|X,ω)p(ω)

p(Y|X)
. (2.3.1.1)

p(Y|X, ω) denotes the likelihood distribution, which in a classification task can be obtained
via the softmax likelihood

p(y = c|x,ω) =
exp ([fω(x)]c)∑
c′ exp ([fω(x)]c′)

. (2.3.1.2)

Furthermore, p(Y|X) is called model evidence and can be calculated via integrating (also
called marginalizing) p(Y|X,ω) over ω, i.e.,

p(Y|X) =

∫
p(Y|X,ω)p(ω)dω. (2.3.1.3)

Given the posterior, one can perform inference, i.e., calculate the prediction y′ given a new
input x′ via

p(y′|x′,X,Y) =

∫
p(y′|x′,ω)p(ω|X,Y)dω. (2.3.1.4)

To compute the posterior, integrals over the model parameters ω need to be calculated. Only
for simple models the integration over all possible ω is feasible, while typically approximation
techniques are required – especially for deep-neural networks.

Variational inference is a general method to approximate intractable probability distri-
butions as they frequently appear in Bayesian inference. Specifically, the model posterior is
approximated with a distribution qθ(ω), parametrized by θ. In particular, qθ(ω) should be
less complex and easier to evaluate than the model posterior. To determine qθ(ω), one can
minimize the Kullback–Leibler (KL) divergence which is defined as

KL(qθ(ω) || p(ω|X,Y)) =

∫
qθ(ω) log

qθ(ω)

p(ω|X,Y)
dω. (2.3.1.5)

This way, marginalization (the calculation of integrals) is replaced with optimization (the
calculation of derivatives), which is usually more tractable. We refer to [167] and [124]
for more details. The minimum of the KL divergence, denoted as q′θ(ω), is then used to
approximate the inference process in Eq. 2.3.1.4 via

p(y′|x′,X,Y) ≈
∫
p(y′|x′,ω)q′θ(ω)dω. (2.3.1.6)

While replacing the intractable posterior, this equation still contains expensive calculations,
in particular the integral over parameter space and the evaluation of the integrand for the
whole dataset. This limitation is addressed by Monte Carlo dropout that is discussed in
the next section. Specifically, one can show that variational inference and neural-network
optimization using dropout regularization are equivalent. In particular, a neural network
trained with dropout can be interpreted as a Bayesian neural network.

2.3. Bayesian deep learning 25

2.3.2 Monte Carlo Dropout

As discussed at the beginning of this chapter, one can think of Bayesian neural networks as
standard neural networks with distributions being placed over the model parameters. This
results in probabilistic outputs from which uncertainty estimates can be obtained. The major
drawback is that training and inference via traditional Bayesian neural networks is in general
difficult, since it requires to solve high-dimensional and thus computationally costly integrals.
For classification, expensive calculations are required to determine p(y = c|x, Dtrain), which
is the probability that the classification is assigned to a class c, given input x and training
data Dtrain. Then, for a specific input x (in our case the SOAP descriptor), the most likely
class c, i.e., the one with largest p(y = c|x, Dtrain) is the predicted class.

Gal and Ghahramani [123] showed that stochastic regularization techniques such as
dropout [151,152] can be used to calculate high-quality uncertainty estimates (alongside pre-
dictions) at low cost. This approach is also called Monte Carlo (MC) dropout. In dropout,
neurons are randomly dropped in each layer before the network is evaluated for a given
input (cf. Fig. 2.4). Usually, dropout is only used at training time with the goal of avoiding
overfitting by preventing over-specialization of individual units. Keeping regularization also
at test time allows to quantify the uncertainty. Practically, given a new input, one collects
and subsequently aggregates the predictions while using dropout at prediction time. This
gives a collection of probabilities being denoted as p(y = c|x,ωt), which is the probability
of predicting class c given the input x at a specific forward-pass t, with model parameters
ωt ∼ q′θ(ω). From this collections of probabilities, one can estimate the actual quantity of
interest, p(y = c|x, Dtrain), by a simple average [123]

p(y = c|x, Dtrain) ≈ 1

T

T∑
t=1

p(y = c|x,ωt), (2.3.2.1)

where T is the number of forward-passes. Typically, values of 102 − 103 suffice to obtain
good results (see also section 4.3.3.1 for more details on how we choose this parameter).

While the average can be used to infer the class label c, additional statistical information,
which reflects the predictive uncertainty, is contained in the collected forward-passes, i.e.,
the probabilities p(y = c|x,ωt). These effectively yield a histogram for each class and define,
when varying over all possible c, a (discrete) probability distribution. For classification,
several uncertainty quantifiers are reported [123,165]. For instance, one may employ mutual
information, which is well-grounded in information theory.

In our case, for a given test point x, the mutual information between the predictions and
the model posterior p(ω|Dtrain) is defined as (where we adapt the notation of [123,124,168])

I [y,ω|x, Dtrain] := H[y|x, Dtrain]− Ep(ω|Dtrain) [H[y|x,ω]] . (2.3.2.2)

The first term on the right-hand side is the predictive entropy [124] that quantifies the
(average) information in the distribution of predictions and is given by

H[y|x, Dtrain] := −
∑
c

p(y = c|x, Dtrain) log p(y = c|x, Dtrain). (2.3.2.3)

26 Chapter 2. Deep learning

Both mutual information and predictive entropy are strictly greater than zero. Thus, the
mutual information is bounded from above by the predictive entropy [165]. The second term
in 2.3.2.2 is defined as

Ep(ω|Dtrain) [H[y|x,ω]] := Ep(ω|Dtrain)

[∑
c

p(y = c|x,ω) log p(y = c|x,ω)

]
. (2.3.2.4)

which one may call expected entropy as it averages the entropy of the predictions given the
parameters ω that are distributed according to the posterior distribution [165]. Using MC
dropout, one can approximate the mutual information via [123]

I [y,ω|x, Dtrain] ≈

−
∑
c

(
1

T

∑
t

p (y = c|x,ωt)

)
log

(
1

T

∑
t

p (y = c|x,ωt)

)
+

1

T

∑
c

∑
t

p (y = c|x,ωt) log p (y = c|x,ωt) .

(2.3.2.5)

Note that the predictive entropy can also used to quantify the uncertainty. There are also
other measures (cf., for instance, [165]) while mutual information and predictive entropy
work well in practice.

To gain intuition on mutual information and predictive entropy, let us consider an ex-
ample from crystal classification (inspired by section 3.3 in [124]). The problem setting is to
distinguish two crystal structures, say fcc and bcc, which are represented as model outputs
(1, 0) and (0, 1), respectively. There are now two extreme cases:

1. The collected probability vectors are {(1, 0), (1, 0), (1, 0), ..}, i.e., they all coincide and
predict the same class label with 100 % probability.

2. The collected probability vectors are {(1, 0), (0, 1), (1, 0), (0, 1), ...}, i.e., they alternate
between the two classes.

In these scenarios, mutual information and predictive entropy coincide: For 1., they are zero,
i.e., the model is highly confident, while for 2. they are maximal (which equals the logarithm
of the number of classes), i.e., the model is highly uncertain. A third scenario is as follows:

3. The collected probability vectors are {(0.5, 0.5), (0.5, 0.5), (0.5, 0.5), (0.5, 0.5), ...}, i.e.,
they all coincide but each class is assigned a 50 % probability.

In this case, the mutual information will vanish but the predictive entropy will be maximal.
In particular, the mutual information will vanish any time the collected probabilities are
constant along the different MC-dropout steps (e.g., also if the probabilities are (0.7, 0.3)).
Thus, following [124], mutual information quantifies model confidence.

Chapter 3

Unsupervised learning

In unsupervised learning, the goal is to learn hidden patterns and concepts from unlabeled
data. So far, we discussed supervised prediction of targets Y from inputs X, i.e., we inves-
tigated properties of P (Y|X). In unsupervised learning, the goal is to infer the properties
of P (X), the joint density of observations, without supervision (or rewards from the envi-
ronment in a reinforcement learning setting). We refer to section 14 of [33] and [169] for
broader overviews on unsupervised-learning techniques.

In the following sections, we discuss two unsupervised-learning methods, which we use
to analyze and explain the predictions of our neural-network approach ARISE: clustering
(section 3.1) and dimensionality reduction (section 3.2). Specifically, we employ the Hier-
archical Density-based Spatial Clustering Applications with Noise (HDBSCAN) framework
(section 3.1.3), which is based on Density-based Spatial Clustering Applications with Noise
(DBSCAN) that is discussed in section 3.1.1 and 3.1.2. For dimensionality reduction, we
first discuss some basic concepts and then explain a particular type of manifold learning
algorithm in section 3.2.1, Uniform Manifold Approximation and Projection (UMAP).

3.1 Clustering

The goal of clustering methods is to separate a given dataset into groups, the clusters. Points
within a cluster are similar to each other and distinct from all other points. The definition
of similarity within and between clusters allows to differentiate clustering methods.

More formally, a minimal definition of clustering requires the set of data points x ∈ O
(typically O ⊂ Rd) and a distance function d mapping pairs of points to a positive real
number, i.e., d : O ×O → R+ [170,171].

3.1.1 Density-based clustering

In many approaches, a dataset with m points is partitioned into a predefined number of
k groups. Using the distance function d, the similarity of data points belonging to the
same cluster is maximized while the similarity to points outside the cluster is minimized.
These methods can be understood as parametric, i.e., the data density P (X) is considered
as a mixture of k densities pi(X), i = 1, ..., k. These densities are members of a specific

27

28 Chapter 3. Unsupervised learning

parametric family such as Gaussian distributions (e.g., GMMs). The unknown parameters
of the k densities are estimated from the data. The discovered clusters are typically convex-
shaped.

Density-based clustering defines clusters as contiguous high-density regions that are de-
tached from each other via contiguous low-density regions. This approach is non-parametric
and does not require the user to fix the number of clusters. Moreover, the clusters are not
restricted to convex shape.

D
e
n
si
ty

x

D
e
n
si
ty

x

D
e
n
si
ty

x

a

b

c

Figure 3.1: Illustration of density-based clus-
tering using an artificial 1D dataset (inspired
by Fig. 1 in [171]). A specific cut of the es-
timated density (y-axis) results in a certain
number of connected components. In each
of these, the data points exceed the density
threshold. All points below the density level
are considered noise. These assignments de-
pend on the chosen cut being either very low
(a), intermediate (b) or very high (c). In par-
ticular, in case c, one cluster is missed.

To illustrate the concept of density-based
clustering, let us first consider a simplified
example in Fig. 3.1. From an estimate for
the density underlying the data, one can se-
lect a threshold that results in different clus-
ter assignments. In this example, a para-
metric approach may lead to comparable
results. To demonstrate the advantage of
density-based clustering methods, we con-
sider a more complicated example in Fig.
3.2a: One can see that the shape of the
black cluster is spherical to a good approxi-
mation and thus may be captured via para-
metric methods such as GMMs. The red
cluster, however, is non-spherical and all of
its points cannot be captured: for instance,
methods such as k-means [172] can only de-
tect spherical regions and thus will detect
only part of the red cluster. In general, de-
tecting arbitrarily shaped clusters is not pos-
sible with parametric methods. The choice
of parametric family limits the shape of the
detected clusters. Furthermore, the number
of clusters is a hyperparameter that has to
be chosen carefully. Fig. 3.2 also contains
points that are more distant to the rest of
the points, and thus would be candidates
for outliers (a differentiation that cannot be
achieved using, for instance, k-means). One
may recover some of the outliers by deciding a lower bound for the density, i.e., all points
below a certain density are considered outliers (e.g., for GMMs, below a multiple of the stan-
dard deviation σ). Conversely, a density-based approach is non-parametric (no parametric
family is chosen) and thus imposes less strict assumptions on the data: Number and shape
of clusters is arbitrary and solely inferred from the data. Furthermore, there is the option
to refuse the assignment of a given data point to a cluster, i.e., to identify “outliers”. Note
that this term requires careful definition. The methods employed in this thesis follow the
definition by Hawkins [173], which considers an outlier “an observation that deviates so much

3.1. Clustering 29

from other observations as to arouse suspicion that it was generated by a different mecha-
nism.” Coming back to Fig. 3.2a, a non-parametric method is able to separate all clusters
and even refuse to cluster points that do not fall into a regular pattern (such as the gray
points). Furthermore, one can observe that the (Euclidean) distance between points in the
same cluster can be larger as the distance between points that belong to different clusters.
Still, the density is high in the cluster regions. In summary, one can see that in comparison
to parametric approaches, non-parametric methods allow the data more to speak for itself.
That is why these kinds of techniques are particularly attractive for performing exploratory
data analysis – one major point in this thesis (e.g., section 6.6.2). Different density-based
approaches can be discriminated by the way in which the density is estimated. A concrete
example is considered in the next section.

Noise / Outliers

Border points

Core points

ε

a b

c

Nested cluster

Clusters
with different
 density

d

Figure 3.2: Artificial datasets demonstrating the concept behind DBSCAN (and its variant
DBSCAN∗ [174]). a 2D dataset in which both spherical (black points) and non-convex
clusters (red points) appear, alongside points being scattered across the map (in gray). b
Illustration of the connectivity that arises within the DBSCAN algorithm from a particular
choice of radius ε (highlighted in dark green) and the definition of core, border, and noise
points (or rather outliers). While the noise points can be clearly distinguished, the difference
between core and border points is due to the predefined density threshold k, corresponding
to the number of points within ε. c Graph representation of the connectivity. Compared
to b, the definitions of the DBSCAN∗ algorithm are employed in which all non-core points
are considered outliers. d 2D dataset that demonstrates the occurrence of different types of
clusters within a single dataset, in particular clusters with different density (left) or nested
and sub-clusters (right). This example demonstrates the limitations of DBSCAN and its
variant DSBCAN∗ [174] (see also the main text in section 3.1.2).

30 Chapter 3. Unsupervised learning

3.1.2 DBSCAN

DBSCAN [175] is an example of non-parametric density-based clustering. In this approach,
the density is approximated by defining the connectivity between points using a distance
metric (e.g., the Euclidean distance). Given a set of points X, two thresholds are chosen:
ε for the pairwise distance and k for the density (which is the minimum number of points
with distance ≤ ε). Then, the following data points are distinguished [174,176] (see also Fig.
3.2b for an illustration of the following concepts):

• xi ∈ X is called a core point if its number of neighbors within ε distance exceeds k.

• xi ∈ X is called directly density- or ε-reachable from a core point xj ∈ X if xi is within
ε distance from xj.

• xi and xj are called density-connected if they are directly or transitively ε-reachable,
where the latter notion implies that there is a path of points which are all core points.

• All points which are not reachable from any other point are called outliers or noise
points.

Using these definitions, a cluster is defined as a set of points for which every pair of objects
is density-connected. Points that do not posses the core property may be part of a cluster
as well and are called border points. The clusters are then identified as the connected
components of a graph G, in which the vertices correspond to the data points X and edges
between two vertices are drawn if and only if both are ε-reachable and core points (cf. Fig.
3.2c). In a modified version of DBSCAN, so-called DBSCAN∗ [174], all non-core points are
considered outliers (i.e., also border points). The change in connectivity is illustrated in Fig.
3.2c.

While DBSCAN offers several advantages compared to parametric methods, its limita-
tions are clear: The threshold parameters ε and k have to be chosen. At worst, this requires
preknowledge about the scale of the dataset – otherwise no satisfying results may be ob-
tained. Furthermore, if a dataset contains clusters with large variations in density (and
maybe also nested clusters), it may be hard to find optimal values for both ε and d (i.e., a
trade-off between distance and density) such that all or most of the clusters can be detected.
This is illustrated in Fig. 3.2d. The clustering algorithm discussed in the next section
addresses these limitations.

3.1.3 HDBSCAN

HDBSCAN [177, 178] is an extension of the DBSCAN algorithm. Several limitations of
DBSCAN are addressed in HDBSCAN. The dependency on distance and density thresholds
is eliminated and only one, more intuitive parameter needs to be chosen. Moreover, clusters
with varying density can be detected.

HDBSCAN is an agglomerative hierarchical clustering method. To illustrate this concept,
let us consider the example shown in Fig. 3.3a. At the beginning of the algorithm, each
point constitutes a separate cluster. Then, the most similar points are joined iteratively,
where in this case, the similarity is defined via Euclidean distance. The algorithm stops as

3.1. Clustering 31

Dendrogram

a

b

1
2

3

4
5

1 2 3 4 5

D
is

ta
n
ce

c

2.0 1.0

1.0 2.0

6.0 4.0

3.0 2.0

Root (=C1)

C2 C3

C4 C5 C6 C7

C8 C9

Figure 3.3: a Illustration of single linkage clustering (a specific type of agglomerative hierar-
chical clustering). b Construction of a dendrogram for the clustering procedure illustrated in
a. c Illustration of the stability criterion in HDBSCAN and its consequence on the clustering
assignment. This subfigure is a modified version of Fig. 2 from [174].

soon as one cluster containing all points is obtained. This procedure can be summarized in
a dendrogram, an example of which is shown in Fig. 3.3b. In this depiction, each point in
the dataset is shown on the x-axis and the y-axis (the height) corresponds to the distance.
Starting from the bottom, each point constitutes a separate cluster. Going up (i.e., to larger
distances), first point 1 and 2 are joined , then 3 and 4 etc. Drawing a horizontal line yields
intersections with the dendrogram leafs that correspond to a specific flat clustering. In
general, one can choose different cuts and thus obtains a hierarchy of clusters, while there is
no immediate criterion which flat clustering should be preferred. Furthermore, one may try
different distance metrics and linkage criteria, i.e., the condition according to which points
are merged. In Fig. 3.3a two clusters are merged if they contain two points with minimal
Euclidean distance. We refer to [179,180] for additional details on hierarchical clustering.

Equipped with knowledge about density-based and agglomerative hierarchical clustering,
we can now discuss the actual HDBSCAN algorithm, where we mainly follow [174,177] and
the online documentation (https://hdbscan.readthedocs.io/en/latest/how hdbscan works.html,
version 0.8.26):

• First, a specific distance metric is employed, the mutual reachability distance: the
core distance dcore(xi) with xi ∈ X is introduced, which is the distance of xi to its
kth-nearest neighbor. Then, the mutual reachability distance is defined as [174]

dmreach(xi,xj) = max {dcore(xi), dcore(xj), d(xi,xj)}, (3.1.3.1)

where d(·, ·) denotes a metric distance (e.g., the Euclidean distance). For xi = xj,
one defines dmreach(xi,xj) = 0. Using mutual reachability, two dense points xi,xj

https://hdbscan.readthedocs.io/en/latest/how_hdbscan_works.html

32 Chapter 3. Unsupervised learning

with a small core distance are assigned the same distance (according to d(·, ·)), while
sparse points will be separated by at least their core distances. This transforms the
original data space, separating high-density areas from noise. There is additional,
more theoretical motivation for the application of mutual-reachability distances, see,
for instance, [181].

• Using Eq. 3.1.3.1, one can build a graph in analogy to the DBSCAN procedure, where
again vertices correspond to data points while edges between vertices are now assigned
the mutual-reachability distance. For a fully connected graph, the number of edges
scales cubically with the number of points. For large datasets, this leads to large
computation times. Instead of a fully connected graph, a minimum spanning tree is
constructed. In short, this type of graph is constructed via identifying a set of edges
that is minimal in the sense that removing any edge from this set would result in
disconnected components.

• From the minimum spanning tree one can build a cluster hierarchy, i.e., perform the
single-linkage agglomerative hierarchical clustering procedure sketched in Fig. 3.3a,
while using the mutual reachability distance instead of the Euclidean distance. The
hierarchy yields connected components and noise for different distance levels, con-
taining all partitions that can be obtained via varying ε, d in the DBSCAN algorithm.
Practically, one sorts the edges by increasing distance and then iteratively merges them
into clusters.

• To extract a flat clustering, one may select a specific density threshold (corresponding
to a horizontal cut through the dendrogram) and recover a DBSCAN-like procedure.
However, this requires careful threshold-tuning. In particular, a choice of distance
corresponds to a fixed density, leading back to the problems sketched in Fig. 3.2d. To
address this, the dendrogram is transformed and simplified the following way: Going
through the hierarchy from top (the largest distance) to bottom (the smallest distance),
one interprets this not as one cluster splitting into ≥2 components but rather as a
single persistent cluster from which points drop out. Traversing the hierarchy, one
then examines at each split the number of points in the new clusters. If there are
less than a certain number of points (denoted as the minimum cluster size mclSize)
in any of these connected components, they are not considered a “true” split but
deemed noise. The distance at which these split-offs happen are saved to memory.
This procedure significantly reduces the hierarchy complexity, corresponding to less
dense dendrograms. To determine the flat clustering, one identifies those clusters that
have the longest persistence, i.e., they “survive” longer when decreasing the distance
threshold. To this end, one has to quantify the stability S(C) of a cluster C. Following
[174], we introduce λ = 1

ε
, the inverse of the core distance. This change in notation is

motivated by the fact that density-based algorithms aim to find high-density areas but
so far we related to distances only. For a given point, the inverse of its kth nearest-
neighbor distance (the core distance) is an efficient estimate of the local density [177],
which is why it is used in the following. Increasing λ (corresponding to decreasing
ε) traverses the hierarchy from top to bottom, reducing and splitting up clusters.

3.2. Dimensionality reduction 33

Given the definition of λ, one introduces for each cluster C the value λstart(C) as
the level at which C has been separated and became a distinct cluster. Moreover,
λend(C) corresponds to the level at which C is separated into sub-clusters. Then for a
point xi, λ(xi, C) denotes the level beyond which xi is no longer member of C, while
λstart ≤ λ(xi, C) ≤ λend. The stability of the cluster C is then defined as

S(C) =
∑
xi∈C

(λ(xi, C)− λstart(C)) . (3.1.3.2)

This stability quantifier, defined for each cluster C, can be used to extract the most
persistent clusters. Specifically, one traverses the hierarchy, comparing the sum of
stabilities of child and parent clusters. Considering the example shown in Fig. 3.3c,
one starts from a collection of clusters (here, C1, ..., C9) and their associated cluster
hierarchy tree in which each node corresponds to a cluster Ci and its stability S(Ci).
Starting from the lowest level, at the node C4, the sum of stabilities of its child clusters
C8, C9 is larger than S(C4) which is why C4 is eliminated. Summing the stabilities of
C8, C9, C5 yields 5.0, which is smaller than S(C2) and thus only C2 survives. On the
other branch, the combined stability of C6, C7 is larger than S(C3), which is thus
removed. Hence, for this artificial example, only C2, C6, and C7 are selected as final
clusters (highlighted in red in Fig. 3.3c). This procedure, which we sketched only
exemplarily in Fig. 3.3c, can be formalized into an optimization algorithm, whose
exact definition can be found in section 5 of [174].

Instead of the assignment of clustering labels (flat clustering), HDBSCAN can also be
employed to perform soft clustering, where points can be part of several clusters. Specifically,
points xi are assigned probability vectors p whose jth correspond to the probability that
the point is part of cluster j. In the previous paragraph, we introduced the point- and
cluster-wise defined value λ(xi, C). This can be interpreted as quantifying the membership
strength of xi to C. Normalizing these values to the range [0, 1], one may interpret them as
probabilities that can be employed for soft clustering. When dealing with data that contains
a significant amount of noise, it may happen that the flat clustering obtained via HDBSCAN
is too strict and almost every point will end up being an outlier. This is also encountered in
this thesis, as discussed in more detail in section 6.6.3.

To conclude this chapter, we want to point out that the improvement of time complexity
(as a function of dataset size) is among the biggest advancements that has been made in
recent implementations (as employed in this thesis [178]) of the HDBSCAN algorithm.

3.2 Dimensionality reduction

In dimensionality reduction, the goal is to find a compressed representation of the dataset,
i.e., to reduce the initial dimensionality d of the features to a value d′ with d′ < d. Ideally,
this new set of variables provides the same amount of information as the original data.
Reducing the dimensionality of the raw input data can be used as a preprocessing step in
a ML problem with a potential boost in performance. Moreover, the visualization of high-
dimensional data in a low-dimensional, more comprehensible representation is particularly

34 Chapter 3. Unsupervised learning

attractive; for instance, one may construct 2D maps in which data points are distributed
in a meaningful way, revealing clustering or clear separation among data points. This way,
one can gain insights into complex, high-dimensional representations. In this work, we will
compress and study the internal neural-network representations of a given crystal structure
(which are 256- and 512-dimensional, depending on the layer – cf. sections 6.2.2 and 6.6.2).

The most common dimensionality reduction method is principal-component analysis
(PCA) [182, 183], which determines the directions of highest variance in a dataset. PCA’s
low-dimensional approximations are linear in nature and thus will struggle to reduce com-
plex high-dimensional data into a lower-dimensional representation that still captures most
of the original variance. In this thesis, however, we are especially interested in visualiz-
ing the 256- and 512-dimensional neural-network representations for datasets on the order
of 103 − 104 points. Thus, we need to invoke other, non-linear dimensionality reduction
techniques. So-called t-distributed stochastic neighborhood embedding (t-SNE) [184] is a
well-known non-linear method, while it has been recently improved in several aspects via
the UMAP framework [185]. Both UMAP and t-SNE are representatives of so-called mani-
fold learning techniques. These techniques assume that a given data description with a large
number of features is artificially high and much less parameters may suffice. Thus, the data
points can be perceived as members of a low-dimensional manifold that is embedded in a
high-dimensional space [186]. This is also referred to as the manifold hypothesis. In general,
one may distinguish two types of dimensionality-reduction methods, namely those relying on
matrix factorization (such as PCA) and those constructing a neighbor graph (e.g., t-SNE,
UMAP).

3.2.1 UMAP

a b

Figure 3.4: Sketch of the neighbor-graph construction that is employed in UMAP for ap-
proximating the topological structure of the manifold underlying a given dataset. Here, two
points are connected if the associated circles overlap. a Connectivity for a uniformly chosen
radius. b Connectivity for a radius that is adapted for each point. Specifically, the radius is
increased until at least k nearest neighbors are contained (here k = 2). This corresponds to
assigning a different local metric to each point.

The UMAP algorithm models the manifold structure underlying a dataset with a specific

3.2. Dimensionality reduction 35

topological representation, which in practice turns out to be a weighted graph. The low-
dimensional representation of the data is then found by matching the graph of the projection
with the graph of the data. The matching procedure is achieved by defining an objective
function that quantifies the difference between the two graphs and then minimizing it via
stochastic gradient descent. We mainly follow [185] and the associated online documentation
(version 0.4.1, https://umap-learn.readthedocs.io/en/latest/how umap works.html).

More formally, UMAP finds a so-called fuzzy topological representation of the data, where
mathematical tools from algebraic topology [187] and category theory [188] provide theoret-
ical guidance such that this construction captures the topology of the manifold underlying
the data. This topological understanding is then used to find a low-dimensional represen-
tation (via optimization), which typically is an embedding in 2D Euclidean space – while
UMAP also allows to choose different dimensions (e.g., three instead of two embedding-space
dimensions) and other, non-Euclidean embedding spaces (e.g., spherical or torus-shaped).

To model the topological structure underlying a given dataset, one can make use of
simplicial complexes. Loosely speaking, a simplicial complex is obtained by “gluing” together
geometric objects, the simplices. A simplex is a k-dimensional object (thus called k-simplex)
which is constructed using the convex hull of k + 1 independent points. For instance, a
0-simplex would be a point, a 1-simplex a line, a 2-simplex a triangle, and a 3-simplex a
tetrahedron. By combining these basic building blocks into simplicial complexes, a multitude
of topological spaces can be modeled (as supported by the above-mentioned mathematical
machinery).

In UMAP, a specific type of simplicial complex is constructed, the so-called Cěch complex,
which relies on the definition of an open cover of the topological space. The open cover can
be understood as a collection of sets whose union covers the whole space. Considering the
example data set in Fig. 3.4a, the topological space is simply the 2D Euclidean space and
the open cover is defined by selecting a certain radius and drawing circles around each point.
The simplicial complex would then be constructed by perceiving all sets of the cover as 0-
simplices (i.e., points) and then pairwise connecting them via 1-simplices (i.e., lines) if the
sets overlap, or connecting three overlapping sets via a 2-simplex etc. While this procedure
is not too involved, its abstract formulation (for instance, in terms of simplicial complexes)
allows to relate to theorems providing guarantees when this process suffices to represent a
given topological space. In practice, to reduce computational cost, it suffices to compute a
neighborhood graph (the simplicial complex) only from points and lines (0- and 1-simplices).

One problem is to choose the right criterion – here, the radius – to obtain an open
cover, since depending on the selection, different connected components will arise. Given a
certain radius, sparsely populated regions may be insufficiently covered while high-density
regions lead to the construction of high-dimensional simplices. For uniformly distributed
data, these effects could be circumvented by choosing the radius according to the average
distance between points. The assumption of uniformly distributed data also makes certain
mathematical proofs more easier. While real-world data is not uniformly distributed, UMAP
nevertheless makes this assumption, arguing that the lack of uniformity is caused by a varying
notion of distance across the manifold. In particular, space stretches in sparse and shrinks in
dense regions. For each point, we obtain a different distance function and using Riemannian
geometry one can show that this varying notion of distance leads to unit balls (around a

https://umap-learn.readthedocs.io/en/latest/how_umap_works.html

36 Chapter 3. Unsupervised learning

given point) being defined as regions that are stretched out to the kth-nearest neighbor.
Going back to the example in Fig. 3.4a, this means that for each point we use a different
radius, which is determined as the distance to the kth-nearest neighbor. The resulting open
cover is illustrated for k = 2 in Fig. 3.4b. The choice of k now determines a trade-off between
the detection of local, fine details (small k) versus global relationships (large k).

After constructing a k-neighbor graph, one can weight the edges according to the distance
(as determined via the local metric). This can be interpreted as the introduction of a fuzzy
topology, where each member of the open cover is assigned a (fuzzy) value between zero
and one, quantifying its membership. More formally, given an open cover A (here, the set
of 1-simplices), one may define the membership function µ : A → [0, 1]. To provide further
intuition, the fact that membership strength decays from the center of the unit ball may
be depicted as a blurring effect in the cover. One problem that frequently arises in higher
dimensions is the appearance of completely isolated points – the curse of dimensionality.
To address this, the manifold is assumed to be locally connected, which in practice means
that each point should at least be connected to one other point (or rather the members
of the open cover extend at least to the first nearest neighbor). In the fuzzy cover this is
approached by decaying membership confidence beyond the nearest neighbor.

Note that in general, the local metrics associated to different points a and b are not
compatible, i.e., the distance from a and b is in general different than the distance from b to
a. Practically, the associated weights wa, wb are combined as wa + wb − wa · wb, which can
be understood as the probability that an edge exists. Applying this unification process, we
obtain a fuzzy simplicial complex, which can be interpreted as a weighted k-neighbor graph.

To find a low-dimensional representation, one constructs its fuzzy topological structure
in analogy to the procedure explained in the previous paragraphs. If we want to project into
a low-dimensional Euclidean space, the manifold structure is much simpler and in particular
the metric is constant. In analogy to the procedure described above, we need to define the
distance to the nearest neighbors that has previously been computed from the data directly.
Thus we have to choose it here as well, introducing a further hyperparameter. The strategy
is then to determine the fuzzy topological structure of an initial projected configuration and
compare this to the fuzzy topological structure of the data. Comparing these structures
requires the introduction of a measure that quantifies the mismatch. In essence, we are
comparing weighted graphs in which the weights can be treated as probabilities, indicating
the existence of an edge (simplex). The two graphs share the same vertices (0-simplices) and
thus one essentially compares probability vectors (indexed by 1-simplices). A natural choice
for the objective function is thus the cross entropy (see also Eq. 2.2.1.4).

More formally, a fuzzy set is defined by a reference set A and a function µ : A →
[0, 1] quantifying the strength of each element a ∈ A. Matching the graphs of original and
projected data corresponds to considering two fuzzy sets (A, µhdim), (A, µldim) with differing
membership functions but the same set A (here, the 1-simplices or edges). Specifically, for a
1-simplex a ∈ A, µhdim(a) and µldim(a) correspond to the membership strength in the high
and low-dimensional case, respectively. The cross entropy function comparing the two fuzzy

3.2. Dimensionality reduction 37

sets (A, µhdim), (A, µldim) is then defined as [185]

C((A, µhdim), (A, µldim)) =
∑
a∈A

(
µhdim(a) log

(
µhdim(a)

µldim(a)

)
+(1− µhdim(a)) log

(
1− µhdim(a)

1− µldim(a)

))
.

(3.2.1.1)

In practice, minimizing this objective corresponds to the application of attractive and re-
pulsive forces to the graph vertices and edges. Specifically, for a large weight µhdim(a) in
the high-dimensional graph, the first term in Eq. 3.2.1.1 is an attractive force between the
vertices defining the edge a. The reason is that this term will be minimal if µldim is maxi-
mized, which is the case when distances in the projection are minimized. For small µhdim(a),
the second term in Eq. 3.2.1.1 acts as a repulsive force between the vertices defining a,
since this term will be minimal if µldim is minimized, which corresponds to maximizing dis-
tances in the projection. During optimization, these two forces are balanced and guide the
low-dimensional representation into a state that captures the topology underlying the data.

One of the biggest limitations of non-linear dimensionality reduction techniques such as
t-SNE and UMAP is that the dimensions of the low-dimensional representations lack inter-
pretability. This is in contrast to methods such as PCA, where the dimensions correspond
to directions of greatest variance. UMAP, however, associates to each point a different local
metric. Thus, one has to be careful with over-interpreting size of clusters and also their global
positioning [189,190]. In particular the choice of hyperparameters can have strong influence
on the results. For the applications considered in this work, we obtain reasonable results
after grid-searching few values for the number of neighbors, which is denoted as nneighbors. In
accordance with other experiments [189], we have to avoid small numbers of neighbors and
choose intermediate values (for a dataset of size ∼ 8000, a nneighbors of 100 - 500 suffices to
recover the most important structural features in a polycrystal, cf. section 6.2.2). Note that
while UMAP shows improved performance in capturing global relationships, the primary
goal is to respect the local structure. Thus, if global structure is of particular interest, other
techniques may be preferred (e.g., [191] which, however, is more computationally expensive
than UMAP). A further parameter is the minimum distance, which controls the minimum
distance between points in the low-dimensional embedding. For smaller values, points will
be more closely packed into clusters, while for larger values, the points appear more spread.
In this thesis, the influence of this parameter is studied in Fig. D.4.

Chapter 4

The Bayesian-deep-learning model
ARISE

This chapter introduces the crystal-structure recognition framework ARISE. Methods and
results presented in this and the following two chapters 5 and 6 follow the lines of our
publication

[122] A. Leitherer, A. Ziletti, and L. M. Ghiringhelli.
Robust recognition and exploratory analysis of crystal structures
via Bayesian deep learning.
Nature Communications 12, 6234 (2021).
https://doi.org/10.1038/s41467-021-26511-5

An online tutorial on ARISE can be found at the NOMAD analytics toolkit:

https://analytics-toolkit.nomad-coe.eu/tutorial-ARISE or alternatively

https://github.com/AndreasLeitherer/Tutorial ARISE.

Section 4.1 summarizes the information ARISE provides. Details on code and data
availability are stated in section 4.2. The necessary steps to arrive at the predictions of
ARISE are discussed in section 4.3. This includes preprocessing (section 4.3.1) and materials
representation (section 4.3.2), as well as details on the classification model (section 4.3.3).
Regarding the model, section 4.3.3.1 explains which architecture we employ while section
4.3.3.2 describes the protocol for generating a sufficiently large training, validation, and test
set. Optimization and model performance on pristine and randomly perturbed structures
are explained in section 4.3.3.3, while a more detailed discussion on model performance, in
particular in comparison with state-of-the-art methods is provided in section 5.1.

4.1 Which information can you obtain from ARISE?

The complete prediction workflow of ARISE is sketched in Fig. 4.1 and described in more
detail in section 4.3. For a given input x (here, the SOAP vector representing the input
structure), the model transforms and distributes the information as encoded by SOAP over

39

https://doi.org/10.1038/s41467-021-26511-5
https://analytics-toolkit.nomad-coe.eu/tutorial-ARISE
https://github.com/AndreasLeitherer/Tutorial_ARISE

40 Chapter 4. The Bayesian-deep-learning model ARISE

three hidden layers and one output layer with in total more than 370 000 parameters. The
following list explains how useful information can be extracted from each of these parameters.
ARISE provides

1. A collection of output samples, which are classification probabilities. The trained
model that is considered in this thesis can classify 108 systems (the classes C :=
{c1, ..., c108}). For a given input x, a 108-dimensional output vector p is computed,
whose components correspond to the likelihood of observing class ci, i = 1, ..., 108.
Since the model is stochastic, outputs from multiple samplings differ (while it is pos-
sible that they are identical or rather highly similar to each other, indicating model
confidence – see point 1.2 below). In accordance with the MC dropout framework
(cf. section 2.3.2), one samples the output layer multiple times, yielding a collection
of probability vectors {p1, ...,pT} for a fixed number T . Values of T on the order of
102−103 typically suffice to obtain stable predictions. The components of the samples
pi are referred to as p(y = ci|x,ωt) in section 2.3, where ωt is the set of parameters
for a specific forward pass for which a certain number of neurons is dropped. The
following information can be extracted from the collected output samples:

1.1 The classification probabilities assessing the likelihood of each class ci. This quan-
tity is referred to as p(y = ci|x, Dtrain) in section 2.3 and is computed by averaging
the output samples (cf. Eq. 2.3.2.1),

p(y = ci|x, Dtrain) ≈ 1

T

T∑
t=1

p(y = c|x,ωt). (4.1.0.1)

Note that these averaged quantities already contain more information on model
uncertainty than the classification probabilities of the deterministic NN model
counterparts (cf. section 2.3 for a more detailed explanation). Two types of
information can be inferred from these quantities:

1.1.1 The predicted class label ĉ that corresponds the most likely class. More
formally, one determines ĉ via

ĉ = argmax
ci∈C

p(y = ci|x, Dtrain) ≈ argmax
ci∈C

1

T

T∑
t=1

p(y = c|x,ωt). (4.1.0.2)

1.1.2 A ranking of most similar prototypes, starting with the most likely class as
the top prediction.

1.2 Quantification of model uncertainty. A single number can be calculated from
the output samples, where in this work, we employ mutual information (cf. Eq.
2.3.2.5). This way, one can capture and quantify the additional statistical infor-
mation that is missed by a simple average of the output samples.

2. Internal neural-network representations. The neural network employed in this work
consists of three hidden layers (cf. Table 4.1), providing three additional vectors
for a given data point: h1 ∈ R256,h2 ∈ R512, and h3 ∈ R256. As explained in

4.2. Code and data availability 41

the previous point, the model is stochastic and thus one actually obtains collections
{hi,t}t=1,...,T with i = 1, 2, 3, which we choose to average, resulting in one vector for
each hidden layer, denoted as hi, i = 1, 2, 3. Given a set of data points, one may
inspect the corresponding internal representations to see if the model captures useful
relationships, e.g., clusters points in a meaningful way or discovers similarities that are
not apparent from the final assignment. We discuss concrete example in sections 6.2.2
and 6.6.2. Regarding the selection of the hidden representations, the results suggest
that in principle, each layer can be investigated (cf. Fig. D.1). Intuitively, moving
towards the final layer, the model is forced to assign the points to one of the 108
classes. Given the large number of classes, this may result in a significant stretching
and bending of internal space, yielding spread out and closely clustered points. Still,
depending on the application, hidden representations close to the output may provide
useful information.

Both single- and polycrystalline samples can be characterized with this approach. Given
an atomic structure, direct application of ARISE provides a global classification, while a
local investigation (for instance, of large samples containing grain boundaries) is achieved
via strided pattern matching (cf. section 6.1). Sensitivity to both periodic and non-periodic
systems is established by including corresponding training examples (cf. section 4.3.3.2).

4.2 Code and data availability

In accordance with the principles of reproducible science, all relevant code is provided at
https://github.com/angeloziletti/ai4materials as part of the ai4materials Python code li-
brary while training and test data can be found at https://doi.org/10.5281/zenodo.5526927.
For the neural-network part, we employ TensorFlow [192] and Keras [193]), while for SOAP
we use the quippy package (https://github.com/libAtoms/QUIP). ai4materials provides a
template for integrating various other descriptors as implemented, for instance, in the Dscribe
package [194] (https://github.com/SINGROUP/dscribe).

4.3 Prediction workflow

4.3.1 Isotropic scaling

The initial input information is atomic positions and chemical-species symbols (as well as
lattice vectors for periodic systems). To reduce the dependency on lattice parameters, we
isotropically scale each prototype according to its nearest-neighbor distance dNN. This way,
one degree of freedom is eliminated, implying that all cubic systems are equivalent and thus
are correctly classified by construction. To compute dNN, we calculate in a first step the
histogram of all nearest-neighbor distances. Since the area of spherical shells grows with
the squared radius, we divide the histogram by the squared radial distance. Then, we use
the center of the maximally populated bin as the nearest-neighbor distance dNN. Dividing
the atomic position by dNN yields the final isotropically scaled structure, which is used
for calculating the SOAP descriptor. Alternatively, one may use the mean of the nearest

https://github.com/angeloziletti/ai4materials
https://doi.org/10.5281/zenodo.5526927
https://github.com/libAtoms/QUIP
https://github.com/SINGROUP/dscribe

42 Chapter 4. The Bayesian-deep-learning model ARISE

2D materials

Graphene BN

MoS2 Ti2CO2

Nanotubes

Armchair,
chiral,
zigzag

Elemental solids

fcc bcc

Graphite Black
Phosphorus

Binaries

Rock salt CsCl

L12 CrB

Ternaries

Quaternaries

Cu2ZnSnS4

Cubic
Perovskite

a b c d

e

Single crystal
(isotropically
scaled)

Input structure

Averaged SOAP vector
 <p>

Materials representation Classification model

Bayesian neural network

• Materials class prediction

• Bayesian uncertainty

Prediction

Figure 4.1: Illustration of prediction pipelines for single crystals. In the first step (a),
the given atomic structure is isotropically scaled according to the nearest-neighbor distance
(see section 4.3.1) and then represented via the smooth overlap of atomic position (SOAP)
descriptor (b, see section 4.3.2). This vectorial materials representation serves as input to
the classification model (c), which is a Bayesian neural network in this work (cf. section
2.3.2 and 4.3.3). The model is evaluated for multiple forward-passes, giving an ensemble of
predictions. Averaging these, and computing the argmax (i.e., determining the entry with
maximum probability, cf. Eq. 4.1.0.2) yields the materials class label, while computing the
mutual information (cf. Eq. 2.3.2.5) quantifies the uncertainty in the prediction (d). e
Examples of crystallographic prototypes included in the training set. A complete list can be
found in the tables 4.2 - 4.4.

4.3. Prediction workflow 43

neighbors as dNN, which, however, is more prone to defects (e.g., atomic displacements). In
case of multiple chemical species, we consider all possible substructures as formed by the
constituting species to calculate the SOAP descriptor (see section 4.3.2). For each of the
substructures, we compute dNN, while we determine the histogram of neighbor distances only
from distances between atoms whose chemical species coincide with those of the substructure.
For instance, given the substructure (α, β), i.e., the atomic arrangement of atoms with
species β as seen from the perspective of atoms with species α, we consider only α-atoms
and determine all distances to β-atoms.

4.3.2 Materials representation

In the following, we provide details on adapting the standard SOAP descriptor such that its
number of components is independent on the number of atoms and chemical species.

Starting with the simple case of one chemical species, we consider a local atomic environ-
ment X , being defined by a cutoff region (with radius RC) around a central atom, located
at the origin of the reference frame. Each atom within this area is represented by a Gaussian
function centered at the atomic position ri and with width σ. Then, the local atomic density
function of X can be written as [127]

ρX (r) =
∑
i∈X

exp

(
−(r− ri)

2

2σ2

)
=
∑
blm

cblmub(r)Ylm(r̂), (4.3.2.1)

where in the second step, an expansion in terms of spherical harmonics Ylm(r̂) and a set of
radial basis functions {ub(r)} is performed. One can show that the rotationally invariant
power spectrum is given by [127]

p(X)b1b2l = π

√
8

2l + 1

∑
m

(cb1lm)†cb2lm. (4.3.2.2)

These coefficients can be arranged in a normalized (SOAP) vector p̂ (X), describing the local
atomic environment X . In total, we obtain as many SOAP vectors as atoms in the structure,
which one can average to obtain a materials descriptor independent of the number of atoms
Nat. Another possibility (the standard setting in the software we use) is to average the
coefficients cblm first and then compute Eq. 4.3.2.2 from this [195]. The cutoff radius RC and
σ (cf. Eq. 4.3.2.1) are hyperparameters, i.e., supervised learning cannot be used directly to
assign values to these parameters, while their specific choice will affect the results. Typically,
one would employ cross-validation while here, we take a different route: First, we assess the
similarity between SOAP descriptors using the cosine similarity to identify parameter ranges
that provide sufficient contrast between the prototypes. Specifically, we calculate the cross
similarity for all pristine prototypes for a range of parameters (e.g., RC ∈ [2.0 ·dNN, 6.0 ·dNN]
and [0.05 · dNN, 0.15 · dNN] for σ). We find that values at and around σ = 0.1 · dNN and
RC = 4.0 · dNN yield sufficient contrast, i.e., cosine cross-similarities below 1.0. Then, we
augment our dataset with SOAP descriptors calculated for different parameter settings that
lie within the identified optimal parameter ranges (see section 4.3.3.2).

The extension to several chemical species is achieved by considering all possible substruc-
tures as formed by the constituting atoms: Considering NaCl, we first inspect the lattice of

44 Chapter 4. The Bayesian-deep-learning model ARISE

Cl atoms as seen by the Na atoms, which we denote by (Na,Cl); this means that Na atoms
are considered as central atoms in the construction of the local atomic environment while
only Cl atoms are considered as neighbors. A similar construction is made for the remaining
substructures (Na,Na), (Cl,Na), and (Cl,Cl), which may be quite similar depending on the
atomic structure. For each substructure, we compute the SOAP vectors via Eq. 4.3.2.2,
obtaining a collection of SOAP vectors. Averaging these gives us four (in case of NaCl)
averaged SOAP vectors. Averaging the latter again, yields a materials representation being
independent on the number of atoms and chemical species.

Formally, given a structure with S species α1, ..., αS, we consider all substructures formed
by pairs of species (αi, αj), j = 1, ..., S, resulting in S2 averaged SOAP vectors< p̂αiαj >Nat,αi

,
where the bracket represents the average over number of atoms Nat of species αi. These vec-
tors are averaged over, yielding the final vectorial descriptor << p̂αiαj >>αiαj .

Note that this construction of SOAP deviates from the previously reported way [131]
of treating multiple chemical species in the following way: Usually, for each atom, one
constructs the power spectra [131]

p(X)αβb1b2l = π

√
8

2l + 1

∑
m

(cαb1lm)†cβb2lm, (4.3.2.3)

where the coefficients originate from basis set expansion as in Eq. 4.3.2.2, while the density
ρ is constructed separately for each species. For a specific α and β, the coefficients of Eq.
4.3.2.3 can be collected into vectors pαβ. In case of α 6= β, cross-correlations, i.e., products of
coefficients from different densities are used to construct the vectors pαβ, which are missing
in our version.

4.3.3 The classification model

4.3.3.1 Model architecture

Once the crystal structures are converted into vectors by means of the SOAP representation,
we use a neural network model to arrive at a classification decision (cf. Fig. 4.1c). Various
neural-network architectures have been developed in recent years [14,196–198]. In a previous
work using neural networks for crystal-structure classification [26], the representation was
essentially an image, for which convolutional neural networks were used because they produce
state-of-the-art results for images. In this work, we employ a fully connected Bayesian neural
network (multilayer perceptron), providing classification and uncertainty estimates (cf. Fig.
4.1d). The detailed architecture is reported in Table 4.1. Compared to [26], convolutions
are not involved as the input is a vector (cf. section 4.3.2), whose components correspond to
basis set expansion coefficients that lack a (spatially) meaningful relationship as it is the case
for pixels of an image. The theoretical concepts underlying Bayesian neural networks are
described in section 2.3.2. At prediction time, we need to fix T , the number of forward-passes
being averaged (cf. Eq. 2.3.2.1). We chose T = 103 for all results except Fig. 5.1 and 5.3,
for which we increased T to 105 in order to get stable assignments in case of high uncertainty
and very low probability candidates (i.e., < 1.0%). Still, the most similar prototypes can
already be determined with 103 iterations.

4.3. Prediction workflow 45

Layer type Specifications

Input Layer + Dropout Materials representation (SOAP, 316 components)
Dense Layer + Dropout + ReLU Size: 256
Dense Layer + Dropout + ReLU Size: 512
Dense Layer + Dropout + ReLU Size: 256
Dense Layer + Softmax Size: 108 (= # classes)

Table 4.1: Architecture of the fully connected Bayesian neural network used in this work.
The dropout ratio is 3.17% for all layers. The total number of parameters is 371 820. While
training time was fixed to 300 epochs, hyperopt [155] found a batch size of 64 and a learning
rate of 2.16·10−4.

4.3.3.2 Training set creation

After both descriptor and model architecture have been identified, a diverse, comprehensive,
and materials-science-relevant training set is constructed. The first – and most important
– step is to define the structural classes which are going to be included in the model: an
overview of the structural classes considered in this work is shown in Fig. 4.1e. A complete
list can be found in the tables 4.2 - 4.4. This comprehensive collection of structures includes
bulk materials of elemental, binary, ternary, and quaternary composition, as well as 2D ma-
terials and carbon nanotubes of chiral, armchair, and zigzag type. In practice, given any
database, we extract prototypes, i.e., representative structures that are selected according
to some predefined rules. Selection criteria are, for instance, fulfillment of geometrical con-
straints (number of atoms in the unit cell, number of chemical species) or if the structures
are observed in experiment. For the elemental bulk materials, we extract from AFLOW all
experimentally observed structures with up to four atoms in the primitive cell. This yields
27 elemental solids encompassing all Bravais lattices, with the exception of monoclinic and
triclinic structures because of their low symmetry. Note that this selection includes not only
the most common structures such as face-centered-cubic (fcc), body-centered-cubic (bcc),
hexagonal-close-packed (hcp), and diamond (which cover more than 80% of the elemen-
tal solids found in nature [199]), but also double-hexagonal close-packed (dhcp), graphite
(hexagonal, rhombohedral, buckled), and orthorhombic systems such as black phosphorus.
This goes already beyond previous work using neural networks for crystal-structure recog-
nition [26], where a smaller set of elemental solids is considered. Also note that multiple
close-packings are included [101]: fcc (ABC), hcp (AB), double-hcp (ABAC), and α−Sm
(ABCBCACAB). For binaries, we select the ten most common binary compounds according
to Pettifor [200], plus the L12 structure because of its technological relevance – for instance,
it being the crystal structure of common precipitates in Ni-based superalloys [201]. This
selection also includes non-centrosymmetric structure, i.e., structures without inversion sym-
metry, such as wurtzite. To challenge the classification method with an increasing number
of chemical species, a small set of ternary and quaternary materials is included as a proof-
of-concept. Specifically, six ternary perovskites [202] (organometal halide cubic and layered
perovskites) and six quaternary chalcogenides of A2BCX4 type [203] are included due to
their relevance in solar cells and photo-electrochemical water splitting devices, respectively.

46 Chapter 4. The Bayesian-deep-learning model ARISE

Going beyond bulk materials, we add an exhaustive set of 46 2D materials [105], compris-
ing not only the well-known elemental structures such as graphene and phosphorene [204]
but also binary semiconductors and insulators (BN, GaN), transition metal dichalcogenides
(MoS2), and one example of metal-organic perovskites with six different chemical species.
Ternary, quaternary, and 2D materials are taken from the computational materials repository
(CMR) [205]. To demonstrate the ability of the proposed framework to deal with complex
nanostructures, 12 nanotubes of armchair, chiral and zigzag type are included in the dataset.
For each prototype described above, we calculate the SOAP vector with different parameter
settings, as is described in the next paragraphs.

To compute the training set (39 204 data points in total), we include periodic and non-
periodic systems. For the former, no supercells are necessary (as SOAP is supercell-invariant
for periodic structures). For the latter, a given structure (or rather its unit cell as obtained
from the respective database) is isotropically replicated until the systems size is at least 100
atoms. Then this supercell structure and the next two larger isotropic replicas are included.
With this choice of system sizes, we focus on slab- and bulk-like systems. Note that the
network may not generalize to non-periodic structures outside the chosen supercell range.
Practically, if the need to classify much smaller or larger supercells arises, one can include
additional replicas to the training set and retrain the model (while for larger supercells it is
expected that the network will generalize, see also Fig. B.1). Retraining is computationally
easy due to fast convergence time. Note that for 2D structures, only in-plane replicas are
considered.

In summary, elemental solids and binary compounds are selected from the AFLOW
library of crystallographic prototypes [101]. Ternary, quaternary, and 2D materials are taken
from the CMR [105, 205]; in particular, we select the parent structure used in the workflow
of the reference (e.g., for the graphene class termed “C” in the CMR, we select graphene as
representative). Nanotubes are created using the atomic simulation environment (ASE) [206]
where the chiral numbers (n,m) provide the class labels. We filter out chiral indices (n,m)
(with the integer values n,m taking values in [0, 10]) for which the diameter is in the range
[4 Å, 6 Å] (and skipping the cases where n = m = 0, n < m). Then, we increase the length
of each nanotube until at least 100 atoms are contained. No additional lengths are included
as it was checked that there is no major change in the SOAP descriptor (via calculating the
cosine similarity between descriptors representing nanotubes of different length). For more
complex nanotubes (for instance, multi-walled systems), this may change.

Regarding the SOAP parameters, we choose the following range of values: For the cutoff
RC, we select the range [3.0 · dNN, 5.0 · dNN] in steps of 0.2 · dNN and for σ the values [0.08 ·
dNN, 0.1 · dNN, 0.12 · dNN]. We calculate the SOAP descriptor using the QUIPPY package
(https://libatoms.github.io/QUIP/index.html), where we choose nmax = 9, lmax = 6 as limits
for the basis set expansion, resulting in an averaged SOAP vector of length 316. Furthermore,
we increase the dataset by varying the extrinsic scaling factor : For a given prototype, the
value of dNN will deviate from the pristine value in presence of defects. Thus, to encode
that dNN can have a range of values in certain applications, we scale each pristine prototype
not only by 1.0 · dNN but also 0.95 · dNN and 1.05 · dNN. We term the factors 0.95, 1.0, 1.05
extrinsic scaling factors. One may also see this procedure as a way to increase the training
set.

https://libatoms.github.io/QUIP/index.html

4.3. Prediction workflow 47

Defective structures are used for testing the model, where in Table 5.1 it is explained how
defects (displacements, missing atoms) are introduced. Note that we use the term “missing
atoms” and not “vacancies” since most of the percentages of removed atoms we consider are
well beyond regimes found in real materials. Also note that displacements as high as 4% of the
nearest-neighbor distance might already cause a transition to the liquid phase in some solids.
Still, as noted in the introduction in section 1.3, experimental and computational data often
present levels of distortions which are comparable or even substantially exceed these regimes.
We introduce defects for all pristine prototypes included in the training set (specifically, for
the supercells determined as described in the first paragraph – for both periodic and non-
periodic boundary conditions, while for nanotubes only non-periodic structures are used).
Since the defects are introduced randomly, we run 10 iterations of defect creation on each
prototype. Then, we calculate SOAP for all of these defective structures for one specific
parameter setting (RC = 4.0 · dNN, σ = 0.1 · dNN, extrinsic scaling factor= 1.0), which
corresponds to the center of the respective parameter ranges included in the training set.
Finally, we obtain 5880 defective structures for each defect ratio. In total, we compute
defective structures for three defect types (missing atoms and displacements introduced both
separately and combined) for eight different defect ratios, giving in total 141,120 defective
data points.

Note that the (highly) defective structures are test structures while training is performed
using pristine structures only. The main reason is that in general, by introducing high levels
of random defects, a structure may be more similar to another prototype than the intended
parent prototype and thus the label given to the model during training would have to be
adapted.

48 Chapter 4. The Bayesian-deep-learning model ARISE

Prototype Symmetry Material type Data source

1. bcc (W) 229, cubic Bulk, Elemental AFLOW / NOMAD
2. diamond (C) 227, cubic Bulk, Elemental AFLOW / NOMAD
3. fcc (Cu) 225, cubic Bulk, Elemental AFLOW / NOMAD
4. α-Po 221, (simple) cubic Bulk, Elemental AFLOW / NOMAD
5. hcp (Mn) 194, hexagonal Bulk, Elemental AFLOW / NOMAD
6. α-La (dhcp) 194, hexagonal Bulk, Elemental AFLOW / NOMAD
7. Hex. diamond 194, hexagonal Bulk, Elemental AFLOW / NOMAD
8. Hex. graphite 194, hexagonal Bulk, Elemental AFLOW / NOMAD
9. Sn 191, (simple) hexagonal Bulk, Elemental AFLOW / NOMAD
10. Buckled graphite 186, hexagonal Bulk, Elemental AFLOW / NOMAD
11. α-As 166, rhombohedral Bulk, Elemental AFLOW / NOMAD
12. α-Hg 166, rhombohedral Bulk, Elemental AFLOW / NOMAD
13. α-Sm 166, rhombohedral Bulk, Elemental AFLOW / NOMAD
14. β-O 166, rhombohedral Bulk, Elemental AFLOW / NOMAD
15. β-Po 166, rhombohedral Bulk, Elemental AFLOW / NOMAD
16. γ-Se 152, trigonal hexagonal Bulk, Elemental AFLOW / NOMAD
17. Rhomb. graphite 166, rhombohedral Bulk, Elemental AFLOW / NOMAD
18. α-Pa 139, (body-centered) tet. Bulk, Elemental AFLOW / NOMAD
19. β-Sn 141, (body-centered) tet. Bulk, Elemental AFLOW / NOMAD
20. In 139, (body-centered) tet. Bulk, Elemental AFLOW / NOMAD
21. γ-N 136, (simple) tet. Bulk, Elemental AFLOW / NOMAD
22. β-Np 129, (simple) tet. Bulk, Elemental AFLOW / NOMAD
23. γ-Pu 70, (face-centered) orth. Bulk, Elemental AFLOW / NOMAD
24. α-Ga 64, (base-centered) orth. Bulk, Elemental AFLOW / NOMAD
25. Black phosphorus 64, (base-centered) orth. Bulk, Elemental AFLOW / NOMAD
26. Molecular iodine 64, (base-centered) orth. Bulk, Elemental AFLOW / NOMAD
27. α-U 63, (base-centered) orth. Bulk, Elemental AFLOW / NOMAD
28. NaCl 225, cubic Bulk, Binary AFLOW / NOMAD
29. CsCl 221, cubic Bulk, Binary AFLOW / NOMAD
30. L12 (Cu3Au) 221 (simple) cubic Bulk, Binary AFLOW / NOMAD
31. Zinc blende (ZnS) 216, (face-centered) cubic Bulk, Binary AFLOW / NOMAD
32. FeSi 198 (simple) cubic Bulk, Binary AFLOW / NOMAD
33. NiAs 194, hexagonal Bulk, Binary AFLOW / NOMAD
34. Wurtzite (ZnS) 186, hexagonal Bulk, Binary AFLOW / NOMAD
35. L10 (CuAu) 123, (simple) tet. Bulk, Binary AFLOW / NOMAD
36. CrB 63, (base-centered) orth. Bulk, Binary AFLOW / NOMAD
37. MnP 62, (simple) orth. Bulk, Binary AFLOW / NOMAD
38. FeB 62, (simple) orth. Bulk, Binary AFLOW / NOMAD
39. AgNbO3 cubic Bulk, Ternary CMR
40. CsSnI3 cubic Bulk, Ternary CMR
41. CsSnCl3 tetragonal Bulk, Ternary CMR
42. Cs2WO4 tetragonal Bulk, Ternary CMR
43. Ca3Ge2O7 tetragonal Bulk, Ternary CMR
44. CsSnCl3 orthorhombic Bulk, Ternary CMR

Table 4.2: Complete list of prototypes (part I) included in the training set of this work. If
provided by the respective resources, information on space group, crystal system or Bravais
lattice is listed.

4.3. Prediction workflow 49

Prototype Symmetry Material type Data source

45. Cu2BaGeSe4 144 (trigonal) Bulk, Quaternary compound CMR
46. Cu2CdSnS4 121 (tetragonal) Bulk, Quaternary compound CMR
47. Cu2ZnSnS4 82 (tetragonal) Bulk, Quaternary compound CMR
48. Cu2KVS4 40 (orthorhombic) Bulk, Quaternary compound CMR
49. Cu2CdGeS4 31 (orthorhombic) Bulk, Quaternary compound CMR
50. Cu2ZnSiS4 7 (monoclinic) Bulk, Quaternary compound CMR
51. Graphene 191 (hexagonal) 2D Materials CMR
52. Ti3C2 187 (hexagonal) 2D Materials CMR
53. Ti3C2O2 187 (hexagonal) 2D Materials CMR
54. MoS2 187 (hexagonal) 2D Materials CMR
55. Ti3C2H2O2 187 (hexagonal) 2D Materials CMR
56. GaS 187 (hexagonal) 2D Materials CMR
57. BN 187 (hexagonal) 2D Materials CMR
58. Ti2CH2O2 164 (trigonal) 2D Materials CMR
59. Ti2CO2 164 (trigonal) 2D Materials CMR
60. CdI2 164 (trigonal) 2D Materials CMR
61. CH 164 (trigonal) 2D Materials CMR
62. CH2Si 156 (trigonal) 2D Materials CMR
63. Ti4C3 156 (trigonal) 2D Materials CMR
64. BiTeI 156 (trigonal) 2D Materials CMR
65. Ti4C3O2 156 (trigonal) 2D Materials CMR
66. GeSe 156 (trigonal) 2D Materials CMR
67. MoSSe 156 (trigonal) 2D Materials CMR
68. Ti4C3H2O2 156 (trigonal) 2D Materials CMR
69. AgBr3 150 (trigonal) 2D Materials CMR
70. TiCl3 150 (trigonal) 2D Materials CMR
71. BiI3 147 (trigonal) 2D Materials CMR
72. FeSe 129 (tetragonal) 2D Materials CMR
73. PbSe 123 (tetragonal) 2D Materials CMR
74. GeS2 115 (tetragonal) 2D Materials CMR
75. C3N 65 (orthorhombic) 2D Materials CMR
76. FeOCl 59 (orthorhombic) 2D Materials CMR
77. P 28 (orthorhombic) 2D Materials CMR
78. PdS2 14 (monoclinic) 2D Materials CMR
79. MnS2 14 (monoclinic) 2D Materials CMR
80. GaSe 12 (monoclinic) 2D Materials CMR
81. TiS3 11 (monoclinic) 2D Materials CMR
82. WTe2 11 (monoclinic) 2D Materials CMR
83. HfBrS 7 (monoclinic) 2D Materials CMR
84. RhO 6 (monoclinic) 2D Materials CMR
85. SnS 6 (monoclinic) 2D Materials CMR
86. NiSe 6 (monoclinic) 2D Materials CMR
87. AuSe 6 (monoclinic) 2D Materials CMR

Table 4.3: Complete list of prototypes (part II) included in the training set of this work.

50 Chapter 4. The Bayesian-deep-learning model ARISE

Prototype Symmetry Material type Data source

88. VTe3 6 (monoclinic) 2D Materials CMR
89. ReS2 2 (monoclinic) 2D Materials CMR
90. ScPSe3 1 (triclinic) 2D Materials CMR
91. PbA2I4 1 (triclinic) 2D Materials CMR
92. PbS 1 (triclinic) 2D Materials CMR
93. CrW3S8 1 (triclinic) 2D Materials CMR
94. VPSe3 1 (triclinic) 2D Materials CMR
95. CrWS4 1 (triclinic) 2D Materials CMR
96. MnPSe3 1 (triclinic) 2D Materials CMR
97. CNT armchair, (3,3), 30.0◦, 4.07 Å Nanotubes, mono-species ASE
98. CNT armchair, (4,4), 30.0◦, 5.42 Å Nanotubes, mono-species ASE
99. CNT chiral, (4,2), 19.11◦, 4.14 Å Nanotubes, mono-species ASE
100. CNT chiral, (4,3), 25.28◦, 4.76 Å Nanotubes, mono-species ASE
101. CNT chiral, (5,1), 8.95◦, 4.36 Å Nanotubes, mono-species ASE
102. CNT chiral, (5,2), 16.1◦, 4.89 Å Nanotubes, mono-species ASE
103. CNT chiral, (5,3), 21.79◦, 5.48 Å Nanotubes, mono-species ASE
104. CNT chiral, (6,1), 7.59◦, 5.13 Å Nanotubes, mono-species ASE
105. CNT chiral, (6,2), 13.9◦, 5.65 Å Nanotubes, mono-species ASE
106. CNT chiral, (7,1), 6.59◦, 5.91 Å Nanotubes, mono-species ASE
107. CNT zigzag, (6,0), 0.0◦, 4.7 Å Nanotubes, mono-species ASE
108. CNT zigzag, (7,0), 0.0◦, 5.48 Å Nanotubes, mono-species ASE

Table 4.4: Complete list of prototypes (part III) included in the training set of this work.
For the carbon nanotubes (CNTs), the symmetry column specifies the configuration type
(chiral, zigzag or armchair) together with the corresponding chiral numbers (n,m), the chiral
angle θ and the nanotube diameter.

4.3.3.3 Optimization

Training is performed using Adam optimization [10] (see also section 2.2.2 for more details).
The multilayer perceptron is implemented in Keras [193] using TensorFlow [192] as backend.
Furthermore we optimize hyperparameters such as the number of layers using Bayesian
optimization, specifically the Tree-structured Parzen estimator (TPE) algorithm as provided
by the Python library hyperopt [155] (see also section 2.2.4 for more details). Only pristine
structures are used for training. Bayesian optimization (TPE) provides a list of candidate
models, from which we select the most robust one and report its architecture in Table 4.1.
More details are provided in the following.

The initial training set is split (80/20% training / validation split of pristine structures,
performed using scikit-learn function and random state of 42) and the accuracy on the vali-
dation set is used as the performance metric to be minimized via hyperopt (for 50 iterations).
Fast convergence (followed by oscillations around high-accuracy values) or divergence is typ-
ically observed, which is why we train for a fixed number of epochs (300) and save only the

4.3. Prediction workflow 51

model with the best performance on the validation set. This is in accordance with the early
stopping procedure (cf. section 7.8 in [14]) that is discussed in the last paragraph of section
2.2.3. Training is performed on 1 GPU (Tesla Volta V100 32GB) on the Talos machine-
learning cluster at the Max Planck Computing and Data Facility (MPCDF). We observe
that accuracies around 99% can be reached after few iterations, with individual training
runs converging within 20 minutes, depending on model complexity.

Practically, strong models are obtained if training is done only on pristine structures but
further fine-tuning can be made to reach perfect accuracies. First, we restrict to one setting
of training parameters (see previous section). From a computational efficiency point of view,
this is also the preferred choice since one has to compute only one descriptor per structure
during prediction time. We select RC = 4.0 · dNN and σ = 0.1 · dNN as well as an extrinsic
scaling factor of 1.0. These choices are at the center of the respective parameter ranges.
While the model with highest validation accuracy (on the whole training set) determined
via hyperopt usually gives very strong performance, it is not necessarily the best possible
one, especially in terms of generalization ability to defective structures. To find the optimal
(i.e., most robust) model we select some of the best models (e.g., top 15) found via hyperopt
and rank them based on their performance on pristine and defective structures (again for
one setting of RC, σ). In particular, we restrict to defective points with either ≤ 5% atoms
missing or < 1% atomic displacement, which comprises 35 280 data points (six different
defect ratios with 5 880 points each). The number of pristine data points is 396. Using this
strategy, we can identify a model with 100% accuracy on pristine and defective structures,
which is reported in the last line of Table 5.1. The accuracy on the whole training set
comprising 39 204 data points is 99.66%.

We also investigate the performance on higher defect ratios beyond physically reasonable
perturbations, since this is typically encountered in atom-probe experiments. In particular,
we investigate three defect types (missing atoms, displacements, and both of them) compris-
ing 105 840 data points. The results for missing atoms (> 5%) and displacements (> 0.6%)
can be found in the last line of Tables 5.1 and 5.2. Classification accuracies on structures
with both missing atoms and displacements are specified in the last line of Table 5.3. Note
that training and model selection only on pristine structures can yield robust models, espe-
cially if the number of classes is reduced. For instance, training only on binary systems using
a pristine set of 4 356 data points (full SOAP parameter range) gives perfect accuracy on
both the full training set and 3 960 defective structures (displacements ≤ 0.06% and ≤ 5%
missing atoms – for the setting RC = 4.0 · dNN, σ = 0.1 · dNN, extrinsic scaling factor 1.0).
Note that in general, if fewer classes are considered (e.g., ∼ 20), the training time can be
significantly reduced (e.g., to a few minutes).

Chapter 5

Global crystal characterization using
ARISE

The following sections contain several applications of ARISE for the global analysis of crystal
structures, i.e., the assignment of a single label to a list of atomic positions and chemical
species symbols. First, we benchmark our method with respect to state-of-the-art methods,
using a comprehensive synthetic dataset of pristine and (heavily) defective single crystals
(cf. section 5.1). In section 5.2, we apply ARISE to data originating from a completely
different resource, in particular experimental STEM images of graphene. Then, predictions
and uncertainty of ARISE are analyzed for continuous structural transformations in section
5.3. Specifically, the so-called Bain path is investigated, which is relevant for several ap-
plications (e.g., steel properties). Moreover, the Bain path describes structural transitions
similar to the ones taking place in the electron tomography data that is analyzed in section
6.6.1. Finally, a study of out-of-sample structures is provided in section 5.4, where ARISE is
faced with structures it has never encountered during training (and that are not randomly
distorted versions of the training structures, i.e., this analysis is qualitatively different from
the one in section 5.1).

5.1 Benchmarking

We first compare ARISE’s performance on pristine and defective structures with state-of-
the-art crystal-structure recognition methods, specifically spglib [111], polyhedral template
matching (PTM) [116], common neighbor analysis (CNA) [113], adaptive common neighbor
analysis (a-CNA) [114], and bond angle analysis (BAA) [115] (cf. Table 5.1). None of the
benchmarking methods can treat all the materials shown in Fig. 4.1e; thus for fairness, the
classification accuracy is only calculated for classes for which the respective methods were
designed for, implying that most structures are excluded. Including all 108 classes will lead
to reduced accuracy scores which can be found in the tables A.1, A.2, and A.3.

We want to emphasize that ARISE and the above mentioned methods have several con-
ceptual differences that require specific choices in order to establish a fair benchmarking pro-
tocol. Besides the strong disparity in terms of classifiable systems, methods such as PTM,
CNA, a-CNA, and BAA provide a per-atom classification. From these assignments, we have

53

54 Chapter 5. Global crystal characterization using ARISE

to calculate a single accuracy value to enable a comparison on equal footing. Moreover,
spglib is restricted to predicting the space group, hindering its application to non-periodic
systems or structures where no symmetry can be detected (i.e., the space group is 1). In the
following, we concentrate on the analysis of the classification accuracies while coming back
to a detailed discussion of our choices at the end of this section.

The performance on pristine structures is reported in Table 5.1. The accuracy in clas-
sifying pristine structures is always 100% as expected, with the only exception being CNA:
For this method, the default cutoff only allows to correctly classify fcc and bcc but not hcp
structures. For defective structures, the situation is drastically different. Spglib classification
accuracy on displaced structures is low, and only slightly improved by using loose setting
(up to 1% displacement). For missing atoms, the accuracy is very low already at the 1%
level regardless of the setting used. Note, however, this is actually spglib’s desired behav-
ior since the aim of this method is not robust classification. Moreover, the tolerance is in
place mainly to account for truncation errors in the storage of coordinates. As indicated in
the first column of Table 5.1, spglib can treat 96 out of the 108 prototypes included in our
dataset with the twelve missing prototypes being carbon nanotubes. Methods based on local
atomic environment (PTM, BAA, CNA, a-CNA) perform very well on displaced structures,
but they suffer from a substantial accuracy drop for missing-atoms ratios beyond 1%. Their
biggest drawback, however, is that they can treat only a handful of classes: three classes for
BAA, CNA, and a-CNA, and twelve classes for PTM. ARISE is very robust with respect to
both displacements and missing atoms (also for higher levels of defects, cf. Table 5.2, and
even concurrently, cf. Table 5.3), while being the only method able to treat all 108 classes
included in the dataset, including complex systems, such as carbon nanotubes. An uncer-
tainty value quantifying model confidence is also returned, which is particularly important
when investigating defective structures or inputs that are far out of the training set. Section
5.2 provides an application (STEM images of graphene) that highlights the correlation of the
predictive uncertainty with the level of distortion. For out-of sample structures, we provide
a detailed study in section 5.4 where we challenge ARISE with structures it has not been
trained on, i.e., it is forced to fail by construction. We find that ARISE returns non-trivial
physically meaningful predictions, thus making it particularly attractive, e.g., for screening
large and structurally diverse databases. Moreover, we analyze predictions and uncertainty
of ARISE for continuous structural transformations in section 5.3, where we consider the
so-called Bain path that includes transitions between fcc, bcc, and tetragonal structures. In
this application, both out-of-sample and (uniformly) distorted structures appear. Note that
these applications refer to the global analysis of atomic structures, while we present several
further examples for the local study of large, polycrystalline samples in section 6, including
the detection of grain boundaries (cf. Fig. 6.2, 6.6) or precipitates (cf. Fig. 6.4), as well as
the local analysis of nanoparticles (cf. Fig. 6.8, 6.10). Also in these settings the predictive
uncertainty turns out to correlate with the level of defectiveness and yields reasonable results
for data points far outside the training set (e.g., at grain boundaries where two phases are
mixed).

In the following, we provide additional details, in particular how the classification accu-
racy is calculated for each method and which structures from the training set are included
to test spglib, PTM etc. :

5.1. Benchmarking 55

P
ri

st
in

e
R

an
d
om

d
is

p
la

ce
m

en
ts

(δ
)

M
is

si
n
g

at
om

s
(η

)

0.
1%

0.
6%

1%
2%

4%
1%

5%
10

%
20

%

S
p
gl

ib
(l

o
os

e,
96

/
10

8)
10

0.
00

10
0.

00
10

0.
00

95
.2

6
20

.0
0

0.
00

11
.2

3
0.

00
0.

00
0.

00
S
p
gl

ib
(t

ig
h
t,

96
/

10
8)

10
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
11

.2
3

0.
00

0.
00

0.
00

P
T

M
(1

2
/

10
8)

10
0.

00
10

0.
00

10
0.

00
10

0.
00

10
0.

00
10

0.
00

88
.6

7
51

.7
6

25
.9

3
6.

24
C

N
A

(3
/

10
8)

66
.1

4
62

.8
1

62
.8

1
54

.5
5

32
.3

4
31

.4
1

55
.8

6
32

.5
0

15
.7

5
3.

07
a-

C
N

A
(3

/
10

8)
10

0.
00

10
0.

00
10

0.
00

10
0.

00
10

0.
00

10
0.

00
89

.2
5

52
.8

1
25

.9
2

5.
37

B
A

A
(3

/
10

8)
10

0.
00

10
0.

00
10

0.
00

10
0.

00
10

0.
00

97
.8

5
99

.7
1

88
.7

8
65

.2
1

25
.3

8
A

R
IS

E
(1

08
/

10
8)

10
0.

00
10

0.
00

10
0.

00
10

0.
00

99
.8

6
99

.2
9

10
0.

00
10

0.
00

10
0.

00
99

.8
5

T
ab

le
5.

1:
A

cc
u

ra
cy

in
id

e
n
ti

fy
in

g
th

e
p

a
re

n
t

cl
a
ss

o
f

d
e
fe

ct
iv

e
cr

y
st

a
l

st
ru

ct
u

re
s.

T
h
e

d
ef

ec
ti

ve
st

ru
ct

u
re

s
ar

e
ge

n
er

at
ed

b
y

ra
n
d
om

ly
d
is

p
la

ci
n
g

at
om

s
ac

co
rd

in
g

to
a

u
n
if

or
m

d
is

tr
ib

u
ti

on
on

an
in

te
rv

al
[−
δ
·d

N
N
,+
δ
·d

N
N

]
p
ro

p
or

ti
on

al
to

th
e

n
ea

re
st

-n
ei

gh
b

or
d
is

ta
n
ce
d
N
N

(c
en

tr
al

p
an

el
),

or
re

m
ov

in
g
η
%

of
th

e
at

om
s

(r
ig

h
t

p
an

el
).

T
h
e

ac
cu

ra
cy

va
lu

es
sh

ow
n

ar
e

in
p

er
ce

n
ta

ge
.

F
or

b
en

ch
m

ar
k
in

g,
w

e
u
se

S
p
gl

ib
[1

11
]

(w
it

h
tw

o
se

tt
in

gs
fo

r
th

e
p
re

ci
si

on
p
ar

am
et

er
s,

“l
o
os

e”
(p

os
it

io
n
/a

n
gl

e
to

le
ra

n
ce

0.
1Å

/
5◦

)
an

d
“t

ig
h
t”

(p
os

it
io

n
/a

n
gl

e
to

le
ra

n
ce

10
−
4

/
1◦

))
,

p
ol

y
h
ed

ra
l

te
m

p
la

te
m

at
ch

in
g

(P
T

M
)

[1
16

],
co

m
m

on
n
ei

gh
b

or
an

al
y
si

s
(C

N
A

)
[1

13
],

ad
ap

ti
ve

co
m

m
on

n
ei

gh
b

or
an

al
y
si

s
(a

-C
N

A
)

[1
14

],
an

d
b

on
d

an
gl

e
an

al
y
si

s
(B

A
A

)
[1

15
].

T
h
e

n
u
m

b
er

of
cl

as
se

s
w

h
ic

h
ca

n
b

e
tr

ea
te

d
ou

t
of

th
e

m
at

er
ia

ls
p

o
ol

in
F

ig
.

4.
1e

is
sh

ow
n

in
p
ar

en
th

es
es

fo
r

ea
ch

m
et

h
o
d
.

S
p
gl

ib
ca

n
as

si
gn

a
sp

ac
e

gr
ou

p
to

al
l

m
at

er
ia

ls
ex

ce
p
t

th
e

12
n
an

ot
u
b

es
.

P
T

M
ca

n
on

ly
cl

as
si

fy
7

el
em

en
ta

l
an

d
5

b
in

ar
y

m
at

er
ia

ls
of

th
os

e
co

n
si

d
er

ed
in

th
is

w
or

k
.

A
d
d
it

io
n
al

cl
as

se
s

ar
e

m
is

si
n
g

fo
r

C
N

A
,

a-
C

N
A

,
an

d
B

A
A

as
th

ey
ca

n
n
ot

cl
as

si
fy

si
m

p
le

cu
b
ic

(s
c)

an
d

d
ia

m
on

d
st

ru
ct

u
re

s.
T

h
e

ap
p
ro

ac
h

p
ro

p
os

ed
h
er

e
ca

n
b

e
ap

p
li
ed

to
al

l
cl

as
se

s,
an

d
th

u
s

th
e

w
h
ol

e
d
at

as
et

is
u
se

d
(s

ee
T

ab
le

s
4.

2-
4.

4
fo

r
a

co
m

p
le

te
li
st

).

56 Chapter 5. Global crystal characterization using ARISE

Random displacements (δ) Missing atoms (η)

7% 10% 25% 30%

Spglib (loose) 0.00 0.00 0.00 0.00
Spglib (tight) 0.00 0.00 0.00 0.00
PTM 100.00 94.34 3.33 1.72
CNA 31.41 24.20 1.38 0.55
a-CNA 99.99 94.55 2.60 1.03
BAA 87.79 69.68 14.25 7.35
ARISE (this work) 97.82 94.56 99.86 99.76

Table 5.2: Accuracy in identifying the parent class of defective crystal structures for high
displacements (percentage δ) and missing atoms (percentage η).

• For spglib, we only include prototypes from AFLOW. The reason for excluding struc-
tures from the computational materials repository “CMR” is that we do not always
have the correct or meaningful labels for all structures. For instance, some 2D ma-
terials are specified as P1 in the database, which cannot be used as a correct label.
Furthermore, for quaternary chalcogenides, the expected symmetries (as specified in
the corresponding reference [203]) cannot be reconstructed, which is most likely due to
local optimization effects. Similar observations were made for the ternary perovskites.
More careful choice of precision parameters or additional local optimization may help.
Thus, to enable a fair comparison, the benchmarking only reports results on elemen-
tal and binary compounds from AFLOW (where we know the true labels), while the
performance on all data is shown in table A.1, A.2, and A.3. To avoid the impression
that spglib is not applicable to ternary, quaternary, and 2D materials, we still pro-
vide the label “96/108” behind spglib methods in the benchmarking tables. Note that
non-periodic structures (supercells and carbon nanotubes) are excluded, since these
systems cannot be treated by spglib.

• For the other benchmarking methods, which are common neighbor analysis (CNA, a-
CNA), bond angle analysis (BAA), and polyhedral template matching (PTM), we use
implementations provided in OVITO [207], where for BAA we apply the Ackland Jones
method. As for spglib, only periodic structures were included. BAA, CNA, a-CNA
all include fcc, bcc, and hcp structures, while PTM contains in addition sc, diamond,
hexagonal diamond, graphene, graphitic boron nitride, L10, L12, zinc blende, and
wurtzite. Each of the frameworks provide one label for each atom, i.e., for a structure
with N atoms we obtain N labels. To obtain an accuracy score, we compare these N
predictions to N true labels, which correspond to the space group associated with the
prototype label (e.g., 194 for hcp). For CNA, we select the standard cutoff (depending
on its value one is able to detect bcc but not hcp and vice versa). Also for BAA
(Ackland Jones) and a-CNA standard settings are used. For PTM, an RMSD cutoff of
0.1 was used (again default in OVITO). Note that PTM can also distinguish different
sites of the L12 structure. For simplicity, we did not label the L12 structure by sites

5.1. Benchmarking 57

M
is

si
n
g

at
om

s
an

d
d
is

p
la

ce
m

en
ts

(η
,
δ)

(1
%

,
0.

1%
)

(5
%

,
0.

6%
)

(1
0%

,
1%

)
(1

5%
,2

%
)

(2
0%

,4
%

)
(2

5%
,7

%
)

(3
0%

,1
0%

)

S
p
gl

ib
(l

o
os

e)
11

.3
2

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

S
p
gl

ib
(t

ig
h
t)

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

P
T

M
88

.6
8

51
.7

8
25

.6
0

12
.7

5
6.

41
3.

19
1.

46
C

N
A

55
.7

7
31

.9
5

13
.8

3
4.

41
2.

03
0.

79
0.

19
a-

C
N

A
89

.2
1

52
.3

6
26

.0
1

12
.1

3
6.

07
2.

40
0.

97
B

A
A

99
.7

2
88

.9
8

65
.1

7
42

.6
2

25
.9

5
15

.5
8

6.
63

A
R

IS
E

(t
h
is

w
or

k
)

10
0.

00
10

0.
00

10
0.

00
99

.8
8

99
.2

9
97

.3
1

92
.5

0

T
ab

le
5.

3:
A

cc
u
ra

cy
in

id
en

ti
fy

in
g

th
e

p
ar

en
t

cl
as

s
of

d
ef

ec
ti

ve
cr

y
st

al
st

ru
ct

u
re

s,
w

it
h

b
ot

h
m

is
si

n
g

at
om

s
(p

er
ce

n
ta

ge
η
)

an
d

d
is

p
la

ce
m

en
ts

(p
er

ce
n
ta

ge
δ)

in
tr

o
d
u
ce

d
at

th
e

sa
m

e
ti

m
e.

T
h
e

re
su

lt
s

sh
ow

th
at

A
R

IS
E

is
al

so
ro

b
u
st

fo
r

h
ig

h
ly

d
ef

ec
ti

ve
st

ru
ct

u
re

s
w

h
er

e
d
is

p
la

ce
m

en
ts

an
d

m
is

si
n
g

at
om

s
ar

e
p
re

se
n
t

at
th

e
sa

m
e

ti
m

e.
T

h
is

is
th

e
ty

p
ic

al
si

tu
at

io
n

en
co

u
n
te

re
d

in
A

P
T

–
m

ak
in

g
A

R
IS

E
ar

gu
ab

ly
th

e
b

es
t

av
ai

la
b
le

ca
n
d
id

at
e

fo
r

cr
y
st

al
-s

tr
u
ct

u
re

cl
as

si
fi
ca

ti
on

in
A

P
T

ex
p

er
im

en
ta

l
d
at

a.

58 Chapter 5. Global crystal characterization using ARISE

and take this classification into account, but always assigning a true label as soon as
an atom was assigned to the L12 class (even if it might be not the correct site).

• Furthermore, for ARISE periodic and non-periodic structures are included, while for
the benchmarking methods only periodic structures are considered. While for spglib,
translational symmetry is violated by construction, the other methods can in principle
be applied to these systems. However, when calculating the accuracy for a given
non-periodic structure, we have to choose a label for the boundary atoms. If we
select the same label for these atoms as for the central ones (which have a sufficiently
larger number of neighbors), these methods will usually predict the class “None” and
interpreting this as a misclassification would decrease the total classification accuracy.
Therefore, for a fair comparison, we exclude non-periodic structures.

5.2 Application to STEM experimental images

So far, we have tested ARISE on highly defective structures derived from pristine crystallo-
graphic prototypes. We now investigate defective structures originating from a completely
different data source, namely STEM experiments, to demonstrate the generalization ability
of ARISE and its applicability to experimental data. STEM experiments are a valuable
resource to characterize material specimens, and to study, for instance, the atomic structure
at grain boundaries [98]. Atomic resolution can be reached in high-angle annular dark-field
(HAADF) images.

To test ARISE, we consider the two experimental HAADF images of graphene shown
in Fig. 5.1a; these images contain a substantial amount of noise which makes it very
challenging to recognize the graphene honeycomb pattern by naked eye. The choice of
graphene is motivated by it being one of the few completely flat 2D materials; x and y
atomic positions obtained from STEM images thus provide the actual crystal structure, and
not a mere projection. The first step is to obtain approximate atomic positions from the
HAADF experimental images. To this end, we employ the deep-learning framework Atom-
Net [81] based on fully convolutional neural networks [208]. These are essentially variants
of convolutional neural networks in which no fully connected neural network is employed
after the convolutional layers. For AtomNet, given an input image, the output is a pixel
matrix of the same size with each entry corresponding to the probability that the associ-
ated pixel contains an atom. We refer to section chapter 9 of [14] and our online tutorial
(https://github.com/AndreasLeitherer/Tutorial CNN) for an introduction to convolutional
neural networks. Fully convolutional neural networks are reviewed, for instance, in section
13.11 of [52]. The inferred atomic positions (i.e., x and y coordinates) are shown in Fig.
5.1b. ARISE is then used to classify the structures shown in Fig. 5.1b following the steps
being summarized in Fig. 4.1.

The top predictions ranked by classification probability are shown in Fig. 5.1d, together
with the uncertainty of the assignments as quantified by the mutual information. ARISE
correctly recognizes both images as being graphene, despite the substantial amount of noise
present in the images and reconstructed atomic positions. For the first image (Fig. 5.1a-b
top), ARISE predicts graphene with very high probability (∼ 99%). Indeed, the similarity to

https://github.com/AndreasLeitherer/Tutorial_CNN

5.3. The Bain transformation path 59

graphene is apparent, although evident distortions are present in some regions (for instance,
bonds which are expected to be aligned are clearly displaced – see the two dashed ellipses in
Fig. 5.1b, top). The second candidate structure is C3N, predicted with ∼ 1% probability;
in C3N, nitrogen atoms are arranged in a graphene lattice, making also this low probability
assignment physically meaningful. (Note that the materials representation is obtained as
average of substructures, see section 4.3.2 for more details).

For the second image (Fig. 5.1a-b bottom), ARISE also correctly predicts graphene, this
time with 79% probability. The uncertainty is six times larger than in the previous case.
Indeed, this structure is much more defective than the previous one: it contains a grain
boundary in the lower part, causing evident deviations from the pristine graphene lattice,
as illustrated by the vertical dashed line and the dashed red circle in Fig. 5.1a-b bottom.
The other four candidate structures appearing in the top five predictions (PbSe, MnS2,
BN, C3N in decreasing order of classification probability) are the remaining completely flat
monolayer structures that are known to the neural network (out of the 108 structures in the
training dataset, only five are flat monolayers). Note that no explicit information about the
dimensionality of the material is given to the model. In particular, a given input is compared
to 108 different crystallographic prototypes.

It is important to point out that ARISE robustness well beyond physical levels of noise
(cf. Tables 5.1-5.3) is essential to achieve the correct classification despite the presence of
substantial amount of noise from both experiment and atomic position reconstruction. More-
over, the uncertainty (i.e., mutual information) allows to quantify how defective a structure
is; thus, the presented procedure of combining reconstruction methods (here AtomNet) with
the crystal-structure classification model ARISE may be used to automatically evaluate the
quality of STEM images. In particular, one may automatically screen for STEM images that
are likely to contain defects such as grain boundaries.

5.3 The Bain transformation path

The Bain transformation path describes structural transitions between bcc and fcc sym-
metries via intermediate tetragonal phases [209] of body-centered – or equivalently – face-
centered tetragonal symmetry. Originally investigated for iron [209], the Bain path is relevant
in thermo-mechanical processing – a central aspect for steel properties [210] – as it serves
as a model for temperature-induced transitions between fcc (γ) and bcc (α) iron [211]. The
Bain path is also crucial for understanding properties of epitaxial films [212, 213] or metal
nanowires [214].

Practically, the structures constituting a Bain path can be obtained by varying the ratio
c/a between lattice parameters a and c of a tetragonal structure (cf. Fig. 5.2a); c/a = 1
corresponds to a cubic structure. We generate tetragonal geometries for lattice parameters
a, c taking values in [3.0 Å, 6.0 Å] with steps of 0.05 Å, resulting in 3 721 crystal structures.
These structures are then classified with ARISE, and the results depicted via classification
and uncertainty maps in Fig. 5.2b and c, respectively. Each point in these maps corresponds
to a prediction for a specific geometry. We include in the training set fcc, bcc, and tetragonal
geometries with structural parameters known experimentally; they are shown as stars in Fig.
5.2b. Specifically, the lattice parameters (a, c, c/a) are (3.155Å, 3.155Å, 1.0) for the bcc [215]

60 Chapter 5. Global crystal characterization using ARISE

Graphene C3N

Probability: ~99% Probability: ~1%

Mutual
information:
0.4598

Graphene PbSe MnS2

Probability: ~78.5 % Probability: ~19.2 % Probability: ~2.2 %

ARISE

Classification modelHAADF images
Reconstructed
atomic positions

Most similar prototype(s)

AtomNet

Mutual
information:
0.0625

a b c d

Figure 5.1: a Experimental HAADF images (from https://github.com/pycroscopy/
AICrystallographer/tree/master/AtomNet) of two graphene structures. White scale bars
in the bottom left of the images correspond to the typical graphene bond length (1.42 Å).
Atomic positions are reconstructed from these images via AtomNet [81] (b). The resulting
atomic structures are analyzed using ARISE (c). The top predicted structures are visualized
and mutual information is used to quantify the uncertainty in the classification (d).

and (3.615Å, 5.112Å,
√

2) for the fcc prototype [216], while two tetragonal structures (being
assigned one common label “tetragonal”) are included with (3.253Å, 4.946, Å, 1.521) in case
of In [217] and (3.932Å, 3.238Å, 0.824) for α−Pa [218]. We isotropically scale every geometry
to remove one degree of freedom (cf. section 4.3.1) , so that all possible cubic lattices are
effectively equivalent; this allows the model to generalize by construction to all cubic lattices
regardless of the lattice parameter. The same holds for tetragonal structures (i.e., two
degrees of freedom) with constant c/a ratio. As visual aid, we mark lines of constant c/a
in Fig. 5.2b-c starting from the four structures included in the training set. Note that any
path connecting the constant c/a ratios corresponding to fcc and bcc structures constitutes
a Bain path. To obtain a classification label, we select the class with the higher classification
probability through an argmax operation (i.e., the label maximizing Eq. 2.3.2.1). These
predictions are shown in Fig. 5.2.

The model is able to detect the bcc and fcc phases in the expected areas, while all
prototypes not being fcc, bcc, or tetragonal are correctly labeled as “Other”. We point out
that only four structures – corresponding to points in the plot marked by the four stars – are
included in the training set, while all other 3 717 structures are model (test) predictions. We
can also observe that the model correctly predict the presence of a tetragonal phase between
fcc (yellow band) and bcc (green band), even though no tetragonal structures from this
region are included in the training set. This transition is smooth, only interrupted by small
areas for which other, low-symmetry prototypes are assigned, but with high uncertainty,
as quantified by the mutual information, cf. Fig. 5.2 c. We provide the classification

https://github.com/pycroscopy/AICrystallographer/tree/master/AtomNet
https://github.com/pycroscopy/AICrystallographer/tree/master/AtomNet

5.3. The Bain transformation path 61

a

c/a=1.0 c/a=1.3

bcc tetragonal fcc

c/a = 2√

b Mutual informationClassification map

fcc

tet.

tet.

bcc

c

fcc

bcc

tet.

other

1.2

1.0

0.8

0.6

0.4

0.2

0.0

c[Å]

a
[Å

]

c[Å]

a
[Å

]

Figure 5.2: a Structures occurring in the Bain path, obtained by varying c/a; increasing
c/a from 1.0 (bcc) leads to transitions to tetragonal (tet.) phases and finally to the fcc
structure (c/a =

√
2) . b Classification (argmax predictions, left) and uncertainty (mutual

information, right) for geometries in the range c, a ∈ [3.0 Å, 6.0Å]. Geometries included
in the training set are marked by stars in b,c. As we isotropically scale the structures,
geometries with constant c/a are equivalent, which is indicated by solid lines.

62 Chapter 5. Global crystal characterization using ARISE

probabilities of all assigned prototypes in Fig, C.1. In general, increased uncertainty appears
at transitions between the assignments of different prototypes. We also note that there is
a smooth transition for classification probabilities at the transition between prototypes (cf.
Fig. C.1). These results represent a first indication that the network has learned physically
meaningful representations. Surprisingly, for large or small c/a ratios, i.e., points far outside
the training set, other (low-symmetry) phases appear such as base-centered orthorhombic
molecular iodine or face-centered orthorhombic γ−Pu with small uncertainty. While it
may be desirable to avoid overconfident predictions far away from the training set, the
assignments could be actually physically justified given the similarities between tetragonal
and orthorhombic lattices, the most evident being that all angles in both crystal systems
are 90◦. We note that the transition to these prototypes is encompassed by regions of high
uncertainty also in this case in agreement with physical intuition.

5.4 When the model is forced to fail: analysis of ARISE

out-of-sample predictions

To assess the physical content learned by the network, we investigate its predictions – and
thus its generalization ability – on structures corresponding to prototypes not included in
the training. This is of particular relevance if one wants to use predictions of ARISE – for
applications such as screening of large databases, or create low-dimensional maps for a vast
collection of materials [219].

Given an unknown structure, the network needs to decide – among the classes it has been
trained on – which one is the most suitable. It will assign the most similar prototypes and
quantify the similarity via classification probabilities, providing a ranking of candidate pro-
totypes. The uncertainty in the assignment, as quantified by mutual information, measures
the reliability of the prediction. Note that the task of assigning the most similar proto-
type(s) to a given structure among 108 possible classes (and quantifying the similarity) is a
very complicated task even for trained materials scientists, in particular in case of complex
periodic and possibly defective three-dimensional structures.

We consider three examples (cf. Fig. 5.3 left): fluorite and tungsten carbide (from
AFLOW) where the correct labels are known, and one structure from the NOMAD ency-
clopedia (ID mp-684691 in materials project), for which the assigned space group is 1, i.e.,
no symmetry can be identified (via spglib). In all three cases there is no prototype in the
dataset which represents a match for any of these structures. This is on purpose: the net-
work will “fail” by construction since the correct class is not included in the possible classes
the network knows (and needs to choose from). Analyzing how the network fails will give
us insight on the physical content of the learned model. This test can also be viewed as
discovering “unexpected similarities” across materials of different chemical composition and
dimensionality.

Following the pipeline for single-crystal classification summarized in Fig. 4.1a-d, we
compute classification probabilities and mutual information, yielding the assignments shown
in Fig. 5.3 right. To rationalize the predictions shown in Fig. 5.3 from a physical standpoint,
we inspect the substructures formed by the chemical species in both original and assigned

5.4. When the model is forced to fail: analysis of ARISE out-of-sample predictions 63

Unseen structure Most similar prototype(s)

ARISE

Uncertainty: 0.3470

Space group: 225
Probability: 11.48 %

NaClCsCl

Space group: 221
Probability: 87.13 %

Cl3CsSn

Space group: 140
Probability: 0.78 %

Space group: 225
Probability: 99.45 %

NaCl CsSnI3

Space group: 160
Probability: 0.26 %

CsCl

Space group: 221
Probability: 0.09 %

Uncertainty: 0.0391

Space group: 198
Probability: 69.21 %

FeSi Cu2CdGeS4

Space group: 31
Probability: 16.59 %

Cu2ZnSiS4

Space group: 31
Probability: 12.02 %

Uncertainty: 0.7291

Classification model

Fluorite (CaF2)

Space group 225

Space group 187

Tungsten Carbide (WC)

Tm23Se32

(NOMAD encyclopedia)

a

b

c

b

a

b

c

Space group 1

Figure 5.3: Three examples for assigning the most similar prototype(s) (right panel) to
structures for which the corresponding structural class is not contained in the training set
of ARISE (left panel). For each prediction, space group and classification probabilities of
the top predictions are specified together with an uncertainty estimate (mutual information).
The space groups are returned via spglib, where we choose the highest symmetry that is found
for all combinations of precision parameters (0.1, 0.01, 0.001, 0.0001)[Å] and angle tolerances
(1, 2, 3, 4, 5)[◦].

structures. This is motivated by our choice of materials representation as averaged SOAP
descriptor of substructures (cf. section 4.3.2). The two most similar prototypes to fluorite
(CaF2) are CsCl and NaCl, both consisting of two inter-penetrating lattices of the same
type, two sc lattices for CsCl and two fcc lattices for NaCl. Fluorite contains both sc (F
atoms) and fcc (Ca atoms) which is likely why CsCl and NaCl are assigned, together with
a ternary halide tetragonal perovskite, also containing sc symmetry (via Cs and Sn atoms,
respectively). For tungsten carbide (WC), W and C form two hexagonal lattices. In the unit
cell of the most similar prototype, FeSi, 60◦ angles are formed within the substructures of
each species (see dashed lines in the unit cell), thus justifying this classification. Furthermore,
two quaternary chalcogenides appear as further candidates. This similarity – hard to assess
by eye – originates by the presence of angles close to 60◦ for S atoms (yellow) for both
Cu2CdGeS4 and Cu2ZnSiS4 (marked in the figure for Cu2CdGeS4). Also note that these two
quaternary prototypes, Cu2ZnSiS4 and Cu2CdGeS4 are a result of substituting Ge and Si
with isoelectric elements Zn and Cd, which implies that these structures are expected to be

64 Chapter 5. Global crystal characterization using ARISE

similar. This explains why they both appear as candidates for structures being similar to
tungsten carbide.

Finally, for the compound Tm23Se32 from the NOMAD encyclopedia, the model iden-
tifies NaCl as the most similar prototype. Looking at the structure from different angles,
especially from the top (cf. Fig. 5.3, left part), a similarity to cubic systems can be iden-
tified. The classification method robustness to missing atoms makes the apparent gaps in
the side-view negligible, and thus rationalizes the NaCl assignment. Regarding the uncer-
tainty quantification (via mutual information), increased uncertainties appear for fluorite
and tungsten carbide, since besides the top prediction with more than 70% classification
probability, other prototypes are possible candidates for the most similar prototype. For the
NOMAD structure Tm23Se32, the network is quite confident, most likely because no other
good candidates are presented among the binaries included in the 108 classes dataset.

These results show that the model – even when forced to fail by construction – returns
(highly non-trivial) physically meaningful predictions. This makes ARISE particularly at-
tractive for screening large and structurally diverse databases, in particular assessing struc-
tures for which no symmetry label can be obtained with any of the current state-of-the-art
methods.

In addition to the analysis in Fig. 5.3, we report further examples for out-of-sample
structures, whose ARISE-assignments can be justified in the same fashion. Each of these
structures are taken from AFLOW. In the following list, we specify the input prototype name
and the corresponding AFLOW URL (whose identifier specifies composition and symmetry,
e.g., Boron nitride has the identifier AB hP4 194 c d, where AB denotes the stoichiometry,
hP4 the Pearson symbol, 194 the space group, and c,d refer to the Wyckoff positions – see
also section 12 of [101]). Moreover, we state the most likely prototype that is assigned by
ARISE, as well as the associated mutual information (abbreviated as mut.inf.):

• Boron nitride (bulk, graphitic, http://aflowlib.org/CrystalDatabase/AB hP4 194 c d.
html) classified as hexagonal graphite (probability 63.32%), mut.inf. 0.7278.

• Cementite (http://aflowlib.org/CrystalDatabase/AB3 oP16 62 c cd.html) classified as
MnP (orthorhombic) with probability 49.14%, mut.inf. 0.7176.

• CuTi3 (L60 Srukturbericht, http://aflowlib.org/CrystalDatabase/AB3 tP4 123 a ce.
html) classified as α−Pa (tetragonal) with probability 78.41%, mut.inf. 0.8539.

• Benzene (http://aflowlib.org/CrystalDatabase/AB oP48 61 3c 3c.html) classified as nan-
otube (chiral indices (n,m)=(5,2)) with probability 68.48%, mut.inf. 0.6249.

• NbO (http://aflowlib.org/CrystalDatabase/AB cP6 221 c d.html), which is NaCl with
25% ordered vacancies on both the Na and Cl sites), classified as NaCl with probability
99.96%, mut.inf. 0.0027.

• Moissanite 4H SiC (http://aflowlib.org/CrystalDatabase/AB hP8 186 ab ab.html) clas-
sified as wurtzite with probability 99.74%, mut.inf. 0.0166

• K2PtCl6 (http://aflowlib.org/CrystalDatabase/A6B2C cF36 225 e c a.html) classified
as NaCl with probability 61.4%, mut.inf. 0.5402.

http://aflowlib.org/CrystalDatabase/AB_hP4_194_c_d.html
http://aflowlib.org/CrystalDatabase/AB_hP4_194_c_d.html
http://aflowlib.org/CrystalDatabase/AB3_oP16_62_c_cd.html
http://aflowlib.org/CrystalDatabase/AB3_tP4_123_a_ce.html
http://aflowlib.org/CrystalDatabase/AB3_tP4_123_a_ce.html
http://aflowlib.org/CrystalDatabase/AB_oP48_61_3c_3c.html
http://aflowlib.org/CrystalDatabase/AB_cP6_221_c_d.html
http://aflowlib.org/CrystalDatabase/AB_hP8_186_ab_ab.html
http://aflowlib.org/CrystalDatabase/A6B2C_cF36_225_e_c_a.html

Chapter 6

Polycrystal characterization using
ARISE

Up to this point, we have discussed only the analysis of single-crystal (mono-crystalline)
structures, using ARISE. The only exception is the graphene structure analyzed in Fig. 5.1a
(bottom row), which contains a grain boundary and is thus polycrystalline. To enable the
local characterization of large, polycrystalline systems, we introduce strided pattern match-
ing (SPM). This framework is explained in section 6.1, where section 6.1.1 describes the
prediction workflow and section 6.1.2 discusses the most important parameters in the SPM
framework. We consider a diverse set of applications: First, a mono-species benchmarking
structure is analyzed in section 6.2, where both supervised and unsupervised protocols are
established and tested in sections 6.2.1 and 6.2.2, respectively. The unsupervised study ad-
dresses an important topic in ML: model explainability [42–44]. Section 6.3 turns to a more
realistic system of high technological relevance: Ni-based superalloys and the detection of
precipitates in systems with random chemical ordering. A further realistic system is dis-
cussed in section 6.4, which in contrast to the previous systems is a result from atomistic
simulations [98], specifically an evolutionary structure search based on the crystal-structure
prediction method USPEX [220]. While sections 6.2-6.4 deal with simulated structures only,
section 6.5 presents a study of experimental HAADF images of graphene via SPM (while
the global analysis of comparable images is discussed in section 5.2). Moreover, the applica-
tion of ARISE and SPM to experimental high-resolution transmission electron microscopy
(HRTEM) images is discussed, specifically the classification of a quasicrystal, demonstrating
the flexibility of our approach to deal with electron-microscopy data from diverse origins.
Going up in spatial dimensionality, 3D AET data is analyzed in section 6.6, in both su-
pervised (section 6.6.1) and unsupervised (section 6.6.2) fashion. In particular, section 6.6.2
establishes a protocol for the exploratory analysis of (atomic-resolution but) noisy structural
data from experiment. Finally, adding a further dimension (the time), section 6.7 consid-
ers four-dimensional (4D), i.e., time-resolved AET data. This study supports that mutual
information can be considered an AI-based order parameter.

65

66 Chapter 6. Polycrystal characterization using ARISE

6.1 The strided pattern matching framework

6.1.1 Prediction workflow

For slab-like systems (cf. Fig. 6.1 a), a box of predefined size is scanned in-plane across the
whole crystal with a given stride; at each step, the atomic structure contained in the box is
represented using a suitable descriptor (cf. Fig. 6.1 b-c), and classified (Fig. 6.1d), yielding
a collection of classification probabilities (here: 108) with associated uncertainties. These
are arranged in 2D maps (Fig. 6.1e). The classification probability maps indicate how much
a given polycrystalline structure locally resembles a specific crystallographic prototype. The
uncertainty maps quantify the statistics of the output probability distribution (cf. section
2.3.2). Increased uncertainty indicates that the corresponding local segment deviates from
the prototypes known to the model. Thus, these regions are likely to contain defects such as
grain boundaries, or more generally atomic arrangements different from the ones included in
training. For bulk systems (Fig. 6.1f), the slab analysis depicted in Fig. 6.1a-e is repeated
for multiple slices (Fig. 6.1g), resulting in 3D classification probability and uncertainty maps
(Fig. 6.1h).

SPM extends common approaches such as labeling individual atoms with symmetry labels
[114], as the striding allows to discover structural transitions within polycrystals in a smooth
way. SPM can be applied to any kind of data providing atomic positions and chemical species.
Results obtained via SPM are influenced by the quality of the classification model as well as
box size and stride (see the next section for more details).

6.1.2 Parameter selection

Two parameters are most important for strided-pattern-matching analysis:

• Firstly, the stride defines the resolution and may be chosen arbitrarily small or large
to increase or decrease the visualization of structural features. Note that the sliding
allows us to discover smooth transitions, while the smoothness is determined by the
step size. This way, boundary effects between neighbored local regions are reduced
compared to the case of slightly overlapped or non-overlapping boxes (e.g., in the
simple voxelization case). In particular, a small stride (e.g., 1 Å) mitigates boundary
effects due to the discretization, which otherwise can influence the final classification
and uncertainty maps. SPM is trivially parallel by construction, thus allowing the
time-efficient characterization of large systems. Clearly, in a naive implementation,
this procedure scales cubically with stride size. Practically, one may choose a large
stride (in particular if the structure size would exceed computing capabilities) to obtain
low-resolution classification maps, which may suffice to identify regions of interest.
Then, one may zoom into these areas and increase the stride to obtain high-resolution
classification maps revealing more intricate features.

• Secondly, the box size determines the locality, i.e., the amount of structure that is
“averaged” to infer the crystallographic prototype being most similar to a given local
region. If this parameter is chosen too large, possibly interesting local features may
be smoothed out. We recommend to use box sizes larger than 10-12Å, as in these

6.2. Synthetic example I: mono-species polycrystal 67

Bayesian
neural network

Classification probability

3D Maps

Classification probability Bayesian uncertainty

Classification
model

.

.

.

.

.

.

Slab analysis Descriptor
(here: SOAP)

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Descriptor of
box (0,0)

Descriptor of
box (0,1)

.

.

.

.

.

.

Box (0,0)

Box (0,1)

Extract local
regions

Bulk analysis

Pixel (0,0)

Pixel (0,1)

Bayesian uncertainty

a b c d e

f g h

2D Maps

Slab analysis

Slab analysis

Figure 6.1: Schematic overview of the polycrystal characterization framework strided pattern
matching for slab-like (a-e) and bulk systems (f-h).

cases, the number of contained atoms is typically within the range of the supercells the
network is trained on (i.e., at least 100 atoms). The generalization ability to smaller
structures depends on the prototype (cf. Fig. B.1), and in general, if a smaller box
size is desired while using our model, the practical solution is to add smaller supercells
in the training set and retrain the network.

Note that the shape of the local regions may be chosen to be different from boxes, e.g.,
spheres or any other shape that fits the application at hand. Moreover, we chose the grid in
which the structure is strided to be cubic, while other discretizations are possible. Also note
that a one-dimensional striding can be applied to rod-like systems such as carbon nanotubes.

As mentioned above (last sentence of the first bullet point), one can use the SPM al-
gorithm to identify regions of interest. In the future, one may extend the SPM algorithm
to conduct an adaptive multi-resolution analysis, i.e., the algorithm decides automatically
where to zoom in, for instance, on the basis of the level of uncertainty from the previous
levels of zoom.

6.2 Synthetic example I: mono-species polycrystal

6.2.1 Supervised analysis

First, the classification via SPM is performed for a slab-like synthetic polycrystal consisting
of fcc, bcc, hcp, and diamond grains (cf. Fig. 6.2a, created via the open-source software
Atomsk [221]). Since these symmetries cover more than 80% of the elemental solids found in
nature [199], this structure is a solid testing ground for SPM. Due to the nature of the system,
the SPM boxes near the grain boundaries will contain mixtures of different crystal structures.
For the pristine structure, the results are shown in Fig. 6.2 b and c: We choose a 1 Å stride

68 Chapter 6. Polycrystal characterization using ARISE

~ 35 Å

Classification probabilities
Mutual information
(uncertainty)

HCP

FCC

DIAM

BCC

FCCDIAM BCCHCP

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

20% missing atoms
and 1% displacements

0.0
0.2

0.4

0.6
0.8
1.0

1.2

1.6

1.4

Pristine

a b c

d e

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

Figure 6.2: Supervised analysis of mono-species polycrystal consisting of four grains with
different symmetries (a), for the pristine (b-c) and defective (d-e) case. b,d Classification
probabilities of expected prototypes. c,e Mutual information map for uncertainty quantifi-
cation.

and a box size equal to the slab thickness (16 Å). In total, this yields 7 968 local boxes.
The network assigns high classification probability to the correct prototypes. Uncertainty
is low within the grains, increasing at grain boundaries and crystal outer borders in line
with physical intuition. The result remains virtually unchanged when introducing atomic
displacements (up to 1% of the nearest-neighbor distance) while concurrently removing 20%
of the atoms (cf. Fig. 6.2d, e). The highest classification probabilities (after from the top
four shown in Fig. 6.2b, d) are shown in Fig. D.2; a discussion on the stride can be found
in Fig. D.3.

6.2.2 Explainability of the black-box model via unsupervised learn-
ing

Going beyond classification, we show how unsupervised learning can be used to access struc-
tural similarity information embedded in ARISE’s internal representations, and use it for the
characterization of crystal systems. Moreover, this analysis allows to explain the internals
of the black-box neural-network model. We consider the pristine mono-species polycrystal
shown in Fig. 6.2a and collect ARISE’s representations of the overall 7 968 local boxes. Next,
we employ HDBSCAN [177, 178] to identify clusters in the high-dimensional representation
space. HDBSCAN estimates the density underlying a given data set and then constructs a
hierarchy of clusters, from which the final clustering can be obtained via an intuitive and tun-
able parameter (cf. section 3.1.3). The obtained clusters correspond to the four crystalline
grains in the structure (Fig. 6.3a). Points identified as outliers (marked in orange) coincide
with grain-boundary and outer-border regions. Next, the high-dimensional manifold of the
NN representations is projected in 2D via UMAP [185]. UMAP models the manifold un-
derlying a given dataset and then finds a low-dimensional projection that can capture both

6.2. Synthetic example I: mono-species polycrystal 69

global and local distances of the original high-dimensional data (cf. section 3.2.1). This re-
turns a structure-similarity map (Fig. 6.3b), which allows to visually investigate similarities
among structures: points (structures) close to each other in this map are considered to be
similar by the algorithm. Structures belonging to the same cluster are in close proximity
to each other, and clearly separated from other clusters. Conversely, outlier points are split
across different regions of the map. This is physically meaningful: outliers are not a cohesive
cluster of similar structures, but rather comprise different types of grain boundaries (i.e., fcc
to bcc transitions or fcc to diamond etc., cf. Fig. D.4). In this synthetic setting, we can
also use the classification prediction to further verify the unsupervised analysis: the results
obtained via unsupervised learning indeed match ARISE’s predictions (cf. Fig. 6.3b - Fig
6.3c). Moreover, an analysis of the mutual information (Fig. 6.3d) reveals that points at the
core of the clusters are associated with low uncertainty, while points closer to the boundaries
show increased uncertainty. Similar results are obtained for the other layers (cf. Fig. D.1).

The analysis conducted in Fig. 6.3 qualifies as a post hoc explanation [222] of the trained
model – a term on which we will elaborate in the following. As we discussed on multiple
occasions in this thesis (for instance, section 2.2.3), generalization ability is the key task in
ML. This does not only mean that a ML model performs well on a test set sampled from
a distribution similar to the one of the training set, but actually provides meaningful pre-
dictions for significantly different data. To assess what is meaningful or not, one needs to
understand what the model has learned. This task is directly connected to interpretabil-
ity, a field of ML whose definition is being debated at a fundamental level [42–44]. Two
categories of interpretability are typically considered [222]: transparency addresses the func-
tioning of the internal mechanisms of a ML model. Deep-learning models lack transparency
due to their black-box nature, a consequence of the information being distributed across
millions of parameters. Post hoc explanations address the information one can extract from
a (black-box) ML model, while the detailed internal mechanisms typically remain hidden.
For instance, one can relate the change of model input and output, revealing which parts
of the input are more important for certain predictions. In crystal-structure identification,
attentive response maps have been employed in this fashion [26], determining which parts
of a diffraction fingerprint influence the structural-class prediction most. The diffraction
fingerprint that represents a given crystal is essentially a 2D image with pronounced peaks.
It is shown in [26] that the trained deep-learning model employs these peaks to arrive at a
classification, in a similar way as a trained materials scientist would do. In this work, the
input lacks comparable interpretability, since we employ the SOAP descriptor whose com-
ponents are essentially basis set expansion coefficients. Still, to understand which physical
insights the model has learned (or if any at all) we can change the input. For instance,
we have continuously deformed the input (via studying structural transformation paths in
section 5.3) or investigated the predictions for out-of-sample structures (cf. section 5.4).
In this section, we employed unsupervised learning to study the internal representations
that have been learned by the neural network model. Specifically, we employed clustering
(HDBSCAN) and related the obtained grouping of points to structural characteristics in real
space. Moreover, we used manifold learning (UMAP) to obtain a low-dimensional, easily in-
terpretable structural-similarity map. We find that despite the original high-dimensionality,
the compressed representation reveals meaningful clusters that are again related to real-space

70 Chapter 6. Polycrystal characterization using ARISE

patterns. In section 6.6.2, we will provide an additional post hoc explanation study that also
serves as a protocol for exploratory analysis of crystal structures.

Cluster labels (HDBSCAN)

a

b ARISE uncertainty
(mutual information)

c d
ARISE predictions

Extract NN-
representation

Crystal-structure map:
cluster labels (HDBSCAN)

cluster 1
cluster 2
cluster 3
cluster 4

outlier
diamond
fcc
hcp
bcc

other
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Figure 6.3: a-d Unsupervised analysis of internal neural-network representations. a The
neural-network (NN) representations are extracted for each local segment in Fig. 6.2 a
(obtained via SPM for the pristine structure). Clustering (via HDBSCAN) is applied to this
high-dimensional internal space; the polycrystal is marked according to the resulting clusters
(see legend in b for the color assignments). b-d Two-dimensional projection (via UMAP) of
neural-network representations colored by cluster label, ARISE predicted class, and mutual
information, respectively. In b, all points for which HDBSCAN does not assign a cluster
are labeled as “outlier”. In c, all points that are not classified as fcc, diamond, hcp or bcc
are labeled as “other”. Note that while the distances between points are meaningful, the
axes merely serve as a bounding window and are not interpretable – a situation typically
encountered in non-linear methods such as UMAP (cf. section 6 in [185]).

6.3 Synthetic example II: Ni-based superalloy

We now move to a more realistic system: a model structure for Ni-based superalloys [201]
(c.f Fig. 6.4a). Ni-based superalloys are used in aircraft engines due to their large mechan-

6.3. Synthetic example II: Ni-based superalloy 71

120 x 120 x 120 Å

fccL12
Mutual
information

a

Section through center

Pristine Defective

x

y
z

L12 (γ' phase)
in center

Al

Ni

Random fcc
matrix (γ phase)

Al or Ni

Strided pattern
matching

b

c

2D classification and uncertainty map

3D probability classification map
 (L12)

0.5
0.4
0.3
0.2
0.1
0.0

1.0

0.0

1.0
0.8

0.6
0.4
0.2
0.0

(20% missing atoms, 5% atomic displacements)

Figure 6.4: Precipitate detection in Ni-based superalloys. a Binary model system (right)
and depiction of the two appearing phases (left). b Classification probabilities of expected
prototypes and mutual information for a slice through the center of the structure. c 3D-
resolved detection of the precipitate via the L12 classification probability for the pristine (left)
and highly defective case (right), for which 20% of the atoms are removed and randomly
displaced (up to 5% of the nearest-neighbor distance).

ical strength at high temperatures, which derives from ordered L12 precipitates (γ′ phase)
embedded in a fcc matrix (γ phase). We generate an atomic structure consisting of a fcc
matrix in which Al and Ni atoms are randomly distributed. In the center, however, the
arrangement of Al and Ni atoms is no longer random, but it is ordered such that the L12

phase is created (c.f Fig. 6.4a). The cubic shape of this precipitate is in accordance with
experimental observations [223]. The resulting structure comprises 132 127 atoms over a
cube of 120 Å length. Compared to Fig. 6.2, we choose the same box size (16 Å) but reduce
the stride to 3 Å, since this system is much larger and we want to demonstrate that in these
situations, smaller strides (that reduce computational cost) still yield reasonable results. As
shown via a section through the center in Fig. 6.4b, fcc is correctly assigned to the matrix,
and the precipitate is also detected. The uncertainty is increased at the boundary between
random matrix and precipitate, as well as at the outer borders. Fig. 6.4c illustrates the
L12 classification probability in a 3D plot. The precipitate is detected in both pristine and
highly defective structures. This analysis demonstrates that ARISE can distinguish between
chemically ordered and chemically disordered structures, a feature that will be exploited for
the analysis of experimental AET data in sections 6.6 and 6.7.

72 Chapter 6. Polycrystal characterization using ARISE

a b c

x y

z

z

x

1.0

0.0

fcc dhcp

side
view

top
view

Local box at grain boundary

Figure 6.5: a Lowest-energy grain boundary structure (Cu, fcc) predicted from an evolution-
ary search (based on the crystal-structure prediction method USPEX [220]). The geometry
data is taken from the original reference [98]. The so-called Pearl pattern appears at the
grain boundary, which is also observed in experiment [98]. b ARISE analysis (via SPM),
correctly identifying fcc (ABC close-packing) in the grains, while detecting double hexag-
onal close-packed (dhcp, ABAC) at the grain boundary. c Exemplary analysis of a local
box at the grain boundary, illustrating a change in stacking and increased distortions, which
motivates the assignment of dhcp (which contains 50 % of both fcc and hcp close-packings).

6.4 Synthetic example III: grain-boundary system ob-

tained via evolutionary structure search

In this section we study the structure shown in Fig. 6.5a, which is the lowest-energy structure
obtained from an evolutionary structure search [98] (based on the crystal-structure prediction
method USPEX [220]). Notably, the structural patterns at the grain boundary (termed
“Pearl”) are also observed in STEM experiments. This study supplements the systems
investigated in section 6.2 and 6.3, which unlike the system in Fig. 6.5a are not created
using atomistic simulations.

ARISE (via SPM) correctly identifies the fcc symmetry within the grains (cf. Fig. 6.5b)
while assigning double hexagonal close-packed (dhcp) symmetry at the grain boundary. The
local boxes at the grain boundary contain partial fcc structures while changes in stacking
and distortions decrease their symmetry (cf. Fig. 6.5c). Also the dhcp phase (ABAC close-
packing) contains fcc (ABC) and a lower-symmetry packing (hcp, AB), thus justifying the
assignment. A box size of 10 Å and a stride of 2 Å suffice to characterize this grain-boundary
structure.

Note that ARISE correctly identifies even the α−Sm-type stacking (ABCBCACAB). No
other fully automatic approach offers a comparable sensitivity.

6.5 Application to STEM and HRTEM experimental

images

In section 5.2 we have analyzed HAADF images on a global scale via ARISE. Using SPM, a
local analysis can be performed, specifically to zoom into a given structure and locate sub-
structural features. This is particularly useful for polycrystalline and/or larger systems (e.g.,
more than 1 000 atoms). As illustrative example, we consider the structure in Fig. 6.6a. We

6.6. Application to 3D atomic electron tomography data 73

choose a stride of 4 (in units of pixels since atoms are reconstructed from images, while for
typical graphene bond lengths of 1.42 Å the relation 1 Å ≈ 8.5 can be inferred). Moreover,
we select a box size of 100 pixels (≈ 12 Å). The mutual information shown in Fig. 6.6b
clearly reveals the presence of a grain boundary. In Fig. 6.6c , the classification probabilities
of graphene and MnS2 (the dominant prototypes) are presented, the latter being assigned at
the grain boundary. This assignment can be traced back to pentagon-like patterns appearing
near the grain boundary (as highlighted in Fig. 6.6a, right), a pattern similar to the one
being formed by Mn and S atoms in MnS2 (cf. Fig. 6.6d).

This analysis together with the global study presented in Fig. 5.1 provides a blueprint for
the study of STEM and in general atomic-resolution electron microscopy images, adding to
the growing body of research addressing this field [224]: Given an atomic-resolution image,
reconstruct the atomic positions and then apply ARISE for further analysis (assigning the
underlying lattice symmetry, detecting regions of interest such as grain boundaries). Note
that images investigated in Fig. 5.1 and Fig. 6.6 contain a significant amount of noise,
hindering the application of standard reconstruction methods that typically rely on the fitting
of 2D Gaussians (e.g., atomap [225]). Fortunately, experimentalists routinely achieve much
better resolution, making the application of classical (i.e., non-data-driven) methodologies
possible. In particular, AtomNet is trained on particular systems only and generalization
to other symmetries is not guaranteed (while models that can detect Si defects or cubic
symmetry are available). Notably, even if AtomNet or other methods provide incomplete
information, ARISE’s robustness can be employed to still obtain reasonable results.

To support the discussion in the previous paragraph, we challenge the established pro-
cedure for the local analysis of 2D images with data from a completely different resource.
We investigate a HRTEM image of a quasicrystalline structure [226, 227], cf. Fig 6.7a. The
bright spots are ordered aperiodically, making it a very hard task to identify the underlying
order by eye. Via the established procedure (using a box size of 100 and a stride of 10
pixels in the 1000× 1000 pixel image), MnS2 is predicted as the most similar prototype (cf.
Fig. 6.7b). MnS2 contains pentagon patterns (cf. Fig. 6.6d) which can also be seen in the
quasicrystal (cf. zoom in Fig. 6.7a). Besides the confirmation of the previous analysis in
Fig. 6.6, this result suggests that ARISE and SPM are novel and promising tools for the
classification of quasicrystalline order in automatic fashion – a promising yet under-explored
area.

6.6 Application to 3D atomic electron tomography data

While HAADF (or HRTEM) images are a valuable experimental resource, they only provide
2D projections. 3D structural and chemical information can however be obtained from
atomic electron tomography (AET) with atomic resolution achieved in recent experiments
[109, 228–231]. Notably, this technique provides 3D atomic positions labeled by chemical
species, to which ARISE and SPM can be readily applied. While time-resolved experiments
[232] and extensions to other systems such as 2D materials are reported [233], metallic
nanoparticles have been the main experimental focus so far, specifically FePt systems due

74 Chapter 6. Polycrystal characterization using ARISE

Graphene MnS2

Mutual information
a

c

b

MnS2

Sliding window

1.0

0.8

0.6

0.4

0.2

0.0

1.2

1.0

0.8

0.6

0.4

0.2

0.0

d

Figure 6.6: Analysis of HAADF image (from https://github.com/pycroscopy/
AICrystallographer/tree/master/AtomNet) via ARISE and SPM. a HAADF image
and reconstructed atomic positions (analogous to Fig. 5.1 via AtomNet [81]) of a larger
sample. Pentagons can be spotted near the grain boundary (see inset). The white scale bar
in the bottom left of the image corresponds to the typical graphene bond length (1.42 Å).
b-c Local analysis: graphene is the dominant structure (c). Different prototypes (MnS2,
cf. d) are only assigned - and with high uncertainty (mutual information, b) - at the grain
boundary. d MnS2 prototype.

a b

1.0

0.8

0.6

0.4

0.2

0.0

MnS2HRTEM image

Reconstruction

10 nm

Figure 6.7: Analysis of HRTEM image via ARISE and SPM. a HTREM image of qua-
sicrystalline structure (icosahedral Al-Cu-Fe, adapted from the original reference [227], i.e.,
cropped and rescaled to a 1000×1000 pixel image using standard settings in the GIMP Image
editor). While there is an underlying order, the structure is aperiodic (i.e., no translational
symmetry is present). As visualized in the zoom, the bright spots align with five-fold sym-
metry axes and pentagons of different size appear. Based on the reconstruction via AtomNet
(bottom right), ARISE (via SPM) identifies MnS2 as the dominating prototype (b), which
similarly to the input structure contains pentagon patterns (cf. Fig. 6.6d).

https://github.com/pycroscopy/AICrystallographer/tree/master/AtomNet
https://github.com/pycroscopy/AICrystallographer/tree/master/AtomNet

6.6. Application to 3D atomic electron tomography data 75

x

y

~ 40 Å

a L12 1.0

0.8

0.6

0.4

0.2

0.0

Mutual information

0.25

0.50

0.75

1.00

1.25

1.75

1.50

0.0020 Å

b c

Figure 6.8: Supervised analysis of AET data. a Side view of FePt nanoparticle (∼23k
atoms), with atomic positions and chemical species from AET data [237]. b L12 is the
most dominant phase, which is exemplarily demonstrated via the classification probability
of the corresponding prototype for the most central slice obtained using SPM. c The mutual
information is low within regions dominated by L12, indicating increased crystallinity. These
results are in accordance with a previous study [237]. Particle boundaries are indicated with
red (b) and white (c) dashed lines.

to their promises for biomedicine and magnetic data storage [234]. Notably, a recent study
employed AET to analyze amorphous solids [235, 236], demonstrating the flexibility of this
experimental approach.

6.6.1 Supervised analysis

First, a FePt nanoparticle [237] is classified using SPM. ARISE’s robustness is critical for
this application, since the structural information provided by AET experiments are based on
reconstruction algorithms that causes visible distortions (cf. Fig. 6.8a). We choose a stride
of 1 Å and box size of 12 Å (see also the last paragraph in section 6.6.2 for a motivation of this
selection). SPM primarily detects L12 (cf. Fig. 6.8b) but also L10, and fcc phases (cf. Fig.
D.5). This is in line with physical expectations: annealing leads to structural transitions from
chemically disordered to ordered fcc (A1 to L12) or to the tetragonal L10 phase [234, 237].
Besides the expected prototypes, ARISE also finds regions similar to tetragonally distorted,
mono-species fcc (cf. Fig. D.5), which is meaningful given the presence of fcc and the
tetragonal phase L10.

6.6.2 Exploratory analysis via unsupervised learning

To go beyond the information provided by classification and discover hidden patterns and
trends in AET data, we conduct an exploratory analysis using unsupervised learning on
ARISE’s internal representations. While the procedure is similar to the one presented in
Fig. 6.3, here the analysis is truly exploratory (no ground truth is known), and data comes
from experiment. First, all SPM boxes classified as L10 are extracted, this choice motivated
by the physical relevance of this phase, in particular due to its magnetic properties [234]. This
reduces the number of data points (boxes) from 43 679 to 5 359 – a significant filtering step
for which the automatic nature of ARISE is essential. In the representation space of the first
hidden layer, HDBSCAN identifies seven clusters (and the outliers). To interpret the cluster

76 Chapter 6. Polycrystal characterization using ARISE

a

L10 (FePt)

dFeFe = dPtPt

c

a
b

d
outliers
C0
C1
C2
C3
C4
C5
C6

100

0

25

0

100

0

50

0

50

0
50

0
50

0

C 1

C 0

C 6

C 2

C 3

C 4

C 5

Δd =dFeFe - dPtPt

-0.5 0.0 0.5
0

10
Outliers

C
o
u
n
ts

b c

Figure 6.9: Unsupervised, exploratory analysis of AET data from [237]. a Illustration of
L10 phase. All local regions that are assigned this technologically relevant prototype are ex-
tracted for further, unsupervised analysis. b Two-dimensional projection of neural-network
representations (first hidden layer) via UMAP for regions classified as L10 by ARISE. c
The distribution of the difference between the nearest-neighbor distances dFeFe and dPtPt
(highlighted by bonds in a) is shown for each cluster.

assignments, we analyze geometrical characteristics of atomic structures (i.e., the local boxes)
assigned to the different clusters. Specifically, we consider the nearest-neighbor distances
between Fe and Pt atoms, dFeFe and dPtPt, respectively (cf. section 4.3.1 for the definition).
For an ideal tetragonal structure, the difference ∆d = dFeFe− dPtPt is zero (cf. Fig. 6.9 a); a
deviation from this value thus quantifies the level of distortion. Looking at the histograms
of the (signed) quantity ∆d shown in Fig. 6.9c for each cluster, one can observe that each
distribution is peaked; moreover, the distribution centers vary from negative to positive ∆d
values across different clusters. The distribution of the outliers is shown for comparison:
the ∆d distribution is very broad, since outlier points are not a meaningful cluster. While
overlap exists, the clusters correspond to subgroups of structures, each distorted in a different
way, as quantified by ∆d. Thus, we discovered a clear trend via the cluster assignment that
correlates with the level of distortion. The cluster separation can be visualized in 2D via
UMAP (cf. Fig. 6.9b). Notably, the clusters do not overlap, even in this highly compressed
representation (from 256 to 2 dimensions). Some of the clusters may also contain further
sub-distributions, which seems apparent, for instance, from the ∆d distribution of cluster 6.
The regions corresponding to the clusters could be hinting at a specific growth mechanism of
the L10 phase during annealing, although further investigations are necessary to support this
claim. The present analysis provides a protocol for the machine-learning driven exploration
of structural data: supervised learning is employed to filter out a class of interest (which is not
a necessary step, cf. Fig. 6.3), then unsupervised learning is applied to the neural-network
representations, revealing regions sharing physically meaningful geometrical characteristics.

We want to emphasize that the analysis in this section also provides a post hoc explanation

6.6. Application to 3D atomic electron tomography data 77

of the trained model, similar to the study presented in section 6.2.2. In this case, however,
we focus on one particular phase (of high technological relevance) and then use a geometrical
property to justify the clusters that are found in the internal neural-network space. In section
6.2.2, the real-space symmetry within each grain is employed to explain the clusters, while
no filtering is performed.

In the following, we discuss the choice of SPM parameters in the current section as well
as section 6.6.1. For Fig. 6.8, we choose a stride of 1 Å and box size of 12 Å. For the
unsupervised analysis in Fig. 6.9, we reduce the stride to 2Å, to avoid an overcrowded
2D map. The box size of 16 Å which allowed to distinguish chemically disordered fcc from
ordered L12 (cf. Fig. 6.4) yields comparable results (see Fig. D.5), while finding less L10

symmetry and more fcc since a larger amount of structure is averaged. Due to L10 showing
special magnetic properties, we are interested in having a larger pool of candidate regions,
which is why we choose a box size of 12 Å (corresponding to the smallest value such that the
average number of atoms in each box is greater than 100).

6.6.3 Important parameters for the unsupervised explanatory and
exploratory analysis protocols

In this section, we discuss the most important parameters that have been employed to
perform the explanatory and exploratory analysis discussed in section 6.2.2 and 6.6.2.

As discussed in section 3.1.3, HDBSCAN [177, 178] is a density-based, hierarchical clus-
tering algorithm. The final flat clustering is derived from a hierarchy of clusters. The most
influential parameter is the minimum cluster size that determines the minimum number of
data points a cluster has to contain – otherwise it will be considered an outlier, i.e., not
being part of any cluster. Practically, one can test a range of values for the minimum clus-
ter size, in particular very small, intermediate and large ones – for instance, for the results
on the synthetic polycrystal in 6.2, we test the values {25, 50, 100, 250, 500, 1 000}. In line
with intuition, the number of clusters grows (shrinks) for smaller (larger) values of minimum
cluster size. A coherent picture with 4 clusters and clear boundaries (as indicated by the
outliers) arises for minimum cluster size values of around 500, for which we report the results
in Fig. 6.3a-d and Fig. D.1. For the nanoparticle data discussed in Fig. 6.9, we observe
that most of the points are considered outliers since the data contains substantially more
distortions. To address this, we use the soft clustering feature of HDBSCAN, which allows
to calculate a vector for each data point, whose ith component quantifies the probability
that the given data point is member of cluster i. Then, we can infer a cluster assignment
for points that would normally be considered outliers, by selecting for each point the cluster
whose membership probability is maximal (while considering a point an outlier if all prob-
abilities are below a certain threshold for which we choose 10 %). For the minimum cluster
size, we find that for values below 10 the number of clusters quickly grows while shrinking
for larger values. We report the results for a minimum cluster size of 10 in Fig. 6.9.

To visualize the clustering results, we use the manifold-learning technique UMAP [185]
(cf. section 3.2.1). This method uses techniques from Riemannian geometry and algebraic
topology to capture both the global and local structure of a manifold that underlies a given
dataset. One of the most important parameters is the number of neighbors that will be

78 Chapter 6. Polycrystal characterization using ARISE

considered to construct a topological representation of the data, where a small value takes
only the local structure into account, while a large value considers the global relations be-
tween data points. We choose values of 500 for Fig. 6.3 and 50 for 6.9b, above which the
2D embeddings do not change significantly. For the minimum distance parameter (which
is explained in the last paragraph in section 3.2.1), we employ the standard setting of 0.1
for 6.9b. For Fig. 6.3, we test several settings in Fig. D.4. For all tested values, the main
characteristics can be resolved (in particular, four clusters corresponding to the four crys-
talline grains). In line with intuition, for smaller minimum distances, the points are tightly
clustered, while for larger values, the points appear more spread, allowing for an improved
visualization of transitions between the grains. We report the result for a minimum distance
of 0.9 in Fig. 6.3.

6.7 Application to 4D atomic electron tomography data

Finally, we apply ARISE to time-resolved (4D) AET data. Specifically, a nanoparticle
measured for three different annealing times is investigated [232]. The mutual information
as obtained via SPM is shown in Fig. 6.10 for five central slices. We use a stride of 1 Å and
a box size of 12 Å (i.e., the same parameters that have been chosen for Fig. 6.8 and 6.9). In
regions between outer shell and inner core, the mutual information clearly decreases for larger
annealing times, indicating that crystalline order increases inside the nanoparticle. Fig. D.6
supports the visual impression of Fig. 6.10 by a quantitative analysis. This study confirms
that the predictive uncertainty of ARISE, as quantified by the mutual information, directly
correlates with crystalline order. The mutual information can be therefore considered an
AI-based order parameter, which we anticipate to be useful in future nucleation dynamics
studies.

Notably, it is an important and non-trivial result that an information-theory concept such
as mutual information applied to a complex deep-learning model correlates with physical
intuition. Besides the study in Fig. 6.10, correlation of mutual information with the level
of defectiveness has also been observed for multiple other scenarios, e.g., for bulk systems at
grain boundaries (cf. Fig. 6.2), as well as 2D materials for both global (cf. Fig. 5.1) and
local studies (cf. Fig. 6.6).

6.7. Application to 4D atomic electron tomography data 79

9 minutes 16 minutes 26 minutes

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Figure 6.10: Five central slices (mutual information, obtained via SPM) for three different
annealing times (data from 4D AET experiment [232]). The mutual information decreases
for larger annealing time, in particular in regions between outer shell and inner core. This
confirms that the predictive uncertainty of ARISE (as quantified by mutual information)
correlates with crystalline order.

Chapter 7

Summary

Artificial intelligence (AI) is impacting various scientific fields including materials science.
AI tools such as artificial neural networks (ANNs) are a major driving force of an emerging
research paradigm: data-centric materials science [25]. An ultimate goal is to find hidden
patterns and trends in data, leveraging the unique pattern-recognition abilities of AI meth-
ods such as ANNs. An important step in the characterization of a material is the analysis
of its crystal structure, which is essential to predict physical properties [238, 239]. Quanti-
fying the degree of symmetry or rather structural order that is contained in a given atomic
structure is addressed in crystal-structure classification [114]. In general, given atomic co-
ordinates and chemical composition, one is interested in finding the most similar structure
within a list of given known systems. While periodicity is often assumed in theoretical
studies, realistic materials are usually polycrystalline, exhibiting structural defects whose
complete physical modeling is typically infeasible. For instance, grain boundaries induce pe-
culiar mechanical properties in industrial steel [96]. To improve understanding of single- and
polycrystalline materials, one can make use of vast and growing amount of structural infor-
mation that is becoming available from both simulations and experiments: Large computa-
tional databases contain millions of structures alongside calculated properties, e.g., NOMAD
(NOvel MAterials Discovery) [23, 24], AFLOW [101, 102], OQMD (Open Quantum Materi-
als Database) [103], Materials project [104], and others [105,106,205]). Electron-microscopy
experiments allow to study real materials at the atomic scale [108,109,228–233,235]. To ana-
lyze this data, automatic methods for crystal-structure recognition are needed. The available
structural data is often incomplete and noisy (due to physical defects or post-processing ar-
tifacts), thus requiring a robust crystal-recognition method. Given the structural diversity
of materials space, flexibility, i.e., the ability to treat various systems, is a further key re-
quirement. Available methods [26, 111, 113–116, 118–121, 207] are typically either robust or
can treat multiple systems, but do not fulfill both criteria at the same time.

In this work, we propose the crystal-structure identification framework ARISE (ARtificial-
Intelligence-based Structure Evaluation) [122]. ARISE is a specific type of ANN. The under-
lying theory of deep learning is discussed in section 2, in particular architecture and training
of fully connected neural networks (section 2.1 and 2.2). A key component of this work is
something rarely addressed in machine learning applied to materials science: quantification
of model prediction uncertainty. To this end, we employ Bayesian deep neural networks,

81

82 Chapter 7. Summary

a subclass of ANNs which is discussed in section 2.3. These models do not only provide a
prediction but also quantify the uncertainty, i.e., how much one can trust each prediction of
the model. Specifically, we employ Monte Carlo (MC) dropout [123,124], a practical way to
obtain uncertainty estimates that are principled in the sense that they approximate those
of a well-known probabilistic model (the Gaussian process). Mutual information allows to
quantify the uncertainty.

Going beyond supervised machine learning, we employ unsupervised techniques, which
are discussed in section 3. Specifically, we employ clustering [177, 178] (section 3.1) and
dimensionality reduction (or rather, manifold learning [185], cf. section 3.2) to analyze the
internal neural-network representations that are learned during training.

Given the theoretical foundations of Bayesian deep learning, chapter 4 introduces ARISE.
In particular, section 4.1 summarizes which information one can extract from the classifi-
cation model. In short, this comprises classification probabilities, hidden-layer representa-
tions, and uncertainty quantification. For each of these quantities, we discuss applications
that demonstrate how the respective quantity can yield valuable information. The prediction
workflow is explained in section 4.3: Given atomic positions labeled by chemical-species sym-
bols, preprocessing in form of isotropic scaling is applied (section 4.3.1). Then, the materials
representation is computed. In this work, we employ the smooth-overlap-of-atomic-positions
(SOAP) descriptor [126, 127], which provides a reliable encoding of physical symmetries
such as rotational invariance (cf. section 4.3.2). Specifically, we adapt SOAP such that each
atomic structure is represented by a vector of fixed length, independent from the number of
atoms or chemical composition. SOAP serves as input to the classification model (section
4.3.3.1), which, as discussed above, is a Bayesian neural network. Training and optimization
of the model is discussed in detail in sections 4.3.3.2 and 4.3.3.3. The selection of the struc-
tural classes is the first step, which here comprises 108 different structures (a number that
can be extended on demand). To demonstrate the flexibility of our approach, we select a
diverse range of chemical compositions (up to four and one instance of six chemical species)
and symmetries (cubic, hexagonal, tetragonal, trigonal, orthorhombic). Close-packings be-
yond the standard fcc (ABC) and hcp (AB) types are included, specifically double hexagonal
close-packed (ABAC), and α−Sm (ABCBCACAB). Notably, our selection traverses several
material dimensions, covering bulk, 2D, and 1D materials. ARISE is not limited to pre-
dicting the space group and can classify systems where no meaningful space group number
can be identified (carbon nanotubes, space group 1). To train the deep-learning model, we
create a training set of ∼ 40k data points. To this end, we establish a protocol in which
hyperparameters of SOAP are varied and periodic as well as non-periodic structures (super-
cells) are included. In particular, we train on different (non-periodic) supercells, since we
want to investigate the local structure in large samples, which may contain structural defects
such as grain boundaries and the assumption of periodic boundary conditions would lead to
spurious patterns. By randomly perturbing the pristine structures, we create an extensive
test set of more than ∼ 140k structures. Specifically, we randomly remove atoms or distort
the atomic positions, while also applying these two types of defects concurrently.

Excellent performance of the trained model is demonstrated on both pristine and highly
defective structures, showing 100 % classification accuracy for up to 1 % atomic displacements
(defined with respect to the nearest-neighbor distance) and 10 % missing atoms. Beyond

83

these noise levels, the accuracy drops slightly to ∼ 99 % for up to 30 % missing atoms and
to ∼ 95 % for displacements of 10 %. In particular, ARISE clearly outperforms the state-of-
the-art methods (cf. section 5.1, in particular Tables 5.1 - 5.3). Note that no user-defined
tolerance parameters are required to arrive at a satisfactory classification, which is thus fully
automatic. Also note that a given atomic structure is compared to more than 100 different
structural classes and the most similar prototype is reliably identified. Even for a trained
materials scientist, this assignment (and the quantification of the similarity) would be a very
complicated if not impossible task, in particular in case of complex periodic and possibly
defective three-dimensional structures. Moreover, ARISE yields not only a classification (as
it is the case for standard neural networks), but also uncertainty estimates (via the mutual
information) due to the probabilistic nature of the employed Bayesian neural network.

Besides the benchmarking, section 5 discusses applications of ARISE, demonstrating
how classification probabilities and uncertainty (as quantified by mutual information) can
be employed for the global characterization of crystal structures. In section 5.2, we con-
sider the first application to experimental data: highly distorted high-angle annular dark
field (HAADF) images of graphene from which atomic positions are reconstructed using the
deep-learning framework AtomNet [81]. We demonstrate that the dominating symmetry
is correctly assigned (the structural class ”graphene“ that is included in the training set).
Moreover, we find that the mutual information correlates with crystal order, e.g., its value in-
creases if defects such as grain boundaries are contained. Section 5.3 considers the Bain path,
a well-known structural transition path between fcc and bcc symmetries via intermediate
tetragonal phases. ARISE assigns the expected prototypes along this transformation path,
indicating transitions between structural classes in a smooth fashion (i.e., the classification
probabilities smoothly decay at transitions, while the mutual information increases). In sec-
tion 5.4, we study model performance for structures that are not included in the training set,
i.e., when ARISE is forced to fail. Even though we include more than 100 structural classes,
given the practically infinite number of materials, this will be a common scenario when ap-
plying ARISE. We analyze the predictions of ARISE for several out-of-sample structures
and find that the assigned prototypes are physically meaningful. To this end, we inspect
the input structures and the assigned structural classes, searching for matching structural
characteristics (for instance, space group symmetry or bond angles). In particular, ARISE
provides a ranking of most similar prototypes via the classification probability. We find that
even the assignments with low classification probability are physically reasonable.

In chapter 6, we introduce the strided pattern matching (SPM) framework, which extends
ARISE for the local characterization of large, possibly polycrystalline atomic systems. As
discussed in section 6.1, we employ a local box that is scanned across the whole crystal vol-
ume. For each step, ARISE is applied, yielding a collection of classification probabilities and
mutual information values. These can be rearranged into 2D (for slab-like structures) and 3D
(for bulk systems) maps that reveal structural characteristics, such as grain boundaries. We
first test SPM on a mono-species crystal structure with four crystalline grains in section 6.2.
Each grain has a different symmetry (fcc, bcc, hcp, diamond), covering more than 80 % of the
elemental solids. First, we perform a supervised analysis in section 6.2.1, i.e., we investigate
the classification probabilities and the mutual information. We analyze both pristine and
highly defective versions of the polycrystal and find that in both scenarios, ARISE (via SPM)

84 Chapter 7. Summary

assigns the correct symmetries at the expected regions. At the grain boundaries, the mutual
information increases while being low within the crystalline grains. Going beyond the super-
vised analysis, we conduct an unsupervised study of the same structure in section 6.2.2. We
employ state-of-the-art clustering and dimensionality-reduction algorithms for the analysis
of the internal representations that are learned by the neural-network model. Specifically,
we investigate the internal representations of the local boxes of the mono-species polycrys-
tal. We find that the cluster assignments (obtained via Hierarchical Density-based Spatial
Clustering Applications with Noise, short HDBSCAN) are physically meaningful as they
correspond to the four crystalline grains (while HDSCAN also detects outliers, which here
correspond to grain-boundary and outer-border regions). Via manifold learning (Uniform
Manifold Approximation and Projection, short UMAP), we project the high-dimensional
representations into 2D, providing an easily interpretable structural-similarity map. Even in
this highly compressed representation, points that correspond to the same crystalline grain
and thus are similar to each other, are grouped. In this synthetic setting, we can also com-
pare the predictions of ARISE with the cluster assignments, which turn out to be closely
matching, thus verifying the established unsupervised-learning protocol. Following the no-
tions on interpretability and explainability established in [42–44], this unsupervised study
represents a post hoc explanation of the trained model. In section 6.3, we consider a more
realistic synthetic structure, which serves as a model system of Ni-based superalloys. The
task is to detect an ordered precipitate (L12 symmetry) in a random fcc matrix. ARISE (via
SPM) accomplishes this task, even in presence of high levels of noise (20 % missing atoms,
5 % atomic displacements). Notably, the results demonstrate that ARISE can be used to
analyze chemical ordering, since matrix and precipitate share the same lattice sites and only
differ in chemical distribution. This characteristic is useful, for instance, in atomic-electron-
tomography (AET) experiments on FePt nanoparticles. In section 6.4, an experimentally
validated grain-boundary system that has been generated via evolutionary structure search
is investigated. Compared to the previous synthetic structures, this system is a result from
atomistic simulations (specifically an extension of the crystal-structure prediction method
USPEX [220]). We show that ARISE can detect the correct symmetry in the grains and
also provides physically meaningful predictions at the grain boundary. Section 6.5 discusses
the investigation of HAADF images of graphene, i.e., similar to section 5.2, while here,
the structures are investigated on the local scale. In particular, we demonstrate that grain
boundaries can be detected. To demonstrate the flexibility of our approach (i.e., the com-
bination of ARISE, SPM and reconstruction of atomic positions or rather columns from
2D electron-microscopy data), we study a high-resolution transmission electron microscopy
(HRTEM) image of a quasicrystal. ARISE and SPM allow to detect the dominating pat-
tern, thus confirming the established classification protocol and even revealing an interesting
– yet under-explored – future research path: the automatic classification of quasicrystals.
Going from 2D to 3D experimental data, we consider an AET study of FePt nanoparticles
in section 6.6. Similar to the synthetic mono-species polycrystal, we test both supervised
and unsupervised-learning protocols. In section 6.6.1, the SPM framework assigns structural
classes that are in line with physical intuition (i.e., certain phases are expected to appear
for these kinds of systems). Then, we apply unsupervised learning to the same structure
in section 6.6.2. Compared to section 6.2.2, in this setting, no ground truth is known and

85

the data is coming from experiment, i.e., the analysis is truly exploratory. We first extract
all boxes that are classified as the tetragonal phase L10 due to its technological relevance.
Then we apply the clustering algorithm HDBSCAN. We find that the cluster assignments
can be explained by a specific, easily interpretable geometrical property that is differently
distributed among the clusters. This study provides an example of how one can perform
a machine-learning driven, exploratory analysis of structural data. Finally, adding a fur-
ther dimension, we investigate 4D AET data, i.e., a time-resolved measurement of FePt
nanoparticles in section 6.7. Here, we find that the mutual information correlates with the
crystal order over time. Together with the previous studies (for instance, on grain-boundary
detection), this supports that mutual information qualifies as an AI-based order parameter.

Chapter 8

Conclusions

In this work, Bayesian deep learning is employed to achieve a flexible, robust and threshold-
independent crystal classification model, which we term ARISE. This approach correctly
classifies a comprehensive and diverse set of crystal structures from computations and exper-
iments, including polycrystalline systems (via strided pattern matching). ARISE is trained
on ideal synthetic systems only and correctly identifies crystal structures in scanning trans-
mission electron microscopy (STEM), HRTEM, and AET experiments, hence demonstrat-
ing strong generalization capabilities. Notably, we traverse multiple dimensions from 2D
(graphene) to 3D (FePt nanoparticles) and even 4D (time-resolved, 3D analysis of FePt
nanoparticles). The Bayesian-deep-learning model provides classification probabilities, which
– at variance with standard neural networks – allow for the quantification of predictive un-
certainty via mutual information. The mutual information is found to directly correlate with
the degree of crystalline order, as shown by the analysis of time-resolved data from AET
experiments. The internal neural-network representations are analyzed via state-of-the-art
unsupervised learning. The clusters identified in this high-dimensional internal space allow
to uncover physically meaningful structural regions. These can be grain boundaries, but also
unexpected substructures sharing geometrical properties, as shown for metallic nanoparticles
from AET experiments. This illustrates how supervised and unsupervised machine learning
can be combined to discover hidden patterns in materials science data.

Given limited amounts of data, ARISE and SPM provide an interesting pathway to gen-
erate and analyze large quantities of hidden and valuable information. For instance, when
considering AET data comprising around 23k atoms (cf. Fig. 6.8, 6.9), a standard pro-
cedure is to center the local atomic environments at the atoms and classify each of them
into a list of N reference structures. In ARISE, N equals 108, and thus already at this
level, even if adopting the standard definition of local atomic environments, the amount of
information is often increased by two orders of magnitude in comparison to state-of-the-art
methods (cf. section 5.1). Moreover, we introduce a sliding box in SPM to study the tran-
sition between local atomic environments in smooth fashion. This procedure increases the
number of local atomic environments even further: in case of the mentioned AET data, the
information from 23k environments is almost doubled to ∼ 44k for a stride of 2 Å, while for
smaller stride the information is growing even further. Besides the 108 classification prob-
abilities, the uncertainty can be quantified which provides a novel way to assess the degree

87

88 Chapter 8. Conclusions

of structural order. In addition, the hidden layer representations can be studied, providing
additional, high-dimensional vectors h1 ∈ R256,h2 ∈ R512, and h3 ∈ R256, where each of
these components can contain valuable information. This may be analyzed with unsuper-
vised learning (clustering, dimensionality reduction), leading to additional information in
form of cluster assignments or distances within structural-similarity maps. To explain, for
instance, the cluster assignments, geometrical properties can be calculated (nearest-neighbor
distances, angle distribution, coordination number). These explanations do not only provide
insight into the trained model but can be used to gain physical insights. For instance, we
demonstrate an example of an exploratory analysis of experimental data in section 6.6.2.

While we do provide post hoc explanations, model transparency [42] is hindered due
to the black box nature of the Bayesian-deep-learning model. Moreover, for the presented
model, there is no strategy available to relate input features and final predictions in order
to discover physically meaningful connections. This is mainly due to the use of the SOAP
descriptor, whose components correspond to basis set expansion coefficients, from which
intuitive explanations are hard to infer.

To obtain a robust model, a sufficiently large training set has to be created and the
corresponding labels for the crystallographic prototypes need to be known. This information
may not be in general available; in this work, databases such as AFLOW and NOMAD
represent an essential resource.

Given its data-driven nature, ARISE is not limited to predicting the space group. Thus
systems where the space group does not characterize the crystal structure can be tackled (as
demonstrated for carbon nanotubes). More complex systems such as quasi-crystals [226],
periodic knots, or weavings [240] could also be considered. Indeed, ARISE can be applied
to any data (computational or experimental) providing Cartesian coordinates labeled by
chemical species. Practically, one simply needs to add the new structures of interest to the
training set, and re-train or fine-tune (i.e., via transfer learning) the neural network with
the desired labels. In analogy with the illustrative example of the Bain path (cf. section
5.3), ARISE can be readily applied to study any structural transitions (provided that the
structures of interests are included in the 108 classes considered in this work). Moreover, the
mutual information allows to quantify the defectiveness of a structure; this could be exploited
to automatically evaluate the quality of STEM images. For example, one may automatically
screen for STEM images that are likely to contain structural defects. Applications in active
learning [241] for materials science are also envisioned, where uncertainty is crucial, for
example, when deciding on the inclusion of additional - typically computationally costly
- points in the dataset. Furthermore, it would be interesting to change the definition of
classes for ARISE to compare it with specialized classification schemes identifying the Bravais
lattice [242] or performing topological classifications [243]. Moreover, future research could
use neural networks to classify defects [244] or to predict continuous properties (for instance,
energy or band gap) together with crystal-structure labels.

The experimental applications in this work concentrated on electron-microscopy tech-
niques, in particular HAADF and HRTEM images, as well as electron tomography (specifi-
cally, AET) data. Atom probe tomography (APT) is another technique that provides atomic
resolution, while being much more limited in its spatial resolution. Although in some re-
gions sub-Å resolution can be reached [245] and lattice planes resolved [246], typically the

89

amount of in-plane experimental noise results in 3D atomic arrangements resembling more
amorphous structures than ordered crystalline structures. Although ARISE is shown to be
robust beyond physically reasonable noise levels and substantially improves the state of the
art in crystal-structure recognition, the amount of distortions typically present in atom-probe
tomography experiments is currently out of reach. Still, ARISE is arguably the most promis-
ing method for analyzing 3D crystallographic information in atom-probe data. Additional
improvements on robustness are possible in the future: ARISE flexibility allows to train on
(highly) defective structures. For this purpose, training on randomly perturbed structures is
only a first test and more complex noise models have to be constructed. Simulations of the
APT experiment [247–249] or atom-probe informed simulations [250,251] might be a useful
data source.

The STEM and HRTEM analyses presented in sections 6.5 and 5.2 provide a blueprint
for the automatic study of image-like microscopy data: given an atomic-resolution image,
one reconstructs the atomic positions and uses ARISE for global and local characterization
(specifically, to detect the underlying, most similar symmetry or identify defects such as
grain boundaries). An important step in this procedure is the reconstruction of atomic
positions. Here, we employ the deep-learning framework AtomNet, which is specialized to
highly distorted HAADF images of graphene but can be extended to other systems. For
instance, extensions to cubic systems and the detection of Si defects in graphene (alongside
chemical-species classification) have been demonstrated [84]. One could also employ ARISE
for improving the reconstruction, using, for instance, the mutual information as a feedback
variable (quantifying structural order of reconstructed atomic positions) to guide a learning
algorithm.

A further interesting application of ARISE is screening large pools of atomic structures.
These structures may be extracted from computational repositories such as AFLOW and
NOMAD, but may also come from atomistic simulations. For instance, the crystal-structure
prediction method USPEX has been extended to study systems containing grain boundaries
[252]. In [98], a correlation between physical properties (grain-boundary stress and volume)
and structural features has been found (so-called “Domino” and “Pearl” patterns at the
grain boundary). However, no 3D structural information has been taken into account in
this study – valuable information that ARISE can quantify. Note that in section 6.4, we
analyzed one of the structures calculated in [98], demonstrating how ARISE can be applied
to these kinds of systems. One may even employ ARISE to improve the crystal-structure
prediction algorithm itself, by screening the structures that are created in each iteration of
the evolutionary algorithm that underlies USPEX. For instance, one may separate the pool
of generated structures into ordered and disordered systems using mutual information or
filter out specific structural classes using the assignments of ARISE.

Appendix A

Benchmarking

This section reports benchmarking studies comparing ARISE to state-of-the-art methods,
complementing the results reported in section 5.1.

91

92 Appendix A. Benchmarking

P
ristin

e
R

an
d
om

d
isp

lacem
en

ts
(δ)

M
issin

g
atom

s
(η

)

0.1%
0.6%

1%
2%

4%
1%

5%
10%

20%

S
p
glib

(lo
ose)

100.00
100.00

100.00
95.26

0.20
0.00

11.23
0.00

0.00
0.00

S
p
glib

*
(lo

ose)
67.71

67.71
67.71

65.83
14.51

0.00
15.73

0.03
0.00

0.00
S
p
glib

(tigh
t)

100.00
0.00

0.00
0.00

0.00
0.00

11.23
0.00

0.00
0.00

S
p
glib

*
(tigh

t)
83.33

0.00
0.00

0.00
0.00

0.00
17.53

0.00
0.00

0.00
P

T
M

100.00
100.00

100.00
100.00

100.00
100.00

88.67
51.76

25.93
6.24

P
T

M
*

8.78
11.37

11.37
11.37

11.37
11.37

10.08
5.90

2.96
0.71

C
N

A
66.14

62.81
62.81

54.55
32.34

31.41
55.86

32.50
15.75

3.07
C

N
A

*
1.44

1.62
1.62

1.40
0.83

0.81
1.44

0.84
0.41

0.08
a-C

N
A

100.0
100.0

100.0
100.0

100.0
100.0

89.25
52.81

25.92
5.37

a-C
N

A
*

2.49
3.08

3.08
3.08

3.08
3.08

2.75
1.64

0.81
0.17

B
A

A
100.0

100.0
100.0

100.0
100.0

97.85
99.71

88.78
65.21

25.38
B

A
A

*
2.49

3.08
3.08

3.08
3.08

3.03
3.08

2.74
2.02

0.81
A

R
IS

E
(108

/
108)

100.00
100.00

100.00
100.00

99.86
99.29

100.00
100.00

100.00
99.85

T
ab

le
A

.1:
A

ccu
racy

in
id

en
tify

in
g

th
e

p
aren

t
class

of
d
efective

cry
stal

stru
ctu

res.
T

w
o

lin
es

are
sh

ow
n

for
each

of
th

e
m

eth
o
d
s

u
sed

for
b

en
ch

m
ark

in
g

(sp
glib

,
P

T
M

,
C

N
A

,
a-C

N
A

,
B

A
A

):
In

row
s

w
ith

ou
t

stars,
th

e
accu

racy
is

calcu
lated

on
ly

for
stru

ctu
res

for
w

h
ich

th
e

resp
ective

m
eth

o
d

w
as

d
esign

ed
for;

for
in

stan
ce,

sp
glib

can
b

e
ap

p
lied

to
every

stru
ctu

re
of

F
ig.

6.1e
ex

cep
t

th
e

12
n
an

otu
b

es
(n

ote
th

at
w

e
on

ly
in

clu
d
e

p
rototy

p
es

from
A

F
L

O
W

for
sp

glib
,

cf.
section

5.1).
T

h
is

is
also

tru
e

for
th

e
oth

er
m

eth
o
d
s,

w
h
ile

ad
d
ition

al
stru

ctu
res

h
ave

to
b

e
rem

oved
,

for
in

stan
ce,

for
C

N
A

,
a-C

N
A

,
an

d
B

A
A

as
th

ey
can

n
ot

classify
sim

p
le

cu
b
ic

an
d

d
iam

on
d

stru
ctu

res.
In

starred
row

s,
all

108
classes

su
m

m
arized

in
F

ig.
6.1e

are
in

clu
d
ed

,
lead

in
g

to
th

e
stron

g
d
ecrease

in
p

erform
an

ce.
In

con
trast,

th
e

n
eu

ral-n
etw

ork
ap

p
roach

p
rop

osed
h
ere

can
b

e
ap

p
lied

to
all

classes,
an

d
th

u
s

th
e

w
h
ole

d
ataset

w
as

u
sed

.

93

Random displacements (δ) Missing atoms (η)

7% 10% 25% 30%

Spglib (loose) 0.00 0.00 0.00 0.00
Spglib* (loose) 0.00 0.00 0.00 0.00
Spglib (tight) 0.00 0.00 0.00 0.00
Spglib* (tight) 0.00 0.00 0.00 0.00
PTM 100.00 94.34 3.33 1.72
PTM* 11.37 10.71 0.38 0.19
CNA 31.41 24.20 1.38 0.55
CNA* 0.81 0.62 0.04 0.01
a-CNA 99.99 94.55 2.60 1.03
a-CNA* 3.08 2.90 0.08 0.03
BAA 87.79 69.68 14.25 7.35
BAA* 2.77 2.22 0.49 0.30
ARISE (this work) 97.82 94.56 99.86 99.76

Table A.2: Accuracy in identifying the parent class of defective crystal structures for high
displacements (percentage δ) and missing atoms (percentage η).

94 Appendix A. Benchmarking

M
issin

g
atom

s
an

d
d
isp

lacem
en

ts
(η

,
δ)

(1%
,

0.1%
)

(5%
,

0.6%
)

(10%
,

1%
)

(15%
,2%

)
(20%

,4%
)

(25%
,7%

)
(30%

,10%
)

S
p
glib

(lo
ose)

11.32
0.00

0.00
0.00

0.00
0.00

0.00
S
p
glib

*
(lo

ose)
15.76

0.00
0.00

0.00
0.00

0.00
0.00

S
p
glib

(tigh
t)

0.00
0.00

0.00
0.00

0.00
0.00

0.00
S
p
glib

*
(tigh

t)
0.00

0.00
0.00

0.00
0.00

0.00
0.00

P
T

M
88.68

51.78
25.60

12.75
6.41

3.19
1.46

P
T

M
*

10.08
5.90

2.92
1.45

0.73
0.36

0.16
C

N
A

55.77
31.95

13.83
4.41

2.03
0.79

0.19
C

N
A

*
1.44

0.82
0.36

0.11
0.05

0.02
0.00

a-C
N

A
89.21

52.36
26.01

12.13
6.07

2.40
0.97

a-C
N

A
*

2.75
1.62

0.81
0.38

0.19
0.08

0.03
B

A
A

99.72
88.98

65.17
42.62

25.95
15.58

6.63
B

A
A

*
3.07

2.75
2.02

1.34
0.82

0.50
0.22

A
R

IS
E

(th
is

w
ork

)
100.00

100.00
100.00

99.88
99.29

97.31
92.50

T
ab

le
A

.3:
A

ccu
racy

in
id

en
tify

in
g

th
e

p
aren

t
class

of
d
efective

cry
stal

stru
ctu

res,
w

ith
b

oth
m

issin
g

atom
s

(p
ercen

tage
η
)

an
d

d
isp

lacem
en

ts
(p

ercen
tage

δ)
in

tro
d
u
ced

at
th

e
sam

e
tim

e.
T

h
e

resu
lts

sh
ow

th
at

A
R

IS
E

is
also

rob
u
st

for
h
igh

ly
d
efective

stru
ctu

res
w

h
ere

d
isp

lacem
en

ts
an

d
m

issin
g

atom
s

are
p
resen

t
at

th
e

sam
e

tim
e.

T
h
is

is
th

e
ty

p
ical

situ
ation

en
cou

n
tered

in
A

P
T

–
m

ak
in

g
A

R
IS

E
argu

ab
ly

th
e

b
est

availab
le

can
d
id

ate
for

cry
stal-stru

ctu
re

classifi
cation

in
A

P
T

ex
p

erim
en

tal
d
ata.

Appendix B

SOAP descriptor

This section contains a study (Fig. B.1) that provides additional details on the change of
the SOAP descriptor with supercell size.

95

96 Appendix B. SOAP descriptor

Elemental solids Binary compounds Ternary compounds

2D materialsQuaternary compounds

Cosine similarity

Isotropic replicas

Figure B.1: Cosine similarity plots for elemental, binary, ternary, and quaternary com-
pounds as well as 2D materials (for SOAP settings RC = 4.0 · dNN, σ = 0.1 · dNN, and
extrinsic scaling factor = 1.0 corresponding to the center of the parameter range used in the
training set). Each line corresponds to a particular prototype. The x-axis corresponds to
three different (non-periodic) supercells, where supercell “0” stands for the smallest isotropic
supercell (for instance, 4× 4× 4 repetitions) for which at least 100 atoms are obtained. Su-
percells “1” and “2” correspond to the next two bigger isotropic replicas (e.g., 5 × 5 × 5
and 6 × 6 × 6). The y-axis corresponds to the cosine similarity of the respective supercell
to the periodic structure, i.e., the case of infinite replicas. One can see a continuous in-
crease of similarity with larger supercell size, where for the largest supercell, the similarity is
greater than 0.9 for all prototypes. Thus, it is to be expected that systems sizes larger than
those included in the training set can be correctly classified by ARISE. For smaller systems,
however, generalization ability will depend on the prototype. Practically, one can include
smaller supercells in the training set, which is not a major problem due to fast convergence
time.

Appendix C

Bain path

This section contains a figure that supports the Bain-path study discussed in section 5.3.

Face-centered orthorhombic
γ-Pu

Rhombohedral
α-Hg

Base-centered orthorhombic
 Molecular Iodine

Rhombohedral
β-Po

Simple tetragonal
β-Np

a

b

c

Trigonal hexagonal
γ-Se

Simple hexagonal Sn

Mutual information

1.2

1.0

0.8

0.6

0.4

0.2

0.0

c[Å]

a
[Å

]

bcc fcc

teragonal (α-Pa) tetragonal (In)

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

Figure C.1: Bain path - all prototypes with increased classification probability: a Mutual
information plot showing the spots of high and low uncertainty for different geometries.
b Classification probability maps corresponding to bcc, fcc and two tetragonal phases. c
Representative selection of other prototypes showing non-zero classification probabilities.

97

Appendix D

Local analysis via SPM and ARISE

This section contains several figures that support the analysis of the mono-species system
(via ARISE and SPM) discussed in section 6.2. Specifically, for the supervised analysis (cf.
section 6.2.1), Fig. D.2, and Fig. D.3 provide additional details (see the respective figure
captions), while Fig. D.1 and Fig. D.4 support the unsupervised analysis discussed in section
6.2.2.

Finally, the analysis of AET data is supported by two figures (Fig. D.5 and Fig. D.6).

99

100 Appendix D. Local analysis via SPM and ARISE

Hidden layer 1

Hidden layer 2

Hidden layer 3

Soap (input)

Final layer
(before softmax
function)

Cluster labels (HDBSCAN) ARISE predictions
ARISE uncertainty
(mutual information)

diamond
fcc
hcp
bcc

other

diamond
fcc
hcp
bcc

other

diamond
fcc
hcp
bcc

other

diamond
fcc
hcp
bcc

other

diamond
fcc
hcp
bcc

other

cluster 1
cluster 2
cluster 3
cluster 4

outlier

cluster 1
cluster 2
cluster 3
cluster 4

outlier

cluster 1
cluster 2
cluster 3
cluster 4

outlier

cluster 1
cluster 2
cluster 3
cluster 4

outlier

cluster 1
cluster 2
cluster 3
cluster 4

outlier

cluster 5

Figure D.1: Unsupervised analysis analogous to Figure 6.3, for all layers (before the ReLU
or rather the softmax function).

101

PRISTINE DEFECTIVE
a b

Hexagonal diamond

Simple hexagonal (Sn)

Base-centered orthorhombic
Black phosphorus

Simple tetragonal (β-Np)

α-Sm (sg 166) α-La (dhcp)

Hexagonal diamond

Simple hexagonal (Sn)

Base-centered orthorhombic
Black phosphorus

Simple tetragonal (β-Np)

α-Sm (sg 166) α-La (dhcp)

Figure D.2: Probability maps of the most important prototypes for both pristine (a) and
defective (b) mono-species polycrystal.

HCP

FCC

DIAM

BCC

a b c

d e

~ 35 Å

20% missing atoms and 1% displacements

Probability HCPProbability FCCProbability DIAM Probability BCC

Probability HCPProbability FCCProbability DIAM Probability BCC

Pristine

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Mutual information
 (uncertainty)

Mutual information
 (uncertainty)

0.0

Figure D.3: Mono-species elemental polycrystal investigation via strided pattern matching
using lower resolution, specifically a stride of 3.0 Å in both x and y direction opposed to 1.0
Å as in Fig. 6.2. Choosing the stride is a trade-off between computation time and resolution.
For instance, at the grain boundary between diamond and hcp, the transition from diamond
to hexagonal diamond to hcp (cf. D.2) are recognized in Fig. 6.2, while being obscured in
the presented low-resolution pictures.

102 Appendix D. Local analysis via SPM and ARISE

min_dist = 0.1 min_dist = 0.3 min_dist = 0.5 min_dist = 0.7

min_dist = 0.9 min_dist = 0.99

min_dist = 0.1 min_dist = 0.3 min_dist = 0.5 min_dist = 0.7

min_dist = 0.9 min_dist = 0.99

a

b

c

diamond
fcc
hcp
bcc

other

Figure D.4: Connection between UMAP embedding and real space. This figure confirms the
observation that ARISE’s representations of different spatial regions (crystalline regions but
in particular grain boundaries, here: transitions between fcc, bcc, hcp, and diamond) are
mapped to different regions in the UMAP projection. a Influence of the minimum distance
parameter (“min dist”, cf. the final paragraph in section 3.2.1) in the UMAP projection
(number of neighbors fixed to 500). In line with intuition, for larger min dist, points appear
more spread. In particular, connected subregions appear in the clusters, whose connection
to real space is investigated in b: The connected strings of points actually correspond to
transitions within and between crystalline regions. This is demonstrated by traversing a
circle around the center of the real space structure (c) and coloring the embedded points
according to the angle (in radian).

103

fcctetragonal (In) L10

Box
12 Å,
slice
through
center

Box
16 Å,
slice
through
center

L12

Box
16 Å,
4Å below
central
slice

Mutual information

1.0

0.8

0.6

0.4

0.2

0.0

0.25

0.50

0.75

1.00

1.25

1.75

1.50

0.00

Figure D.5: Comparison of crystal maps (slice through center, most important prototypes
and mutual information) for AET nanoparticle data [237] for two different box sizes. Dashed
lines indicate the crystal boundaries in all 2D maps. ARISE allows to investigate the appear-
ance of the tetragonally distorted fcc prototype (In). For larger box sizes, the fcc assignment
increases in the center and also the L12 classification probability rises. While the central
slice of the L10 prototype for a box size of 16 Å shows only weak signal, a slice slightly below
reveals higher probability (see bottom, isolated slice), i.e., ARISE does not overlook this
technologically relevant phase.

104 Appendix D. Local analysis via SPM and ARISE

a b

c

d

structure 9 min structure 16 min structure 26 min

16min - 9 min 26 min - 9 min 26 min - 16 min

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
0.00

0.02

0.04

0.06

0.08

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
0.0

0.2

0.4

0.6

0.8

1.0

Radius [Å]

Mutual information Mutual information

M
u
tu

a
l
in

fo
rm

a
ti

o
n

(m
e
d

ia
n
)

C
o
u
n
ts

 (
n
o
rm

a
liz

e
d

)

C
o
u
n
ts

 (
n
o
rm

a
liz

e
d

)

Radius [Å]

9 min
16 min
26 min

9 min
16 min
26 min

R
e
la

ti
v
e
 m

u
tu

a
l
in

f.

Figure D.6: Quantitative study of mutual information distribution for different annealing
times. a Histogram of mutual information values for each annealing time (where the cor-
responding histograms are normalized via dividing each bin by the total number of boxes).
Only mutual-information values smaller than 0.2 are shown, which correspond to the ”dark”,
i.e., low mutual information spots in Fig. 6.10a. b Cumulative distribution calculated for
the histogram shown in a. From a, b it is apparent that the number of low-uncertainty boxes
increases for larger annealing times. c-d Investigation of the radial distribution of the mu-
tual information. c Histograms of uncertainty (mutual information) obtained via spatially
binning the SPM maps of 6.10a into spherical shells, where the median is computed for each
bin. Given a mutual information value, the associated radius is calculated as the distance of
the center of the corresponding box (as obtained via SPM) to the center of the most central
box. d Each panel shows the difference between the cumulative distributions of two anneal-
ing times, where the cumulative distributions are calculated from the histograms shown in
b. In addition the histograms are normalized the following way: Given the times t1, t2 with
t1 < t2, the cumulative sum of t2 − t1 is calculated and then divided by the cumulative sum
of time t1 such that the fractional change from t1 to t2 is obtained. One can conclude that
in c a clear decrease of mutual information can be spotted in specific regions, e.g., for the
radial region 15-20 Å. The cumulative sums that are used in d allow to quantify the order
more globally in the sense that each bin (of the cumulative sum corresponding to a specific
annealing time) is proportional to the spherically averaged integral from radius zero up to
the radius corresponding to the bin. Since the particle sizes are changing over time due to
diffusion, the particles have different size. Thus, we single out a radius at which to compare
the global order: for instance, comparing the bins corresponding to a radius of r=25 Å, we
see that for all three panels, the values are negative and thus the structure that has been
annealed longer shows larger global order.

Bibliography

[1] S. Russell and P. Norvig. Artificial intelligence: a modern approach (Prentice Hall,
2002).

[2] M. Haenlein and A. Kaplan. A brief history of artificial intelligence: On the past,
present, and future of artificial intelligence. California Management Review 61, 5
(2019).

[3] G. Hager and G. Wellein. Introduction to high performance computing for scientists
and engineers (CRC Press, 2010).

[4] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone and J. C. Phillips. GPU
computing. Proceedings of the IEEE 96, 879 (2008).

[5] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,
S. Bhatia, N. Boden, A. Borchers et al. In-datacenter performance analysis of a ten-
sor processing unit. In Proceedings of the 44th Annual International Symposium on
Computer Architecture, 1–12 (2017).

[6] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, 248–255 (2009).

[7] L. Deng. The MNIST database of handwritten digit images for machine learning re-
search. IEEE Signal Processing Magazine 29, 141 (2012).

[8] D. E. Rumelhart, G. E. Hinton and R. J. Williams. Learning representations by back-
propagating errors. Nature 323, 533 (1986).

[9] X. Glorot, A. Bordes and Y. Bengio. Deep sparse rectifier neural networks. In Proceed-
ings of the Fourteenth International Conference on Artificial Intelligence and Statistics,
315–323 (JMLR Workshop and Conference Proceedings, 2011).

[10] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014).

[11] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville and Y. Bengio. Generative adversarial nets. Advances in Neural In-
formation Processing Systems 27, 2672 (2014).

105

106 Bibliography

[12] Y. LeCun, Y. Bengio and G. Hinton. Deep learning. Nature 521, 436 (2015).

[13] J. Schmidhuber. Deep learning in neural networks: An overview. Neural Networks 61,
85 (2015).

[14] I. Goodfellow, Y. Bengio and A. Courville. Deep Learning (MIT Press, 2016).

[15] A. Krizhevsky, I. Sutskever and G. E. Hinton. Imagenet classification with deep con-
volutional neural networks. In Advances in Neural Information Processing Systems,
1097–1105 (2012).

[16] G. Hinton, L. Deng, D. Yu, G. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior, V. Van-
houcke, P. Nguyen, B. Kingsbury et al. Deep neural networks for acoustic modeling in
speech recognition. IEEE Signal processing magazine 29 (2012).

[17] I. Sutskever, O. Vinyals and Q. V. Le. Sequence to sequence learning with neural
networks. In Advances in Neural Information Processing Systems, 3104–3112 (2014).

[18] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot et al. Mastering the game of
Go with deep neural networks and tree search. Nature 529, 484 (2016).

[19] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert,
L. Baker, M. Lai, A. Bolton et al. Mastering the game of go without human knowledge.
Nature 550, 354 (2017).

[20] G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N. Tishby, L. Vogt-Maranto
and L. Zdeborová. Machine learning and the physical sciences. Reviews of Modern
Physics 91, 045002 (2019).

[21] J. Schmidt, M. R. Marques, S. Botti and M. A. Marques. Recent advances and ap-
plications of machine learning in solid-state materials science. npj Computational
Materials 5, 1 (2019).

[22] A. J. Hey, S. Tansley, K. M. Tolle et al. The fourth paradigm: data-intensive scientific
discovery, volume 1 (Microsoft research Redmond, WA, 2009).

[23] C. Draxl and M. Scheffler. NOMAD: The FAIR concept for big data-driven materials
science. MRS Bulletin 43, 676 (2018).

[24] C. Draxl and M. Scheffler. The NOMAD laboratory: from data sharing to artificial
intelligence. Journal of Physics: Materials 2, 036001 (2019).

[25] C. Draxl and M. Scheffler. Big data-driven materials science and its FAIR data in-
frastructure. Handbook of Materials Modeling: Methods: Theory and Modeling 49–73
(2020).

[26] A. Ziletti, D. Kumar, M. Scheffler and L. M. Ghiringhelli. Insightful classification of
crystal structures using deep learning. Nature Communications 9, 1 (2018).

Bibliography 107

[27] B. Goertzel and C. Pennachin. Artificial general intelligence, volume 2 (Springer,
2007).

[28] S. Legg, M. Hutter et al. A collection of definitions of intelligence. Frontiers in Artificial
Intelligence and applications 157, 17 (2007).

[29] S. Legg and M. Hutter. Universal intelligence: A definition of machine intelligence.
Minds and Machines 17, 391 (2007).

[30] F. Chollet. On the measure of intelligence. arXiv preprint arXiv:1911.01547 (2019).

[31] K. P. Murphy. Machine learning: a probabilistic perspective (MIT press, 2012).

[32] C. M. Bishop. Pattern recognition and machine learning (Springer, 2006).

[33] J. Friedman, T. Hastie, R. Tibshirani et al. The elements of statistical learning, vol-
ume 1 (Springer, 2001).

[34] G. James, D. Witten, T. Hastie and R. Tibshirani. An introduction to statistical
learning, volume 112 (Springer, 2013).

[35] A. L. Samuel. Some studies in machine learning using the game of checkers. II—Recent
progress. IBM Journal of Research and Development 11, 601 (1967).

[36] J. R. Koza, F. H. Bennett, D. Andre and M. A. Keane. Automated design of both the
topology and sizing of analog electrical circuits using genetic programming. 151–170
(Springer, 1996).

[37] T. Mitchell. Machine Learning (McGraw-Hill, 1997).

[38] P. Domingos. A few useful things to know about machine learning. Communications
of the ACM 55, 78 (2012).

[39] L. M. Ghiringhelli, J. Vybiral, S. V. Levchenko, C. Draxl and M. Scheffler. Big data of
materials science: critical role of the descriptor. Physical Review Letters 114, 105503
(2015).

[40] O. Isayev, C. Oses, C. Toher, E. Gossett, S. Curtarolo and A. Tropsha. Universal
fragment descriptors for predicting properties of inorganic crystals. Nature Communi-
cations 8, 15679 (2017).

[41] T. Xie and J. C. Grossman. Crystal graph convolutional neural networks for an accu-
rate and interpretable prediction of material properties. Physical Review Letters 120,
145301 (2018).

[42] Z. C. Lipton. The Mythos of Model Interpretability: In machine learning, the concept
of interpretability is both important and slippery. Queue 16, 31 (2018).

[43] R. Roscher, B. Bohn, M. F. Duarte and J. Garcke. Explainable machine learning for
scientific insights and discoveries. IEEE Access 8, 42200 (2020).

108 Bibliography

[44] W. J. Murdoch, C. Singh, K. Kumbier, R. Abbasi-Asl and B. Yu. Definitions, meth-
ods, and applications in interpretable machine learning. Proceedings of the National
Academy of Sciences 116, 22071 (2019).

[45] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction (MIT press,
2018).

[46] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot,
L. Sifre, D. Kumaran, T. Graepel et al. Mastering chess and shogi by self-play with a
general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815 (2017).

[47] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot,
L. Sifre, D. Kumaran, T. Graepel et al. A general reinforcement learning algorithm
that masters chess, shogi, and Go through self-play. Science 362, 1140 (2018).

[48] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S. Schmitt, A. Guez,
E. Lockhart, D. Hassabis, T. Graepel et al. Mastering atari, go, chess and shogi by
planning with a learned model. Nature 588, 604 (2020).

[49] M. Popova, O. Isayev and A. Tropsha. Deep reinforcement learning for de novo drug
design. Science Advances 4, eaap7885 (2018).

[50] T. M. Dieb, S. Ju, K. Yoshizoe, Z. Hou, J. Shiomi and K. Tsuda. MDTS: automatic
complex materials design using Monte Carlo tree search. Science and technology of
advanced materials 18, 498 (2017).

[51] M. Olivecrona, T. Blaschke, O. Engkvist and H. Chen. Molecular de-novo design
through deep reinforcement learning. Journal of cheminformatics 9, 1 (2017).

[52] A. Zhang, Z. C. Lipton, M. Li and A. J. Smola. Dive into Deep Learning (2020).
https://d2l.ai.

[53] S.-M. Udrescu and M. Tegmark. AI Feynman: A physics-inspired method for symbolic
regression. Science Advances 6, eaay2631 (2020).

[54] R. Ouyang, S. Curtarolo, E. Ahmetcik, M. Scheffler and L. M. Ghiringhelli. SISSO:
A compressed-sensing method for identifying the best low-dimensional descriptor in an
immensity of offered candidates. Physical Review Materials 2, 083802 (2018).

[55] R. Ouyang, E. Ahmetcik, C. Carbogno, M. Scheffler and L. M. Ghiringhelli. Simultane-
ous learning of several materials properties from incomplete databases with multi-task
SISSO. Journal of Physics: Materials 2, 024002 (2019).

[56] J. W. Tukey. We need both exploratory and confirmatory. The American Statistician
34, 23 (1980).

[57] L. Ward and C. Wolverton. Atomistic calculations and materials informatics: A review.
Current Opinion in Solid State and Materials Science 21, 167 (2017).

https://d2l.ai

Bibliography 109

[58] K. T. Butler, D. W. Davies, H. Cartwright, O. Isayev and A. Walsh. Machine learning
for molecular and materials science. Nature 559, 547 (2018).

[59] D. Morgan and R. Jacobs. Opportunities and Challenges for Machine Learning in
Materials Science. Annual Review of Materials Research 50 (2020).

[60] J. Wei, X. Chu, X.-Y. Sun, K. Xu, H.-X. Deng, J. Chen, Z. Wei and M. Lei. Machine
learning in materials science. InfoMat 1, 338 (2019).

[61] T. Mueller, A. G. Kusne and R. Ramprasad. Machine learning in materials science:
Recent progress and emerging applications. Reviews in Computational Chemistry 29,
186 (2016).

[62] L. Ward, R. Liu, A. Krishna, V. I. Hegde, A. Agrawal, A. Choudhary and C. Wolverton.
Including crystal structure attributes in machine learning models of formation energies
via Voronoi tessellations. Physical Review B 96, 024104 (2017).

[63] L. Ward, A. Agrawal, A. Choudhary and C. Wolverton. A general-purpose machine
learning framework for predicting properties of inorganic materials. npj Computational
Materials 2, 16028 (2016).

[64] M. Rupp, A. Tkatchenko, K.-R. Müller and O. A. Von Lilienfeld. Fast and accurate
modeling of molecular atomization energies with machine learning. Physical Review
Letters 108, 058301 (2012).

[65] M. F. Langer, A. Goeßmann and M. Rupp. Representations of molecules and materi-
als for interpolation of quantum-mechanical simulations via machine learning. arXiv
preprint arXiv:2003.12081 (2020).

[66] M. Rupp. Machine learning for quantum mechanics in a nutshell. International Journal
of Quantum Chemistry 115, 1058 (2015).

[67] C. Sutton, M. Boley, L. M. Ghiringhelli, M. Rupp, J. Vreeken and M. Scheffler. Identi-
fying domains of applicability of machine learning models for materials science. Nature
Communications 11, 1 (2020).

[68] T. B. Blank, S. D. Brown, A. W. Calhoun and D. J. Doren. Neural network models of
potential energy surfaces. The Journal of Chemical Physics 103, 4129 (1995).

[69] S. Lorenz, A. Groß and M. Scheffler. Representing high-dimensional potential-energy
surfaces for reactions at surfaces by neural networks. Chemical Physics Letters 395,
210 (2004).

[70] J. Behler and M. Parrinello. Generalized neural-network representation of high-
dimensional potential-energy surfaces. Physical Review Letters 98, 146401 (2007).

[71] J. Behler. First principles neural network potentials for reactive simulations of large
molecular and condensed systems. Angewandte Chemie International Edition 56, 12828
(2017).

110 Bibliography

[72] K. Schutt, P. Kessel, M. Gastegger, K. Nicoli, A. Tkatchenko and K.-R. Müller.
SchNetPack: A deep learning toolbox for atomistic systems. Journal of Chemical The-
ory and Computation 15, 448 (2018).

[73] G. Carleo and M. Troyer. Solving the quantum many-body problem with artificial neural
networks. Science 355, 602 (2017).

[74] M. Ruggeri, S. Moroni and M. Holzmann. Nonlinear network description for many-body
quantum systems in continuous space. Physical Review Letters 120, 205302 (2018).

[75] H. Saito. Method to solve quantum few-body problems with artificial neural networks.
Journal of the Physical Society of Japan 87, 074002 (2018).

[76] J. Han, L. Zhang and E. Weinan. Solving many-electron Schrödinger equation using
deep neural networks. Journal of Computational Physics 399, 108929 (2019).

[77] J. Hermann, Z. Schätzle and F. Noé. Deep-neural-network solution of the electronic
Schrödinger equation. Nature Chemistry 12, 891 (2020).

[78] D. Pfau, J. S. Spencer, A. G. Matthews and W. M. C. Foulkes. Ab initio solution of
the many-electron Schrödinger equation with deep neural networks. Physical Review
Research 2, 033429 (2020).

[79] A. W. Senior, R. Evans, J. Jumper, J. Kirkpatrick, L. Sifre, T. Green, C. Qin, A. Ž́ıdek,
A. W. Nelson, A. Bridgland et al. Improved protein structure prediction using potentials
from deep learning. Nature 577, 706 (2020).

[80] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard and
L. D. Jackel. Backpropagation applied to handwritten zip code recognition. Neural
Computation 1, 541 (1989).

[81] M. Ziatdinov, O. Dyck, A. Maksov, X. Li, X. Sang, K. Xiao, R. R. Unocic, R. Va-
sudevan, S. Jesse and S. V. Kalinin. Deep learning of atomically resolved scanning
transmission electron microscopy images: chemical identification and tracking local
transformations. ACS Nano 11, 12742 (2017).

[82] N. Borodinov, S. Neumayer, S. V. Kalinin, O. S. Ovchinnikova, R. K. Vasudevan
and S. Jesse. Deep neural networks for understanding noisy data applied to physical
property extraction in scanning probe microscopy. npj Computational Materials 5, 1
(2019).

[83] R. K. Vasudevan, N. Laanait, E. M. Ferragut, K. Wang, D. B. Geohegan, K. Xiao,
M. Ziatdinov, S. Jesse, O. Dyck and S. V. Kalinin. Mapping mesoscopic phase evolution
during E-beam induced transformations via deep learning of atomically resolved images.
npj Computational Materials 4, 1 (2018).

[84] M. Ziatdinov, O. Dyck, X. Li, B. G. Sumpter, S. Jesse, R. K. Vasudevan and S. V.
Kalinin. Building and exploring libraries of atomic defects in graphene: Scanning

Bibliography 111

transmission electron and scanning tunneling microscopy study. Science Advances 5,
eaaw8989 (2019).

[85] D. Jha, L. Ward, A. Paul, W.-k. Liao, A. Choudhary, C. Wolverton and A. Agrawal.
ElemNet: deep learning the chemistry of materials from only elemental composition.
Scientific Reports 8, 17593 (2018).

[86] D. Jha, K. Choudhary, F. Tavazza, W.-k. Liao, A. Choudhary, C. Campbell and
A. Agrawal. Enhancing materials property prediction by leveraging computational and
experimental data using deep transfer learning. Nature Communications 10, 1 (2019).

[87] H. Liang, V. Stanev, A. G. Kusne and I. Takeuchi. CRYSPNet: Crystal structure
predictions via neural networks. Physical Review Materials 4, 123802 (2020).

[88] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals and G. E. Dahl. Neural message
passing for quantum chemistry. In International Conference on Machine Learning,
1263–1272 (PMLR, 2017).

[89] K. Schütt, P.-J. Kindermans, H. E. S. Felix, S. Chmiela, A. Tkatchenko and K.-R.
Müller. Schnet: A continuous-filter convolutional neural network for modeling quantum
interactions. In Advances in neural information processing systems, 991–1001 (2017).

[90] K. T. Schütt, H. E. Sauceda, P.-J. Kindermans, A. Tkatchenko and K.-R. Müller.
SchNet–A deep learning architecture for molecules and materials. The Journal of
Chemical Physics 148, 241722 (2018).

[91] T. Xie and J. C. Grossman. Hierarchical visualization of materials space with graph
convolutional neural networks. The Journal of Chemical Physics 149, 174111 (2018).

[92] T. E. Smidt, M. Geiger and B. K. Miller. Finding symmetry breaking order parameters
with Euclidean neural networks. Physical Review Research 3, L012002 (2021).

[93] A. Gupta, A. T. Müller, B. J. Huisman, J. A. Fuchs, P. Schneider and G. Schneider.
Generative recurrent networks for de novo drug design. Molecular Informatics 37,
1700111 (2018).

[94] F. Noé, S. Olsson, J. Köhler and H. Wu. Boltzmann generators: Sampling equilibrium
states of many-body systems with deep learning. Science 365, eaaw1147 (2019).

[95] Y. B. Varolgüneş, T. Bereau and J. F. Rudzinski. Interpretable embeddings from molec-
ular simulations using Gaussian mixture variational autoencoders. Machine Learning:
Science and Technology 1, 015012 (2020).

[96] N. Baddoo. Stainless steel in construction: A review of research, applications, chal-
lenges and opportunities. Journal of Constructional Steel Research 64, 1199 (2008).

[97] M. Herbig, D. Raabe, Y. Li, P. Choi, S. Zaefferer and S. Goto. Atomic-scale quan-
tification of grain boundary segregation in nanocrystalline material. Physical Review
Letters 112, 126103 (2014).

112 Bibliography

[98] T. Meiners, T. Frolov, R. E. Rudd, G. Dehm and C. H. Liebscher. Observations of
grain-boundary phase transformations in an elemental metal. Nature 579, 375 (2020).

[99] A. C. Ferrari, F. Bonaccorso, V. Fal’Ko, K. S. Novoselov, S. Roche, P. Bøggild,
S. Borini, F. H. Koppens, V. Palermo, N. Pugno et al. Science and technology roadmap
for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7, 4598
(2015).

[100] M. F. De Volder, S. H. Tawfick, R. H. Baughman and A. J. Hart. Carbon nanotubes:
present and future commercial applications. Science 339, 535 (2013).

[101] M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. Hart and S. Curtarolo.
The AFLOW library of crystallographic prototypes: part 1. Computational Materials
Science 136, S1 (2017).

[102] D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. Hart and
S. Curtarolo. The AFLOW Library of Crystallographic Prototypes: part 2. Computa-
tional Materials Science 161, S1 (2019).

[103] J. E. Saal, S. Kirklin, M. Aykol, B. Meredig and C. Wolverton. Materials design and
discovery with high-throughput density functional theory: the open quantum materials
database (OQMD). JOM 65, 1501 (2013).

[104] A. Jain, G. Hautier, C. J. Moore, S. P. Ong, C. C. Fischer, T. Mueller, K. A. Persson
and G. Ceder. A high-throughput infrastructure for density-functional theory calcula-
tions. Computational Materials Science 50, 2295 (2011).

[105] S. Haastrup, M. Strange, M. Pandey, T. Deilmann, P. S. Schmidt, N. F. Hinsche,
M. N. Gjerding, D. Torelli, P. M. Larsen, A. C. Riis-Jensen et al. The Computational
2D Materials Database: high-throughput modeling and discovery of atomically thin
crystals. 2D Materials 5, 042002 (2018).

[106] N. Mounet, M. Gibertini, P. Schwaller, D. Campi, A. Merkys, A. Marrazzo, T. So-
hier, I. E. Castelli, A. Cepellotti, G. Pizzi et al. Two-dimensional materials from
high-throughput computational exfoliation of experimentally known compounds. Na-
ture Nanotechnology 13, 246 (2018).

[107] S. J. Pennycook and P. D. Nellist. Scanning Transmission Electron Microscopy: Imag-
ing and Analysis (Springer New York, 2011).

[108] B. Gault, M. P. Moody, J. M. Cairney and S. P. Ringer. Atom probe crystallography.
Materials Today 15, 378 (2012).

[109] J. Zhou, Y. Yang, P. Ercius and J. Miao. Atomic electron tomography in three and
four dimensions. MRS Bulletin 45, 290 (2020).

[110] B. Gault. A brief overview of atom probe tomography research. Applied Microscopy
46, 117 (2016).

Bibliography 113

[111] A. Togo and I. Tanaka. Spglib: a software library for crystal symmetry search. arXiv
preprint arXiv:1808.01590 (2018).

[112] D. Hicks, C. Oses, E. Gossett, G. Gomez, R. H. Taylor, C. Toher, M. J. Mehl,
O. Levy and S. Curtarolo. AFLOW-SYM: platform for the complete, automatic and
self-consistent symmetry analysis of crystals. Acta Crystallographica Section A: Foun-
dations and Advances 74, 184 (2018).

[113] J. D. Honeycutt and H. C. Andersen. Molecular dynamics study of melting and freezing
of small Lennard-Jones clusters. Journal of Physical Chemistry 91, 4950 (1987).

[114] A. Stukowski. Structure identification methods for atomistic simulations of crystalline
materials. Modelling and Simulation in Materials Science and Engineering 20, 045021
(2012).

[115] G. Ackland and A. Jones. Applications of local crystal structure measures in experiment
and simulation. Physical Review B 73, 054104 (2006).

[116] P. M. Larsen, S. Schmidt and J. Schiøtz. Robust structural identification via polyhedral
template matching. Modelling and Simulation in Materials Science and Engineering
24, 055007 (2016).

[117] H. W. Lin, M. Tegmark and D. Rolnick. Why does deep and cheap learning work so
well? Journal of Statistical Physics 168, 1223 (2017).

[118] S. Hong, K.-i. Nomura, A. Krishnamoorthy, P. Rajak, C. Sheng, R. K. Kalia, A. Nakano
and P. D. Vashishta. Defect Healing in Layered Materials: A Machine Learning-
Assisted Characterization of MoS2 Crystal-Phases. The Journal of Physical Chemistry
Letters (2019).

[119] P. Geiger and C. Dellago. Neural networks for local structure detection in polymorphic
systems. The Journal of Chemical Physics 139, 164105 (2013).

[120] W. F. Reinhart, A. W. Long, M. P. Howard, A. L. Ferguson and A. Z. Panagiotopoulos.
Machine learning for autonomous crystal structure identification. Soft Matter 13, 4733
(2017).

[121] C. Dietz, T. Kretz and M. Thoma. Machine-learning approach for local classification
of crystalline structures in multiphase systems. Physical Review E 96, 011301 (2017).

[122] A. Leitherer, A. Ziletti and L. M. Ghiringhelli. Robust recognition and exploratory
analysis of crystal structures via Bayesian deep learning. Nature Communications 12,
6234 (2021).

[123] Y. Gal and Z. Ghahramani. Dropout as a Bayesian approximation: Representing
model uncertainty in deep learning. In International Conference on Machine Learning,
1050–1059 (2016).

[124] Y. Gal. Uncertainty in deep learning. Ph.D. thesis, University of Cambridge (2016).

114 Bibliography

[125] J. Behler. Atom-centered symmetry functions for constructing high-dimensional neural
network potentials. The Journal of Chemical Physics 134, 074106 (2011).

[126] A. P. Bartók, M. C. Payne, R. Kondor and G. Csányi. Gaussian approximation po-
tentials: The accuracy of quantum mechanics, without the electrons. Physical Review
Letters 104, 136403 (2010).

[127] A. P. Bartók, R. Kondor and G. Csányi. On representing chemical environments.
Physical Review B 87, 184115 (2013).

[128] H. Huo and M. Rupp. Unified representation for machine learning of molecules and
crystals. arXiv preprint arXiv:1704.06439 (2017).

[129] A. V. Shapeev. Moment tensor potentials: A class of systematically improvable inter-
atomic potentials. Multiscale Modeling & Simulation 14, 1153 (2016).

[130] A. P. Bartók and G. Csányi. Gaussian approximation potentials: A brief tutorial
introduction. International Journal of Quantum Chemistry 115, 1051 (2015).

[131] S. De, A. P. Bartók, G. Csányi and M. Ceriotti. Comparing molecules and solids
across structural and alchemical space. Physical Chemistry Chemical Physics 18, 13754
(2016).

[132] C. Nyshadham, M. Rupp, B. Bekker, A. V. Shapeev, T. Mueller, C. W. Rosenbrock,
G. Csányi, D. W. Wingate and G. L. Hart. Machine-learned multi-system surrogate
models for materials prediction. npj Computational Materials 5, 1 (2019).

[133] C. W. Rosenbrock, E. R. Homer, G. Csányi and G. L. Hart. Discovering the building
blocks of atomic systems using machine learning: application to grain boundaries. npj
Computational Materials 3, 1 (2017).

[134] A. Zhang, Z. C. Lipton, M. Li and A. J. Smola. Dive into Deep Learning. arXiv
preprint arXiv:2106.11342 (2021).

[135] F. Rosenblatt. The perceptron, a perceiving and recognizing automaton (Project Para)
(Cornell Aeronautical Laboratory, 1957).

[136] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation 9,
1735 (1997).

[137] K. He, X. Zhang, S. Ren and J. Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
770–778 (2016).

[138] Y. Bengio, A. Courville and P. Vincent. Representation learning: A review and new
perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence 35,
1798 (2013).

Bibliography 115

[139] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics
of Control, Signals and Systems 2, 303 (1989).

[140] K. Hornik, M. Stinchcombe and H. White. Multilayer feedforward networks are uni-
versal approximators. Neural Networks 2, 359 (1989).

[141] M. Leshno, V. Y. Lin, A. Pinkus and S. Schocken. Multilayer feedforward networks with
a nonpolynomial activation function can approximate any function. Neural Networks
6, 861 (1993).

[142] D. R. Wilson and T. R. Martinez. The general inefficiency of batch training for gradient
descent learning. Neural Networks 16, 1429 (2003).

[143] B. T. Polyak. Some methods of speeding up the convergence of iteration methods. USSR
Computational Mathematics and Mathematical Physics 4, 1 (1964).

[144] G. Hinton, N. Srivastava and K. Swersky. Neural networks for machine learning lecture
6a overview of mini-batch gradient descent. Coursera video lecture (2012).

[145] R. A. Jacobs. Increased rates of convergence through learning rate adaptation. Neural
Networks 1, 295 (1988).

[146] J. Duchi, E. Hazan and Y. Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research 12 (2011).

[147] S. Reddi, M. Zaheer, D. Sachan, S. Kale and S. Kumar. Adaptive methods for noncon-
vex optimization. In Proceeding of 32nd Conference on Neural Information Processing
Systems (2018).

[148] Q. V. Le, J. Ngiam, A. Coates, A. Lahiri, B. Prochnow and A. Y. Ng. On optimization
methods for deep learning. In ICML (2011).

[149] X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward
neural networks. In Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics, 249–256 (JMLR Workshop and Conference Proceedings,
2010).

[150] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society: Series B (Methodological) 58, 267 (1996).

[151] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever and R. R. Salakhutdinov.
Improving neural networks by preventing co-adaptation of feature detectors. arXiv
preprint arXiv:1207.0580 (2012).

[152] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov. Dropout:
a simple way to prevent neural networks from overfitting. The Journal of Machine
Learning Research 15, 1929 (2014).

116 Bibliography

[153] C. M. Bishop. Regularization and complexity control in feed-forward networks. Inter-
national Conference on Artificial Neural Networks (1995).

[154] J. Sjöberg and L. Ljung. Overtraining, regularization and searching for a minimum,
with application to neural networks. International Journal of Control 62, 1391 (1995).

[155] J. Bergstra, D. Yamins and D. D. Cox. Making a Science of Model Search: Hyperpa-
rameter Optimization in Hundreds of Dimensions for Vision Architectures. In Proceed-
ings of the 30th International Conference on Machine Learning, ICML’13, I–115–I–123
(JMLR.org, 2013).

[156] J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. Journal
of Machine Learning Research 13 (2012).

[157] E. Brochu, V. M. Cora and N. De Freitas. A tutorial on Bayesian optimization of
expensive cost functions, with application to active user modeling and hierarchical re-
inforcement learning. arXiv preprint arXiv:1012.2599 (2010).

[158] Z. Ghahramani. Probabilistic machine learning and artificial intelligence. Nature 521,
452 (2015).

[159] P. I. Frazier. A tutorial on Bayesian optimization. arXiv preprint arXiv:1807.02811
(2018).

[160] C. E. Rasmussen. Gaussian processes in machine learning. In Summer School on
Machine Learning, 63–71 (Springer, 2003).

[161] F. Hutter. Automated configuration of algorithms for solving hard computational prob-
lems. Ph.D. thesis, University of British Columbia (2009).

[162] D. R. Jones. A taxonomy of global optimization methods based on response surfaces.
Journal of Global Optimization 21, 345 (2001).

[163] J. S. Bergstra, R. Bardenet, Y. Bengio and B. Kégl. Algorithms for hyper-parameter op-
timization. In Advances in Neural Information Processing Systems, 2546–2554 (2011).

[164] J. Bergstra, D. Yamins, D. D. Cox et al. Hyperopt: A Python library for optimizing the
hyperparameters of machine learning algorithms. In Proceedings of the 12th Python in
Science Conference, volume 13, 20 (Citeseer, 2013).

[165] L. Smith and Y. Gal. Understanding measures of uncertainty for adversarial example
detection. arXiv preprint arXiv:1803.08533 (2018).

[166] A. Kendall and Y. Gal. What uncertainties do we need in bayesian deep learning for
computer vision? arXiv preprint arXiv:1703.04977 (2017).

[167] M. I. Jordan, Z. Ghahramani, T. S. Jaakkola and L. K. Saul. An introduction to
variational methods for graphical models. Machine Learning 37, 183 (1999).

Bibliography 117

[168] N. Houlsby, F. Huszár, Z. Ghahramani and M. Lengyel. Bayesian active learning for
classification and preference learning. arXiv preprint arXiv:1112.5745 (2011).

[169] Z. Ghahramani. Unsupervised learning. In Summer School on Machine Learning,
72–112 (Springer, 2003).

[170] C. Sammut and G. I. Webb. Encyclopedia of machine learning (Springer Science &
Business Media, 2011).

[171] H.-P. Kriegel, P. Kröger, J. Sander and A. Zimek. Density-based clustering. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery 1, 231 (2011).

[172] J. MacQueen et al. Some methods for classification and analysis of multivariate ob-
servations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics
and Probability, volume 1, 281–297 (Oakland, CA, USA, 1967).

[173] D. M. Hawkins. Identification of outliers, volume 11 (Springer, 1980).

[174] R. J. Campello, D. Moulavi and J. Sander. Density-based clustering based on hier-
archical density estimates. In Pacific-Asia Conference on Knowledge Discovery and
Data Mining, 160–172 (Springer, 2013).

[175] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al. A density-based algorithm for discov-
ering clusters in large spatial databases with noise. KDD Proceedings 96, 226 (1996).

[176] E. Schubert, J. Sander, M. Ester, H. P. Kriegel and X. Xu. DBSCAN revisited, revis-
ited: why and how you should (still) use DBSCAN. ACM Transactions on Database
Systems 42, 1 (2017).

[177] L. McInnes and J. Healy. Accelerated hierarchical density based clustering. In 2017
IEEE International Conference on Data Mining Workshops (ICDMW), 33–42 (IEEE,
2017).

[178] L. McInnes, J. Healy and S. Astels. HDBSCAN: Hierarchical density based clustering.
The Journal of Open Source Software 2, 205 (2017).

[179] S. C. Johnson. Hierarchical clustering schemes. Psychometrika 32, 241 (1967).

[180] F. Murtagh and P. Contreras. Algorithms for hierarchical clustering: an overview.
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 2, 86 (2012).

[181] J. Eldridge, M. Belkin and Y. Wang. Beyond hartigan consistency: Merge distortion
metric for hierarchical clustering. In Conference on Learning Theory, 588–606 (PMLR,
2015).

[182] K. Pearson. LIII. On lines and planes of closest fit to systems of points in space. The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 2, 559
(1901).

118 Bibliography

[183] H. Hotelling. Analysis of a complex of statistical variables into principal components.
Journal of Educational Psychology 24, 417 (1933).

[184] L. Van der Maaten and G. Hinton. Visualizing data using t-SNE. Journal of Machine
Learning Research 9 (2008).

[185] L. McInnes, J. Healy and J. Melville. UMAP: Uniform manifold approximation and
projection for dimension reduction. arXiv preprint arXiv:1802.03426 (2018).

[186] L. Cayton. Algorithms for manifold learning. Technical Report CS2008-0923, UCSD
(2005).

[187] J. P. May. Simplicial objects in algebraic topology, volume 11 (University of Chicago
Press, 1992).

[188] S. Mac Lane. Categories for the working mathematician, volume 5 (Springer Science
& Business Media, 2013).

[189] A. Coenen and A. Pearce. https://github.com/PAIR-code/understanding-umap
(2019).

[190] M. Wattenberg, F. Viégas and I. Johnson. How to Use t-SNE Effectively. Distill (2016).

[191] K. R. Moon, D. van Dijk, Z. Wang, S. Gigante, D. B. Burkhardt, W. S. Chen, K. Yim,
A. van den Elzen, M. J. Hirn, R. R. Coifman et al. Visualizing structure and transitions
in high-dimensional biological data. Nature Biotechnology 37, 1482 (2019).

[192] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Is-
ard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Tal-
war, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden,
M. Wattenberg, M. Wicke, Y. Yu and X. Zheng. TensorFlow: Large-Scale Machine
Learning on Heterogeneous Systems (2015).

[193] F. Chollet. Keras. https://keras.io (2015).

[194] L. Himanen, M. O. Jäger, E. V. Morooka, F. F. Canova, Y. S. Ranawat, D. Z. Gao,
P. Rinke and A. S. Foster. DScribe: Library of descriptors for machine learning in
materials science. Computer Physics Communications 247, 106949 (2020).

[195] J. Mavračić, F. C. Mocanu, V. L. Deringer, G. Csányi and S. R. Elliott. Similarity
between amorphous and crystalline phases: The case of TiO2. The Journal of Physical
Chemistry Letters 9, 2985 (2018).

[196] J. Patterson and A. Gibson. Deep Learning: A Practitioner’s Approach (O’Reilly
Media, Inc., 2017).

https://github.com/PAIR-code/understanding-umap
https://keras.io

Bibliography 119

[197] A. Canziani, A. Paszke and E. Culurciello. An analysis of deep neural network models
for practical applications. arXiv preprint arXiv:1605.07678 (2016).

[198] A. Shrestha and A. Mahmood. Review of Deep Learning Algorithms and Architectures.
IEEE Access 7, 53040 (2019).

[199] N. W. Ashcroft and N. D. Mermin. Solid State Physics (Cengage Learning, London,
2011).

[200] D. G. Pettifor. Bonding and Structure of Molecules and Solids (Oxford University
Press, 1995).

[201] R. C. Reed. The Superalloys: Fundamentals and Applications (Cambridge University
Press, 2008).

[202] I. E. Castelli, K. S. Thygesen and K. W. Jacobsen. Calculated optical absorption of
different perovskite phases. Journal of Materials Chemistry A 3, 12343 (2015).

[203] M. Pandey and K. W. Jacobsen. Promising quaternary chalcogenides as high-band-gap
semiconductors for tandem photoelectrochemical water splitting devices: A computa-
tional screening approach. Physical Review Materials 2, 105402 (2018).

[204] K. Novoselov, A. Mishchenko, A. Carvalho and A. C. Neto. 2D materials and van der
Waals heterostructures. Science 353, aac9439 (2016).

[205] D. D. Landis, J. S. Hummelshoj, S. Nestorov, J. Greeley, M. Dulak, T. Bligaard, J. K.
Norskov and K. W. Jacobsen. The computational materials repository. Computing in
Science & Engineering 14, 51 (2012).

[206] A. H. Larsen, J. J. Mortensen, J. Blomqvist, I. E. Castelli, R. Christensen, M. Du lak,
J. Friis, M. N. Groves, B. Hammer, C. Hargus et al. The atomic simulation envi-
ronment—a Python library for working with atoms. Journal of Physics: Condensed
Matter 29, 273002 (2017).

[207] A. Stukowski. Visualization and analysis of atomistic simulation data with OVITO–the
Open Visualization Tool. Modelling and Simulation in Materials Science and Engineer-
ing 18, 015012 (2009).

[208] J. Long, E. Shelhamer and T. Darrell. Fully convolutional networks for semantic
segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 3431–3440 (2015).

[209] E. C. Bain and N. Y. Dunkirk. The nature of martensite. Trans. AIME 70, 25 (1924).

[210] J.-C. Zhao and M. R. Notis. Continuous cooling transformation kinetics versus isother-
mal transformation kinetics of steels: a phenomenological rationalization of experimen-
tal observations. Materials Science and Engineering: R: Reports 15, 135 (1995).

120 Bibliography

[211] G. Grimvall, B. Magyari-Köpe, V. Ozoliņš and K. A. Persson. Lattice instabilities in
metallic elements. Reviews of Modern Physics 84, 945 (2012).

[212] P. Alippi, P. M. Marcus and M. Scheffler. Strained tetragonal states and bain paths in
metals. Physical Review Letters 78, 3892 (1997).

[213] J. Buschbeck, I. Opahle, M. Richter, U. K. Rößler, P. Klaer, M. Kallmayer, H. J.
Elmers, G. Jakob, L. Schultz and S. Fähler. Full Tunability of Strain along the fcc-
bcc Bain Path in Epitaxial Films and Consequences for Magnetic Properties. Physical
Review Letters 103 (2009).

[214] M. I. Haftel and K. Gall. Density functional theory investigation of surface-stress-
induced phase transformations in fcc metal nanowires. Physical Review B - Condensed
Matter and Materials Physics 74 (2006).

[215] W. P. Davey. The lattice parameter and density of pure tungsten. Physical Review 26,
736 (1925).

[216] M. Straumanis and L. Yu. Lattice parameters, densities, expansion coefficients and
perfection of structure of Cu and of Cu–In α phase. Acta Crystallographica Section A:
Crystal Physics, Diffraction, Theoretical and General Crystallography 25, 676 (1969).

[217] V. Deshpande and R. Pawar. Anisotropic thermal expansion of indium. Acta Crystal-
lographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystal-
lography 25, 415 (1969).

[218] W. Zachariasen. On the crystal structure of protactinium metal. Acta Crystallographica
12, 698 (1959).

[219] O. Isayev, D. Fourches, E. N. Muratov, C. Oses, K. Rasch, A. Tropsha and S. Curtarolo.
Materials cartography: representing and mining materials space using structural and
electronic fingerprints. Chemistry of Materials 27, 735 (2015).

[220] C. W. Glass, A. R. Oganov and N. Hansen. USPEX—Evolutionary crystal structure
prediction. Computer Physics Communications 175, 713 (2006).

[221] P. Hirel. Atomsk: a tool for manipulating and converting atomic data files. Computer
Physics Communications 197, 212 (2015).

[222] L. M. Ghiringhelli. Interpretability of machine-learning models in physical sciences.
arXiv preprint arXiv:2104.10443 (2021).

[223] A. B. Parsa, P. Wollgramm, H. Buck, C. Somsen, A. Kostka, I. Povstugar, P. P. Choi,
D. Raabe, A. Dlouhy, J. Müller, E. Spiecker, K. Demtroder, J. Schreuer, K. Neuking
and G. Eggeler. Advanced scale bridging microstructure analysis of single crystal Ni-
base superalloys. Advanced Engineering Materials 17, 216 (2015).

Bibliography 121

[224] M. Ziatdinov, A. Ghosh, T. Wong and S. V. Kalinin. AtomAI: A Deep Learning
Framework for Analysis of Image and Spectroscopy Data in (Scanning) Transmission
Electron Microscopy and Beyond. arXiv preprint arXiv:2105.07485 (2021).

[225] M. Nord, P. E. Vullum, I. MacLaren, T. Tybell and R. Holmestad. Atomap: a new soft-
ware tool for the automated analysis of atomic resolution images using two-dimensional
Gaussian fitting. Advanced Structural and Chemical Imaging 3, 1 (2017).

[226] D. Levine and P. J. Steinhardt. Quasicrystals: a new class of ordered structures.
Physical Review Letters 53, 2477 (1984).

[227] R. Li, Z. Li, Z. Dong and K. A. Khor. A review of transmission electron microscopy
of quasicrystals—how are atoms arranged? Crystals 6, 105 (2016).

[228] M. Scott, C.-C. Chen, M. Mecklenburg, C. Zhu, R. Xu, P. Ercius, U. Dahmen, B. Regan
and J. Miao. Electron tomography at 2.4-̊angström resolution. Nature 483, 444 (2012).

[229] J. Miao, P. Ercius and S. J. Billinge. Atomic electron tomography: 3D structures
without crystals. Science 353, aaf2157 (2016).

[230] C.-C. Chen, C. Zhu, E. R. White, C.-Y. Chiu, M. Scott, B. Regan, L. D. Marks,
Y. Huang and J. Miao. Three-dimensional imaging of dislocations in a nanoparticle at
atomic resolution. Nature 496, 74 (2013).

[231] R. Xu, C.-C. Chen, L. Wu, M. Scott, W. Theis, C. Ophus, M. Bartels, Y. Yang,
H. Ramezani-Dakhel, M. R. Sawaya et al. Three-dimensional coordinates of individual
atoms in materials revealed by electron tomography. Nature Materials 14, 1099 (2015).

[232] J. Zhou, Y. Yang, Y. Yang, D. S. Kim, A. Yuan, X. Tian, C. Ophus, F. Sun, A. K.
Schmid, M. Nathanson et al. Observing crystal nucleation in four dimensions using
atomic electron tomography. Nature 570, 500 (2019).

[233] X. Tian, D. S. Kim, S. Yang, C. J. Ciccarino, Y. Gong, Y. Yang, Y. Yang, B. Duschatko,
Y. Yuan, P. M. Ajayan et al. Correlating the three-dimensional atomic defects and elec-
tronic properties of two-dimensional transition metal dichalcogenides. Nature Materials
19, 867 (2020).

[234] S. Sun. Recent advances in chemical synthesis, self-assembly, and applications of FePt
nanoparticles. Advanced Materials 18, 393 (2006).

[235] Y. Yang, J. Zhou, F. Zhu, Y. Yuan, D. J. Chang, D. S. Kim, M. Pham, A. Rana,
X. Tian, Y. Yao et al. Determining the three-dimensional atomic structure of an
amorphous solid. Nature 592, 60 (2021).

[236] Y. Yuan, D. S. Kim, J. Zhou, D. J. Chang, F. Zhu, Y. Nagaoka, Y. Yang, M. Pham,
S. J. Osher, O. Chen et al. Three-dimensional atomic packing in amorphous solids
with liquid-like structure. Nature Materials 1–8 (2021).

122 Bibliography

[237] Y. Yang, C.-C. Chen, M. Scott, C. Ophus, R. Xu, A. Pryor, L. Wu, F. Sun, W. Theis,
J. Zhou et al. Deciphering chemical order/disorder and material properties at the
single-atom level. Nature 542, 75 (2017).

[238] S. Curtarolo, D. Morgan, K. Persson, J. Rodgers and G. Ceder. Predicting crystal
structures with data mining of quantum calculations. Physical Review Letters 91,
135503 (2003).

[239] C. C. Fischer, K. J. Tibbetts, D. Morgan and G. Ceder. Predicting crystal structure
by merging data mining with quantum mechanics. Nature Materials 5, 641 (2006).

[240] Y. Liu, M. O’Keeffe, M. M. Treacy and O. M. Yaghi. The geometry of periodic knots,
polycatenanes and weaving from a chemical perspective: a library for reticular chem-
istry. Chemical Society Reviews 47, 4642 (2018).

[241] Y. Gal, R. Islam and Z. Ghahramani. Deep Bayesian active learning with image data.
In Proceedings of the 34th International Conference on Machine Learning, volume 70,
1183–1192 (2017).

[242] P. M. Larsen, E. L. Pang, P. A. Parrilo and K. W. Jacobsen. Minimum-strain sym-
metrization of Bravais lattices. Physical Review Research 2, 013077 (2020).

[243] L. Himanen, P. Rinke and A. S. Foster. Materials structure genealogy and high-
throughput topological classification of surfaces and 2D materials. npj Computational
Materials 4, 1 (2018).

[244] J. J. Möller and E. Bitzek. BDA: A novel method for identifying defects in body-centered
cubic crystals. MethodsX 3, 279 (2016).

[245] B. Gault, M. P. Moody, F. De Geuser, A. La Fontaine, L. T. Stephenson, D. Ha-
ley and S. P. Ringer. Spatial resolution in atom probe tomography. Microscopy and
Microanalysis 16, 99 (2010).

[246] V. J. Araullo-Peters, A. Breen, A. V. Ceguerra, B. Gault, S. P. Ringer and J. M.
Cairney. A new systematic framework for crystallographic analysis of atom probe data.
Ultramicroscopy 154, 7 (2015).

[247] C. Oberdorfer, S. M. Eich and G. Schmitz. A full-scale simulation approach for atom
probe tomography. Ultramicroscopy 128, 55 (2013).

[248] M. Kühbach, A. Breen, M. Herbig and B. Gault. Building a Library of Simulated Atom
Probe Data for Different Crystal Structures and Tip Orientations Using TAPSim. Mi-
croscopy and Microanalysis 25, 320 (2019).

[249] M. Kühbach, P. Bajaj, M. H. Celik, E. A. Jägle and B. Gault. On Strong Scaling
and Open Source Tools for Analyzing Atom Probe Tomography Data. arXiv preprint
arXiv:2004.05188 (2020).

Bibliography 123

[250] A. Prakash, J. Guénolé, J. Wang, J. Müller, E. Spiecker, M. J. Mills, I. Povstugar,
P. Choi, D. Raabe and E. Bitzek. Atom probe informed simulations of dislocation–
precipitate interactions reveal the importance of local interface curvature. Acta Mate-
rialia 92, 33 (2015).

[251] A. Prakash, M. Hummel, S. Schmauder and E. Bitzek. Nanosculpt: A methodology
for generating complex realistic configurations for atomistic simulations. MethodsX 3,
219 (2016).

[252] Q. Zhu, A. Samanta, B. Li, R. E. Rudd and T. Frolov. Predicting phase behavior of
grain boundaries with evolutionary search and machine learning. Nature Communica-
tions 9, 1 (2018).

Selbstständigkeitserklärung

Ich erkläre, dass ich die Dissertation selbstständig und nur unter Verwendung der von
mir gemäß §7 Abs. 3 der Promotionsordnung der Mathematisch-Naturwissenschaftlichen
Fakultät, veröffentlicht im Amtlichen Mitteilungsblatt der Humboldt-Universität zu Berlin
Nr. 42/2018 am 11.07.2018 angegebenen Hilfsmittel angefertigt habe.

Ort, Datum:

Unterschrift:

125

	Abstract
	Zusammenfassung
	Acknowledgements
	List of Abbreviations and Symbols
	1 Introduction
	1.1 Artificial intelligence and its subfields
	1.2 Deep learning for materials science
	1.3 Crystal-structure recognition
	1.4 The importance of descriptors

	2 Deep learning
	2.1 Fully connected neural networks
	2.1.1 The perceptron
	2.1.2 Multilayer perceptrons

	2.2 Training and optimization
	2.2.1 Loss functions
	2.2.2 Optimization strategies
	2.2.3 Regularization
	2.2.4 Hyperparameter tuning via Bayesian optimization

	2.3 Bayesian deep learning
	2.3.1 Bayesian approach and variational inference
	2.3.2 Monte Carlo Dropout

	3 Unsupervised learning
	3.1 Clustering
	3.1.1 Density-based clustering
	3.1.2 DBSCAN
	3.1.3 HDBSCAN

	3.2 Dimensionality reduction
	3.2.1 UMAP

	4 The Bayesian-deep-learning model ARISE
	4.1 Which information can you obtain from ARISE?
	4.2 Code and data availability
	4.3 Prediction workflow
	4.3.1 Isotropic scaling
	4.3.2 Materials representation
	4.3.3 The classification model

	5 Global crystal characterization using ARISE
	5.1 Benchmarking
	5.2 Application to STEM experimental images
	5.3 The Bain transformation path
	5.4 When the model is forced to fail: analysis of ARISE out-of-sample predictions

	6 Polycrystal characterization using ARISE
	6.1 The strided pattern matching framework
	6.1.1 Prediction workflow
	6.1.2 Parameter selection

	6.2 Synthetic example I: mono-species polycrystal
	6.2.1 Supervised analysis
	6.2.2 Explainability of the black-box model via unsupervised learning

	6.3 Synthetic example II: Ni-based superalloy
	6.4 Synthetic example III: grain-boundary system obtained via evolutionary structure search
	6.5 Application to STEM and HRTEM experimental images
	6.6 Application to 3D atomic electron tomography data
	6.6.1 Supervised analysis
	6.6.2 Exploratory analysis via unsupervised learning
	6.6.3 Important parameters for the unsupervised explanatory and exploratory analysis protocols

	6.7 Application to 4D atomic electron tomography data

	7 Summary
	8 Conclusions
	A Benchmarking
	B SOAP descriptor
	C Bain path
	D Local analysis via SPM and ARISE
	Bibliography

