89 research outputs found

    In-vehicle communication networks : a literature survey

    Get PDF
    The increasing use of electronic systems in automobiles instead of mechanical and hydraulic parts brings about advantages by decreasing their weight and cost and providing more safety and comfort. There are many electronic systems in modern automobiles like antilock braking system (ABS) and electronic brakeforce distribution (EBD), electronic stability program (ESP) and adaptive cruise control (ACC). Such systems assist the driver by providing better control, more comfort and safety. In addition, future x-by-wire applications aim to replace existing braking, steering and driving systems. The developments in automotive electronics reveal the need for dependable, efficient, high-speed and low cost in-vehicle communication. This report presents the summary of a literature survey on in-vehicle communication networks. Different in-vehicle system domains and their requirements are described and main invehicle communication networks that have been used in automobiles or are likely to be used in the near future are discussed and compared with key references

    Safety-Critical Communication in Avionics

    Get PDF
    The aircraft of today use electrical fly-by-wire systems for manoeuvring. These safety-critical distributed systems are called flight control systems and put high requirements on the communication networks that interconnect the parts of the systems. Reliability, predictability, flexibility, low weight and cost are important factors that all need to be taken in to consideration when designing a safety-critical communication system. In this thesis certification issues, requirements in avionics, fault management, protocols and topologies for safety-critical communication systems in avionics are discussed and investigated. The protocols that are investigated in this thesis are: TTP/C, FlexRay and AFDX, as a reference protocol MIL-STD-1553 is used. As reference architecture analogue point-to-point is used. The protocols are described and evaluated regarding features such as services, maturity, supported physical layers and topologies.Pros and cons with each protocol are then illustrated by a theoretical implementation of a flight control system that uses each protocol for the highly critical communication between sensors, actuators and flight computers.The results show that from a theoretical point of view TTP/C could be used as a replacement for a point-to-point flight control system. However, there are a number of issues regarding the physical layer that needs to be examined. Finally a TTP/C cluster has been implemented and basic functionality tests have been conducted. The plan was to perform tests on delays, start-up time and reintegration time but the time to acquire the proper hardware for these tests exceeded the time for the thesis work. More advanced testing will be continued here at Saab beyond the time frame of this thesis

    Services for safety-critical applications on dual-scheduled TDMA networks

    Get PDF
    Tese de doutoramento. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 200

    Fault Tolerant Services for Safe In-Car Embedded Systems

    Get PDF
    http://www.taylorandfrancis.com/Due to the increasing criticality of the functions in terms of safety, embedded automotive systems must now respect stringent dependability constraints despite the faults that may occur in a very harsh environment. In a context where critical functions are distributed over the network, the communication system plays a major role. First, we discuss the main services and functionalities that a communication system should offer for easying the design of fault-tolerant applications in the automotive context. Then, we review the features of the protocols that are currently considered for being used and, finally, we highlight areas where developments are still needed

    Trends in Automotive Communication Systems

    Get PDF
    Extended and updated version of the 2005 IEEE Proceedings paper with the same title.The use of networks for communications between the Electronic Control Units (ECU) of a vehicle in production cars dates from the beginning of the 90s. The specific requirements of the different car domains have led to the development of a large number of automotive networks such as LIN, J1850, CAN, FlexRay, MOST, etc.. This chapter first introduces the context of in-vehicle embedded systems and, in particular, the requirements imposed on the communication systems. Then, a review of the most widely used, as well as the emerging automotive networks is given. Next, the current efforts of the automotive industry on middleware technologies which may be of great help in mastering the heterogeneity, are reviewed, with a special focus on the proposals of the AUTOSAR consortium. Finally, we highlight future trends in the development of automotive communication systems

    Trends in Automotive Communication Systems

    Get PDF
    http://www.ieee.org/International audienceThe use of networks for communications between the Electronic Control Units (ECU) of a vehicle in production cars dates from the beginning of the 90s. The specific requirements of the different car domains have led to the development of a large number of automotive networks such as LIN, J1850, CAN, TTP/C, FlexRay, MOST, IDB1394, etc.. This paper first introduces the context of in-vehicle embedded systems and, in particular, the requirements imposed on the communication systems. Then, a comprehensive review of the most widely used, as well as the emerging automotive networks is given. Next, the current efforts of the automotive industry on middleware technologies, which may be of great help in mastering the heterogeneity, are reviewed. Finally, we highlight future trends in the development of automotive communication systems

    Design of automotive X-by-Wire systems

    Get PDF
    http://www.taylorandfrancis.com/X-by-Wire is a generic term referring to the replacement of mechanical or hydraulic systems, such as braking or steering, by electronic ones. In this chapter, we analyze the real-time and dependability constraints of X-by-Wire systems, review the fault-tolerant services that are needed and the communication protocols (TTP/C, FlexRay and TTCAN) considered for use in such systems. Using a Steer-by-Wire case-study, we detail the design principles and verification methods that can be used to ensure the stringent constraints of X-by-Wire systems

    Tolerância a falhas em sistemas de comunicação de tempo-real flexíveis

    Get PDF
    Nas últimas décadas, os sistemas embutidos distribuídos, têm sido usados em variados domínios de aplicação, desde o controlo de processos industriais até ao controlo de aviões e automóveis, sendo expectável que esta tendência se mantenha e até se intensifique durante os próximos anos. Os requisitos de confiabilidade de algumas destas aplicações são extremamente importantes, visto que o não cumprimento de serviços de uma forma previsível e pontual pode causar graves danos económicos ou até pôr em risco vidas humanas. A adopção das melhores práticas de projecto no desenvolvimento destes sistemas não elimina, por si só, a ocorrência de falhas causadas pelo comportamento não determinístico do ambiente onde o sistema embutido distribuído operará. Desta forma, é necessário incluir mecanismos de tolerância a falhas que impeçam que eventuais falhas possam comprometer todo o sistema. Contudo, para serem eficazes, os mecanismos de tolerância a falhas necessitam ter conhecimento a priori do comportamento correcto do sistema de modo a poderem ser capazes de distinguir os modos correctos de funcionamento dos incorrectos. Tradicionalmente, quando se projectam mecanismos de tolerância a falhas, o conhecimento a priori significa que todos os possíveis modos de funcionamento são conhecidos na fase de projecto, não os podendo adaptar nem fazer evoluir durante a operação do sistema. Como consequência, os sistemas projectados de acordo com este princípio ou são completamente estáticos ou permitem apenas um pequeno número de modos de operação. Contudo, é desejável que os sistemas disponham de alguma flexibilidade de modo a suportarem a evolução dos requisitos durante a fase de operação, simplificar a manutenção e reparação, bem como melhorar a eficiência usando apenas os recursos do sistema que são efectivamente necessários em cada instante. Além disto, esta eficiência pode ter um impacto positivo no custo do sistema, em virtude deste poder disponibilizar mais funcionalidades com o mesmo custo ou a mesma funcionalidade a um menor custo. Porém, flexibilidade e confiabilidade têm sido encarados como conceitos conflituais. Isto deve-se ao facto de flexibilidade implicar a capacidade de permitir a evolução dos requisitos que, por sua vez, podem levar a cenários de operação imprevisíveis e possivelmente inseguros. Desta fora, é comummente aceite que apenas um sistema completamente estático pode ser tornado confiável, o que significa que todos os aspectos operacionais têm de ser completamente definidos durante a fase de projecto. Num sentido lato, esta constatação é verdadeira. Contudo, se os modos como o sistema se adapta a requisitos evolutivos puderem ser restringidos e controlados, então talvez seja possível garantir a confiabilidade permanente apesar das alterações aos requisitos durante a fase de operação. A tese suportada por esta dissertação defende que é possível flexibilizar um sistema, dentro de limites bem definidos, sem comprometer a sua confiabilidade e propõe alguns mecanismos que permitem a construção de sistemas de segurança crítica baseados no protocolo Controller Area Network (CAN). Mais concretamente, o foco principal deste trabalho incide sobre o protocolo Flexible Time-Triggered CAN (FTT-CAN), que foi especialmente desenvolvido para disponibilizar um grande nível de flexibilidade operacional combinando, não só as vantagens dos paradigmas de transmissão de mensagens baseados em eventos e em tempo, mas também a flexibilidade associada ao escalonamento dinâmico do tráfego cuja transmissão é despoletada apenas pela evolução do tempo. Este facto condiciona e torna mais complexo o desenvolvimento de mecanismos de tolerância a falhas para FTT-CAN do que para outros protocolos como por exemplo, TTCAN ou FlexRay, nos quais existe um conhecimento estático, antecipado e comum a todos os nodos, do escalonamento de mensagens cuja transmissão é despoletada pela evolução do tempo. Contudo, e apesar desta complexidade adicional, este trabalho demonstra que é possível construir mecanismos de tolerância a falhas para FTT-CAN preservando a sua flexibilidade operacional. É também defendido nesta dissertação que um sistema baseado no protocolo FTT-CAN e equipado com os mecanismos de tolerância a falhas propostos é passível de ser usado em aplicações de segurança crítica. Esta afirmação é suportada, no âmbito do protocolo FTT-CAN, através da definição de uma arquitectura tolerante a falhas integrando nodos com modos de falha tipo falha-silêncio e nodos mestre replicados. Os vários problemas resultantes da replicação dos nodos mestre são, também eles, analisados e várias soluções são propostas para os obviar. Concretamente, é proposto um protocolo que garante a consistência das estruturas de dados replicadas a quando da sua actualização e um outro protocolo que permite a transferência dessas estruturas de dados para um nodo mestre que se encontre não sincronizado com os restantes depois de inicializado ou reinicializado de modo assíncrono. Além disto, esta dissertação também discute o projecto de nodos FTT-CAN que exibam um modo de falha do tipo falha-silêncio e propõe duas soluções baseadas em componentes de hardware localizados no interface de rede de cada nodo, para resolver este problema. Uma das soluções propostas baseiase em bus guardians que permitem a imposição de comportamento falhasilêncio nos nodos escravos e suportam o escalonamento dinâmico de tráfego na rede. A outra solução baseia-se num interface de rede que arbitra o acesso de dois microprocessadores ao barramento. Este interface permite que a replicação interna de um nodo seja efectuada de forma transparente e assegura um comportamento falha-silêncio quer no domínio temporal quer no domínio do valor ao permitir transmissões do nodo apenas quando ambas as réplicas coincidam no conteúdo das mensagens e nos instantes de transmissão. Esta última solução está mais adaptada para ser usada nos nodos mestre, contudo também poderá ser usada nos nodos escravo, sempre que tal se revele fundamental.Distributed embedded systems (DES) have been widely used in the last few decades in several application fields, ranging from industrial process control to avionics and automotive systems. In fact, it is expectable that this trend will continue over the years to come. In some of these application domains the dependability requirements are of utmost importance since failing to provide services in a timely and predictable manner may cause important economic losses or even put human life in risk. The adoption of the best practices in the design of distributed embedded systems does not fully avoid the occurrence of faults, arising from the nondeterministic behavior of the environment where each particular DES operates. Thus, fault-tolerance mechanisms need to be included in the DES to prevent possible faults leading to system failure. To be effective, fault-tolerance mechanisms require an a priori knowledge of the correct system behavior to be capable of distinguishing them from the erroneous ones. Traditionally, when designing fault-tolerance mechanisms, the a priori knowledge means that all possible operational modes are known at system design time and cannot adapt nor evolve during runtime. As a consequence, systems designed according to this principle are either fully static or allow a small number of operational modes only. Flexibility, however, is a desired property in a system in order to support evolving requirements, simplify maintenance and repair, and improve the efficiency in using system resources by using only the resources that are effectively required at each instant. This efficiency might impact positively on the system cost because with the same resources one can add more functionality or one can offer the same functionality with fewer resources. However, flexibility and dependability are often regarded as conflicting concepts. This is so because flexibility implies the ability to deal with evolving requirements that, in turn, can lead to unpredictable and possibly unsafe operating scenarios. Therefore, it is commonly accepted that only a fully static system can be made dependable, meaning that all operating conditions are completely defined at pre-runtime. In the broad sense and assuming unbounded flexibility this assessment is true, but if one restricts and controls the ways the system could adapt to evolving requirements, then it might be possible to enforce continuous dependability. This thesis claims that it is possible to provide a bounded degree of flexibility without compromising dependability and proposes some mechanisms to build safety-critical systems based on the Controller Area Network (CAN). In particular, the main focus of this work is the Flexible Time-Triggered CAN protocol (FTT-CAN), which was specifically developed to provide such high level of operational flexibility, not only combining the advantages of time- and event-triggered paradigms but also providing flexibility to the time-triggered traffic. This fact makes the development of fault-tolerant mechanisms more complex in FTT-CAN than in other protocols, such as TTCAN or FlexRay, in which there is a priori static common knowledge of the time-triggered message schedule shared by all nodes. Nevertheless, as it is demonstrated in this work, it is possible to build fault-tolerant mechanisms for FTT-CAN that preserve its high level of operational flexibility, particularly concerning the time-triggered traffic. With such mechanisms it is argued that FTT-CAN is suitable for safetycritical applications, too. This claim was validated in the scope of the FTT-CAN protocol by presenting a fault-tolerant system architecture with replicated masters and fail-silent nodes. The specific problems and mechanisms related with master replication, particularly a protocol to enforce consistency during updates of replicated data structures and another protocol to transfer these data structures to an unsynchronized node upon asynchronous startup or restart, are also addressed. Moreover, this thesis also discusses the implementations of fail-silence in FTTCAN nodes and proposes two solutions, both based on hardware components that are attached to the node network interface. One solution relies on bus guardians that allow enforcing fail-silence in the time domain. These bus guardians are adapted to support dynamic traffic scheduling and are fit for use in FTT-CAN slave nodes, only. The other solution relies on a special network interface, with duplicated microprocessor interface, that supports internal replication of the node, transparently. In this case, fail-silence can be assured both in the time and value domain since transmissions are carried out only if both internal nodes agree on the transmission instant and message contents. This solution is well adapted for use in the masters but it can also be used, if desired, in slave nodes

    A novel framework for vehicle functions identification by exploiting machine learning techniques

    Get PDF
    openNowadays vehicles architectures exploit various automotive network protocols that bring information between the implemented Electronic Central Units (ECUs). Exchanged data are encoded and only Original Equipment Manufacturers (OEMs) and T1 (Tier One) producers know their meaning and how decode them. A software model will be developed in order to detect vehicles functions without having database files associated to network signals. Furthermore, the model will behave like an ECU by producing output signals related to input ones. Machine Learning techniques will be exploited, in particular Clustering task will be exploited to understand not a priori known vehicle functions and a Neural Network will be implemented to emulate an ECU behavior. Signals will be grouped in five different types of vehicle functions and the model will predict the ECU’s output data with high accuracy. Applications concerning the developed project are, in primis, to fix up possible vehicles electronics faults. In addiction, vehicle predictive maintenance could be done. Another application, could be to check by OEMs if T1 manufacturers comply the required specification.Nowadays vehicles architectures exploit various automotive network protocols that bring information between the implemented Electronic Central Units (ECUs). Exchanged data are encoded and only Original Equipment Manufacturers (OEMs) and T1 (Tier One) producers know their meaning and how decode them. A software model will be developed in order to detect vehicles functions without having database files associated to network signals. Furthermore, the model will behave like an ECU by producing output signals related to input ones. Machine Learning techniques will be exploited, in particular Clustering task will be exploited to understand not a priori known vehicle functions and a Neural Network will be implemented to emulate an ECU behavior. Signals will be grouped in five different types of vehicle functions and the model will predict the ECU’s output data with high accuracy. Applications concerning the developed project are, in primis, to fix up possible vehicles electronics faults. In addiction, vehicle predictive maintenance could be done. Another application, could be to check by OEMs if T1 manufacturers comply the required specification

    A group membership protocol for communication systems with both static and dynamic scheduling

    Get PDF
    We present a group membership protocol specially designed for next generation communication systems for real-time safety-critical applications such as FlexRay and FTT-CAN. The proposed protocol imposes an overhead of two bits per processor per communication cycle, when the system is in a quiescent state, and is able to tolerate benign failures of up to half of the group members between consecutive executions. Additionally, it removes a faulty processor within two communication cycles in the worst case and reintegrates a processor at the latest two communication cycles after it recovers. Compared with protocols developed for similar systems, it is as tolerant as the most robust protocol with a traffic overhead slightly higher than the most efficient protocol, which is much less robust. © 2006 IEEE
    • …
    corecore