845 research outputs found

    Synthesis of Satellite Microwave Observations for Monitoring Global Land-Atmosphere CO2 Exchange

    Get PDF
    This dissertation describes the estimation, error quantification, and incorporation of land surface information from microwave satellite remote sensing for modeling global ecosystem land-atmosphere net CO2 exchange. Retrieval algorithms were developed for estimating soil moisture, surface water, surface temperature, and vegetation phenology from microwave imagery timeseries. Soil moisture retrievals were merged with model-based soil moisture estimates and incorporated into a light-use efficiency model for vegetation productivity coupled to a soil decomposition model. Results, including state and uncertainty estimates, were evaluated with a global eddy covariance flux tower network and other independent global model- and remote-sensing based products

    Monitoring soil moisture dynamics and energy fluxes using geostationary satellite data

    Get PDF

    Surface Soil Moisture Retrievals from Remote Sensing:Current Status, Products & Future Trends

    Get PDF
    Advances in Earth Observation (EO) technology, particularly over the last two decades, have shown that soil moisture content (SMC) can be measured to some degree or other by all regions of the electromagnetic spectrum, and a variety of techniques have been proposed to facilitate this purpose. In this review we provide a synthesis of the efforts made during the last 20 years or so towards the estimation of surface SMC exploiting EO imagery, with a particular emphasis on retrievals from microwave sensors. Rather than replicating previous overview works, we provide a comprehensive and critical exploration of all the major approaches employed for retrieving SMC in a range of different global ecosystems. In this framework, we consider the newest techniques developed within optical and thermal infrared remote sensing, active and passive microwave domains, as well as assimilation or synergistic approaches. Future trends and prospects of EO for the accurate determination of SMC from space are subject to key challenges, some of which are identified and discussed within. It is evident from this review that there is potential for more accurate estimation of SMC exploiting EO technology, particularly so, by exploring the use of synergistic approaches between a variety of EO instruments. Given the importance of SMC in Earth’s land surface interactions and to a large range of applications, one can appreciate that its accurate estimation is critical in addressing key scientific and practical challenges in today’s world such as food security, sustainable planning and management of water resources. The launch of new, more sophisticated satellites strengthens the development of innovative research approaches and scientific inventions that will result in a range of pioneering and ground-breaking advancements in the retrievals of soil moisture from space

    Ground, Proximal, and Satellite Remote Sensing of Soil Moisture

    Get PDF
    Soil moisture (SM) is a key hydrologic state variable that is of significant importance for numerous Earth and environmental science applications that directly impact the global environment and human society. Potential applications include, but are not limited to, forecasting of weather and climate variability; prediction and monitoring of drought conditions; management and allocation of water resources; agricultural plant production and alleviation of famine; prevention of natural disasters such as wild fires, landslides, floods, and dust storms; or monitoring of ecosystem response to climate change. Because of the importance and wide‐ranging applicability of highly variable spatial and temporal SM information that links the water, energy, and carbon cycles, significant efforts and resources have been devoted in recent years to advance SM measurement and monitoring capabilities from the point to the global scales. This review encompasses recent advances and the state‐of‐the‐art of ground, proximal, and novel SM remote sensing techniques at various spatial and temporal scales and identifies critical future research needs and directions to further advance and optimize technology, analysis and retrieval methods, and the application of SM information to improve the understanding of critical zone moisture dynamics. Despite the impressive progress over the last decade, there are still many opportunities and needs to, for example, improve SM retrieval from remotely sensed optical, thermal, and microwave data and opportunities for novel applications of SM information for water resources management, sustainable environmental development, and food security

    Data Fusion and Synergy of Active and Passive Remote Sensing; An application for Freeze Thaw Detections

    Full text link
    There has been a recent evolvement in the field of remote sensing after increase of number satellites and sensors data which could be fused to produce new data and products. These efforts are mainly focused on using of simultaneous observations from different platforms with different spatial and temporal resolutions. The research dissertation aims to enhance the synergy use of active and passive microwave observations and examine the results in detection land freeze and thaw (FT) predictions. Freeze thaw cycles particularly in high-latitude regions have a crucial role in many applications such as agriculture, biogeochemical transitions, hydrology and ecosystem studies. The dielectric change between frozen ice and melted water can dramatically affect the brightness temperature (TB) signal when water transits from the liquid to the solid phase which makes satellite-based microwave remote sensing unique for characterizing the surface freeze thaw status. Passive microwave (PMW) sensors with coarse resolution (about 25 km) but more frequent observations (at least twice a day and more frequent in polar regions) have been successfully utilized to define surface state in terms of freeze and thaw in the past. Alternatively, active microwave (AMW) sensors provide much higher spatial resolution (about 100 m or less) though with less temporal resolution (each 12 days). Therefore, an integration of microwave data coming from different sensors may provide a more complete estimation of land freeze thaw state. In this regard, the overarching goal of this research is to explore estimating high spatiotemporal freeze and thaw states using the combination of passive and active microwave observations. To obtain a high temporal resolution TB, this study primarily builds an improved diurnal variation of land surface temperature from integration of infrared sensors. In the next step, a half an hourly diurnal cycle of TB based on fusion of different passive sensors is estimated. It should be mentioned that each instrument has its own footprint, resolution, viewing angle, as well as frequency and consequently their data need to be harmonized in order to be combined. Later, data from an AMW sensor with fine spatial resolution are merged and compared to the corresponding passive data in order to find a relation between TB and backscatter data. Subsequently, PMW TB map can be downscaled to a higher spatial resolution or AMW backscatter timeseries can be generalized to high temporal resolution. Eventually, the final high spatiotemporal resolution TB product is used to examine the freeze thaw state for case studies areas in Northern latitudes

    A Review of Global Satellite-Derived Snow Products

    Get PDF
    Snow cover over the Northern Hemisphere plays a crucial role in the Earth's hydrology and surface energy balance, and modulates feedbacks that control variations of global climate. While many of these variations are associated with exchanges of energy and mass between the land surface and the atmosphere, other expected changes are likely to propagate downstream and affect oceanic processes in coastal zones. For example, a large component of the freshwater flux into the Arctic Ocean comes from snow melt. The timing and magnitude of this flux affects biological and thermodynamic processes in the Arctic Ocean, and potentially across the globe through their impact on North Atlantic Deep Water formation. Several recent global remotely sensed products provide information at unprecedented temporal, spatial, and spectral resolutions. In this article we review the theoretical underpinnings and characteristics of three key products. We also demonstrate the seasonal and spatial patterns of agreement and disagreement amongst them, and discuss current and future directions in their application and development. Though there is general agreement amongst these products, there can be disagreement over certain geographic regions and under conditions of ephemeral, patchy and melting snow
    corecore