340,922 research outputs found

    Targeting Bayes factors with direct-path non-equilibrium thermodynamic integration

    Get PDF
    Thermodynamic integration (TI) for computing marginal likelihoods is based on an inverse annealing path from the prior to the posterior distribution. In many cases, the resulting estimator suffers from high variability, which particularly stems from the prior regime. When comparing complex models with differences in a comparatively small number of parameters, intrinsic errors from sampling fluctuations may outweigh the differences in the log marginal likelihood estimates. In the present article, we propose a thermodynamic integration scheme that directly targets the log Bayes factor. The method is based on a modified annealing path between the posterior distributions of the two models compared, which systematically avoids the high variance prior regime. We combine this scheme with the concept of non-equilibrium TI to minimise discretisation errors from numerical integration. Results obtained on Bayesian regression models applied to standard benchmark data, and a complex hierarchical model applied to biopathway inference, demonstrate a significant reduction in estimator variance over state-of-the-art TI methods

    Hierarchical independent component analysis: A multi-resolution non-orthogonal data-driven basis

    Get PDF
    A new method named Hierarchical Independent Component Analysis is presented, particularly suited for dealing with two problems regarding the analysis of high-dimensional and complex data: dimensional reduction and multi-resolution analysis. It takes into account the Blind Source Separation framework, where the purpose is the research of a basis for a dimensional reduced space to represent data, whose basis elements represent physical features of the phenomenon under study. In this case orthogonal basis could be not suitable, since the orthogonality introduces an artificial constraint not related to the phenomenological properties of the analyzed problem. For this reason this new approach is introduced. It is obtained through the integration between Treelets and Independent Component Analysis, and it is able to provide a multi-scale non-orthogonal data-driven basis. Furthermore a strategy to perform dimensional reduction with a non orthogonal basis is presented and the theoretical properties of Hierarchical Independent Component Analysis are analyzed. Finally HICA algorithm is tested both on synthetic data and on a real dataset regarding electroencephalographic traces

    Managing the Hydra in integration: developing an integrated assessment tool for agricultural systems

    Get PDF
    Keywords: modelling, bio-economic, farm, simulation, ontology, knowledge management, Europe, agricultural management, database, scenario Ex-ante assessment through science-based methods can provide insight into the impacts of potential policy measures or innovations to manage complex problems (e.g. environmental pollution, climate change, or farmers’ welfare). Integrated Assessment and Modelling (IAM) is a method that supports ex-ante assessment through modelling and modelling tools. One type of IAM links models focusing on particular processes on a specific scale into model chains covering multiple scales and disciplines. To achieve an operational model chain for IAM, methodological, semantic and technical integration is required of models, data sources, indicators and scenarios. In this thesis, methodological, semantic and technical integration focuses on two case studies. The first case study is on integration within bio-economic farm models covering two hierarchical systems levels involving a small team of scientists. The second case refers to modelling European agricultural systems. In this case, the integration covers five hierarchical systems levels and different types of models were linked by a large team of about hundred scientists. In the context of these two case studies, many different integration topics and challenges have been addressed: a review of the state-of-the-art in bio-economic farm models, a generic method to define alternative agricultural activities, development of a generic bio-economic farm model, development of an integrated database for agricultural systems, linking different agricultural models and a shared definition of scenarios across disciplines, models and scales. Ultimately, elaborating the methodological, semantic and technical integration greatly contributed to the development of an integrated assessment tool for European agricultural systems. This integrated assessment tool can be used across disciplines and for multi-scale analysis, and allows the assessment of many different policy and technology changes. </p

    Hierarchical Graphs as Organisational Principle and Spatial Model Applied to Pedestrian Indoor Navigation

    Get PDF
    In this thesis, hierarchical graphs are investigated from two different angles – as a general modelling principle for (geo)spatial networks and as a practical means to enhance navigation in buildings. The topics addressed are of interest from a multi-disciplinary point of view, ranging from Computer Science in general over Artificial Intelligence and Computational Geometry in particular to other fields such as Geographic Information Science. Some hierarchical graph models have been previously proposed by the research community, e.g. to cope with the massive size of road networks, or as a conceptual model for human wayfinding. However, there has not yet been a comprehensive, systematic approach for modelling spatial networks with hierarchical graphs. One particular problem is the gap between conceptual models and models which can be readily used in practice. Geospatial data is commonly modelled - if at all - only as a flat graph. Therefore, from a practical point of view, it is important to address the automatic construction of a graph hierarchy based on the predominant data models. The work presented deals with this problem: an automated method for construction is introduced and explained. A particular contribution of my thesis is the proposition to use hierarchical graphs as the basis for an extensible, flexible architecture for modelling various (geo)spatial networks. The proposed approach complements classical graph models very well in the sense that their expressiveness is extended: various graphs originating from different sources can be integrated into a comprehensive, multi-level model. This more sophisticated kind of architecture allows for extending navigation services beyond the borders of one single spatial network to a collection of heterogeneous networks, thus establishing a meta-navigation service. Another point of discussion is the impact of the hierarchy and distribution on graph algorithms. They have to be adapted to properly operate on multi-level hierarchies. By investigating indoor navigation problems in particular, the guiding principles are demonstrated for modelling networks at multiple levels of detail. Complex environments like large public buildings are ideally suited to demonstrate the versatile use of hierarchical graphs and thus to highlight the benefits of the hierarchical approach. Starting from a collection of floor plans, I have developed a systematic method for constructing a multi-level graph hierarchy. The nature of indoor environments, especially their inherent diversity, poses an additional challenge: among others, one must deal with complex, irregular, and/or three-dimensional features. The proposed method is also motivated by practical considerations, such as not only finding shortest/fastest paths across rooms and floors, but also by providing descriptions for these paths which are easily understood by people. Beyond this, two novel aspects of using a hierarchy are discussed: one as an informed heuristic exploiting the specific characteristics of indoor environments in order to enhance classical, general-purpose graph search techniques. At the same time, as a convenient by- product of this method, clusters such as sections and wings can be detected. The other reason is to better deal with irregular, complex-shaped regions in a way that instructions can also be provided for these spaces. Previous approaches have not considered this problem. In summary, the main results of this work are: • hierarchical graphs are introduced as a general spatial data infrastructure. In particular, this architecture allows us to integrate different spatial networks originating from different sources. A small but useful set of operations is proposed for integrating these networks. In order to work in a hierarchical model, classical graph algorithms are generalised. This finding also has implications on the possible integration of separate navigation services and systems; • a novel set of core data structures and algorithms have been devised for modelling indoor environments. They cater to the unique characteristics of these environments and can be specifically used to provide enhanced navigation in buildings. Tested on models of several real buildings from our university, some preliminary but promising results were gained from a prototypical implementation and its application on the models

    Land use/cover classification in the Brazilian Amazon using satellite images.

    Get PDF
    Land use/cover classification is one of the most important applications in remote sensing. However, mapping accurate land use/cover spatial distribution is a challenge, particularly in moist tropical regions, due to the complex biophysical environment and limitations of remote sensing data per se. This paper reviews experiments related to land use/cover classification in the Brazilian Amazon for a decade. Through comprehensive analysis of the classification results, it is concluded that spatial information inherent in remote sensing data plays an essential role in improving land use/cover classification. Incorporation of suitable textural images into multispectral bands and use of segmentation?based method are valuable ways to improve land use/cover classification, especially for high spatial resolution images. Data fusion of multi?resolution images within optical sensor data is vital for visual interpretation, but may not improve classification performance. In contrast, integration of optical and radar data did improve classification performance when the proper data fusion method was used. Of the classification algorithms available, the maximum likelihood classifier is still an important method for providing reasonably good accuracy, but nonparametric algorithms, such as classification tree analysis, has the potential to provide better results. However, they often require more time to achieve parametric optimization. Proper use of hierarchical?based methods is fundamental for developing accurate land use/cover classification, mainly from historical remotely sensed data

    The failure tolerance of mechatronic software systems to random and targeted attacks

    Full text link
    This paper describes a complex networks approach to study the failure tolerance of mechatronic software systems under various types of hardware and/or software failures. We produce synthetic system architectures based on evidence of modular and hierarchical modular product architectures and known motifs for the interconnection of physical components to software. The system architectures are then subject to various forms of attack. The attacks simulate failure of critical hardware or software. Four types of attack are investigated: degree centrality, betweenness centrality, closeness centrality and random attack. Failure tolerance of the system is measured by a 'robustness coefficient', a topological 'size' metric of the connectedness of the attacked network. We find that the betweenness centrality attack results in the most significant reduction in the robustness coefficient, confirming betweenness centrality, rather than the number of connections (i.e. degree), as the most conservative metric of component importance. A counter-intuitive finding is that "designed" system architectures, including a bus, ring, and star architecture, are not significantly more failure-tolerant than interconnections with no prescribed architecture, that is, a random architecture. Our research provides a data-driven approach to engineer the architecture of mechatronic software systems for failure tolerance.Comment: Proceedings of the 2013 ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE 2013 August 4-7, 2013, Portland, Oregon, USA (In Print

    From Space and Time to a Deeper Reality as a Possible Way to Solve Global Problems

    Full text link
    To deal with global problems we suggest to consider complex systems not in space and time, but in a possible deeper reality, i.e., the hierarchical network of prime integer relations. Encoded by arithmetic through the self-organization processes the hierarchical network appears as the mathematical structure of one harmonious and interconnected whole. Remarkably, the holistic nature of the hierarchical network allows to formulate a single universal objective of a complex system defined in terms of the integration principle. We propose that by the realization of the integration principle the Earth system could be transformed to become an integrated part of a larger system with more capacity and energy to sustain life. Significantly, based on integers and controlled by arithmetic only the hierarchical network has a unique potential to provide an irreducible common ground fully trusted by different parties and helping to reveal a higher collective purpose.Comment: 5 pages, to be presented at the Eighth International Conference on Complex Systems, Boston, June 26 - July 1, 201

    Integrated management of hierarchical levels: towards a CAPE tool

    Get PDF
    The integration of decision-making procedures usually assigned to different hierarchical production systems requires the use of complex mathematical models and high computational efforts, in addition to the need of an extensive management of data and knowledge within the production systems. This work addresses this integration problem and proposes a comprehensive solution approach, as well as guidelines for Computer Aided Process Engineering (CAPE) tools managing the corresponding cyberinfrastructure. This study presents a methodology based on a domain ontology which is used as the connector between the introduced data, the different available formulations developed to solve the decision-making problem, and the necessary information to build the finally required problem instance. The methodology has demonstrated its capability to help exploiting different available decision-making problem formulations in complex cases, leading to new applications and/or extensions of these available formulations in a robust and flexible way.Peer ReviewedPostprint (author's final draft

    Discovering transcriptional modules by Bayesian data integration

    Get PDF
    Motivation: We present a method for directly inferring transcriptional modules (TMs) by integrating gene expression and transcription factor binding (ChIP-chip) data. Our model extends a hierarchical Dirichlet process mixture model to allow data fusion on a gene-by-gene basis. This encodes the intuition that co-expression and co-regulation are not necessarily equivalent and hence we do not expect all genes to group similarly in both datasets. In particular, it allows us to identify the subset of genes that share the same structure of transcriptional modules in both datasets. Results: We find that by working on a gene-by-gene basis, our model is able to extract clusters with greater functional coherence than existing methods. By combining gene expression and transcription factor binding (ChIP-chip) data in this way, we are better able to determine the groups of genes that are most likely to represent underlying TMs
    corecore