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Abstract

A new method named Hierarchical Independent Component Analysis is pre-
sented, particularly suited for dealing with two problems regarding the anal-
ysis of high-dimensional and complex data: dimensional reduction and multi-
resolution analysis. It takes into account the Blind Source Separation frame-
work, where the purpose is the research of a basis for a dimensional reduced
space to represent data, whose basis elements represent physical features of
the phenomenon under study. In this case orthogonal basis could be not
suitable, since the orthogonality introduce an artificial constraint not related
to the phenomenological properties of the analyzed problem. For this rea-
son this new approach is introduced. It is obtained through the integration
between Treelets and Independent Component Analysis, and it is able to pro-
vide a multi-scale non-orthogonal data-driven basis. Furthermore a strategy
to perform dimensional reduction with a non orthogonal basis is presented
and the theoretical properties of Hierarchical Independent Component Anal-
ysis are analyzed. Finally HICA algorithm is tested both on synthetic data
and on a real dataset regarding electroencephalographic traces.
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1. Introduction

The statistical analysis of high-dimensional and complex data often re-
quires the solution of two related issues: a data-driven dimensional reduction
and a meaningful multiscale approximation. We look for a basis generating a
space of small dimension where to represent data. We long for basis elements
which are representative of the significant features of the phenomenon under
study; some of these may involve a great number of the primitive variables
describing the data set while others may be restricted only to a few. Hence a
multi-resolution analysis is desirable. In this paper we propose a new method
for the construction of a multi-scale non-orthogonal data-driven basis.

We frame the subject as a Blind Source Separation problem (BSS) [3].
Let X ∈ Rp be a random vector and assume the existence of a vector S ∈ RK

representing K ≤ p latent random sources and such that

X = CS, (1)

where C is an unknown p ×K matrix of real numbers whose columns con-
stitute a basis of a K-dimensional subspace of Rp. If the rows of the n × p
matrix X collect n observed realizations x1, ...,xn ∈ Rp of the random vector
X while the rows of the n ×K matrix S represent the corresponding unob-
served realizations of the latent random vector S, model (1) implies that

X = SCT . (2)

A BSS problem consists in estimating C and S, given X. In this paper we
analyze the EEG traces of patients affected by alcoholism and we consider a
single patient. The brain signals from p electrodes are recorded at n instants
of time in the matrix X. Aim of the analysis is to decompose these signals in
a linear combination between K reference brain maps (i.e., the columns of C)
and its related temporal activation profiles (i.e., columns of S), focusing in
particular on the spatial maps. Hence this problem fits in the BSS framework.

Many approaches are commonly used to solve a BSS problem. The most
common is Principal Component Analysis (PCA). PCA is a powerful method
to find optimal subspaces where to represent data, but it presents some draw-
backs. First, PCA yields an orthonormal basis; in many circumstances or-
thogonality is a desirable property but in some it introduces an artificial
constraint not related to the phenomenological characteristics of the ana-
lyzed problem. Indeed basis elements provided by PCA might not represent
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physical features of the phenomenon under study. Moreover PCA is a global
method not suitable for multi-resolution analysis since each basis element
most often results in a linear combination of all the primitive variables. In-
dependent Component Analysis (ICA) [7] solves a BSS problem and provides
a non-orthogonal basis for data representation. It is widely used in a huge
kind of differente application as, for instance, biomedical signals analysis, hy-
perspectral imaging, astronomy etc... [2, 4, 9, 13]. The ICA model assumes
independence between the random sources which are components of the vec-
tor S and produces a non orthogonal basis - an estimate of the columns of
the matrix C in (2) - such that the data scores on the basis elements - esti-
mates of the columns of S - are as much independent as possible. Like PCA,
ICA is a global method not suitable for multi-scale analysis. If we consider
the EEG problem, multi-resolution of the spatial brain maps is an interest
property. Indeed, some brain activities could involve the whole brain, while
others only a localized part of it. In this sense, wavelets are commonly used
[11, 10] to generate a localized and multi-scale basis for data representa-
tion. Their main limitation is that the wavelet basis is not data-driven, since
basis elements are fixed, regardless of the data. The Treelets algorithm is
an efficient and recent approach that avoids this problem [8]. The Treelets
algorithm generates a multi-scale orthonormal data-driven basis yielding a
hierarchical tree that, at each level, represents data through an orthonormal
basis. Thus the problem of interpretability of basis elements due to the ex-
ogenously imposed constraint of orthogonality still holds. We here propose a
new approach able to provide a multi-scale non orthogonal data-driven basis
through the integration between ICA and Treelets: we call it Hierarchical
Independent Component Analysis (HICA).

The paper is organized as follows. In section 2, we briefly describe In-
dependent Component Analysis and the Treelets algorithm in order to in-
troduce HICA in the second part of the section. In section 3, we consider a
procedure for data dimensional reduction with a non-orthogonal basis that
will be used in HICA. Then, in section 4, we present some theoretical prop-
erties of the HICA method. In section 5, we show some simulations which
validate the algorithm proposed. Finally, in section 6, we present a case
study of EEG traces. All the simulations and the analyses of real data are
carried out using R statistical software [15]. Furthermore we developed a R

package implementing HICA algorithm, named fastHICA and available on
the CRAN website [16].
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2. Hierarchical Independent Component Analysis

In the first part of this section we describe the main ideas concerning ICA
and Treelets, since HICA is obtained by integrating these two approaches.
Then we introduce the HICA algorithm.

Independent Component Analysis is a method commonly used to solve
Blind Source Separation problems. Consider model (1) and assume K = p.
Given the data matrix X, ICA looks for estimates of the basis matrix C and
of the source matrix S in model (2), such that the columns of S could be
taken as samples of the independent components of S.

The ICA model presents two ambiguities. The first is label switching.
The second is due to the fact that the independent components S1, ..., SK

of the vector S (i.e., the sources) are identifiable only up to multiplicative
constants. Hence, for identifiability, the variances of the independent com-
ponents are usually constrained to be 1; without loss of generality, we also
assume that both the vector X and the vector S have zero mean. Moreover it
is common to preprocess data by whitening X through a transformation ma-
trix D. The covariance matrix of the transformed vector Z = DX is required
to be the identity, i.e., E[ZZ′] = I; for instance, Z is found by standardizing
the principal components of X. Therefore model (1) becomes Z = (DC)S.
Since E[SS′] = I, one then derives

I = E[ZZ′] = E[DCSS′C ′D′] = DCE[SS′]C ′D′ = (DC)(DC)′.

Hence C∗ = DC is orthogonal. Once the optimal rotation C∗ has been found,
C is obtained as D−1C∗.

Existence of a basis for data representation through independent compo-
nents is not guaranteed (differently from a representation through uncorre-
lated components which always exists, and it is found by PCA). In practical
problems, the estimate of the matrix C∗ is obtained through the minimization
of the empirical dependence between the columns of S. In [6], it is shown that
C∗ can be found by maximizing the non-gaussianity of the sources S1, ..., SK .
This simplifies the ICA optimization problem and suggests some suitable nu-
merical algorithm for its solution. In this paper all analyses will be carried
out with the fastICA algorithm, which maximizes a non-gaussianity measure
(e.g., the absolute value of the kurtosis) through a fast fixed-point procedure.
Details about the fastICA algorithm are presented in [6].

By comparing the ICA solution with that provided by PCA, we note
that while PCA yields a basis whose elements are conveniently arranged
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for dimensional reduction, this is not so for ICA which is useless for this
purpose. A common approach to circumvent this difficulty, and to allow
for the number K of independent components to be much smaller than the
number p of primitive variables, is to first project data into theK-dimensional
space generated by the first K principal directions. Then, ICA is carried out
in this reduced K-dimensional space.

The Treelets algorithm generates a multi-resolution orthonormal basis
for data representation, like wavelets, but the basis is data-driven. The
Treelets algorithm yields a hierarchical tree that at each level, between the
group of active variables given by the previous level, replaces the two more
correlated variables through a pair-wise Principal Component decomposition.
The procedure consists of an iterative algorithm with p − 1 steps. At each
step three operations are performed:

1. compute the correlations between couples of variables, between the
active variables provided by the previous step, and search for the two
variables with the highest correlation;

2. compute a Principal Component Analysis in the space of the two se-
lected variables;

3. store the second principal direction - that will not be processed in the
following step and will become one of the treelet components - while
the first principal direction replaces the two original variables in the
active variables set.

At each level of aggregation l = 0, ..., p− 1, the algorithm provides a multi-
resolution data-driven orthogonal basis B(l), able to catch internal structural
features of the data.

The two methods presented above are useful to reduce the complexity
of high-dimensional problems and to detect relevant features of the data.
However some problems still hold. ICA, as PCA, is a global method that
produces a non-sparse basis. Hence it is not suitable for a multi-resolution
analysis. Treelets provide a multi-resolution but orthonormal basis, whose
elements can be unrelated to the phenomenological characteristics of the
problem under study. Hierarchical Independent Component Analysis, in-
stead, aims at the construction of a multi-resolution non orthogonal data-
driven basis through the integration between ICA and Treelets with the idea
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of inheriting the returns of both ICA and Treelets over PCA. Basically it
consists in replacing in the Treelet algorithm the pair-wise Principal Compo-
nent Analysis step with a pair-wise Independent Component Analysis step.
With respect to this manuscript wording, we should indeed refer to Treelet
analysis as Hierarchical Principal Component Analysis (HPCA). Anyhow we
preferred to keep the authors’ original wording (i.e., Treelets).

A more detailed description of the HICA algorithm is now in order. First
we need to define a suitable similarity measure between two random variables.
According to the ICA procedure, we search for a measure that is greater when
the dependence between two variables is larger. In particular we consider the
distance correlation, a measure of dependence introduced in [19], and based
on the distance covariance. Let X1 and X2 be two random variables and let
ϕX1(t) and ϕX2(s) be their characteristic functions, while ϕ(X1,X2)(t, s) is the
characteristic function of the random vector (X1, X2)

′. Then, the distance
covariance between X1 and X2 is the non-negative number V(X1, X2) defined
as

V(X1, X2) =

(
1

c2

∫
R2

|ϕ(X1,X2)(t, s)− ϕX1(t)ϕX2(s)|2

t2s2
dtds

) 1
2

,

where c = π
Γ(1)

and Γ(·) is the complete gamma function. If we indicate with

V(X1) = V(X1, X1), the distance correlation between two random variables
X1 and X2 is defined as

R(X1, X2) =
V(X1, X2)√
V(X1)V(X2)

.

Note 0 ≤ R(X1, X2) ≤ 1 and R(X1, X2) can be considered to be a measure
of dependence between X1 and X2 in the sense that R(X1, X2) is equal to 0 if
and only if X1 and X2 are independent random variables. Moreover distance
variance and distance covariance have some properties that will be used in
the following. In particular:

1. if X1 and X2 are independent random variables, then V(X1 + X2) ≤
V(X1) + V(X2);

2. if (X11, X21)
′ and (X12, X22)

′ are independent random vectors, then
V(X11 +X12, X21 +X22) ≤ V(X11, X21) + V(X12, X22).

We now describe the HICA algorithm. At level l = 0 of the hierarchical
tree each component X1, ..., Xp of the random vector X is represented by
itself, the basis matrix B(0) is indeed the canonical basis of dimension p and
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the coordinates vector Y(0) = (Y
(0)
1 , ..., Y

(0)
p )′ corresponds to the primitive

variables (i.e., Y
(0)
i = Xi). Define A to be a set of indices of the active

variables, initializing A(0) = {1, ..., p}, and compute the sample similarity

matrix R̂(0), where R̂
(0)
ij = R(Y

(0)
i , Y

(0)
j ). Then, for l = 1, ..., p− 1, repeat the

following three steps:

1. find the two most similar variables. In particular set:

(α, β) = arg max
i<j∈A(l−1)

R̂
(l−1)
ij ;

2. compute an Independent Component Analysis of the variables Y
(l−1)
α

and Y
(l−1)
β :

Y (l−1)
α = c

(l)
11S1 + c

(l)
12S2, (3)

Y
(l−1)
β = c

(l)
21S1 + c

(l)
22S2.

The idea is to replace Y
(l−1)
α with S1 and Y

(l−1)
β with S2. Hence define

the matrix

C̃(l) =



1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · c̃
(l)
11 · · · c̃

(l)
12 · · · 0

...
...

. . .
...

...

0 · · · c̃
(l)
21 · · · c̃

(l)
22 · · · 0

...
...

...
. . .

...
0 · · · 0 · · · 0 · · · 1


,

where c̃
(l)
11 and c̃

(l)
22 are, respectively, in position (α, α) and (β, β). The

elements c̃
(l)
ij correspond to the c

(l)
ij in (3), normalized such that C̃(l) has

columns with unitary norm. C̃(l) represents the non orthogonal trans-
formation identified by ICA. The new basis matrix and coordinates
vector become B(l) = B(l−1)C̃(l) and Y(l) = (C̃(l))−1Y(l−1), respectively.

The similarity matrix R̂(l) is then updated accordingly;

3. order the two new variables according to their variances. If the variance
of Y

(l)
α is greater than the variance of Y

(l)
β , store the variable Y

(l)
β and,
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at the next step, consider only Y
(l)
α as a possible candidate for a new

aggregation. This corresponds to remove the index β from the set A of
the active variables, defining A(l) = A(l−1) \ {β}. Otherwise store Y

(l)
α

and set A(l) = A(l−1) \ {α}.

The algorithm provides, at each level of aggregation l, a non orthogonal basis
matrix B(l) = B(0)C̃(1) · · · C̃(l) - an estimate of the basis matrix C - and a
coordinates vector Y(l) = C̃(l)−1 · · · C̃(1)−1

Y(0), which is an estimate of the
scores matrix S.

3. Selection of the level of the tree and dimensional reduction with
a non-orthogonal basis

The HICA algorithm generates p different matrices B(0), ..., B(p−1) as es-
timates of the basis matrix C. Obviously one cannot take into account all
these different estimates, but it is reasonable to choose only one (or some) of
them for the analysis. The more natural choice is to consider the estimate
related to the maximum height of the tree, l = p − 1, but alternatively one
can choose any of the basis given at the different levels l. At a generic level l,
B(l) is composed by the l elements stored in the previous steps and the p− l
elements corresponding to variables of the active set A(l) that would be ready
for aggregation in the following steps. Let Al be a partition of {1, ..., p} in
p− l sets named Al

i, with i = 1, ..., p− l. By construction each basis element
of B(l) is defined on a different set Al

i of the partition (i.e., the positions of
the non-zero values of each basis element correspond to the indexes of one
of the set Al

i). Since at each level a new variable is generated as a linear
combination of two variables of the active set, the number of sets that form
the partition is reduced by aggregating two of them. Hence at a specific level
l the basis elements stored in the previous steps of the algorithm are defined
on subsets of the Al

i. Therefore we can divide basis elements of B(l) into p− l
different groups, according to the p− l different sets of the partition. For this
reason we can relate the different basis B(l) to different degrees of sparsity,
where the different degrees refer to the different cardinalities of partitions.
In particular, the lower is the level l considered, the greater is the degree of
sparsity of the basis taken into account (i.e., greater is the cardinality of the
partition).

Once a specific basis B(l) is chosen, another important aspect to consider
is dimensional reduction. In particular we need to select the dimension K
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(with K ≤ p) of a suitable subspace to represent data, choosing only K basis
elements.

To jointly face these two problems (i.e., the choice of the degree of sparsity
and the K “best” basis elements) we consider the energy, an index related
to the fraction of variance explained by a basis. We now first describe the
energy index, focusing on the non trivial case of its evaluation for a non-
orthogonal basis. Then we propose a strategy to choose a suitable dimension
K to represent data in a reduced space and, given K, we show how to select
a specific basis B(l) and its K basis elements.

Consider a basis C = [c1; ...; cp], not necessarily orthogonal. Let IK =
{i1, i2, ..., iK} be one of the

(
p
K

)
subsets of the index set {1, ..., p} with cardi-

nality K, and let CIK = [ci1 ; ...; ciK ]. Let X
CIK = CIK (C

T
IKCIK )

−1CT
IKX be

the orthogonal projection of X on the space spanned by CIK , where X ∈ Rp

is a random vector with zero mean. Then we define

γ(CIK ) =
E[∥XCIK ∥2]
E[∥X∥2]

=
tr(ΣCIK (C

T
IKCIK )

−1CT
IK )

tr(Σ)
,

being Σ = E[XXT ] = Cov(X), and we call γ(CIK ) the energy associated to
the basis CIK . At this point we define ΓK(C) as the maximum energy among
all the

(
p
K

)
energies associated to the K-dimensional subspaces spanned by

all possible subsets of cardinality K of the basis matrix C:

ΓK(C) = max
IK⊆{1,...,p}

γ(CIK ). (4)

If C is non orthogonal the evaluation of ΓK(C) may become cumbersome.
The non orthogonality, in fact, implies that the elements of the best K − 1-
dimensional space are not necessary a subset of the elements of the best
K-dimensional space. Hence we need to search for the optimal basis be-
tween al the possible

(
p
K

)
combinations. This can be done if

(
p
K

)
is small,

but when it increases the computation may become unfeasible. Therefore a
selection strategy is needed. This is true not only for HICA, but whenever
dealing with non orthogonal basis. For instance we present a forward selec-
tion strategy, that is one the most used in the literature. It can be easily
computed and, in practical problems, produces reasonable approximations
of the K-dimensional subspace with maximal energy ΓK(C). However any
other selection strategy can be used. Considering a given K, for forward se-
lection we start by calculating the energy γ([ck]) for each basis element and
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we set the maximum energy element as the first element of the basis. Let it
be c(1). Then we look for the second basis element, named c(2), such that

c(2) = arg max
cj ̸=c(1)

γ([c(1); cj]).

Once c(1), ..., c(k) have been identified, c(k+1) is found accordingly:

c(k+1) = arg max
cj ̸=c(1),...,c(k)

γ([c(1); ...; c(k); cj]),

and the procedure continues until c(K) is found.

Remark 1. If C is an orthonormal matrix, the exact solution of the opti-
mization problem (4) can be found efficiently since we do not need to evaluate
all the

(
p
K

)
energies γ(CIK ). Indeed, let W = [w1; ...;wp] be an orthonormal

basis, ΓK(W ) is found by computing, for j = 1, ..., p,

γ([wj]) =
E[(wT

j X)2]

E[∥X∥2]
=

wT
j Σwj

tr(Σ)
=

∑p
i=1 λi(w

T
j ei)

2∑p
i=1 λi

,

where λi and ei are the eigenvalues and the eigenvectors of Σ. After sorting
the basis elements according to their energy, such that γ([w(1)]) ≥ γ([w(2)]) ≥
· · · ≥ γ([w(p)]), ΓK(W ) is obtained by summing the first K energy terms. In
particular:

ΓK(W ) =
tr(ΣWKW

T
K)

tr(Σ)
=

K∑
k=1

γ([w(k)]),

where WK = [w(1); ...;w(K)]. This is the same procedure adopted in [8], for
finding the elements of the K-dimensional basis and also coincides with the
criterium used in PCA to order the principal directions. Indeed, if E =
[e1; ...; ep] is the matrix whose columns are the eigenvectors of Σ, γ([ej]) =∑p

i=1 λi(e
T
j ei)

2∑p
i=1 λi

=
λj∑p
i=1 λi

and ΓK(E) =
∑K

i=1 γ([e(k)]) =
∑K

k=1 λ(k)∑p
i=1 λi

.

We now focus on the energy index as a tool to perform dimensional reduc-
tion and to find the best basis between the p estimates provided by HICA.
The choice ofK is not related to this specific algorithm. We can decide on the
best value forK considering only the maximum height tree basis (i.e., consid-
ering only ΓK(B

(p−1))), or also through other dimension reduction method.
Once K has been determined, we compute ΓK(B

(l)), for l = 0, ..., p− 1, and
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we choose the best basis Bbest according the same criterium adopted in [8],
for Treelets:

Bbest = arg max
Bl:0≤l≤p−1

ΓK(Bl).

This argmax is not necessarily unique. Indeed, at a specific level, say
l = p − k, we have k elements (corresponding to the variables in the active
set A(p−k)) that in the following steps are merged together. It is straightfor-
ward to show that, if the best k-dimensional space was generated by these k
elements, the quantity Γk(B

(p−k)) would not increase in the next levels, since,
even if two of these elements are merged together, the space spanned by the
new elements is the same. In general at level p − k the best k-dimensional
space need not be generated by the k active variables. However from the level
when all variables of the active set A(l) constitute the best k-dimensional ba-
sis, the quantity Γk(B

(l)) does not increase. Hence we could have more than
one basis with the same energy.

The choice suggested in [8], is to take into account the basis with the
smallest l. Such proceeding could however discard solutions which are able
to better catch the underlying structure of the problem. Indeed, all the basis
with the same energy are, in principle, equally valid, and all basis with the
same highest energy ΓK should be considered. However, since they have
different degrees of sparsity (the lower is the level, the higher is the degree
of sparsity), some of them can be more preferable, but this is a case-specific
choice. In the examples of section 5 and in the real case study of section 6,
we will deepen the analysis of this issue.

4. Theoretical results

In this section we analyze the consistency of HICA when data are gener-
ated by K independent groups of sources with disjoint supports plus some
noise. The consistency of treelets for K uncorrelated groups has been proved
in [8]. Here we want to show that the hierarchical nature of HICA is able
to highlight possible grouping structures of the p original variables, where
the structure is defined in terms of dependence. Specifically we consider a
situation where the p primitive variables are divided into K groups, with
dependent variables within groups and weakly dependent variables between
groups. We want to show that HICA is well suited for representing and catch-
ing the underlying structure of this kind of data, providing at level p − K
loading vectors whose supports are defined on the different groups. We show
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this result in Lemma 2, and Theorem 3, after the discussion of a preliminary
property in Lemma 1. The proofs are provided in Appendix A.

We start by dealing with an issue directly connected to the fact that the
fastICA algorithm is grounded on non-gaussianity measures. In some special
situations the directions maximizing kurtosis, a well-known non-gaussianity
measure, can be found analytically, as it is proved in the following Lemma.

Lemma 1. Let T be a random variable such that
kurt(T ) ̸= 0 and let E be a gaussian random variable. Set Z = (T,E)′ and
assume that T and E are independent. Let w = (w1, w2)

′ be a vector of
unitary norm. The absolute value of the kurtosis of the random variable w′Z
is maximized by wmax = (1, 0)′.

We now deal with p non-gaussian random variables identical but for an ad-
ditive gaussian noise, in order to show that, in this particular case, HICA
provides a constant loading vector at the final level l = p− 1, thus gathering
the common component.

Lemma 2. Let T be a random variable with 0 mean, kurt(T ) ̸= 0 and such
that V(T ) = 1. Let X = (X1, ..., Xp)

′ ∈ Rp be a random vector such that, for
σ2, σ2

e > 0,
Xi = σ2T + σ2

eEi, i = 1, ..., p,

with Ei a random gaussian noise such that, for i, j = 1, ...p, i ̸= j, V(Ei) = 1,
V(Ei, Ej) = 0 and V(Ei, T ) = 0. At each level 1 ≤ l ≤ p − 1 the HICA
decomposition reads:

B(l) = [c
(l)
1 ; ...; c

(l)
p−l; c̃

(l)
1 ; ...; c̃

(l)
l ],

Y(l) = (Y
(l)
1 , ..., Y

(l)
p−l, Ỹ

(l)
1 , ..., Ỹ

(l)
l )′,

where c
(l)
i = 1√

|Al
i|
IAl

i
and Y

(l)
i =

|Al
i|√
|Al

i|
σ2T + σ2

e√
|Al

i|
E

(l)
i , with V(E(l)

i ) ≤ |Al
i|

and V(Y (l)
i ) ≤

√
|Al

i|(σ2 + σ2
e) ∀i = 1, ..., p− l (the sets Al

i have been defined
in Section 3, and IAl

i
is a vector with ones for the elements of the set Al

i and

0 otherwise). In particular, at the level l = p − 1, c
(p−1)
1 = ( 1√

p
, ..., 1√

p
)′ and

Y
(p−1)
1 = p√

p
σ2T+ σ2

e√
p
E

(p−1)
1 , with V(E(p−1)

1 ) ≤ p and V(Y (p−1)
1 ) ≤ √

p(σ2+σ2
e).

Lemma 2, is instrumental for proving Theorem 3, the main theoretical result
of the paper.
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Theorem 3. Let T1, ..., TK be random variables with 0 mean, non zero kurto-
sis and such that V(Tk) = 1, k = 1, ..., K. LetX = (X11, ..., X1p1 , ..., XK1, ..., XKpK )

′ ∈
Rp be a random vector such that, for σ2

1, ..., σ
2
K , σ

2
e > 0,

Xji = σ2
jTj + σ2

eEji,

with Eji random gaussian noise such that V(Eji) = 1, V(Eji, Ehl) = 0 and
V(Eji, Th) = 0 for j, h = 1, ..., K, i = 1, ..., pj and l = 1, ..., ph. Furthermore
set
V(σ2

jTj, σ
2
hTh) = σjh and assume that

max
1≤j,h≤K

(
σjh

σjσh

)
<

c(σe)

1 + δ2
, (5)

with δ = σe

min1≤j≤K σj
and c(σe) a constant such that 0 < c(σe) ≤ 1 and

c(σe)
σe→0−→ 1. Then, at level l = p−K, the HICA decomposition reads:

B(p−K) = [c
(p−K)
1 ; ...; c

(p−K)
K ; c̃

(p−K)
1 ; ...; c̃

(p−K)
p−K ],

Y(p−K) = (Y
(p−K)
1 , ..., Y

(p−K)
K , Ỹ

(p−K)
1 , ..., Ỹ

(p−K)
p−K )′,

where c
(p−K)
i = 1√

|Fi|
IFi

and Y
(p−K)
i = |Fi|√

|Fi|
σ2
i Ti+

σ2
e√
|Fi|

E
(p−K)
i , with V(E(p−K)

i ) ≤

|Fi|, V(Y (p−K)
i ) ≤

√
|Fi|(σ2

i + σ2
e) and Fi = {i1, ..., ipi}, for i = 1, ..., K.

This results states that if variables are dependent according to an approxi-
mate block structure where variables in the same block are exchangeable and
strongly dependent while variables in different blocks are weakly dependent,
then HICA is able to uncover this feature providing loading vectors constants
on each block and null elsewhere.

Remark 2. As pointed out by one of the reviewers, these theoretical results
do not deal with more complex situations where mixtures came from differ-
ent sources, or when the Gaussian component is one of the latent source.
Indeed, we chose to investigate this simpler setting in order to prove the con-
sistency of HICA algorithm following the line depicted in [8]. Nevertheless,
we explored the performance of HICA in more complex situations through
numerical simulations presented in Section 5.
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5. Comparison among PCA, ICA, Treelets, and HICA on synthetic
data

In this section we will present some simulated examples to compare PCA,
ICA, Treelets, and HICA performances in different scenarios. For all scenar-
ios we consider the following latent variable model:

X =
3∑

k=1

ckSk + σE , (6)

where X is the observed p-variate random vector, ck represent the columns
of the basis matrix C (i.e., the unknown basis elements), Sk are unobserved
non-gaussian random variables, and E is a p-variate gaussian vector (with 0
mean and identity covariance matrix) acting as a noise term. Our purpose
is to use PCA, ICA, Treelets, and HICA to obtain an estimate for the basis
matrix C from a sample of size n drawn from model (6).

In detail, we investigate four different scenarios exploring different struc-
tures of dependence and orthogonality of the components (i.e., dependent/indepedent
sources Sk and orthogonal/non-orthogonal basis elements ck):

Scenario A: Orthogonal and independent latent components.

Scenario B: Orthogonal and dependent latent components.

Scenario C: Non-orthogonal and independent latent components.

Scenario D: Non-orthogonal and dependent latent components.

Below, we focus on scenarios B, C, and D, respectively. Scenario A is not
discussed since, as expected, all four methods are effective in estimating the
model in this trivial case. In the next scenarios we always consider light tailed
distributions and a value of p relatively small, in order to obtain clearer plots.
Simulations with heavy tailed distributions, a larger number of variables, and
more complex settings have been performed, and they are provided in the
supplementary material available online.

Scenario B: Orthogonal and dependent latent components. We first consider
an example similar to the one presented in [8], where p = 10 random vari-
ables are obtained by linear combinations of three dependent - and thus
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correlated - random sources such that the basis elements c1, c2, and c3 are
non-overlapping - and thus orthogonal -. In particular we set:

S1 ∼ U([0, b1]) ⊥⊥ S2 ∼ U([0, b2]), S3 = a1S1 + a2S2,

with b1 = 20, b2 = 15, a1 = 2, a2 = 1, and σ = 1. The basis elements ck are
defined on disjoint subsets, specifically:

c1 = (1 1 1 1 0 0 0 0 0 0)′,

c2 = (0 0 0 0 1 1 1 1 0 0)′,

c3 = (0 0 0 0 0 0 0 0 1 1)′.

Finally, we sample n = 1000 independent realizations from the model.

Figure 1: Scenario B: Orthogonal and dependent latent components. Top
panels report the basis elements provided by Treelets (left) and HICA (right)
when K = 3 and l = 7. The bottom panels report the energy as a function of
l and K for Treelets decompositions (left) and HICA decompositions (right).
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This is an example in which neither PCA nor ICA is expected to target the
correct model being the three sources neither uncorrelated nor independent.
On the contrary, both Treelets and HICA can detect the correct model if the
chosen level of aggregation is l = 7 (i.e., 3 disjoint supports) and the chosen
number of latent sources is K = 3. As shown in the bottom panels of Figure
1, this choice of l and K is the one suggested by the criterion presented in
[8], and is among the ones suggested by the criterion suggested in section
3. This latter criterion supports indeed K = 3 and l = 7, 8, 9 as candidate
values.

Scenario C: Non-orthogonal and independent latent components. The previ-
ous example presents a situation in which hierarchical methods (i.e., Treelets
and ICA) can outperform non-hierarchical methods (i.e., PCA and ICA).
We now consider a complementary scenario in which ICA-inspired methods
(i.e., ICA and HICA) can outperform PCA-inspired methods (i.e., PCA and
Treelets). In this scenario p = 6, the basis elements c1 and c2 are over-
lapping and non-orthogonal and sources S1, S2, and S3 are independent. In
particular:

S1 ∼ U([0, b1]) ⊥⊥ S2 ∼ U([0, b2]) ⊥⊥ S3 ∼ U([0, b3],

with b1 = b2 = b3 = 20 and σ = 1. The basis elements ck are defined as
follows:

c1 = (1 1 0 0 0 0)′,

c2 = (1 1 1 1 0 0)′,

c3 = (0 0 0 0 1 1)′.

Finally, we sample n = 1000 independent realizations from the model. Of
course in this scenario, PCA and Treelets cannot target the right solution
being the basis elements non-orthogonal. ICA instead targets the right so-
lution being the sources independent. Figure 2 shows that also HICA can
detect the right solution if K = 3 and l = 4 (i.e., 2 disjoint supports).

Note that the criterion proposed in [8], would have suggested K = 3 and
l = 3 (i.e., 3 disjoint supports) which would have taken to a misidentification
of the model for HICA as well (see top panels of Figure 2). This example
confirms what suggested in our criterion: once K is chosen, all values of l
providing the maximal energy are candidate values and not just the minimum
one. Good representations are indeed obtained using HICA with K = 3 and
l = 4, 5.
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Scenario D: Non-orthogonal and dependent latent components. We finally
present a situation in which HICA outperforms PCA, ICA, and Treelets.
This last scenario is simply obtained by setting latent components both non-
orthogonal and dependent. In this case indeed, PCA cannot target the cor-
rect model being the sources non-orthogonal and dependent, ICA cannot
target the correct model being the sources dependent, Treelets cannot target
the correct model being the sources non-orthogonal. HICA remains the only
method having the chance to target the correct model.

We here set p = 6, the basis elements c1 and c2 are overlapping (and
thus non-orthogonal) and the three sources S1, S2, and S3 dependent. In
particular:

S1 ∼ U([0, b1]) ⊥⊥ S2 ∼ U([0, b2]) S3 = S1 + S2 + U,

and U ∼ U([0, b3], with b1 = b2 = 20, b3 = 1, and σ = 1, while basis elements
ck are the same defined as in Scenario C.

As shown in the bottom panels of Figure 3, we can draw the same con-
clusions of Scenario C with respect to the choice of K and l: K = 3 and
l = 3, 4, 5 are good candidate values. Once again (top panels of Figure 3)
l = 3, the value suggested by the criterion proposed in [8], is not the best
choice. Although in this case, neither HICA is able to exactly catch the right
configuration, HICA with K = 3 and l = 4 of course provides the closest rep-
resentation: second and third components are very well detected with some
bias in the estimation of the first component.

These simulated examples suggest that when dealing non-Gaussian latent
components (even non-orthogonal and/or dependent) HICA always performs
better than or equally to PCA, ICA, and Treelets. Moreover, as expected by
theory, they discourage the use of PCA and ICA when components are depen-
dent and the use of PCA and Treelets when components are non-orthogonal.
A summary of the “win situations” for the four methods that can be drawn
from the simulations is reported in Table 1.

Simulations also show that the criterion proposed in [8], for the choice of
K and l might take to a misdetection of the model. For a given value of K
the more proper approach seems indeed to consider as candidate values for
the level of aggregation l all values providing the maximal energy and not
necessarily the minimum one.
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Figure 2: Scenario C: Non-orthogonal and independent latent components.
Top panels report the basis elements provided by Treelets (left) and HICA
(right) when K = 3 and l = 3. Middle panels report the basis elements pro-
vided by Treelets (left) and HICA (right) whenK = 3 and l = 4. The bottom
panels report the energy as a function of l and K for Treelets decompositions
(left) and HICA decompositions (right).
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Figure 3: Scenario D: Non-orthogonal and dependent latent components.
Top panels report the basis elements provided by Treelets (left) and HICA
(right) when K = 3 and l = 3. Middle panels report the basis elements pro-
vided by Treelets (left) and HICA (right) whenK = 3 and l = 4. The bottom
panels report the energy as a function of l and K for Treelets decompositions
(left) and HICA decompositions (right).
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Table 1: Summary of the “win situations” for PCA, ICA, Treelets, and
HICA with respect to orthogonality/non-orthogonality (O/NO) and depen-
dence/independence (D/I) of the latent components.

PCA ICA Treelets HICA
A: O - I win win win win
B: O - D win win
C: NO - I win win
D: NO - D win

6. Case study: Analysis of EEG signals

We now apply HICA to a BSS real data problem by analyzing EEG traces
of patients affected by alcoholism. The multi-resolution and non-orthogonal
properties characterizing the HICA solution, allow to obtain interpretable
and meaningful results that provide noticeable improvements in terms of
phenomenological interpretation.

EEG datasets are widely studied through statistical methods [12, 14].
The data analyzed in this paper are courtesy of the online UCI Machine
Learning Repository [1]. For each patient in the study, measurements from
61 electrodes out of 64 placed on the scalp are available. The electrodes are
located at standard sites [17, 20]. For each electrode, the recorded signal
measures the electrode electric potential with respect to some reference elec-
trode and describes the electrical activity of the brain in the neighborhood
of the electrode across time. We observe these signal at n = 256 equally
spaced instants along a time span of 1 second. This sample represents the
n realizations of a random vector X in Rp with p = 61, that is the number
of electrodes considered in the study. The analysis consist in the decompo-
sition of the original variables through model (2). We implement the HICA
algorithm to solve this BSS problem and we compare the results obtained
by HICA with those provided by Treelets, ICA and PCA. As an example, in
Figure 4 we show some relevant basis elements identified by these methods
for one patient. The subject was exposed to two stimuli. Specifically, the
patient was shown two pictures chosen from the 1980 Snodgrass and Van-
derwart set presented in [18]. The two stimuli were presented in a matched
condition (i.e., the subject has been asked to look at the same picture twice).

We consider K = 5 components, since it is sufficient to explain a great
portion of variability and to show interesting and interpretable results. For
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PCA we show the first 5 principal components, for ICA the results obtained
with the fastICA algorithm selecting 5 sources, while for Treelets and HICA
we need to select a level. For both methods the energy for K = 5 reaches the
maximum at l = p− 6 = 55. Hence, as discussed in Section 3, any level from
l = p− 6 = 55 to l = p− 1 = 60 is a good candidate, and the choice should
be problem-specific. In this case-study we aim to obtain a decomposition
with basis elements defined on few electrodes, which can identify little brain
regions devoted to specific features. For this reason we choose to select the
level l = 55 and we show the 5 components found by the energy criterium.
Since l = p− 6, we expect to find basis elements whose supports are defined
on no more than six different sets of variables.

Multi-resolution methods yield localized basis elements. This is a very
interesting property, since it highlights components defined on localized brain
regions and allows to identify more precisely the areas involved in the task.
PCA and ICA, instead, yield more general and unspecific components, pos-
sibly difficult to read. Even when they seem to catch localized information,
basis elements are not so clearly defined since they involve the entire set
of variables. This is apparent in the fourth row of Figure 4, where HICA
and Treelets select a single electrode (i.e., a single variable). This electrode
clearly represents some noise either related to facial muscles activity or due
to an unexpected saturation of the electrode. The related components iden-
tified by ICA and PCA, even though highlighting the same electrode, present
more complex loadings diffused on other electrodes. The first row of Figure
4 reveals very similar components for HICA and and Treelets. Both anal-
ysis identify the associative activity in the frontal brain area, that is the
area which processes the information related to similarities and differences
between the two pictures. This crucial component is not caught by PCA
and ICA. The main difference between HICA and Treelets regards instead
the second and the fifth row in Figure 4. While Treelets yield an unfocused
result, with components involving all the occipital cerebral hemisphere (i.e.,
one component averaging over the entire occipital part and the other con-
trasting the right and the left activity in the occipital part), HICA splits
this information in two separate parts. The HICA component shown in the
second row is related to the primary visual cortex, the first area reached by
visual information, which analyzes it in terms of shape and pattern recog-
nition. Then the information flow goes to the internal area of the occipital
hemisphere, which associates to the stimulus specific features like color, di-
rection or origin. This area is identified only by HICA, specifically by the
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component in the fifth row of Figure 4.

Figure 4: First five loadings found out by HICA (first column on the left),
Treelets (second column), ICA (third column) and PCA (fourth column).

As suggested by a referee, we can also evaluate the mutual information
reduction (MIR) index, in order to verify the efficiency of decomposition of
EEG signals [5]. MIR is evaluated efficiently only in those cases when a
complete decomposition is performed (i.e., K = p). We, instead, perform
also dimension reduction, and thus we could not directly compute the MIR
associated to the decomposition presented above. To make a comparison via
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MIR we therefore performed a complete decompositions, and these could in
principle be different from those described in the paper, where they are ob-
tained with non-orthogonal basis, like those provided by fastICA and HICA.
Hence we first check that the main features illustrated were still present in
the complete decompositions. Then we evaluate the MIR of the complete
decompositions, obtaining results in support of HICA. Indeed HICA, with
a MIR of 9 Kb/s, outperforms PCA and Treelets, both providing a MIR
around 0.88 Kb/s. Of course HICA provides a MIR lower than fastICA
(28.75 Kb/s), since fastICA is precisely designed to find a data representa-
tion minimizing the mutual information of the sources. This shows that, with
respect to its “multi-resolution” competitor (i.e., Treelets), HICA provides a
better decomposition in terms of independence of the sources, in addition to
a more interpretable basis elements.

7. Conclusion

We presented a new method for the construction of a multi-resolution non-
orthogonal data-driven basis, appropriate to deal with high-dimensional and
complex data. Non-orthogonality allows for basis elements with a physical
interpretation, while multi-resolution provides basis elements able to catch
very localized data features. The new HICA algorithm is obtained by merg-
ing the Treelet and the ICA algorithms. We illustrated the details of the
HICA algorithm and propose a forward selection strategy to perform data-
driven dimensional reduction with a non-orthogonal basis. Both the HICA
algorithm and the dimensional reduction procedure have been implemented
in the R package fastHICA [16].

Furthermore, we proved the consistency of the HICA algorithm. Indeed
we proved that when the primitive variables are dependent according to
a block structure such that between-block dependencies are weaker than
within-block dependencies, HICA identifies the underlying block structure.
The analysis of synthetic data suggests that when dealing non-Gaussian la-
tent components (even non-orthogonal and/or dependent) HICA always per-
forms better than or equally to PCA, ICA, and Treelets supporting the claim
that HICA inherits the returns of both ICA and Treelets over PCA. More-
over, as expected by theory, simulations discourage the use of PCA and ICA
when the latent components are dependent and the use of PCA and Treelets
when the latent components are non-orthogonal. Simulations also show that
the criterion proposed in [8], for the choice of K and l might take to a mis-
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detection of the model. For a given value of K the more proper approach
seems indeed to consider as candidate values for the level of aggregation l
all values providing the maximal energy and not necessarily the minimum
one. Finally, the analysis of EEG traces shows the possible returns of using
in real applications methods providing multi-resolution and non-orthogonal
representations of the phenomenon under investigation.

Appendix A: Proofs

Proof of Lemma 1. For simplicity we consider T and E to be zero mean
and unit variance random variables. The kurtosis of a zero mean and unit
variance random variable Y is kurt(Y ) = E[Y 4] − 3. If Y is gaussian,
kurt(Y ) = 0. Moreover if Y1 and Y2 are independent random variables and
α e β real parameters, kurt(αY1 + βY2) = α4kurt(Y1) + β4kurt(Y2). Hence:

|kurt(w′Z)| = |kurt(w1T + w2E)| =
= |w4

1kurt(T ) + w4
2kurt(E)| = |w4

1kurt(T )|.
(7)

Since kurt(T ) ̸= 0, (7) is maximized by w1 = ±1 (and w2 = 0 because w is
a vector of unitary norm). �

Proof of Lemma 2. Suppose that the aggregation between variables fol-
lows the scheme:
{· · · {{X1, X2}, X3} · · · , Xp}. Hence, at level l = 1 we aggregate:

X1 = σ2T + σ2
eE1,

X2 = σ2T + σ2
eE2.

The whitening procedure of ICA, transforms the vector X = (X1 X2)
′ in a

new vector Z = (Z1 Z2)
′ such that

Z1 =
X1+X2

a
= 2σ2T+σ2

e(E1+E2)
a

,

Z2 =
X1−X2

b
= σ2

e(E1−E2)
b

,

where a and b are, respectively, the standard deviations of X1 + X2 and
X1−X2. We observe that Z1 is a non gaussian variable, while Z2 is gaussian.
Because of Lemma 1, the rotation found by fastICA in the whitened space
coincides with the identity matrix. According to the selection criterium and
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taking into account the normalization of the matrix C̃(1) in step 2 of the
HICA algorithm, we obtain c

(1)
1 = ( 1√

2
1√
2
0 · · · 0)′ and Y

(1)
1 = 1√

2
X1+

1√
2
X2 =

2√
2
σ2T + σ2

e√
2
E(1), where E(1) = E1 + E2 and V(E(1)) ≤ V(E1) + V(E2) ≤ 2.

Furthermore V(Y (1)
1 ) ≤ V( 2√

2
σ2T )+V( σ2

e√
2
E

(1)
1 ) ≤

√
2(σ2+σ2

e). At level l = 2
we aggregate:

Y
(1)
1 = 2√

2
σ2T + σ2

e√
2
E

(l)
1 ,

X3 = σ2T + σ2
eE3.

The whitening procedure provides a vector Z = (Z1 Z2)
′ such that

Z1 =
√
2Y

(1)
1 +X3

a′
=

3σ2T+σ2
e(E

(1)
1 +E3)

a′
,

Z2 =
Y

(1)
1 −

√
2X3

b′
=

√
2σ2

e(E
(1)
1 /2−E3)

b′
,

where a′ and b′ are, respectively, the standard deviations of
√
2Y

(1)
1 +X3 and

Y
(1)
1 −

√
2X3. Once again, Lemma 1, implies that the rotation provided by

fastICA is the identity and according to the selection criterium and to the
normalization of C̃(2) we have

c
(2)
1 =



1√
2

0
1√
2

0

0 1
0 0
...

...
0 0


[ √

2
3

1√
3

]
=



1√
3
1√
3
1√
3

0
...
0


,

and Y
(2)
1 =

√
2
3
Y

(1)
1 + 1√

3
X3 = 3√

3
σ2T + σ2

e√
3
E

(2)
1 , where E

(2)
1 = E

(1)
1 + E3

and V(E(2)
1 ) ≤ V(E(1)

1 ) + V(E3) ≤ 3. Moreover V(Y (2)
1 ) ≤ V( 3√

3
σ2T ) +

V( σ2
e√
3
E

(2)
1 ) ≤

√
3(σ2 + σ2

e). Iterating, we obtain the lemma when the aggre-

gation scheme is {· · · {{X1, X2}, X3} · · · , Xp}.
For a general aggregation scheme, at the level l + 1 = 2, ..., p − 1 we

aggregate:

Y
(l)
i = m√

m
σ2T + σ2

e√
m
E

(l)
i ,

Y
(l)
j = n√

n
σ2T + σ2

e√
n
E

(l)
j ,
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with Al
i ∩ Al

j = ∅ and m + n = l + 2. The whitening procedure provides a
vector Z = (Z1 Z2)

′ such that

Z1 =
√
mY

(l)
i +

√
nY

(l)
j

a′′
=

(m+n)σ2T+σ2
e(E

(l)
i +E

(l)
j )

a′′
,

Z2 =
√
nY

(l)
i −

√
mY

(l)
j

b′′
=

√
mn(E

(l)
i /m−E

(l)
j /n)

b′′
,

where a′′ and b′′ are, respectively, the standard deviations of
√
mY

(l)
i +

√
nY

(l)
j

and
√
nY

(l)
i −

√
mY

(l)
j . Then

c
(l+1)
i =



0 0
...

...
0 0
1√
m

0
...

...
1√
m

0

0 0
...

...
0 0
0 1√

n
...

...
0 1√

n

0 0
...

...
0 0



[ √
m

m+n√
n

m+n

]
=



0
...
0
1√
m+n
...
1√
m+n

0
...
0
1√
m+n
...
1√
m+n

0
...
0



,

and Y
(l+1)
i =

√
mY

(l)
i +

√
nY

(l)
j√

m+n
= m+n√

m+n
σ2T + σ2

e√
m+n

E
(l+1)
i , where E

(l+1)
i = E

(l)
i +

E
(l)
j and V(E(l+1)

i ) ≤ V(E(l)
i ) + V(E(l)

j ) ≤ m + n. Moreover V(Y (l+1)
i ) ≤

V( m+n√
m+n

σ2T ) + V( σ2
e√

m+n
E

(l+1)
i ) ≤

√
m+ n(σ2 + σ2

e). The result now follows
by induction. �
Proof of Theorem 3. Assume that, at a generic level l < p − K of the
tree, random variables from different blocks have not been merged. Hence,
from Lemma 2, any two variables in the active set A have the form:

Y
(l)
u = m√

m
σ2
uTu +

σ2
e√
m
E

(l)
u ,

Y
(l)
v = n√

n
σ2
vTv +

σ2
e√
n
E

(l)
v ,
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with c
(l)
u =

(
0 · · · 0 1√

m
· · · 1√

m
0 · · · 0

)′
,

c
(l)
v =

(
0 · · · 0 1√

n
· · · 1√

n
0 · · · 0

)′
and c

(l)
u , c

(l)
v have non-zero elements relative

to two disjoint subsets of indexes Al
u, A

l
v with |Al

u| = m, |Al
v| = n. Let

δk = σe

σk
. We now consider two different cases. In the first case Al

u ⊆ Fi e

Al
v ⊆ Fj (i ̸= j). Hence:

Y
(l)
u = m√

m
σ2
i Ti +

σ2
e√
m
E

(l)
i ,

Y
(l)
v = n√

n
σ2
jTj +

σ2
e√
n
E

(l)
j .

Let
√
mσ2

i + σ̃2
m = V(Y (l)

u ) (σ̃2
m ≤

√
mσ2

e) and
√
nσ2

i + σ̃2
n = V(Y (l)

v ) (σ̃2
n ≤√

nσ2
e). In this case, the distance covariance and distance correlation between

Y
(l)
u and Y

(l)
v are, respectively:

V(Y (l)
u , Y

(l)
v ) ≤ V( m√

m
σ2
i Ti,

n√
n
σ2
jTj)+

+V( σ2
e√
m
E

(l)
i , σ2

e√
n
E

(l)
j ) ≤ 4

√
mnσij,

R(Y
(l)
u , Y

(l)
v ) = V(Y (l)

u ,Y
(l)
v )√

V(Y (l)
u )V(Y (l)

v )
≤

≤
4
√
mnσij√√

mσ2
i +σ̃2

m

√√
nσ2

j+σ̃2
n

=

=
4
√
mnσij

4
√
mnσiσj

√
1+

σ̃2
m√

mσ2
i

√
1+

σ̃2
n√

nσ2
j

≤ σij

σiσj
.

In the second case Al
u, A

l
v are subsets of the same Fk. Hence

Y
(l)
u = m√

m
σ2
kTk +

σ2
e√
m
E

(l)
k1 ,

Y
(l)
v = n√

n
σ2
kTk +

σ2
e√
n
E

(l)
k2 .

Let 4
√
mnσ2

kc(σe) = V(Y (l)
u , Y

(l)
v ) ≤ 4

√
mnσ2

k, with c(σe) a constant such that

0 < c(σe) ≤ 1 and c(σe)
σe→0−→ 1. Furthermore V(Y (l)

u ) ≤
√
m(σ2

k + σ2
e) and

V(Y (l)
v ) ≤

√
n(σ2

k + σ2
e). Therefore the distance correlation between Y

(l)
u and
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Y
(l)
v are, respectively:

R(Y
(l)
u , Y

(l)
v ) = V(Y (l)

u ,Y
(l)
v )√

V(Y (l)
u )V(Y (l)

v )
≥

≥
4
√
mnσ2

kc(σe)√√
m(σ2

k+σ2
e)
√√

n(σ2
k+σ2

e)
≥

≥
4
√
mnσ2

kc(σe)

4
√
mnσ2

k

√
(1+δ2k)

2 = c(σe)

1+δ2k
.

Since, from (5), the maximum distance correlation between variables be-
longing to different blocks is lower than the minimum distance correlation
between variables belonging to the same block, aggregation involves variables
relative to the same block and this proves the theorem.

Furthermore, if the noise variance is not too large, the K dimensional
space that explains the most part of the variability is that spanned by the K
basis elements related to the K blocks. Then the energy criterium identifies
those elements. �
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