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Abstract

The development of safety-critical embedded applications in domains such as auto-

motive or avionics is an exceedingly challenging intellectual task. However, this task

can be significantly simplified through the use of middleware that offers specialized

fault-tolerant services. This thesis develops and studies a set of protocols intended

to provide reliable group communications services (Group Membership and Reliable

Broadcast).

These protocols were specially designed to take advantage of dual scheduling

TDMA (DuST) protocols, which support not only static scheduling, as in classic

TDMA protocols, but also dynamic scheduling. This class of DuST protocols is likely

to become rather widespread in embedded applications, because it was adopted by

FlexRay, a specification that is expected to become the de-facto standard for the

next generation automotive networks. The basic idea of our group communication

protocols is to improve their performance by scheduling the non-periodic traffic they

generate in the part of the TDMA-cycle that is dynamically scheduled. By exploring

this idea, our group membership protocol (GMP) imposes an overhead of two bits per

processor per communication cycle, when the system is in a quiescent state, and is

able to tolerate benign failures of up to half of the group members between consecu-

tive executions. Additionally, it removes a faulty processor within two communication

cycles in the worst case and reintegrates a processor the latest two communication

cycles after it recovers. Compared with protocols developed for similar systems, it is

as tolerant as the most robust protocol with a traffic overhead slightly higher than the

most efficient protocol, which is much less robust. The family of reliable broadcast

protocols (RB-DuST) are a complement to FlexRay’s native communication service,

which does not provide fault-tolerance levels required by safety-critical applications.

Because these protocols are intended to be used as building blocks in the de-
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sign of fault-tolerant applications, their dependability is of paramount importance.

Therefore, we have applied formal methods, more specifically model checking, to

verify their correctness and also to evaluate their reliability. The reliability models

are discrete-time Markov chains, and consider an extensive range of fault scenarios,

including permanent and transient faults, affecting both communication channels and

nodes. Furthermore, we performed a sensitivity analysis, to assess the influence of

different parameters on the protocols reliability. The results show that both the GMP

and the RB-DuST protocols, when properly configured, can achieve reliability levels

in the range required for safety critical applications, for parameters values of the

models typical of the automotive domain.



Resumo

O desenvolvimento de aplicações-cŕıticas para a segurança (safety-critical) nos doḿınios

de automóveis e aviões representa um desafio a ser superado com grande esforço

intelectual. Porém essa tarefa pode ser significativamente simplificada através da

utilização de um middleware capaz de fornecer serviços tolerantes à falhas. Esta

tese define e investiga um conjunto de protocolos destinados a prover serviços de

comunicação fiável em grupo (Filiação em Grupo e Difusão Fiável).

Esses protocolos são especialmente projectados para aproveitar as vantagens ofer-

ecidas pelo modelo de escalonamento duplo sobre TDMA (DuST), o qual suporta

não apenas escalonamento estático, como protocolos TDMA clássicos, mas também

escalonamento dinâmico. Essa classe de protocolos do tipo DuST muito provavel-

mente será largamente utilizada em sistemas embebidos, isso porque ela foi adop-

tada no FlexRay, uma especificação que possúı grandes possibilidades de tornar-se

”de facto”o padrão para a próxima geração de redes em automóveis. A ideia básica

de nossos protocolos de comunicação fiável em grupo é a de melhorar o desempenho

através do escalonamento do tráfego não periódico na parte dinamicamente escalon-

ada do ciclo TDMA. Através dessa ideia, nosso protocolo de filiação em grupo (GMP)

impõe uma carga extra de apenas dois bits por processo em cada ciclo de comuni-

cação quando o sistema se encontra no estado passivo (sem falhas) e é capaz de

tolerar falhas benignas de até a metade dos membros dum grupo durante execuções

consecutivas. Além disso, o GMP remove os membros falhados no pior dos casos

em dois ciclos e também reintegra membros ao grupo em menos de dois ciclos após

sua recuperação. Comparado aos outros protocolos similares o GMP mostra-se tão

tolerante à falhas quanto os mais robustos protocolos. Porém seu desempenho (em

termos de sobrecarga de mensagens) é muito próximo aos dos protocolos de melhor

desempenho, que são muito menos robustos. A faḿılia de protocolos para difusão
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fiável de mensagens (RB-DuST) são um complemento ao sistema de comunicação

nativo presente no protocolo de comunicação FlexRay, cujo não apresenta ńıvel de

tolerância à falhas requerido pelas aplicações-cŕıticas.

Nossos protocolos são destinados a serem utilizados como serviços base (building

blocks) necessários para o desenvolvimento de aplicações tolerantes à falhas, por isso

sua fiabilidade é de extrema importância. Em virtude disso, nós aplicamos métodos

formais, mais especificamente através da técnica denominada Model Checking, para

verificar a correcção e fiabilidade dos protocolos. Os modelos foram desenvolvidos

através de Cadeias de Markov discretas, e consideram uma larga gama de cenários de

falhas incluindo falhas transitórias e permanentes, afectando ao mesmo tempo nós

(nodes) e canais. Além disso, realizamos também uma análise sensitiva para estimar

a influência de diferentes parâmetros sobre a fiabilidade dos protocolos. Os resultados

mostraram que tanto os protocolos GMP e RB-DuST, quando configurados correc-

tamente, podem atingir os ńıveis de fiabilidade requeridos por aplicações-crit́ıcas.



Résumé

Le développement d’applications de sécurité critique (safety-critical) dans les do-

maines de l’automobile et de l’aviation est un défi qui doit être surmonté avec

beaucoup d’effort intellectuel. Néanmoins cette tâche peut être considérablement

simplifiée par l’utilisation d’un middleware capable de fournir des services tolérants

aux pannes. Cette thèse étudie et définit un ensemble de protocoles destinés à

l’établissement de services de communication fiable (Filiation en Groupe et Diffusion

Fiable).

Ces protocoles ont été spécialement conçus pour exploiter les avantages offerts

par le modèle d’ordonnancement double sur TDMA (DuST), qui supporte non seule-

ment un ordonnancement statique, comme les protocoles TDMA classiques, mais

aussi un ordonnancement dynamique. Cette classe de protocoles du type DuST sera

probablement largement utilisée dans les systèmes embarqués. Cela est dû au fait

qu’elle a été adoptée dans le protocole FlexRay, une spécification qui présente un

grand potentiel pour devenir la norme de la prochaine génération de réseaux dans

les automobiles. L’idée fondamentale de l’ensemble de protocoles de communication

fiable est d’améliorer la performance à travers de l’ordonnancement du trafic non

périodique dans la partie dynamiquement ordonnancé du cycle TDMA. Ainsi notre

protocole de gestion de groupe (GMP) impose une charge supplémentaire de seule-

ment deux bits par processus dans chaque cycle de communication lorsque le système

se trouve dans l’état passif (sans failles). Il est aussi capable de tolérer des pannes

bénignes de jusqu’à la moitié des composants d’un groupe au cours des exécutions

consécutives. En outre, le GMP supprime les composants défaillants dans le pire des

cas dans deux cycles et aussi il réintègre les composants au groupe dans moins de

deux cycles après leur récupération. Par rapport aux autres protocoles similaires au

GMP, celui-ci se montre aussi tolérant aux pannes que les protocoles les plus robustes.
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Néanmoins, sa performance (en termes de surcharge de messages) est très proche

à celle des protocoles d’excellente performance, mais qui sont beaucoup moins ro-

bustes. La famille des protocoles pour la diffusion fiable de messages (RB-DuST) est

un complément au système de communication initialement présent dans le protocole

de communication FlexRay, lequel ne présente pas le niveau de tolérance aux pannes

exigé par les systèmes critiques.

Nos protocoles sont destinés à être utilisés comme services base (building blocks)

nécessaires au développement des applications tolérantes aux pannes. Alors la fiabilité

de ces protocoles est d’extrême importance. En vertu de cela, nous appliquons des

méthodes formelles, plus spécifiquement Model Checking, pour vérifier la correction

et la fiabilité des protocoles. Les modèles ont été développés à travers des Châınes

de Markov discrètes, et ils prennent en considération un large gamma de scénarios

d’imperfections y compris des pannes transitoires et permanentes, en affectant au

même temps noeuds et canaux. En plus, nous réalisons aussi une analyse sensitive

pour estimer l’influence de différents paramètres sur la fiabilité des protocoles. Les

résultats ont montré que les protocoles GMP et RB-DuST, dès que correctement

configurés, peuvent atteindre les niveaux de fiabilité exigés par les systèmes critiques.
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Chapter 1

Overview

The main focus of this thesis is on fault-tolerant protocols for safety-critical ap-

plications which communicate on top of dual scheduled communication protocols

(DuST). The nature of this next generation communication protocols permits

more flexible scheduling of messages transmissions supporting both event and time

triggered communications. The protocols proposed in this thesis were designed to

take advantage of this flexibility in order to improve performance while affording

reliability levels required by safety-critical applications in the automotive domain.

1.1 Introduction

The demands for automotive and avionics communications systems have been

increasing in recent years. More specifically in the automotive domain the growing

performance and reliability of hardware components in combination with the

software technologies allows to implement complex functions that improve the

comfort and safety of the vehicle’s occupants [1]. Such functions include control

of powertrain and chassis, such as engine control, transmission, steering, brakes

and stability control.

Indeed, due to replacement of mechanical and hydraulic systems by fully

electronic ones, the control systems designed to control chassis functions, such as

brakes and steering, require ultra-reliability levels on communications, including

bounded response times and bounded jitters, in order to make them safety.

1
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In fact such dependability requirements can be fulfilled only by networks

which combine higher speed rates, predictability and fault-tolerant services

[1]. Networks of class C and D, such as high-speed CAN, TTP/C [2] and

FlexRay [3, 4], can comprise speed rates from 125 kb/s to 10 Mb/s. However, the

predictability and composability (i.e., ability to integrate individually developed

components) of time-triggered approach make the TTP/C and FlexRay more

adequate to safety critical applications.

Nevertheless purely time-triggered protocols such TTP/C are not efficient

enough to handle aperiodic traffic generated by non-safety critical functions as

windows, seats, mirrors, and climate control. For this reason, due to the vast

number of functions and the need of optimization on integration between different

system components the emerging Dual Scheduled (DuST) protocols (i.e., that can

support a combination of both time-triggered and event-triggered transmissions),

such as FlexRay [3, 4] and FTT-CAN [5], have large possibility to become the

next generation of de facto standards for communication in automotive domain.

1.2 Motivation & Objectives

The support of ultra-reliable communications is one of the major requirements in

safety-critical application domain [6]. Emergent DuST protocols can provide both

higher speed rates and predictability but, it is notable that they do not provide

by themselves all the mechanisms necessary to meet fault-tolerance requirements.

Specifically both FlexRay and FTT-CAN provide a basic set of fault-tolerant

services, such as clock synchronization, but no group membership. Moreover, the

FlexRay do not provide mechanisms for reliable message delivery.

In fact the absence of such fault-tolerant services have provided great motiva-

tion for the development of this work. In this thesis, we propose protocols to fill

this omission, and the major objective consists in to design protocols that take

advantage of the dual scheduling capability of DuST networks. Furthermore the

major objective supports the fundamental assertion of this thesis, that is: ”its

is possible to combine the dual scheduled scheme capability to achieve more ef-

ficient fault-tolerant services without compromising reliability levels required by

safety-critical applications”.
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1.3 Research Context

This thesis describes group membership and reliable broadcast services for real-

time safety-critical applications. The protocols we describe in this thesis are

specially designed to take advantage of the dual scheduling scheme (static and

dynamic) provided by FlexRay protocol. First we present the Group Membership

Protocol (GMP). The GMP uses the dual schedule to achieve an overhead of only

two bits per processor per cycle in absence of faults and at the same time it can

tolerate benign failures of up to half of the group members between consecutive

executions. Moreover, even when there are group membership changes, the GMP

overhead is lower than that of other protocols that provide the same level of fault

tolerance. This thesis presents also a family of reliable broadcast protocols, so

called RB-DuST protocols, that are specified to provide efficient reliable message

delivery, which is not originally supported by FlexRay protocol.

Because these protocols are intended to be used as building blocks in the

design of fault-tolerant applications, their dependability is of paramount impor-

tance. Therefore, we have applied formal methods to verify their correctness and

also to evaluate their reliability. More specifically we have used model checking, a

technique for verifying properties of a system through exhaustive and automatic

exploration of all the system states.

Moreover a reliability analysis of proposed protocols is presented allowing to

estimate the reliability levels of such protocols on realistic fault scenarios. The

reliability models are discrete-time Markov chains, and consider an extensive

range of fault scenarios, including permanent and transient faults, affecting both

communication channels and nodes. Furthermore, we performed a sensitivity

analysis, to assess the influence of different parameters on the protocols reliability.

1.4 Main Contributions of this Thesis

The main contributions of this thesis are:

1. A specification of a Group Membership Protocol designed to take advantage

of scheduling scheme provided by DuST networks, such as FlexRay. The

GMP provides a optimal performance in absence of faults saving bandwidth

for other network traffic (Rosset et al. [7]).
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2. A verification of GMP protocol correctness through the Model Checking

approach. The formal verification provided include alternative modeling

technics which allow faster and reliable models. The formal verification

also have provided means to evidence protocol limitations under different

faulty scenarios (Rosset et al. [8, 9]).

3. A reliability analysis of GMP protocol fault assumptions including scenarios

subject to strictly omission asymmetric (SOA) faults and communication

error-bursts. This analysis has shown that GMP can present acceptable

reliability levels even if fault assumptions are not respected, e.g. on the

presence o SOA faults (Rosset et al. [10, 11]).

4. A specification of family of reliable broadcast protocols designed for DuST

networks, including implementation issues.

5. A reliability analysis of designed RB protocols under different realistic sce-

narios assuming strictly omission faults (SOA) on channels (Rosset et al.

[12]). The results of reliability analysis of RB-DuST protocols are a valu-

able information and can be used by designers to improve the reliability of

safety-critical applications.

6. The models developed for reliability analysis are reusable and can be consid-

ered a source of information about how to model similar reliable broadcast

and group membership algorithms designed for DuST networks.

1.5 Thesis Outline

The remainder of this thesis is organized as follows:

In Chapter 2 we present a survey of the state of the art on ultra-reliable

communications services specially designed for safety critical applications domain,

such as reliable broadcast and group membership communication protocols.

In Chapter 3 is presented the specification of GMP. The chapter includes the

GMP algorithm description, its correctness proofs and some issues about GMP

implementation on top of FlexRay network.

Chapter 4 Chapter 4 presents the formal verification of the GMP. This

chapter includes a detailed description of models developed for the UPPAAL

model checker and an evaluation of the results obtained.
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Chapter 5 presents a reliability analysis of GMP protocol. We present de-

tailed description of designed discrete-time Markov Chains, PRISM models and

discussion of results obtained in the reliability evaluation of GMP protocol.

A family of reliable broadcast protocols (RB-DuST) is presented in Chapter

6. This chapter also includes the proofs of correctness of these RB protocols. In

addition some issues about the implementation of a middleware layer to provide

reliable broadcast services on top of FlexRay network are discussed.

In Chapter 7, a reliability analysis of RB-DuST protocols is presented. It

includes detailed description of designed discrete-time Markov Chains, PRISM

models and fault case analysis used in the reliability evaluation of RB-DuST

protocols.

Finally in Chapter 8 we present the conclusions of this thesis, highlighting

how the contributions have fulfilled the original research objectives. In addition

we also discuss some future research directions that may emerge from the work

reported in this document.





Chapter 2

State of the art

This chapter surveys the state of the art of the two communications services that

are the focus of this thesis: group membership and reliable broadcast. These

services are considered core fault-tolerant services and the bibliography is rather

extensive. Therefore, we focus on the work on synchronous systems that is more

closely related to the work in this thesis.

2.1 Introduction

This chapter reviews the state of the art on group membership protocols designed

to synchronous communication systems. The most relevant research works are

presented and compared with GMP approach. In the same way this chapter

presents the most relevant studies on reliability broadcast protocols specially

designed to time-triggered communication systems on automotive domain. The

chapter also present the review of methodologies used to proceed with formal

verification and reliability analysis of such protocols.

The remainder of this chapter is organized as follows. In the next Section is

described the review of state-of-the-art group membership protocols. In Section

2.3 is presented the state of the art on reliable broadcast. Finally, in Section 2.4,

a synthesis of the state of the art of formal verification and reliability analysis is

made, where modeling and evaluation methodologies are compared to.

7
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2.2 Group Membership

The group membership problem has been the focus of a lot of research on both

asynchronous and synchronous distributed systems. This section is concentrated

on previous work for synchronous systems. For a discussion on the work for

asynchronous systems we suggest the reading of the comprehensive survey [13]

by Chockler, Keidar and Vitenberg.

In [14], Cristian provides a specification of the group membership problem for

synchronous systems very similar to the one we use. Furthermore it proposes three

protocols that solve that specification. There are however two important model

assumptions that make the protocols described by Cristian and ours not directly

comparable. On one hand, Cristian assumes a general communication system,

whereas we consider a broadcast network with a TDMA medium access protocol

where each processor broadcasts at least once every cycle. Our assumption makes

it much easier to detect processor failures in a timely fashion, whereas Cristian

put a lot of effort in solving this problem in an efficient way and in analyzing

the timing properties of the protocols proposed. On the other hand, the fault

assumptions made by Cristian are stronger than the ones we make: Cristian

assumes that processors can fail only by crashing, and that the communication

system may experience omission and performance failures. However, it is also

assumed that the communication system has enough redundancy so as to make

it possible to implement atomic broadcast. Thus Cristian’s fault model is such

that if a processor does not receive a message that another processor was supposed

to broadcast, it must because the broadcaster crashed. On the other hand, in our

model, although we also assume that the communication system provides atomic

broadcast, processor faults are not limited to crashes – we assume that processors

can have also both send and receive faults.

RTCAST is a group communication system proposed by T. Abdelzaher et al

in [15] that includes a group membership protocol. Like in Cristian’s work, the

communication system is assumed to have an arbitrary topology, and therefore

RTCAST is based on a timed-token that rotates along a logical ring composed

of the group members. The difference in the network topology and on the goals

of the system, the emphasis of RTCAST is on flexibility in generic real-time

applications, lead to a group membership protocol with very different properties.

E.g. in RTCAST a faulty processor may cause the removal from the group of
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a non-faulty member. In addition, processor reintegration is slower since the

RTCAST protocol does not support the reintegration of more than one processor

per token rotation, and its worst case behavior is worse than ours. As in our

model processors can fail by crashing and may experience receive and send faults,

although the latter are assumed to be detectable by the faulty processor, whereas

we make no such assumption. Communications system faults are interpreted as

processor receive faults, as we do. In contrast, the communications system is

assumed to have an arbitrary topology, and therefore rather than using a TDMA

protocol, RTCAST is based on a timed-token that rotates along a logical ring

composed of the group members. To reduce the cost of group membership in

such a general setting, membership is not based on voting but on the perception

of individual processors. For example, if a processor does not receive the token

by the corresponding deadline, it will broadcast a message removing from the

group its predecessor in the ring. As a result, in contrast with what happens in

our protocol, faulty processors may remove from the group non-faulty processors,

a feature that is undesirable in safety critical applications. Recovery from such

situations is achieved by having the erroneously removed processor rejoining the

group. Adding processors to the group is somewhat heavier and succeeds only

if all group members are non-faulty, as differences in the group membership will

lead to the crashing of the joining processor. Furthermore, at most one processor

can (re)join the group per token rotation, although this might be easily modified

by adjusting the token rotation time. If more than one processor attempts to join,

those that do not succeed will wait a random number of token rotations before

retrying again. In our protocol there are no bounds on the number of processors

that may rejoin the group in a cycle, and it tolerates the failure of up to half of

the group members, even in cycles when processors try to join the group.

Much closer to our research is the extensive work on group membership that

has been developed in the scope of the Time-Triggered Architecture and its pro-

tocol, TTP/C. The group membership protocol used in TTP/C is essentially the

one described by Kopetz and Gruensteidl in [16], and an optimized version of

this protocol with respect to failure detection latency is proposed in [17]. The

system model used in these works is very similar to ours. In all cases, the net-

work supports broadcast and uses a TDMA-based medium access protocol. The

fault model assumed is also identical, in particular the network is supposed to be

reliable, and processors are assumed to fail by crashing, or by failing to receive
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or to send messages. A key assumption of the TTP/C protocol is that there is

at most one fault within an interval of two TDMA cycles. The protocol explores

this assumption to ensure agreement on group membership among non-faulty

processors without any communication overhead. This is achieved by sending

with every message a CRC that covers not only the message but also part of the

processor state that includes the group membership.

In [2] Kopetz and Gruensteidl argue for their fault arrival assumption based

on a very simple reliability assessment. We suspect that these numbers are some-

what optimistic because the protocol interprets transient communication faults

as processor faults. The study carried out by Latronico, Miner and Koopman [18]

for the SPIDER group membership protocol shows that transient faults signifi-

cantly affect the probability that the fault assumptions will hold. Although the

support of a duplicated network medium by TTP/C reduces the likelihood of

communication faults, the occurrence of more than one communication fault in

one TDMA cycle caused by electromagnetic interference, e.g., cannot be ruled

out. Because of this, in TTP/C, processors will switch to the blackout operat-

ing mode if they detect that the fault assumption is violated. Operation in this

mode is severely degraded. By contrast, our protocol supports the failure of up

to half of the group members in one TDMA cycle, although at the cost of some

communication overhead and by assuming an extended TDMA protocol.

More recently, with the adoption of a redundant star topology [19], the

TTP/C group membership protocol is able to tolerate an arbitrary fault per

TDMA cycle. It should be noted that this is possible because the bus guardian is

now placed at the star coupler and it transforms an arbitrary fault at the processor

into a fault that is tolerated by the group membership protocol. Failure of one

star coupler can be masked by the other star coupler, but faults in this component

cannot be arbitrary.

Ezhilchelvan and Lemos [20] proposed a group membership protocol also de-

signed for broadcast networks using a TDMA medium access protocol. The fault

model is similar to the one assumed in our GMP specification: processors can

experience send and receive faults and can fail by crashing, whereas the commu-

nications system is assumed to provide a reliable broadcast service. This protocol

has some resemblance to ours, but there are significant differences that lead to

very different performance. In [20], every processor maintains information on the
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group membership using a Membership Status Vector (MSV vector), which it

broadcasts in every cycle. In contrast, in our protocol a processor only broad-

casts group membership information whenever it detects a group membership

change event, because the communication system supports both static and dy-

namic scheduling. With more classical TDMA schemes that support only static

scheduling, there is no real advantage in not broadcasting the membership infor-

mation. In addition, the group membership information sent by each processor

in our protocol is just half of the information sent in the protocol of [20]. Indeed,

whereas in our protocol, the perceived state of a processor can be coded with 1

bit, each element of the MSV vector can have 3 values and therefore requires at

least two bits. This higher efficiency has a cost in terms of the fault tolerance.

Whereas the protocol of [20] is able to detect every processor fault type of the

failure model assumed, in our protocol receive faults may be masked by send

faults. On the other hand, our protocol tolerates the failure of up to half of the

total number of non-faulty group members between two consecutive executions,

whereas the protocol of [20] tolerates that many failures but in three consecutive

cycles.

Walter, Lincoln and Suri [21] proposed a sequence of protocols for distributed

on-line diagnosis, which is equivalent to the group membership problem, that are

tolerant to increasing weaker fault assumptions. The problem of fault-diagnosis is

actually equivalent to the problem of group membership and our work shares with

theirs some mechanisms and design principles. First, we base agreement on the

majority function also used in [21], second we strive to present the protocols in

such away that they are devoid of implementation details. These similarities are

very clear as the communication systems are assumed to have the same topology

and the access control protocol is TDMA-based, and our base protocol could be

placed in the sequence of protocols in [21] between the processor-processor (PP)

and the processor-link-processor (PLP) protocols. Although such similarities,

there are also some major differences. First, [21] focus on fault diagnosis and is

not concerned with processor reintegration. Second, their protocols require the

exchange of diagnosis information in every cycle, whereas our protocol does not.

This is possible because we consider only faults that can be locally detected by

a non-faulty processor. On the other hand, [21] presents protocols that tolerate

Byzantine, or arbitrary, faults, which cannot be locally detected. The use of a

stronger fault model has the additional advantage of requiring the exchange of
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less diagnosis information. There is clearly a trade-off between fault tolerance

and efficiency that can be solved only by considering the requirements of the

application.

The SPIDER group membership protocol [22] is an optimized version of the

Distributed Diagnosis (DD) protocol presented in [21] that is used by the Reliable

Optical Bus (ROBUS) communication system, which has a redundant active star

topology. Again there are some resemblance between both protocols, but there are

also major differences, as they were designed with two different communication

systems in mind, each of which with its own emphasis. Whereas SPIDER was

designed to improve the reliability of ROBUS and is designed to tolerate hybrid

faults [23], including asymmetric or arbitrary faults, our protocol was designed to

reduce the traffic required by group membership in communication protocols with

both static and dynamic scheduling. Therefore, the SPIDER group membership

protocol tolerates more severe failures, but it depends strongly on the ROBUS

communication system and requires that the number of communication channels

be at least three, i.e. it requires that each processor be connected to at least

three hubs. Furthermore, it requires that the presumed state of the components

of ROBUS be exchanged periodically. On the other hand, our protocol makes

much stronger fault assumptions, but it does not require such a high degree

of replication of the communication system. On the other hand, whereas the

SPIDER protocol requires each ROBUS processor, including the star hubs, to

broadcast the presumed state of all other processors periodically.

2.3 Reliable Broadcast

Group communication services are designed to achieve different degrees of con-

sistency. Reliable message dissemination protocols based on broadcast/multicast

approaches have been designed for different types of networks and are exhaus-

tively discussed in the literature [13, 24, 25, 26].

This thesis present a family of reliable communication protocols that are the

core of group communication services designed for DuST networks, and that

provide strong guarantees with respect to message delivery consistency, even in

the face of faults. Although several works follow a similar approach to achieve

reliable communication in the context of CAN, which poses specific problems
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inherent to its specification, e.g. [27, 28], as far as we know, only [29] attempts

to address this problem in the context of time-triggered networks, such as TTP/C

[2], FlexRay [4] and TTCAN [30].

In [29], the authors propose and adaptation of the Unified protocol specified

in [31] to provide interactive consistency, i.e. reliable broadcast, service to au-

tomotive time-triggered networks protocols. The Unified protocol was originally

specified for a network consisting of several fully connected stages, and uses flood-

ing in this network to provide strong consistency properties even in the presence

of Byzantine faults. The flooding approach used in the Unified have first appeared

in [25], where Babaoglu and Drummond have presented Byzantine-tolerant reli-

able broadcast protocols designed for redundant shared medium networks, which

terminate in two rounds. The protocols proposed in [25] are based on a two-step

flooding algorithm in which all nodes are required to re-broadcast the messages

they have received. Differently, the message retransmission arrangement provided

by the adapted Unified protocol [29] requires that only a subset of nodes execute

the retransmission. The solution proposed in [29] preserves the consistency guar-

antees, but is practical only in networks where the number of transmitters is very

small. Because even in the adapted Unified protocol nodes have re-broadcast

all the messages they receive, possibly leading to a polynomial increase of the

network traffic. Whereas a fully connected point-to-point network can withstand

this traffic increase because its bandwidth increases with the number of links,

a shared medium network like FlexRay has a fixed bandwidth, imposing strict

limits on the amount of information that can be transmitted with the Unified

protocol.

To increase the scalability of reliable broadcast and make it affordable in net-

works with tenths of nodes, our protocols rely on acknowledgements and repeated

broadcast by the original broadcaster. Although the use of acknowledgements do

not represent the better performance choice, for example, if compared with the

implicit acknowledgment approach presented in the TTP/C protocol [2] 1. We

show that our protocols can be accommodate on DuST communication segments

in order to provide minimum network usage to achieve better execution perfor-

1In the TTP/C the interactive consistence can be achieved by the combination of check-

summed transmissions and clique avoidance services [6]. However, such TTP/C services speci-

fications are based on strongest fault assumptions in comparison to that assumed to our reliable

broadcast protocols.
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mances without reliability loss.

2.4 Analysis and Validation

Safety critical domain applications require high reliability levels on message de-

livery, and such applications are extremely depended of group communication

services. However protocols’ specifications are prone to design errors generally

induced by fault assumptions made. Therefore the analysis and discussion about

how protocols can fail to provide the expected safety guarantees when imple-

mented is necessary [32]. The family of reliable group communication protocols

presented in this thesis were analyzed in order to verify their correctness and

safety guarantees. We first provide a formal verification of GMP protocol by

using the model checking approach, an alternative formal method than mathe-

matical proofs. Model checking is a technique for verifying properties of a system

through exhaustive and automatic exploration of all the system states. The use

of model checking is a crucial tool to detect design errors that cannot be detected

by mathematical proofs.

A second step to formal verification is reliability analysis. We evaluate the

reliability of both GMP and RB protocols through the computation of the relia-

bility of their fault assumptions. To do that we have used a Probabilistic Model

Checker tool to automatic calculate the probability of safety and liveness prop-

erties be violated on fault scenarios where the original fault assumptions do not

hold 2.

To the best of our knowledge, this methodology was first proposed by Latron-

ico, Miner and Koopman in [18]. In [18] is used a Group Membership Protocol

(of the SPIDER architecture) as a case study. Although the methodology used is

generally the same, there are some major differences between both works. First,

whereas [18] uses a continuous-time Markov chain (CTMC) model for model-

ing the protocol we have chosen to use a discrete-time model. The use of a

discrete-time model is more appropriate for round-based protocols that are ex-

ecuted repeatedly, such as GMP and RB protocols. In particular, it allows to

model the rounds themselves, facilitating the evaluation of assumptions on the
2 Actually, the probabilistic model checker can also be used as a pure model checker, for

example, the models used to evaluate the reliability of presented RB protocols are also used to

verify their correctness
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number of faults in each round. This is important, because the fault tolerance of

most round-based protocols relies on this kind of assumption. On the contrary,

CTMC models make it virtually impossible to accurately model the rounds. This

requires the analyst to use rough approximations in the evaluation of properties

that depend on rounds. E.g. in [33] Latronico and Koopman also use CTMC

models to evaluate the reliability of the group membership protocol of TTP/C.

However, because of the limitation mentioned above, rather than evaluating the

reliability of TTP/C’s fault assumption – that exactly one fault may occur within

two-rounds, – they had to state a different fault assumption. Such an approach

may raise some doubts regarding the outcome of the evaluation. Second, whereas

in [18] the authors consider only independent fault models, in this thesis we con-

sider also common-mode transient communication faults such as those caused by

localized EMI or EMI bursts that affect several communication rounds.

Finally, whereas [18] considers arbitrary, i.e. Byzantine, faults we do not. The

reason for this is that whereas the SPIDER protocol tolerates these faults, both

the GMP and RB protocols we analyzed do not. Therefore, a single arbitrary

fault will lead to violation of its fault assumptions. As pointed out in [18], faults

outside the MFA are addressed by the concept of assumption coverage, as defined

by Powell in [34]. However although presented protocols are not tolerant to

Byzantine faults, they are nevertheless tolerant to strictly omissive asymmetric

communication faults. Furthermore, our reliability evaluation shows that they

provide acceptable reliability levels for most safety-critical applications.





Chapter 3

Group Membership Protocol

(GMP)

This chapter presents the specification of the Group Membership Protocol (GMP),

a protocol specially designed for safety critical applications on DuST networks.

Furthermore, this chapter presents some arguments on the correctness of the

GMP. The content of this chapter essentially comprises the text published in [7].

3.1 Introduction

Group membership is considered an important abstraction to facilitate the provi-

sion of fault tolerance in systems in general [14] and in safety-critical applications

in particular [6]. In this chapter, we describe a group membership protocol for

real-time safety-critical applications, specially designed for communication sys-

tems that support both static and dynamic communication scheduling in a com-

munication cycle such as FlexRay [3] and FTT-CAN [35]. Both FlexRay and

FTT-CAN provide a basic set of fault-tolerant communication services, but no

group membership.

A group membership protocol comprises two fundamental operations: failure

detection and agreement. Failure detection is performed locally by a processor, by

monitoring the messages it receives, or it does not receive, from other processors.

17
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Agreement is achieved through the exchange among the different processors of

the perceived operating state of processors in the system.

Currently, many communications systems for safety critical real-time appli-

cations [6] are synchronous with only static communications scheduling imple-

mented on top of a protocol based on Time-Division Multiple Access (TDMA).

I.e., in those protocols it is assumed that in each TDMA cycle, each proces-

sor can send a fixed amount of traffic, which must be sufficient to satisfy the

worst case traffic requirements of all the applications in the processor. There-

fore, virtually all group membership protocols for this class of systems described

in the literature use the messages sent in a TDMA cycle to detect failure of a

remote processor. Furthermore, to achieve agreement, they exchange processor

state information in every TDMA cycle and strive to minimize this information.

Essentially, the differences among the published protocols depend on the failure

assumptions; usually, the stronger these assumptions, the more efficient the pro-

tocol. For example, the group membership protocol [16, 17] executed in every

cycle of the TTP/C [36], requires the sending of only one additional bit per cy-

cle per processor [37]. However, it can tolerate at most one failure within any

interval of two TDMA cycles. Actually, the implementation of the protocol takes

advantage of this property, and achieves group membership without sending any

additional bit. Given that the protocol interprets a communication failure as a

processor failure, this assumption is too strong for the operation environment

of many safety-critical applications. Therefore, in the TTP/C, if a processor

detects a potential violation of this assumption, it switches to the blackout oper-

ating mode, in which system operation is severely degraded. On the other hand,

the protocol of Ezhilchelvan and Lemos [20] tolerates the failure of up to half of

non-faulty processors in three consecutive TDMA cycles, but requires that ev-

ery processor broadcast a vector with the state of every other processor in every

TDMA cycle. Given that buses for safety-critical applications may have several

tens of processors [38], this protocol may lead to TDMA cycles with a duration

longer than required by the real-time applications that execute in the system.

The proposed GMP protocol relies on the observation that group membership

does not change in every TDMA cycle, and takes advantage of next generation

communication protocols for safety-critical applications such as FTT-CAN and

FlexRay. In these communication protocols the TDMA cycle is divided in two

segments: a statically scheduled segment essentially to support periodic traffic,
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and a dynamically scheduled segment essentially to support aperiodic traffic or

traffic required for non-safety-critical applications. Therefore, the basic idea of the

protocol is to exchange information on the processors state in the dynamically

scheduled segment only and when there is a change to the membership. In a

quiescent state, when there are no membership changes, the protocol requires

only an overhead of two bits per processor per cycle that are sent in the static

segment. Note that even in the case of membership changes, the protocol requires

the exchange of less state information than the protocol proposed by Ezhilchelvan

and Lemos, while tolerating a higher fault arrival rate than their protocol.

The remainder of the chapter is organized as follows. In the next section

we present the system model, including the fault assumptions. In Section 3.3 we

provide the specification of the group membership protocol. A protocol satisfying

this specification is presented in Section 3.4. The protocol is developed gradually

and we provide informal arguments for the correctness of each version. In Section

3.5 we outline its implementation on top of FlexRay. Finally we summarize the

chapter in Section 3.6.

3.2 Model

We assume a synchronous system that is composed of a fixed set of processors P

that are connected via a broadcast network, in which a processor receives every

message it broadcasts.

The execution model is based on the one presented in [39]. Each processor

begins its execution in some start state and then repeatedly executes, in lock-step

with the other processors, a phase that has two steps:

Communication step, in which each processor generates a message, if any, that

depends on the processor’s state, broadcasts it to the network, and receives

messages broadcasted in this step;

Processing step, in which each processor generates the new state, by processing

the messages received in the communication step.

Note that a state is comprised of the values of a set of state-variables and the

set of states may not be finite. Some states are halting states, i.e. a processor in

such a state will not send any message or modify its state.
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By using this model, we abstract away some details that are not essential,

thus simplifying the presentation of the protocol. For example, we do not consider

the exact time when a processor broadcasts its message. We assume that some

protocol ensures that every processor is granted access to the network to broadcast

its message and that every processor knows when no more messages broadcasted

in the communication step will be received, so that the processing step can be

executed.

Processors can fail by experiencing one of three types of faults: a crash fault,

i.e. a processor enters an halting state and takes no further action; a receive

fault, i.e. a fault on reception, that prevents a processor from receiving a message

broadcasted by another processor in that step; a send fault, i.e. a fault on broad-

casting, that prevents a processor from broadcasting a message to the network.

Note that receive and send faults do not need to be persistent, e.g. a processor

may have a receive fault in a phase, but be able to receive a message in a later

phase. We say that a processor is non-faulty if it has not experienced any fault

since the beginning of the execution.

Finally, we assume that the network provides a reliable broadcast service. I.e.

a message broadcasted by a non-faulty processor will be correctly received by all

other non-faulty processors.

3.3 Group Membership Specification

We state the Group Membership problem in terms of the set of group members

(M-SET) maintained by every processor.

We consider essentially two properties:

Agreement: All non-faulty group members compute the same M-SET.

Validity:

1. A faulty processor will be removed from the M-SET of a non-faulty

group member in a bounded time interval;

2. A non-faulty processor attempting to be reintegrated will be added to

the M-SET of a non-faulty group member in a bounded time interval.
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In addition to these properties, Cristian [14] defines stability properties of the

group membership to ensure that a group’s membership does not change for no

reason. The proposed protocols satisfy such properties, but we will not provide

the arguments for that, because of lack of space.

3.4 Group Membership Protocol

The protocol has two phases that are repeated in every cycle: Failure Detection

phase (FD-phase) and the Group Membership phase (GM-phase). Every group

member is required to broadcast one message in the FD-phase, so that failures can

be detected with bounded delay. In the GM-phase a protocol may be executed

to achieve agreement on the group membership.

We present first a very basic protocol that does not support processor reinte-

gration and that requires the sending of messages in both phases of every cycle.

Then we add support for processor reintegration and finally present a version

that not only supports processor reintegration, but also does not require sending

messages in the GM-phase of every cycle. Note that the goal of presenting several

versions with increasing complexity is to facilitate the understanding of the final

protocol. The intermediate protocols are not intended to be the most efficient of

their kind.

All three versions use the same majority function, majSet, that computes the

set of elements that are members of at least a majority of n sets. A special

value, undefined, is returned when no majority is found. Figure 3.1 shows the

pseudo-code for the majSet function. Note that undefined is returned only when

the number of sets in R is smaller than n and there is no agreement among the

sets in R. E.g., consider the invocation majSet({a, b}, {{a, b}, {a}}, 3) . In this

case, although a is a member of two sets in R, a majority for n = 3, there is no

majority of sets agreeing on the membership of b. Thus this invocation would

return undefined.

3.4.1 Base Protocol

In addition to the M-SET, in the base protocol every processor maintains the

M-set, the set of candidate members, and an integer, u, an upper bound on the
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Set majSet(Set S, SetofSet R, int n)
begin

Set M to the ∅
for every p in S do

if p is an element of dn/2e or more sets in R
then add p to M
else if p is not an element of dn/2e or more sets in R
then continue
else return undefined
end

end
return M

end

Figure 3.1: majSet function used by all versions of the protocol.

size of the group. Initially, both sets are set to P , the set of processors, and u is

set to the size of P .

During the FD-phase, every group member broadcasts a heartbeat message

and receives the heartbeats broadcasted by group members in this phase. Then

it removes from its M-set the processors from which no heartbeat message was

received in this phase.

During the GM-phase a group member broadcasts the M-set it computed in

the FD-phase, and receives the corresponding sets broadcasted by group mem-

bers. It then computes the set of candidate members proposed by a majority of

all the group members, the Maj-set, by applying the majSet to the M-sets it re-

ceived from group members, i.e. processors in the M-SET. If this set is undefined

or different from the processor’s M-set or the processor is not in the Maj-set, then

it halts. Otherwise, it uses the Maj-set and the set of all M-sets to compute the

new group membership, i.e. the M-SET.

3.4.1.1 Properties of the Base Protocol

We now argue that this protocol satisfies the Agreement and the first of the

Validity properties stated above.

Agreement A rigorous proof of Agreement can be done by induction on the

number of cycles. Here we provide informally the arguments that can be used

in such a proof. First, note that given the assumptions on the communication

subsystem, every non-faulty processor receives the same set of messages in every

phase. Because the computation of the M-SET is based on a deterministic al-

gorithm and, assuming that every non-faulty group member computed the same
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Group Membership Protocol (Base Version)

State

P the set of all processors

M-SET the set of group members, initially set to P

M-set the set of candidate group members, initially set to P

u upper bound of the group’s size, initially set to |P |

FD-phase

Communication step: Broadcast heartbeat message.

Processing step: Remove from the M-set every processor from which no heartbeat
message was received.

GM-phase

Communication step: Broadcast the M-set.

Processing step:

1. Let Maj-set be the result of applying the majSet function to P, the set of all
the M-set’s received from processors in the M-SET and u.

2. If the Maj-set

a) is undefined, or

b) is different from the M-set the processor broadcasted, or

c) does not contain the processor;

then halt.

3. Remove from the M-set every processor from which an M-set different from
the Maj-set was received.

4. Set u to the size of the M-set.

5. Remove from the M-set every processor from which no message was received
in this phase.

6. Set the M-SET to the M-set.

Figure 3.2: Base version of Group Membership Protocol-GMP

values for u and for M-SET in the previous cycle, every non-faulty group member

uses the same inputs, therefore every non-faulty group member will compute the

same values for u and for the M-SET.

Note that the base protocol can be seen as yet another instance of the state

machine approach to fault-tolerance [40, 41], and the arguments provided in the

previous paragraph are the standard arguments of such an approach and indepen-

dent of the problem at hand. The assumptions on the communication subsystem

make the arguments easier, because they imply interactive consistency with the

fault model considered, i.e. the communication subsystem provides a reliable

broadcast service.
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Validity It can be shown that the base protocol ensures that a faulty group

member will be removed from the M-SET of a non-faulty group member in no

later than two cycles. I.e., if a group member has a fault in a cycle, then it

will be removed from the M-SET of non-faulty group members by the end of the

following cycle, in the worst case, as long as a majority of group members remain

non-faulty.

The proof can be done by case analysis, considering each of the three possible

processor faults in each of the two protocol phases. Here we just outline the main

arguments used in that case analysis. Send faults are easily detected by a non-

faulty group member because it will not receive the message the faulty processor

was supposed to send. If the fault occurs in the FD-phase, then the processor

will be removed from the M-set of non-faulty group members, and because they

are a majority it will not be a member of the Maj-set and consequently of the

M-SET by the end of that cycle. If the fault occurs in the GM-phase, then non-

faulty group members will not receive the M-set from the faulty processor and

will remove it from their M-SET by the end of that cycle. Processor crashes are

detected by other processors when the crashed processor does not send a message

it was supposed to send. Therefore this kind of fault is similar to a send fault,

except that there may be an extra delay between the occurrence of the fault and

its detection. This delay can be as long as one phase when a processor crashes

immediately after sending the message in a phase. In any case, a crashed processor

will be removed from the M-SET of non-faulty group members at the latest by

the end of the following cycle. Receive faults are detected by comparing the

M-set received from the faulty processor with the Maj-set computed in the GM-

phase. If a processor has a receive fault in the FD-phase, then it will erroneously

remove the sender of the missing message from its M-set whereas non-faulty

group members will not. Therefore, the M-set broadcasted in the GM-phase by

the faulty processor will differ from the Maj-set computed by non-faulty group

members in at least the sender of the missed message, and the faulty processor

will be removed from the M-SET of non-faulty group members. Receive faults

in the GM-phase will result in the sender of the corresponding message being

removed from the M-SET of the faulty processor because it did not receive the

former’s M-set. This will be detected in the following cycle, because the M-set

broadcasted by the faulty processor will not include the sender of the missed

message, whereas that of non-faulty group members will.
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Note that we do not claim that we have just given a proof of correctness of the

base protocol. Actually, the last sentence of the previous paragraph will be true

only if the processor that sent the missed message does not fail to send its message

in the FD-phase of the following cycle. Therefore, with rigor, the base protocol

satisfies Validity only if we strengthen the fault assumptions by excluding send

faults in the FD-phase by the senders of messages on which other processors had

a receive fault in the GM-phase of the previous cycle. It is possible to modify the

protocol to eliminate this exception, but it requires sending extra information in

the GM-phase message.

3.4.1.2 Faulty Processor Behavior

Usually, it is easier to build fault-tolerant systems if faulty processors fail silently.

Because of that, the protocol requires a processor to halt whenever its state

indicates that the processor may be faulty, given the assumptions made. As a

result:

Proposition A faulty processor will halt at the latest by the end of the cycle

after which it has a fault.

Again, this proposition can be proven by induction and by case analysis using

essentially the arguments used above to argue for Validity; the caveat regarding

receive faults in the GM-phase still applies. But the key to the proof is that the

value u computed is an upper bound of the group size. As a result, under our fault

assumptions, faulty processors will never be able to compute a Maj-set different

from that computed by non-faulty processors. Note that if u were computed at

the end of the processing step of the GM-phase rather than in point 4, a faulty

processor might compute a value lower than the actual group size. Therefore, it

could compute a different non-undetermined Maj-set, even though there were a

majority of non-faulty group members, and do not halt.

Halting faulty processors complicates slightly the protocol, but it is important

for the final version of the protocol, therefore we decided to introduce this feature

early on.
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3.4.2 Processor Reintegration

The base protocol does not handle processor reintegration. From a practical

point of view processor reintegration is very important as it allows reintegrating

not only repaired processors but also non-faulty processors that were excluded

because of transient communication faults.

Handling processor reintegration requires a very simple modification to the

base protocol. Essentially, a processor that wishes to join (or rejoin) the group

needs to send a join request message instead of the heartbeat message in the

FD-phase and then it has to participate in the GM-phase that follows, as if it

were a member of the group. However, because its state may not be in agreement

with that of group members, its messages have to be handled in a special way

in the GM-phase. Furthermore, every group member has to broadcast not only

its M-set but also its group size upper-bound, so that a joining processor can

compute the Maj-set.

The new version of the protocol is presented next and changes with respect

to the base protocol are highlighted in bold.

3.4.2.1 Properties of the Protocol

It can be shown that this protocol satisfies both the Agreement and the Validity

properties, with the same strengthening of the fault assumption as for the base

protocol, as long as more than half of the group members remain non-faulty from

one group to the next. The delay for removing faulty processors or to add joining

processors is, in the worst case, two cycles.

As mentioned above, Agreement is straightforward as the protocol uses the

state machine approach to fault-tolerance. Note that although the state of join-

ing processors at the beginning of a cycle may not be equal to that of group

members, the computation of the M-SET does not use directly that state, but

rather information derived from the state that is broadcasted to all processors,

including the sender itself.

With respect to Validity, the reasoning that faulty processors are removed

from the M-SET of non-faulty group members still applies. However, correct-

ness also depends on the upper bound of non-faulty group members being the
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Group Membership Protocol (Reintegration Version)

State

P the set of all processors

M-SET the set of group members, initially set to P

M-set the set of candidate group members, initially set to P

u upper bound of the group’s size, initially set to |P |

FD-phase

Communication step:
If processor is group member
Then broadcast hearbeat message
Else if wishing to join group
Then set the M-set and the M-SET to P, u to the

size of P, and broadcast join-req message.

Processing step:

1. Remove from the M-set every processor from which no heartbeat message was
received.

2. For every join-req message received
add its sender to the M-set.

GM-phase

Communication step:
Broadcast message with the M-set and the group’s size upperbound, u.

Processing step:

1. Let Maj-set be the result of applying the majSet function to P, the set of all
the M-set’s received from processors in the M-SET and the minimum of
all u’s received in the same messages.

2. If the Maj-set

a) is undefined, or

b) is different from the M-set the processor broadcasted and the processor
is a member of the group, or

c) is not a subset of the M-set the processor broadcasted and the
processor is joining the group, or

d) does not contain the processor

then halt.

3. Remove from the M-set

a) every group member from which an M-set different from the Maj-set was
received;

b) every joining processor whose M-set is not a superset of the
Maj-set;

4. Set u to the size of the M-set.

5. Remove from the M-set every processor from which no message was received
in this phase.

6. Set the M-SET to the M-set.

Figure 3.3: Reintegration version of Group Membership Protocol-GMP
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minimum of all the upper bounds. As already mentioned, this can be shown by

induction on the number of cycles, and relies on faulty processors halting no later

than the cycle when they have a fault, which is assured by the protocol. The

same arguments can be used to show that faulty joining processors either will

not be added to the M-SET or will be removed from the M-SET in the cycle

immediately after being added.

The addition of non-faulty joining processors to the M-SET of non-faulty

group members can be argued based on the fact that Join request messages are

received by all the non-faulty group members. Therefore every non-faulty joining

processor is added to the M-set of every non-faulty group member by the end

of the FD-phase, and the M-set broadcasted by non-faulty group members in

the GM-phase will include every non-faulty joining processor. Furthermore, even

though a joining processor may not send an M-set equal to the Maj-set, because

it initializes its M-set to the set of all processors, P, its M-set will be a superset

of the Maj-set, and therefore a non-faulty joining processor will be a member of

the M-SET of non-faulty group members by the end of the cycle. The delay for

joining is in the best case one cycle and in the worst case two cycles, because a

joining processor must execute a full FD-phase.

3.4.3 Protocol without GM-phase Messages

The versions of the group membership protocol described so far require sending

messages in every GM-phase, and therefore are not particularly advantageous

with respect to other protocols that were developed for communications systems

with a static schedule only, e.g. the protocol by Ezhilchelvan and Lemos [20].

However, the decomposition of the protocol in two-phases, FD-phase and

GM-phase, with failure detection occurring in the FD-phase and agreement in

the second phase, allows for the non-execution of the latter, if there are no events

that trigger the change of the group membership. This way, group membership

is maintained with virtually no messages when the system is in a quiescent state,

and the dynamically scheduled segment will be available for other traffic.

In the new and final version of the protocol, a processor sends a GM-phase

message when it detects a fault that may lead to modifying the group membership.

Furthermore, in the FD-phase, processors may explicitly request the sending

of GM-phase messages. This is used after a GM-phase execution in which a
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processor modified its M-SET in a way that other processors may not be aware

of.

Because the GM-phase does not have to be executed in every cycle, there is

the possibility that a faulty group member will not detect changes in the group

membership, and later create havoc. To prevent that, every group member keeps

a group id, a monotonically increasing integer variable, that is incremented by

one every time there is a group membership change. The group id is sent together

with the M-set and the group size upper bound in the GM-phase. The correctness

of the final version relies on the fact that the group id of non-faulty group members

is the maximum of all the group ids of all processors.

The final version of the GM protocol is presented next and changes with

respect to the version supporting reintegration are highlighted in bold.

Note that it is essential to execute a GM-phase after another GM-phase in

which a processor removes from the M-set processors from which it did not receive

their M-set. This will allow detection of faults in the GM-phase. These faults are

detected locally by each receiving processor, but by itself the receiving processor

is unable to determine whether it had a receive fault or the sending processor

had a send fault. To resolve this dilemma, a processor needs to know what is the

perception of other group members.

3.4.3.1 Protocol Properties

Again, it can be shown that the final version of the protocol supports the Agree-

ment and the Validity properties with the same fault assumption strengthening

as for the previous versions, i.e. no send fault in the FD-phase by a processor

that sent a GM-phase message in the previous cycle on which another processor

had a receive fault, and assuming that at least a majority of group members

remain non-faulty. As in the other versions of the protocol, with these assump-

tions, a faulty processor will be removed from the M-SET of non-faulty group

members at the latest by the end of the cycle following the one in which it has

a fault. Likewise, a non-faulty joining processor will be added to the M-SET of

the non-faulty group members at the latest by the end of the cycle following the

one in which it decides to join the group. It can also be shown, that under these
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Group Membership Protocol (Final Version)

State

P the set of all processors

M-SET the set of group members, initially set to P

M-set the set of candidate group members, initially set to P

u upper bound of the group’s size, initially set to |P |
group-id integer with group id, initially set to 0

GM-request boolean indicating whether execution of the GM-phase should be
performed, initially set to false

FD-phase

Communication step:
If processor is group member
Then broadcast hearbeat message with GM-request as determined in
the previous GM-phase
Else if wishing to join group
Then set the M-set and the M-SET to P,

u to the size of P, the group-id to zero
and broadcast a join-req message.

Processing step:

1. Remove from the M-set every processor from which no heartbeat message
was received.

2. For every join-req message received
add its sender to the M-set.

3. If received a message with GM-request
or modified the M-set in 1 or 2

Then set GM-request.

Figure 3.4: Final version of Group Membership Protocol-GMP (part 1)

fault assumptions, a faulty processor will halt the latest by the end of the cycle

following the one in which it has a fault.

The arguments presented for the version of the protocol supporting processor

reintegration still apply, as long as the group id of non-faulty group members is

the maximum of all the ids. Again, a rigorous proof can be done by induction

on the number of cycles. Informally, note that if, in a GM-phase execution, a

faulty group-member increments its group id, then it must have been able to

compute a Maj-set with a value different from undefined. Because, faulty group

members are a minority, then it must be the case that non-faulty group members

also executed the GM-phase and will, therefore, increase their group id.
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Group Membership Protocol (Final Version)

GM-phase
If GM-request is set, then

Communication step:
Broadcast message with the M-set, the group’s size upperbound, u, and the
group-id.

Processing step:

1. Let max-id be the maximum of the group ids received.
2. If the processor is joining

Then set the group-id to max-id
Else if its group-id is different from max-id
Then halt

3. Let Maj-set be the result of applying the majSet function to P, the set
of all the M-set’s received from processors with a group-id equal to
max-id, and to the minimum of all u’s received in the same messages.

4. If the Maj-set
a) is undefined, or
b) is different from the M-set the processor broadcasted and the pro-

cessor is a member of the group, or
c) is not a subset of the M-set the processor broadcasted and the pro-

cessor is joining the group, or
d) does not contain the processor

then halt.
5. Remove from the M-set

a) every group member from which an M-set different from the Maj-set
was received;

b) every joining processor whose M-set is not a superset of the Maj-set;
6. Set u to the size of the M-set.
7. Remove from the M-set every processor from which no message was

received in this phase.
8. If removed some processor from M-set in 7

Then set the GM-request
Else reset the GM-request.

9. Set the M-SET to the M-set and increment the group-id.

Figure 3.5: Final version of Group Membership Protocol-GMP (part 2)

Regarding the upper bounds of delays of the Validity property, note that

faults in the FD-phase will be detected as before in the same cycle, although in

the case of a receive fault the faulty processor may be removed from the M-SET

only in the following cycle, as a result of the processor halting in the GM-phase of

that cycle. Faults in the GM-phase are detected as before, indeed if a processor
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has a receive fault it will request the execution of the GM-phase in the following

cycle. Crash faults will originate send faults at the latest in the FD-phase of the

following cycle, therefore the faulty processor will be removed from the M-SET

at the latest the following cycle. With respect to the upper bound of the delay

for a processor to join a group, the protocol execution is essentially identical to

that of the version supporting processor reintegration only, and the arguments

used there still apply. Thus, a non-faulty processor wishing to join the group will

be added to the M-SET of non-faulty group members the latest by the end of the

following cycle.

Note that just as non-faulty processors detect failure of a processor no later

than the end of the following cycle, faulty processors also detect their own faults

by the same time. Indeed, it can be shown by case analysis that for any fault

different from a crash, a faulty processor will execute the GM-phase protocol

either in the same cycle or in the following cycle, and in both cases it will halt.

3.5 Implementation Outline

The GMP was designed for take advantage of a new class of dual scheduled time

division multiple access (TDMA) control protocols (DuST protocols), of which

FlexRay is the best known example. The FD-phase, which must be run in every

cycle to ensure timely fault detection, can be scheduled statically, whereas the

GM-phase, which may not need to be executed in every cycle, can be scheduled

dynamically. In this section, we provide further details on a possible implemen-

tation of this protocol on top of the FlexRay protocol.

3.5.1 FlexRay

FlexRay [3] is a TDMA-based medium access control protocol that supports both

static (TDMA) and dynamic (FTDMA) communications scheduling. FlexRay is

an evolution of the Byteflight [42], a FTDMA based protocol, which also incorpo-

rate concepts imported from the time-triggered approach. The FlexRay protocol

is rather complex and below we omit some details to simplify its description.

These omissions make the protocol less flexible than it really is, but they do not

make it behave in a way that violates its specifications.
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Figure 3.6: Structure of static segment of FlexRay protocol [3].

In FlexRay every TDMA cycle has a fixed length and it comprises two seg-

ments, a static segment and a dynamic segment, each of which has a fixed length.

Both segments are divided in slots, however, whereas in the static segment (see

figure 3.6) all slots in a cycle have the same fixed length, which does not change

between cycles, in the dynamic segment (see figure 3.7), the length of the slots

may vary both within a cycle and between cycles. More precisely, in the dynamic

segment, time is divided in mini-slots and each slot has an integer number of

mini-slots that may vary, depending on the amount of data to transmit.

Each slot is assigned in every cycle to the same processor, implicitly deter-

mining the processor that has access to the medium. However, whereas in the

static segment, every processor transmits a frame in its slots, even if it has no

data to send, in the dynamic segment, a processor may not transmit a frame in

a slot assigned to it, in which case the slot takes only one mini-slot.

Medium access control is implemented using a slot counter per processor,

which identifies the frame that is transmitted in that slot, if any, and that is reset

to one in the beginning of every TDMA cycle. The FlexRay protocol ensures

that the slot counters of all non-faulty processors are synchronized. In the dy-

namic segment, the slot number effectively determines the priority of the frames:

depending on the configuration, it may be possible for a set of frames to prevent

other frames with a higher id from being sent to the medium.

3.5.2 Implementation Issues

The group membership protocol puts some requirements on the communication

system. First, it requires that every processor broadcast a heartbeat message in
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Figure 3.8: GMP phases vs. DuST phases. Single-round (i) and multiple-round

diagnosis periods (ii).

the FD-phase and that the communication system be able to detect the absence

of messages. Second, it requires that, if necessary, GM-phase messages be sent

in the next GM-phase. Third, it requires that processors be able to signal their

wish to join the group or to request the execution of the GM-phase. All these

requirements can be satisfied by FlexRay as we argue next.

Regarding the first requirement, we note that in FlexRay’s static segment a

processor will always transmit in its slots, even if it has no application data to

send. Therefore, by assigning a slot of the static segment to each processor, we

can use the frames broadcasted in the static segment as heartbeat messages of

the FD-phase (Figure 3.8(i) illustrates the relationship between GMP phases and

the segments of DuST protocols, FlexRay in this case). The loss of one of these

messages is detected by FlexRay, which provides several status bits that can be

used to distinguish a send omission, caused by a crash of the sender, for example,

from a message loss caused by communication faults, for example.

With respect to the GM-phase messages, they are broadcasted in the dynamic

segment, because we expect that events that may lead to group membership

changes do not occur that often. But when they do occur, it is important to
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Figure 3.9: Possible execution of the GMP, illustrating the execution of the SA-

phase only when membership-related events are observed.

broadcast these messages as soon as possible. For Example, figure 3.9 illustrates

one possible execution of the GMP for a configuration with 3 nodes, which are

assumed to be members of the group at the beginning of the first TDMA cycle,

c. In that cycle, the 3 nodes execute only the FD-phase, i.e. only send their

heartbeat messages. As no event that might lead to a change in the member-

ship is observed by any of the 3 nodes, there is no execution of the SA-phase

(equivalently, we say that the SA-phase has no messages). However, in the fol-

lowing TDMA cycle, node 3 has a receive fault on the heartbeat message sent

by node 2. As a result, it sends a vote message in the following round (round

n+3). The other nodes do not observe any event that might lead to a change in

the membership and therefore do not send any vote.

An implementation satisfying this requirement is to reserve the first slots of

the dynamic segment for the exchange of the GM-phase messages, by assigning

one of these slots to each of the processors and binding the corresponding frame

to the GM-phase message. This way, it is ensured that GM messages will not

be preempted by other messages of the dynamic segment. If a processor has no

GM-phase message to send, the corresponding slot will take only one mini-slot.

All the mini-slots remaining in the dynamic segment after the broadcast of GM-

messages can be used to exchange application data that presumably does not

have hard deadlines for transmission. Note that, if the maximum time available

for the dynamically scheduled traffic is not enough for a complete execution of the

GM-phase protocol, the GM-phase may have to be spread over several dynamic

segments, i.e. TDMA cycles, leading to higher latency in the group membership

change. Fault-rate assumptions will be affected accordingly.
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Finally, there is a need for some mechanism allowing processors to signal

their wish to join the group or to request the execution of the GM-phase. In

our protocol, this is done in the FD-phase, i.e. in the static segment. Thus

a possibility is to reserve two bits in the message sent by each processor in the

static segment, a join-bit and a group-bit that, if set, indicate a join request and a

GM execution request, respectively. The main problem with this implementation

is that these bits will use some of the space reserved for application data. An

alternative that avoids this overhead is to use the Network Management (NM)

Vector, which is an optional field of the payload of a frame in the static segment.

This solution has the problem that the NM Vector is an optional feature, and as

such may not be implemented by every FlexRay communications controller.

3.5.3 Assumptions

In addition to these requirements on the communication system, we made some

assumptions regarding the capabilities of the communication system and the types

of faults.

One important assumption is that the communication system supports reli-

able broadcast. This is certainly not true for FlexRay and, occasionally, a message

broadcasted by a non-faulty processor may be corrupted by communication faults.

We can make such scenarios less likely, by using FlexRay’s support of duplicated

communication channels: as long as a message is received correctly in one of the

channels, it will be considered correct. Note that whereas FlexRay provides an

abstraction of a single channel in the static segment, it does not provide such an

abstraction in the dynamic segment. Thus, it is up to the application to build

such an abstraction on top of FlexRay.

Whether or not a duplicated communication channel is used, messages will

still be lost. In most cases, this will be detected by all non-faulty processors, but

in some rare cases, an asymmetrical fault may result and some processors will dis-

card the message whereas others will not. By assuming that the communication

system is reliable, we assign the responsibility for these faults to processors. Es-

sentially, we convert communication faults into processor faults. The symmetric

case is not very problematic, if the group has several members, because it leads

to the exclusion of only one processor. On the other hand, the case of asymmet-

ric faults is not very well tolerated, as a single communication fault may lead to
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the exclusion of several processors. In an extreme case, if other faults occur, all

processors may halt because there is no majority.

To make the protocol more tolerant to communication faults we propose an

extension of the GMP, in which the FD-phase rather than comprising the static

segment of one communication round, comprises several static segments in con-

secutive communication rounds (Figure 3.8(ii)). This extension makes the GMP

more resilient to transient communications faults and provides higher reliability

in environments prone to these faults. We call this extension multiple-round di-

agnosis period GMP whereas we use the expression single-round diagnosis period

GMP for the original protocol.

Another type of fault that may seriously affect the reliability of the protocol

is the babbling idiot, a processor that transmits in slots other than its own. Our

assumptions ruled out this type of fault, and therefore we should show that

FlexRay prevents or masks these faults. Indeed, FlexRay provides a bus guardian

to protect the communication channels in the static segment, by cutting off of

the network the offending processor. However, communication in the dynamic

segment is not similarly protected, and therefore such a processor might prevent

the exchange of GM-phase messages. This is a limitation of the implementation

of our protocol in FlexRay.

3.5.4 GM-phase Messages and Overhead

A key issue regarding GM-phase messages is the encoding of the group id. In

the protocol, the group id is an integer that is incremented in every execution,

and therefore it will increase without bounds. In order to minimize the traffic

overhead caused by the protocol, the group id must be encoded with the minimum

number of bits. Because the protocol ensures that a faulty processor halts no later

than the TDMA cycle after which it has a fault, two bits are enough for encoding

the group id. The encoding of the M-set and of the group size upper bound

present no difficulty. The M-set can be encoded as a bit-vector and the group

size upper bound as an integer. Thus, assuming a system with 64 processors,

each GM-phase message could be 9 bytes long, only: 8 bytes for the M-set and

one byte packing the group size upper bound and the group id.
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3.6 Conclusion

We presented a new group membership protocol specially designed for next gen-

eration communication systems intended to support real-time safety-critical ap-

plications. By taking advantage of static and dynamic communication scheduling

supported by these TDMA-based protocols, it has an overhead of only two bits

per processor per cycle in a quiescent state, i.e. when there are no group mem-

bership changes. In addition, it tolerates benign failures of up to half of the group

members between consecutive executions. Even when there are group member-

ship changes, the overhead of the protocol is lower than that of other protocols

that provide the same level of fault tolerance. The protocol is also very respon-

sive, removing faulty processors no later than two TDMA cycles after they fail,

and (re)integrating them no later than two TDMA cycles after they decide to join.

These numbers compare favorably with protocols designed for systems based on

TDMA with static scheduling only: the protocol is as fault tolerant as the most

fault tolerant protocols [20], and has a slightly higher overhead than the most

efficient [17], which assumes only one fault per TDMA cycle.

To show the feasibility of the group membership protocol, we have also out-

lined an implementation on top of the FlexRay protocol. We have found no major

difficulty. However, the protection against the babbling idiot fault in the dynamic

segment might be useful.



Chapter 4

Formal Verification of GMP

This chapter presents the formal verification of Group Membership Protocol

(GMP) by means of model checking. It includes a detailed description of the

models developed for the UPPAAL model checker and a discussion of the result

obtained. The content of this chapter essentially comprises the text published in

[9].

4.1 Introduction

In the previous chapter, we have presented a new group membership protocol

(GMP), that takes advantage of the dual scheduling ability of the class of TDMA

protocols used by FlexRay and argued informally its correctness. However, fault-

tolerant distributed protocols are very subtle and informal arguments are prone

to error making them clearly insufficient for safety-critical applications, which

require a high level of assurance that they operate correctly. This holds especially

for middleware that is supposed to be used in the development of safety critical

applications. Ideally, mathematical proofs, either manual or automatic, of its

correctness should be provided. An alternative formal method is model checking.

Model checking is a technique for verifying properties of a system through

exhaustive and automatic exploration of all the system states. One problem with

model checking is the state space explosion, i.e. the exponential growth of the

number of system states when the number of components or the number of vari-

39
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ables and their possible values increases. A well known technique to address this

problem is symmetry reduction [43], which tries to explore the structural sym-

metry of the model. This technique is particularly effective in models composed

by identical components, such as in distributed protocols.

In this chapter we focus on the use of symmetry reduction in verifying the

GMP. The GMP is particularly challenging in this respect, because its behavior

is somewhat “irregular”. This is compounded by our desire in keeping the model

close to the GMP, in order to ensure a high confidence level on the verification re-

sults. Therefore, the model we have developed includes an implementation of the

GMP that could be used almost verbatim in an executable implementation of the

protocol. This allowed us to detect an error in the outline of an implementation

of the GMP protocol that we previously proposed.

The remainder of this chapter is organized as follows. In the next section we

provide a very quick review of Uppaal, the model checker we use. In Section 4.3,

we describe an Uppaal model of the GMP. The techniques used to reduce the

state space size are described in Section 4.4. Section 4.5 presents the correctness

properties, and in Section 4.6 we present and discuss the verification results.

Finally, we conclude in Section 4.7.

4.2 Background

4.2.1 UPPAAL

The Uppaal model checker [44] is a toolbox for the verification of real-time systems

modeled as non-deterministic timed automata. A timed automata [45] is a finite-

state machine containing a set of clocks that advance synchronously. Uppaal

supports a number of extensions to timed automata such as integer variables,

structured data-types and channel synchronization, that make it suitable to model

more than just the temporal behavior of a system.

Uppaal models comprise a set of timed-automata that execute concurrently

and that may synchronize with each other through broadcast or binary channels.

Figure 4.1 shows a simple model with two automata, P and Q, of three and

two locations respectively, i.e. P0 to P2 and Q0 and Q1. P0 and Q0 are the

initial locations of the respective automata and are represented as a double circle.
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P1 P2P0 b!
r: int[0,N]
n = r

Q1Q0 b?
m = n

Figure 4.1: Simple Uppaal model composed of two timed-automata.

Location P1, represented as a circle with a C inside, is a committed location,

which means that time is not allowed to advance while such a location is active.

The model includes channel b and integer variables m, n and r.

Initially, the two automata are in their respective initial location, i.e. P0 and

Q0, and all integer variables values are zero. In this state, automaton Q cannot

take the transition from Q0 to Q1 because it is blocked waiting on channel b.

Therefore, progress is possible only by automaton P taking the transition from

location P0 to location P1. The edge from location P0 to location P1 has

a select, r:int[0,N], and an assignment, n=r, labels. The select label binds

identifier r to a random value in the range [0,N]. This value is then assigned to

variable n in the assignment label. Therefore, when P takes transition P0 to P1,

variable n is assigned a random value in the range [0,N]. Because location P1

is a committed location, automaton P takes transition P1 to P2 immediately

after. Simultaneously, automaton Q takes transition Q0 to Q1, because both

transitions have matching synchronization labels on channel b. Note that Uppaal

also supports the synchronization of multiple automata on a single broadcast

channel, i.e. if multiple automata are waiting on a broadcast channel, they will

all be unblocked if another automata signals that channel.

A more detailed, and formal, description of Uppaal can be found, for example,

in [46].

4.3 Verification Model

The Uppaal model of the GMP comprises two types of automata, or templates:

Node and Scheduler. The Scheduler automaton controls the evolution of the

protocol by initiating each of the GMP phases. The Node automaton models

the behavior of one node and is the core of the model. A GMP Uppaal model

comprises one Scheduler automaton and N Node automata, where N is the

number of nodes in the system.
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4.3.1 Basic Model

In order to simplify the presentation of the model we first present a model that

does not consider the occurrence of faults.

4.3.1.1 Global Variables and Synchronization Channels

Variables in Uppaal may be either local or global. Local variables are private to

a particular automaton. Global variables in Uppaal can be accessed by all the

automata in the model, i.e. they are shared, and they play an important role in

the communication between automata. This is because synchronization channels

in Uppaal are strictly for synchronization; it is not possible to pass data through

a channel in Uppaal.

The following table shows some global variables used in the model:

typedef struct{

bool el[N];

} Set;

// GLOBAL State

Set MSETo, Joinable;

// Schedule for GM events: joins

Set Joining;

// Info sent in heartbeat messages

Set SAreqH;

// Info sent in the vote messages

meta Set Mset[N];

meta int[0,N] gsubV[N];

meta int[0,MaxGId] gidV[N];

In the GMP model there are two classes of global variables. The first class

comprises variables that are updated only by the Scheduler and that are intended

to control the behavior of the Node automata. Two variables of this class are the

sets MSETo and Joining. The former keeps track of the group membership as

determined by an omniscient observer, whereas the latter keeps track of the nodes

that try to join the group. The second class comprises variables that contain

information that a node sends in the messages of the GMP. Two variables of

this class are the set SAreqH and the array of sets Mset. The former contains the

nodes that have requested to execute the SA-phase, i.e. each element of this array

represents the SA-req bit of the heartbeat message sent by the corresponding

node, whereas each element of the latter contains the group membership sent by

each node in their vote message.

In addition to global variables the model comprises four broadcast synchro-

nization channels: join, startPhase, startProc and terminateCycle. The lat-

ter two are not strictly necessary, but are used to eliminate intermediate states
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Ver
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startPhase!

startProc!

startPhase!

join!

terminateCycle!
updateMSEToX()

startPhase!
SAreq=SAreqH

jr: int[0,rangeBin(N-2)]
initSched(jr)

jr: int[0,rangeBin(N-2)]
genSchedule(jr)

Figure 4.2: Scheduler automaton for the model without faults.

HLT

B4SA_phase

B4FD_phase

setIsIn(Joinable,Id)
clearState(Id)

not setIsIn(Joinable, Id)
initNode(Id)

not setIsIn(MSET[Id], Id)
terminateCycle?
clearState(Id),
setAdd(Joinable,Id)

setIsIn(Joining,Id)
join?
initJoin(Id)

setIsIn(MSET[Id], Id)
terminateCycle?

startPhase?
genVote(Id)

setIsIn(SAreq,Id)
startProc?
processSAphase()

not setIsIn(SAreq, Id)
startProc?

setIsIn(Valid[Id],Id)
startPhase?
processFDphase()

startPhase?

Figure 4.3: Node automaton for the model without faults.

that are not relevant, thus reducing the size of the model’s state space. (A de-

tailed discussion on the use of synchronization is presented in Subsection 4.4.3.)

4.3.1.2 Automata

Figures 4.2 and 4.3 show the Scheduler and the Node automata for the basic

model. In addition to the two phases of the GMP that are repeated one after the

other indefinitely, the model includes an initialization phase. We briefly describe

the base model considering each phase in turn. As stated above the Scheduler

automaton controls the model by initiating the phases.

Model Initialization: This phase comprises the initialization of the vari-

ables of the model. It simplifies the verification of configurations with dif-

ferent number of nodes. In this phase, the Scheduler initializes itself and

determines which nodes start as group members and those that do not.
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Failure Detection Phase: Just before the FD-phase begins the

Scheduler automaton is in location B4FD_phase and the Node automata are

either in location B4FD_phase or in location HLT. Initiation of the FD-phase

by the Node automata is controlled by the Scheduler automata.

At the beginning of the FD-phase, the Scheduler determines, with the help

of a selection label, which of the nodes that can join the group will attempt

it and initializes the Joining set with these nodes. After that it signals the

selected nodes on broadcast channel join, so that they move from HLT to

the B4FD_phase and therefore become ready to initiate the FD-phase. At

this point, the nodes that will execute the FD-phase in this execution of

the GMP are in the B4FD_phase state waiting on the startPhase broadcast

channel

Immediately after, the Scheduler signals on that channel, triggering the

execution of the FD-phase by the nodes. The actions taken in this transition

are specified inside function processFDphase(), which is executed by the

Node automata and does the processing of the FD-phase of the GMP. In

this processing, each Node automaton updates its Mset variable and the

SAreq variable, as described in GMP specification (chapter 2). In addition

to its local state, each Node uses all messages it received in the FD-phase

as input to processFDphase(). This information can be found by looking

up sets MSETo, Joining and SAreqH.

Set Agreement Phase The pattern of the set agreement phase (SA-phase)

is very similar to that of the other phases.

Before executing the SA-phase the Scheduler and the Node automata that

execute the GMP are all in their B4SA_phase location. Execution of the

SA-phase by the Node automata is driven by the Scheduler.

When the Scheduler takes the transition out of location B4SA_phase, it

signals on the startPhase broadcast channel, unblocking all the Node au-

tomata executing the GMP in this cycle. At this point each Node sends its

vote, if any, by executing function genVote().

Sending of a vote consists in updating global meta variables gsubV and

gidV, with the values of the corresponding local variables, as described in

the GMP specification shown in chapter 2. The value of the Mset sent in

the vote message, can be found directly in meta array variable Mset.
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After that step, the Scheduler signals on broadcast channel startProc

triggering the processing of the SA-phase. If a node is not in SAreq, i.e. the

node has not observed any event that might lead to the change of the group

membership, then it does not send any message in this phase and ignores all

messages sent by other nodes, moving directly to location B4FD_phase. On

the other hand, nodes in SAreq, must process the votes they receive. This

is done in function processSAphase(), which implements the processing

of the SA-phase of the GMP. In this processing, a Node uses its own state

variables, such as the MSet and the MSET sets, the meta variables with the

votes sent, the SAreq set, which indicates which votes were actually sent,

and the global variable Joining, which indicates which of those votes were

sent by nodes joining the group.

In the absence of faults, this function is executed only when a node requests

to join the group, and the outcome is the update of the state variables as-

sociated with the group, namely MSET, gid and gsub. However, in the

presence of faults, a node may find out that its view of the group mem-

bership is different from that of the majority, or even that it is not able

to determine the view of the majority. Under our fault assumptions, both

cases indicate the occurrence of a fault in the Node and the protocol deter-

mines that the node must halt. To allow testing of this outcome, a node

removes itself from its MSET if it must halt.

Thus, when the Scheduler signals on the terminateCycle broadcast chan-

nel, if a node is not a member of its MSET it moves to location HLT and is

added to the set of nodes that can join the group(Joinable). Otherwise,

the node moves to state B4FD_phase and becomes ready to execute the

FD-phase again.

4.3.2 Modeling of Faults

In the previous section we have presented an Uppaal model for the GMP in the

absence of faults. In this subsection we describe how we model faults. The basic

idea is to use fault schedules for each phase of the GMP execution. These fault

schedules specify the fault events, i.e. send faults and receive faults, that each

node will experience in the corresponding phase.



46 CHAPTER 4. FORMAL VERIFICATION OF GMP

B4SA_phase

Init

Ver

B4FD_phase

genLocalSched!

genLocalSched!

startProc!startPhase!

mrxf: int[0, N-2],
jrxf: int[0, N-2]

updateRxFaults(mrxf, jrxf, true)

mrxf: int[0, N-2],
jrxf: int[0, N-2]

join!
updateRxFaults(mrxf, jrxf, false)

terminateCycle!
updateMSEToX()

fr : int[0,rangeBin(N-2)]
updateTxFaults(fr, true)

startPhase!
SAreq=SAreqH

startPhase!
initSched()

fr : int[0,rangeBin(N-2)]
updateTxFaults(fr, false)

fmr : int[0,(N-1)/2],
jr: int[0,N-2],
fjr: int[0,(N-1)/2]

genSchedule(jr, fmr, fjr)

Figure 4.4: Scheduler automaton for the model with faults.

Generation of the fault schedules is done at two levels. At a system-wide level,

the Scheduler determines which nodes have send faults and which nodes have

receive faults. At a local level, each Node designated to have receive faults gener-

ates its own receive faults, i.e. determines on which messages it will experience a

receive fault. Generation of the global fault schedule by the Scheduler makes it

easier to ensure that the GMP fault assumptions are not violated. On the other

hand, the generation of local receive fault schedule by nodes leads to a more

structured approach and makes it easier to change the receive fault assignment

policy.

Fault schedules are implemented as sets. The following state variables were

added with that purpose:

// Global state variables

Set Faulty;

Set TxFaults;

Set RxFaults;

// Per node state variables - Scheduler needs to access them

Set NFaultsFD[N]; // Faults in the FD-phase

Set NFaultsSA[N]; //Faults in the SA-phase

In order to generate all fault schedules of interest in a compact way, we use

select labels. The random integers generated by these labels are used either as

the number of nodes that fail, or as an encoding, with one bit per element, of a

set of nodes that fail.

Figure 4.4 shows the Scheduler automaton that generates the fault sched-

ules as described above. To generate the global fault schedule, the Scheduler

automaton determines which nodes fail in a GMP execution, at the beginning
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HLT

B4SA_phase

B4FD_phase

not setIsIn(Joining, Id)
join?
clearNFaults(Id)

not setIsIn(SAreq,Id)
genLocalSched?
setEmpty(Valid[Id]),
updateNFaults(NFaultsSA[Id],0,Id)

not setIsIn(MSET[Id], Id)
terminateCycle?
clearState(Id),
setAdd(Joinable,Id)

setIsIn(SAreq,Id) and not setIsIn(RxFaults,Id)
genLocalSched?
setIntersection(Valid[Id], Valid[Id], SAreq),
updateNFaults(NFaultsSA[Id],0,Id)

not setIsIn(RxFaults,Id)
genLocalSched?
setUnion(Valid[Id], MSET[Id], Joining),
updateNFaults(NFaultsFD[Id],0,Id)

fr: int[0,rangeBin(N-1)]
setIsIn(SAreq, Id) and setIsIn(RxFaults,Id)
genLocalSched?
setIntersection(Valid[Id], Valid[Id], SAreq),
updateNFaults(NFaultsSA[Id],fr,Id)

setIsIn(Joining,Id)
join?
initJoin(Id)

setIsIn(MSET[Id], Id)
terminateCycle?

startPhase?
genVote(Id)

setIsIn(Valid[Id],Id)
startProc?
processSAphase()

not setIsIn(Valid[Id], Id)
startProc?

setIsIn(Valid[Id],Id)
startPhase?
processFDphase()

startPhase?
initNodeID(Id)

fr: int[0,rangeBin(N-1)]
setIsIn(RxFaults,Id)
genLocalSched?
setUnion(Valid[Id], MSET[Id], Joining),
updateNFaults(NFaultsFD[Id],fr,Id)

Figure 4.5: Node automaton for the model with faults.

of each execution. I.e., now function genSchedule() not only determines which

nodes will attempt to join the group, but also which nodes may fail. Then,

before starting each phase, the Scheduler selects which nodes experience send

faults and which nodes may experience receive faults.

Figure 4.5 shows the new Node automaton. Like in the Scheduler automa-

ton, the structural changes concern only the generation of local schedules at

the beginning of each phase. In addition, we had to make some changes to both

processFDphase() and processSAphase(), because faults will affect which mes-

sages are received, and consequently processed, by each node.

We terminate our description of the modeling of faults with a reference to

crash-faults, a kind of fault the GMP is supposed to tolerate but that we have

ignored so far. It turns out that the model we have developed for receive and

send faults subsumes the case of crash-faults. A crash-fault is a fault in which a

node enters a halting state and takes no further action. To the other nodes an

execution with such a fault is equivalent to an execution in which a node does not

send any message, from some instant onwards. This behavior can be exhibited

by this model, indeed a node that has send and receive faults from some point of

its execution onward, moves to the HLT state and stays there indefinitely behaves
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like a crashed node.

4.4 Limiting the Size of the State Space

Modeling of faults makes the model inherently more complex. For example, in our

fault model we consider that a node may fail in one of three ways: by crashing,

by omitting to send a message or by omitting to receive a message. Given that

each GMP execution has 2 phases that are not identical, each node may fail

in 25 different ways. (Actually, this number is a lower bound as it considers

only whether or not a node experiences at least one receive fault in a phase,

disregarding the number of receive faults and on which messages these faults

occur.)

In principle, one might argue that the number of receive faults in each phase

is irrelevant and, in addition, that it does not matter in which phase of the GMP

execution one node has a given fault. It turns out that none of these observations

hold for the GMP, as some subtle fault scenarios that we described in chapter 2

illustrate. We call these scenarios masked faults, as they correspond to cases in

which a receive fault of one node is masked by another fault in the same or in

the subsequent cycle. We have identified the following 3 cases:

1. SFn in FD-phase; RFm,n in SA-phase.

2. RFm,n in SA-phase; SFn in FD-phase.

3. RFn,o in FD-phase; RFm,n in SA-phase.

where SFn means a send fault in node n, and RFm,n means the receive fault in

node m on a message sent by node n. Thus, in the first two cases, the receive

fault in m is effectively masked by a send fault in n, and therefore node m is not

removed from the group. In the third case, the receive fault by m is masked by

n’s receive fault, and therefore node m is not removed from the group.

It is clear that if, e.g. in case 1 or 2, node m had a receive fault on all

the messages sent, no masked fault would occur. This is because, for that to

happen, all senders would have to fail, but such a fault scenario violates the fault

assumptions of the GMP. It is also clear that if, e.g. in case 3, node m had its

fault in the same phase as node n, then it would detected as faulty by the good
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nodes. These examples show that general principles [47] for model checking fault

tolerant systems must be applied with care.

Still we can apply some general techniques to reduce the size of the state

space. This is particularly important for model-checking the GMP because the

state kept by each node is relatively large and we want to verify the protocol

for configurations with a sufficiently large number of nodes to exhibit interesting

behavior. We have found the following three techniques particularly useful in

reducing the size of the state space of the model: 1) symmetry reduction; 2)

priorities; 3) synchronization.

4.4.1 Symmetry Reduction

This technique is particularly effective for distributed algorithms, such as the

GMP, where a set of identical components executes the same algorithm. Es-

sentially, the idea is to take advantage of the fact that, for the GMP, it is not

relevant which nodes are members or which of those are faulty, but rather how

many nodes are group members or how many of those are faulty.

Uppaal itself provides support for symmetry reduction through scalarset types.

They provide a way to tell the model checker about symmetries. Scalarset types

can be seen as a bounded integer type with restricted operations, namely assign-

ment and equality testing. Scalars may also be used as indices of arrays. Because

of these restrictions, we found no clean way to model the GMP without using

arrays indexed by scalarsets and whose elements contain scalarsets. However,

for models with arrays indexed by scalarsets that contain elements of scalarsets

the algorithm used by Uppaal for symmetry reduction is unlikely to provide any

benefit [46]. Some preliminary experiments with simplified models with patterns

of usage of scalarsets that would allow to model the GMP confirmed that. We

have therefore implemented symmetry reduction directly in the model.

As stated above, for the GMP what is important is the number of nodes

that fail, and not which nodes fail. Therefore, to eliminate “redundant states”,

the fault schedules are generated such that faults are assigned to nodes with

higher identifiers. For example, in a configuration of 5 nodes, N0 to N4, in an

execution where N4 is in location HLT and the remaining nodes are members

of the group, the GMP tolerates one additional fault. In that event, which is

generated randomly, the fault will be always assigned to node N3. This eliminates
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states where each of the remaining members fail instead of N3. Note that this

technique does not eliminate all the redundant states. E.g., if instead of node N4

the node in HLT were node N3, in the event of a fault, that fault will be assigned

to node N4. Although, such a state is equivalent to the state above, basically

it can obtained by swapping the states of N3 and N4, our model is not able to

eliminate it.

However, the number of these redundant states can be reduced, by adopting

a consistent policy to select the nodes that join: the model generates randomly

the number of nodes that will join, and then selects those that can join with

lower identifiers. This policy, together with the one described in the previous

paragraph, makes it highly probable that the group is composed by the members

with lower identifiers, and that only nodes with higher identifiers will fail. In

particular, it ensures that nodes N0 and N1 will never fail, whatever the number

of nodes in the system, because the GMP requires at least two nodes, and the

generation of faults in the model is such that it does not violate the GMP fault

assumptions.

Selection of the faulty nodes that experience receive faults follows the same

approach as that of the assignment of faults. For example, if nodes N4 and N5

are both selected as faulty, and the model determines randomly that one of them

will have a receive fault in the FD-phase, then node N5 will be selected. On

the other hand, selection of faulty nodes that experience transmission faults is

done in a completely random way using select labels with a range from 0 to

2(N−2) − 1. The number selected is then used as an encoding of a set of N-2

elements and the latter is intersected with the set of faulty nodes. The reason for

generating transmission faults in a completely random way is to allow all relevant

combinations of send and receive faults. This approach is particularly effective

for N smaller than 7, i.e. for at most 2 faulty nodes, in that it generates only 2

redundant pairs of receive faulty and send faulty node sets, in a total of 17, but

the effectiveness of this policy decreases as the N increases.

Finally, we have also tried to explore symmetry reduction in the local receive

fault schedules of nodes that are supposed to experience receive faults. Rather

than generate completely random fault schedules, the receive fault schedules are

only random with respect to messages sent by faulty nodes. With respect to

messages sent by non-faulty nodes, we ensure that nodes will loose only the mes-
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sage sent by N0, which is guaranteed to be always a group member as explained

above. This policy has two additional benefits. First, it ensures that all faulty

nodes “collude” to remove a non-faulty node. Second, it does not eliminate fault

schedules with multiple and reciprocal faults that may lead to subtle protocol

behaviors. Again, this approach is particularly effective for N smaller than 7, in

that it prevents redundant states, but for larger values of N redundant states will

be generated.

4.4.2 Priorities

Another well-known technique to reduce the state space size of the model is to

remove uninteresting interleavings. For example, in the GMP the order in which

nodes execute the processing pertaining to each phase is not relevant. I.e., it

does not matter whether node 0 executes before node 1 or the other way around.

Uppaal allows reducing these interleavings by means of process priorities. Using

this feature, one can specify the order by which automata will take transitions

when more than one transition is enabled at the same time, essentially inhibiting

the transitions of automata with lower priority.

4.4.3 Synchronization

However, the use of priorities does not remove all the intermediate states. For

example, considering that the higher the Id of a node the higher its priority,

although node 1 will always take a transition before node 0, if both of them have

enabled transitions, the intermediate state that occurs after node 1 taking its

transition and before node 0 takes its transition will still be considered. One

technique to remove these uninteresting states is to add synchronization, as we

have done with the startProc and the terminateCycle broadcast channels. By

adding the additional synchronization, all nodes take the transition simultane-

ously, and none of the otherwise intermediate states will be considered (unless it

occurs in some other way).

It should be noted that although removing intermediate states is interesting

for the sake of reducing the size of the state space, it may have adverse effects

on the time for model checking. For example, we might reduce the size of the

state space for about 30% for 5 nodes, by generating the schedules for send faults
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and receive faults on the same transition in Scheduler. However, verification of

the properties described in the next section with such a model takes more than

twice the time. The reason is that although the number of states is smaller, the

number of transitions in the model is much larger, and therefore Uppaal spends

a lot of time testing transitions that in the end lead to the same state.

4.5 Correctness Properties

In GMP specification, we have stated the Group Membership Problem in terms

of the set of group members (M-SET) maintained by every node, and specified

two properties:

Agreement: All non-faulty group members compute the same M-SET.

Validity:

1. A faulty node will be removed from the M-SET of a non-faulty group

member in a bounded time interval;

2. A non-faulty node attempting to be reintegrated will be added to the

M-SET of a non-faulty group member in a bounded time interval.

And we have also stated that the GMP ensured a bound of two TDMA cycles

for removing a faulty member and one TDMA cycle for a non-faulty node to be

reintegrated. The latter bound considers that the delay is measured starting on

the instant the node sends a joining request.

Uppaal allows the specification of the properties that a model must satisfy in

a simplified version of CTL [44]. In particular it allows to specify safety properties

like Agreement and Validity, using the A� modal operator as follows:

Agreement: A[] Sched.B4FD_phase imply Agreement()

Validity1: A[] Sched.B4FD_phase forall(i: int[0,N-1]) FDdelay[i]<3

Validity2: A[] Sched.B4FD_phase imply Validity2()



4.6. VERIFICATION RESULTS 53

where Agreement(), Validity2() are predicates that check the corresponding

properties, and are as follows:

bool Agreement() {

return

forall (i: int[0,N-1])

((setIsIn(MSETo, i)

and not setIsIn(MSEToF,i))

imply MSET[i]==MSETo);

}

bool Validity2() {

return

forall(i: int[0,N-1])

setIsIn(Joining, i) imply

( setIsIn(MSETo, i)

or not setIsEmpty(NFaultsFD[i])

or not setIsEmpty(NFaultsSA[i]));

}

Essentially, these expressions state that the corresponding properties hold after

every execution of the GMP.

Actually, both Validity properties are bounded liveness properties and could

have been checked using the leads to operator ( ), also supported by Uppaal.

However, we found it more efficient to augment the model with some state vari-

ables and with the appropriate code. This augmentation concerned only Valid-

ity1. In particular, we added array FDdelay of integer variables that counts the

number of GMP executions it takes for good members to remove faulty members

from the group.

4.6 Verification Results

We verified both Agreement and Validity for configurations with three, four and

five nodes. Table 4.1 shows the number of states stored and visited, as well as the

time taken in checking each of the properties presented in the previous paragraph.

For the case of 5 nodes, we present also the results we have obtained using an

option provided by Uppaal that reduces the memory requirements by not storing

committed states, i.e. states in which at least one automaton is in a committed

location. For the latter case, the table shows both the number of states stored

and the number of states explored. When no memory reduction technique is

used, only one value is shown because both numbers are equal.

The figures clearly show that the state space size increases exponentially with

the number of nodes in the system, in spite of our efforts to explore symmetry at

the level of the model. Although, the use of Uppaal’s memory reduction option

allowed us to reduce the memory requirements for about one order of magnitude,
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Table 4.1: State Space Size (in thousand states) and approximate time execution

for the different models and properties verified.

Model Agreement Validity1 Validity2

No.Nodes Mem.Red. No.States Time(s) No.States Time(s) No.States Time(s)

3 N 5.3 0.5 5.3 0.5 5.6 0.6

4 N 220 56 220 56 221 57

5 N 14,237 28,920 14,232 29,640 14,870 30,060

5 Y (stored) 1,367 51,780 1,367 56,200 1,389 54,000

Y (explored) 67,324 67,276 69,094

the verification of these properties for configurations with more than 5 nodes

leads to an exhaustion of memory resources.

Nevertheless, to be able to check the GMP for 5 nodes gives us a high confi-

dence level in its correctness, because with 5 nodes we are able to generate rather

subtle fault scenarios, such as the masked faults, that arise with the simultaneous

fault of two nodes, which may be either members of the group or attempting to

join. Although checking the correctness of the GMP for 7 nodes would provide

an even higher confidence, because with that many nodes we could consider sce-

narios with 3 simultaneous faults, we believe that the change from 2 to 3 nodes

does not lead to very different fault scenarios. Furthermore, to be able to verify

the correctness of the GMP for a higher number of nodes in Uppaal is likely to

require the use of abstraction, another well known technique of addressing the

state space explosion problem.

However, the use of abstraction usually leads to models that are significantly

different from the system being checked and consequently the level of confidence

will be lower than if a model like the one we have developed were used. Indeed,

our model includes an implementation of the GMP, except for the use of commu-

nication primitives such as send or receive, i.e. we abstract the communications

layer. Given that Uppaal uses a syntax very close to C, it is straightforward to

convert that model to a C implementation of the protocol.

Including an implementation of the GMP in the model allowed us to find a

bug in the implementation outlined in Chapter 3 that is related to the fact that

the number of group identifiers in an implementation must be bounded. In the

GMP, shown in chapter 3 (Figure 3.5), the group id is incremented in step 9 of

the SA-phase. At the level of abstraction of the specification, we considered that
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this variable is unbounded. However, in an implementation, as well as in model-

checking, this variable has to be bounded. In GMP specification, we have argued

that an integer with a range from 0 to 3 is enough, and stated that the GMP

did not require any other change. Although we were right with respect to the

minimal range of group ids, we were wrong with respect to the need to change the

GMP. The problem is in steps 1 to 3 of the SA-phase, where the maximum group

id is determined and is then used to compute the majority set. With bounded

group ids, these must be recycled, and therefore an id of 0 may be larger than

an id of 3. Thus determining the maximum id is not straightforward, especially

because joining nodes always send votes with a group id of 0, and faulty nodes

may send any value, if they do not execute the SA-phase a number of times. The

group ids of joining nodes can be easily fixed by ignoring the group id sent in

their votes. The group ids sent by faulty nodes can be filtered by group members,

taking into account the state of the GMP. However, joining nodes lack this state,

and may compute a wrong group id. This may lead to an erroneous computation

of the majority set in step 3. One way to fix this problem is to change the GMP

so that joining nodes check that the majority they compute is consistent with the

votes received (every node must consider itself a group member, and non-joining

group members must agree on the group id). If it is not, they will cycle through

all the group ids until a consistent majority is found, or they have tried all the

ids. In the latter case, the joining node will consider itself faulty, and will halt.

4.7 Conclusion

We presented a formal verification of GMP, a protocol designed to provide a

Group Membership Service for FlexRay, a minimalist middleware for the de-

velopment of safety critical applications, that is likely to become the de facto

standard bus for automotive applications.

The results obtained show that the GMP satisfies its specification for config-

urations of up to 5 nodes, providing us further assurance on its correctness. The

fact that the model developed includes an implementation of the GMP contributes

significantly to our confidence in its correctness, but also limits the number of

nodes of the configurations that we are able to check. However, we strongly be-

lieve that we did the right choice, as it allowed us to detect a bug in the outline of

an implementation we have proposed. The alternative would be to use abstrac-
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tion, which might lead to a model far removed from the GMP, and a doubt of

whether the abstraction used was correct would always linger.



Chapter 5

Reliability Analysis of GMP

This chapter presents a reliability analysis of the Group Membership Protocol

(GMP) by means of probabilistic model checking. It includes a detailed description

of the discrete-time Markov chains and PRISM models used in that analysis.

Furthermore, it describes the experiments carried out and discusses the results

obtained. The content of this chapter essentially comprises the text published in

[11].

5.1 Introduction

The GMP is intended to be used as a general service by safety-critical applica-

tions, because of that it is important to ensure its correctness, ideally through a

proof. However, any proof relies on fault assumptions and it ensures that the pro-

tocol behaves correctly only as long as the fault assumptions hold true. Therefore

the reliability evaluation of the protocol is of paramount importance.

In this chapter we evaluate the reliability of the GMP by equating it to

the reliability of the assumptions made in its proof, i.e. the probability of these

assumptions being true, an approach that, was first proposed by Latronico, Miner

and Koopman in [18]. The fault model used in this study includes both permanent

and transient faults affecting both nodes and channels. In addition, we consider

two classes of common-mode transient communication faults, faults that partition

the network for the duration of the one message and error bursts.

57
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In order to carry out this study we have developed several discrete-time

Markov chain (DTMC) models, which were evaluated using PRISM [48], a prob-

abilistic symbolic model checker. The results show that the GMP protocol can

achieve reliability levels required by safety-critical applications, even for config-

urations of a small number of nodes and common-mode faults, by introducing a

small modification to the original protocol.

The remaining of this chapter is structured as follows. In Section 5.2, we

describe the GMP maximum fault assumption (MFA). The fault model and the

use of discrete-time Markov chains with PRISM to evaluate the reliability under

this fault model are shortly described in Section 5.3. Then in Section 5.4 we

present the experiments we carried out in this study, and analyze their results. .

In Section 5.5 we conclude with a summary of the main results.

5.2 Maximum Fault Assumption

The majority set function is the core of the GMP. To mask faults and to ensure

agreement among non-faulty group members, no more than half of the group

members may fail between consecutive executions of the GMP. This condition

is the maximum fault assumption (MFA). If it is violated, there is no guarantee

that the GMP will satisfy its specifications.

5.2.1 Goals of the Reliability Evaluation

The reliability evaluation reported here started out with the general goal of quan-

tifying the reliability of the GMP. The methodology we follow is to determine the

reliability of the assumptions made in its proof, i.e. the reliability of the MFA.

From this general goal, more specific questions arose as the study progressed.

The following, is a summary of the questions to which we try to answer:

1. What are the main factors that affect the GMP reliability?

2. What is the effect of using diagnosis period multiple of the communication

round?

3. How do common-mode faults affect the GMP reliability?
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5.3 Model

5.3.1 Fault Model

In arguing the correctness of the GMP in [7] we assumed that a node might

fail by crashing or by omitting either to send or to receive messages. However,

because of well-known results on the impossibility of agreement in the presence

of communication faults [39], we had to assume that the communication channels

were reliable. For reliability evaluation studies, like this one, these results are

not important. Thus, we now consider a more realistic fault model, by assuming

that communication channels may also fail by crashing or by omitting to deliver

messages, e.g. as a result of noise. Furthermore, we assume that these faults may

be either permanent or transient. E.g., a node might fail to receive a message

because it has not enough buffer space, but recover later.

Finally, in addition to single message faults, we consider two other types of

transient fault in channels: common-mode faults and error bursts. Common-

mode faults partition the network for the duration of one message, leading to

what some authors [49] call strictly omissive asymmetric faults, i.e. a scenario

in which some nodes receive a message correctly, whereas other nodes receive no

messages. (We assume that the error detection codes used by communication

protocols are strong enough to detect virtually all communication errors.) Com-

munication error bursts are caused by long duration electromagnetic interference

(EMI) bursts that make communication all but impossible while it lasts.

5.3.2 Models

In this section, we present the different models we have developed to evaluate the

reliability of the GMP. Because the GMP is round-based and the probabilistic

evolution of the system depends on the current state of the nodes and of the

network, we chose to use discrete-time Markov chains (DTMC) to model its

reliability. Indeed, the use of DTMCs allows us to associate the passing of time

intervals such as rounds or slots of a TDMA cycle with state transitions, making

it easier to model the reliability of our fault assumptions.

All the models comprise one DTMC per node, and one DTMC for the com-

munications network. So, a system composed by n nodes needs at least n + 1
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DTMCs. Each of the models for SOA communication faults and communication

error-burst faults includes one additional DTMC to generate the corresponding

faults.

One of the main problems when evaluating this type of systems is the state-

space explosion [50], i.e. the size of the model grows exponentially with the size

of the modeled system. (E.g. n concurrent DTMCs, each one with m states,

can lead to a model with mn states.) Consequently, the amount of memory

necessary to store the model and the time necessary to compute the reliability

increases dramatically, raising severe computational problems. To overcome these

problems it is necessary to select an evaluation tool that is able to cope efficiently

with them. We chose the PRISM tool [48], because it implements symmetry

reduction techniques [51], which enable a significant reduction of the state-space

when models have symmetry. This is the case for the GMP models given that all

nodes have the same behavior.

5.3.2.1 PRISM

PRISM [48] is a probabilistic model checker that supports Discrete-Time Markov

Chains (DTMC), Continuous-Time Markov Chains (CTMC) and Markov Deci-

sion Processes (MDP). The system to be analyzed is defined using a high-level

state-based language and from this description the tool constructs a probabilistic

model. Model evaluation requires the specification of the property to evaluate.

PRISM allows the specification of properties in PCTL (Probabilistic Computa-

tion Tree Logic), a probabilistic extension of CTL (Computation Tree Logic), a

temporal logic.

Therefore, in the subsequent subsections, we focus on modeling of DTMCs

with PRISM by means of examples. We begin with the presentation of the DTMC

for the communication network. This DTMC is used, except for minor and obvi-

ous changes, in all models of the GMP. Next we describe the model for the GMP

with single round diagnosis period (DP), which can be seen as the base model.

After that, we describe the model for the GMP with multiple round DP. Finally,

we present the models for SOA communication faults and communication error-

burst faults, in that order. Because PRISM uses a somewhat unusual language

to define the models, we complement the model’s description with conventional
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(i)

1: dtmc

2: // Parameters to initialize at invocation time

3: const int NC; // Number of channels

4: const double pc; // Channel failure probability

5: // Network model: supports single and duplicated

6: // channels, depending on input parameter NC

7: module Net

8: c: [0..2] init NC;

9: [] c=2 -> 2*pc*(1-pc):(c’=1) + (pc*pc): (c’=0)

+ (1-pc)*(1-pc):(c’=2);

10: [] c=1 -> pc:(c’=0) + (1-pc):(c’=1);

11: [] c=0 -> true;

endmodule

(ii)

Figure 5.1: DTMC of a communications network comprised of a duplicated chan-

nel. It assumes that each channel has only permanent faults and that they fail

independently. (i) Transition diagram. (ii) PRISM model.

transitions diagram in some cases. This approach was adopted for the sake of

ease of understanding of the models.

5.3.2.2 Communication network DTMC

The communication network interconnects all nodes and is composed of replicated

broadcast channels. All the channels have the same characteristics. For practical

reasons we limit the maximum number of channels to 2. This corresponds to the

most common scenarios found in real applications.

Since the GMP maps the loss of a message due to a transient fault on either

the sender or the receivers of that message, we chose to represent this event in

the node DTMC (described below in this subsection). Therefore, the network

DTMC presented here only includes permanent faults in the channels.

Figure 5.1 (i) shows the DTMC for the communication network. It is assumed

that each channel fails independently. Each DTMC state is characterized by the

value of state variable c, the number of operational channels, i.e. channels that

have not failed permanently.

Thus, transitions model the permanent failure of the channels and are labeled

with the probability of occurrence of this event during a time-step. We use pc to
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denote this probability. The model for a network that does not have replicated

channels can be easily obtained from this one by removing state c=2 and the

corresponding transitions.

Figure 5.1 (ii) shows the PRISM model of this DTMC. The dtmc keyword
in line 1 indicates that this is a DTMC model. A PRISM model comprises one
or more modules. In this case, we consider only one module named Net, which
has local state variable c, which counts the number of operational channels. The
behavior of the Net module is described by three guarded commands in lines 9
to 11, each of which starts with the string “[]”. The guard, a predicate to the
left of the string “->”, specifies the state of the system to which the correspond-
ing command applies. The right hand side of a command specifies the possible
transitions in this state, each transition being separated by the character ’+’. In
the case of a DTMC, a transition is specified by its occurrence probability in a
time-step, represented to the left of the character ’:’, and the new state, repre-
sented as a set of updates of model variables to the right of that character. The
character ’’’ is used to denote the value of the state variable after the transition
is taken. For example,

[] c=1 -> pc:(c’=0) + (1-pc) : (c’=1)

is interpreted as follows: if c=1, then with probability pc the next state will be
c=0, and with probability (1-pc) the next state will be c=1. As already men-
tioned, the property to evaluate is specified in PCTL. For example, the following
property:

P=? [true U<=N c==0]

can be used to compute the probability of failure of both channels of the network

in a time interval of N time-steps.

5.3.2.3 Single-round diagnosis period model

This model is composed of the communication network DTMC described above

and of one DTMC per node that we now describe. All node faults in our fault

model have the same effect on the protocol: the faulty node will be removed

from the group membership. However, it is important to distinguish between

permanent and transient faults. In the former case, the node will be permanently

removed from the group, whereas in the latter case it may rejoin, depending on

whether or not further faults occur.
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To represent this behavior, we use a DTMC with six states (Figure 5.2):

Good (Gs) A node in this state is a group member.

Permanent Faulty (Ps) A node in this state has failed permanently and is not

a group member any more.

Transient Faulty (Ts) A node in this state has failed temporarily and is not

a group member.

New (Ns) A node in this state is a newly joined member; it was not a member

in the previous DP.

Convicted (Cs) A node in this state has been permanently faulty for more than

one DP.

Recidivist Transient Faulty (Rs) A node in this state has experienced tran-

sient fault in the last DP, when it was not a group member any longer.

The time-step chosen for this model is the GMP execution, which is the same

as the communications round.

In summary, group members are either in state Gs or Ns. Given that transi-

tions occur only at the end of each cycle the following properties can be easily

established:

• Nodes in states Ps or Ts were members of the group in the previous time

step, when they failed.

• Nodes do not remain in states Ps or Ts for more than one time step.

• Nodes in states Cs or Rs have not been group members for more than one

time step.

As usual, each transition is labeled with the probability of occurrence of the

transition in a time-step. E.g. the transition from state Gs to state Ps is labeled

with the probability p of a node failing permanently during a diagnosis period. In

some transitions, we use labels of the form [pred]prob, where pred is a predicate

on the state of the model and prob is a probability. If pred is true, the probability

of the transition being taken is prob, otherwise it is zero. Note that this notation
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(i)

1: // Node model - states

2: const int Gs = 0; // Good node (member)

3: const int Ps = 1; // Perm. faulty node

4: const int Ts = 2; // Transiently faulty

5: const int Ns = 3; // Newly joined node

6: const int Rs = 4; // Recidivist transient

7: const int Cs = 5; // Convicted node

8: module N1

9: s1: [0..5] init Gs; // Initially Good

10: // Variables for verifying properties

11: g1: [0..1] init 1;

12: p1: [0..1] init 0;

13: t1: [0..1] init 0;

14: [round] s1=Gs & c=2 ->

p:(s1’=Ps)&(g1’=0)&(p1’=1)

+ tt:(s1’=Ts)&(g1’=0)&(t1’=1)

+ (1-p-tt):(s1’=Gs);

15: [round] s1=Gs & c=1 ->

p:(s1’=Ps)&(g1’=0)&(p1’=1)

+ t:(s1’=Ts)&(g1’=0)&(t1’=1)

+ (1-p-t):(s1’=Gs);

16: ...

17: endmodule

18: // Use module renaming for other modules

19: module N2 = N1 [s1=s2, g1=g2, t1=t2, p1=p2]

20: endmodule ...

(ii)

Figure 5.2: DTMC of a node.(i) Transition Diagram. (ii) Segment of the PRISM

model, comprising part of one of the node modules, module N1.

allows only a more compact representation of a DTMC, i.e. allows it to be

represented with fewer states and transitions.

As already stated, both transient communications faults and transient node

faults are modeled in the node-DTMC. In the case of a single round diagnosis

period, a node will be detected as faulty by the other nodes, if either its heartbeat

or its vote are lost.

A message will be lost, if none of the network channels delivers it. Therefore,

for a message not to be delivered in the event of a transient communication fault,

all operational channels must have a transient communications fault affecting that

message. We model this dependence on the network state by labeling transitions

with predicates. For example, from state Gs to state Ts the node-DTMC includes
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two transitions, each of which with a predicate on the state of the network-DTMC,

i.e. on the number of operational channels. The probabilities associated with each

transition, t and tt, denote the probability of at least one of the heartbeat or of

the vote messages being lost in a network with one and two operational channels

respectively.

In the computation of these probabilities (t and tt), we assume that transient

communication faults in different channels are independent events and that a

transient communications fault in one channel is characterized by its bit-error

ratio (BER) and leads to the loss of only one message. I.e., we assume that if

a message is affected by at least one bit-error, then it will be lost and that a

single communication fault does not affect more than one message; we consider

the possibility of burst errors in a model below.

Figure 5.2 (ii) shows a segment of the PRISM model, with part of one of the

node modules, N1. This model can be easily derived from the transition diagram

in Figure 5.2 (i). Nevertheless, we would like to make three remarks. First,

variables g1, p1 and t1 defined in lines 11, 12 and 13, are used, together with

corresponding variables of other nodes, in the property for reliability computation

as explained below. Second, synchronization label round is used in all guarded

commands of all modules of the model. This ensures that all modules will change

their state synchronously as time advances, and allows for a simple specification

of the behavior of the system in terms of the behavior of the individual modules.

Furthermore, it reduces the number of states of the models, by removing states

that would arise from different interleavings of the nodes’ transitions. Third,

module N2 is defined in lines 19 and 20 in terms of module N1, by renaming

the variables used in the latter. (Other node modules can be defined similarly.)

This is particularly useful in modeling systems such as the GMP that comprise

identical components.

The reliability of the GMP after the execution of N time-steps (diagnosis
periods) can be computed using the following PCTL property:

1 -(P=?[true U<=N (+ nG <= nT + nP ) | (c=0)] )

where nG, nT and nP are the number of nodes in state Gs, Ts and Ps, respectively,

and are computed using variable states gi, ti and pi, where i is an integer that

ranges between 1 and the number of nodes in the model. E.g. for a 3 node
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configuration nG=g1+g2+g3. The proposition c=0 reflects the fact that the GMP

fails, if all the communication channels have failed permanently.

5.3.2.4 Multiple-round diagnosis period model

This is a model for the extension of the GMP that uses a diagnosis period longer

than one round. The purpose of this extension is to make the GMP less sensitive

to transient faults. Of course, improving the reliability by extending the diagnosis

period is possible only if the GMP “forgives” nodes that are affected by transient

communication faults during the extended diagnosis period. Thus, the GMP

cannot detect a node as faulty as long as in a diagnosis period the number of

frames it does not receive from that node is smaller or equal than a maximum

value that we call conviction threshold.

This change implies that the loss of a heartbeat is not equivalent to the loss of

a vote: whereas the loss of a vote may affect the outcome of majority voting, the

loss of a number of heartbeats up to the conviction threshold does not. To model

these different effects of transient faults in the GMP, it is more appropriate to use

a DTMC whose time-step is the GMP phase, rather than the GMP execution.

The DTMC for the network is essentially the one described above, although

it now has to take into account the phases of the protocol. In the new network

DTMC, permanent channel faults always occur in the FD-phase, with probabil-

ity pc adjusted to the length of the GMP execution. This leads to a slightly

pessimistic estimation of the failure probability than if permanent faults in the

SA-phase were not included in the FD-phase, but it simplifies the model, as it

reduces the number of transitions.

On the contrary, the DTMC for the nodes requires more extensive changes.

The model for the FD-phase is essentially that for a single-round diagnosis period,

with all fault probabilities adjusted. Permanent node faults have only to take into

account the longer time-step, i.e. they are modeled in a way similar to that of

permanent channel faults. The transient fault probabilities, t and tt, have to

take into account the number of heartbeats, i.e. the duration of the diagnosis

periods, and the conviction thresholds. Rather than computing these values

using a mathematical expression, we have developed an auxiliary model that is

described at the end of this subsection.
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Because node permanent faults and transient communication faults affecting

heartbeats are modeled in the FD-phase, modeling of the SA-phase needs only

to consider transient communication faults affecting votes, as shown by the

following segment of module N1:

[round] s1=Gs & c=2 & phi=1 -> fl*fl:(v1’=1) + (1-fl*fl):(v1’=0);

[round] s1=Gs & c=1 & phi=1 -> fl:(v1’=1) + (1-fl):(v1’=0);

[round] phi=1 & c!=0 & s1!=Gs -> (v1’=0);

Where phi indicates the protocol phase, i.e. is 0 for the FD-phase and 1 for the

SA-phase, fl is the probability of a channel losing a frame because of a transient

communication error, and v1 memorizes the loss of a vote and is used, together

with the corresponding variables of other node modules, to compute the number

of lost votes nV .

The expression used to compute the reliability of the GMP can now be ex-
pressed as follows:

1 - (P=? [true U<=N (phi = 0) & (nG − nV <= nT + nP)|(c=0))])

I.e., the GMP fails either if all communication channels fail or if in an exe-

cution the number of votes by good members that were not lost is insufficient to

ensure a majority, i.e. is not larger than the number of members that have failed

either transiently or permanently.

Computation of t and tt To compute t and tt we developed another DTMC

that models the loss of frames in a network as a result of transient communication

faults and used PRISM to solve that model. Like the other models, this one is

also parametric. However, it is executed off-line and the results of its executions,

i.e. the values of t and tt, are used as input parameters to the node DTMCs.

Figure 5.3 shows the transition diagram of that DTMC. Variable nt represents
the number of transient faults that occur in a diagnosis period, and NC is a
parameter whose value is the number of communication channels of the network.
Variable fl is the probability of a channel losing a frame because of a transient
communication error, and is computed based on the bit-error ratio (BER) and the
frame size. This model computes t or tt, depending on the value of parameter
NC being 1 or 2, respectively, using the PCTL property:

P=? [ true U<=DP nt > Thr ]
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Figure 5.3: Auxiliary DTMC used for the computation of t and tt of the node

models for multiple round diagnosis period.

I.e., the probability of a node being diagnosed as faulty as a result of com-

munication faults, is the probability of the number of messages it sends during a

diagnosis period that are lost to exceed the selected threshold, Thr.

By changing parameters DP and Thr, it is possible to compute the values of t

or tt for different configurations of the GMP, and, by plugging these values into

the node DTMC described above in this section, it is possible to model the GMP

for these configurations. The whole process can be easily automated through

some scripts.

5.3.2.5 Strictly omission asymmetric faults

Strictly omission asymmetric (SOA) transient communication faults are faults

in which some nodes receive a message correctly, whereas other nodes receive no

message, thus partitioning the network for the duration of one message. This type

of faults corresponds to noise that is spatially localized and affects only some of

the nodes rather than all nodes, as we considered in the models presented above.

The main challenge in designing a model for SOA faults is the size of the

design space and the computational practicality of the models. The two key

issues that we had to consider were:

1. The time-step of the model;

2. The effect of a SOA fault on the behavior of the nodes.

For efficiency reasons, in terms of both execution time and memory, we have

chosen to use in this case the diagnosis period (DP) as the time-step of the DTMC

model. A consequence of this choice is that it is not possible to model SOA faults
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(i)

module SOA

soa: [0..2] init 0; // SOA faults in DP

[round] c=2 -> s2tt:(soa’=2)

+ s1tt:(soa’=1)

+ (1-s2tt-s1tt):(soa’=0);

[round] c=1 -> s2t:(soa’=2)

+ s1t:(soa’=1)

+ (1-s2t-s1t):(soa’=0);

[round] c=0 -> true;

endmodule

(ii)

Figure 5.4: DTMC used for generating strictly omissive (SOA) faults in a diag-

nosis period (DP). (i) Transition diagram. (ii) PRISM code.

on individual frames; instead, we need to consider its effect on the entire DP. The

effect of a SOA fault is that it may cause nodes to disagree on the operational

state of other nodes. This may lead to a temporary drop of the membership to

half its size. If the model were to reflect this behavior accurately it would have

its symmetry broken, making it impractical except for configurations with only a

few nodes1. Therefore, we used an approximate model to evaluate the reliability

of the GMP in the presence of SOA faults. In this model the occurrence of a

SOA fault in one round affects all nodes, i.e. it is as if all nodes had experienced

a communication fault. This is somewhat conservative, but it helps keeping the

model practical. Basically, this means that if the number of SOA faults in a DP

is s, then the effective conviction threshold for that DP will be Thr-s rather than

Thr.

To take into account SOA faults, we augmented the model with an additional

DTMC that “generates” SOA faults. Figure 5.4 (i) represents its state diagram

and Figure 5.4 (ii) shows the PRISM code. Variable soa represents the number of

SOA faults in a diagnosis period (DP) and c the number of operating channels.

Variable s2tt is the probability of occurrence of two SOA faults in a DP in a

network with duplicated channel, s1tt the probability of occurrence of a single

SOA fault in a DP in a network with duplicated channel. Variables s2t and s1t

denote the corresponding probabilities for a network with a single channel. In this

model, we consider at most 2 SOA faults in a DP, but it would be straightforward

1We were able to solve such a model only up to 5 nodes
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to extend the model for an arbitrary number of SOA faults.

The node DTMCs are based on those developed for multiple round per DP,

but because the time-step is the entire DP instead of the GMP-phase, we consider

the effect of a lost vote similar to that of lost heartbeats. Furthermore, the model

is modified to take into account the number of SOA faults that occur in a DP. The

following segment shows one guarded command for a DP with a single SOA fault:

[round] s1=Gs & c=2 & soa=1 -> p:(s1’=Ps)&(g1’=0)&(p1’=1)

+ tt1s:(s1’=Ts)&(g1’=0)&(t1’=1)

+ (1-p-tt1s):(s1’=Gs);

where tt1s is the probability of a node being detected as faulty in a DP with

one SOA fault in a network with two operating channels.

Auxiliary Models The computation of the probabilities of occurrence of one and

two SOA faults (s1t, s1tt, s2t, s2tt) used in the SOA DTMC, and of the

probabilities of a node being detected faulty because of transient communication

faults (t1s, tt1s, t2s, tt2s) used in the node DTMC, was done with the help of

two auxiliary DTMC-based models. These models were run off-line, with different

input parameters, and their outputs were used as inputs to the DTMCs of the

SOA models.

The DTMC for the computation of t1s, tt1s, t2s and tt2s is the auxiliary

model developed for multiple round DP (cf. Figure 5.3). However, the PCTL

property used is:

P=? [ true U<=(DP+1) nt>(Thr-s) ]

This property differs from the one used for the auxiliary model for multiple round

DP in two points: 1) the number of steps considered is DP+1 instead of DP because

in this model fault detection does not distinguish between vote messages and

heartbeat messages; 2) the effective conviction threshold depends on the number

of SOA faults that occur in a diagnosis period.

The DTMC for the computation of s1t, s1tt, s2t and s2tt is structurally

similar to the other auxiliary DTMC. Indeed both DTMCs are used to count

the number of faults: in the former case, that of transient faults, and in the

current case the number of SOA faults. The main difference is on the probabilities
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module Burst

b: [0..BDP+1] init 0; // Consecutive DP

// with error burst;

[round] b>0 -> bp:(b’= BDP+1)

+ (1-bp):(b’=b-1);

[round] b=0 -> bp:(b’= BDP)

+ (1-bp):(b’=0);

endmodule

(ii)

Figure 5.5: DTMC used for generating burst faults. (i) Transition diagram. (ii)

PRISM code.

associated with the transitions. Because we did not find operational data on the

rate of SOA faults, we assume that this type of fault is a fraction of the other

transient communication faults, that we call the SOA to symmetric fault ratio

(SSR). Thus, all the terms with fl are modified to include SSR as a factor. I.e.,

the term fl is replaced with the term fl*SSR and the term fl2 is replaced with

the term fl2*SSR. Note that this means that SSR is a ratio for the network as

a whole and not for one channel in particular, or alternatively that SOA faults

in different channels are correlated. This is a conservative assumption in that it

leads to a lower estimate of the GMP reliability.

5.3.2.6 Communication error bursts

The fourth and last model considers communication error-bursts, which are

caused by long duration electromagnetic interference (EMI) bursts that make

communication all but impossible while they last.

EMI bursts may have a duration of several tens of milliseconds, and conse-

quently may affect multiple communication rounds or even DPs of the GMP,

assuming a typical FlexRay network. This would require the GMP to bootstrap

once the burst terminates. In order to tolerate faults that long without bootstrap-

ping the GMP, we propose to change the GMP so that it allows failure of the

protocol execution, i.e. failure in computing a majority, in as many consecutive

diagnosis periods as can be affected by the error-burst.

To model the reliability of this proposed variation of the GMP, we added

a new DTMC that “generates” error-bursts. Figure 5.5 (i) shows that DTMC,
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and Figure 5.5 (ii) shows the PRISM code. Variable b represents the number of

consecutive DP affected by error-bursts, BDP is the duration of the error-bursts

in DP and bp their probability of occurrence in a DP. Although we assume that

all error-bursts have the same duration, this is a parameter of the model and

therefore different configurations can use different durations. Furthermore, it is

assumed that if an error-burst occurs before the previous one has terminated the

GMP will fail. This allows us to bound the value of b to BDP+1 and therefore

bound the size of the model.

While an error burst lasts, we propose that the GMP do not change its state,

therefore we freeze the evolution of the node modules, as shown in the following

segment of a node module:

[round] s1=Gs & c=2 & b=0 -> p:(s1’=Ps)&(g1’=0)&(p1’=1)

+ tt:(s1’= Ts)&(g1’=0)&(t1’=1)

+ (1-p-tt):(s1’=Gs);

... [round] c=0 | b!=0 -> true;

In addition, we added the predicate b = BDP + 1 to the PCTL property to

be verified by PRISM:

P=?[true U<=TS (nG <= nP + nT ) |(c=0)|(b=BDP+1)]

I.e., the protocol will fail if one of the following events occurs: the good

members are not a majority, all communication channels fail simultaneously, and

the number of DP affected by error-bursts exceeds BDP.

This model is rather simple and assumes that error-bursts lead to no commu-

nication in the network, and that the GMP is able to detect such a condition, via

the underlying communication services. Nevertheless, it permits to roughly and

quickly predict the expected reliability of a proposed modification to the protocol

to tolerate burst errors. This allows to better assess if more work is warranted,

towards fully fleshing the changes to the protocol and verifying its correctness, a

not so trivial task.

5.3.3 Reliability Evaluation

We have implemented the reliability models mentioned using PRISM [48], a prob-

abilistic model checker, and determined the reliability of the GMP MFA, which

can be expressed as a conjunction of two predicates:
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1. The number of good channels, i.e. channels without permanent faults,

which we denote nc must be larger than 0, otherwise no communication

will be possible.

2. In every protocol execution, the number of members that may fail, either

transiently or permanently, which we denote nt and np respectively, must

not exceed the number of good members, i.e. that do not fail, which we

denote ng. This condition is necessary so that the majority function can

mask faults.

Thus, the reliability of the GMP is given by the probability of the predicate

(nc > 0) ∧ (ng > np + nt)

holding true in a time interval of a given duration.

5.4 Experiments Design

In order to answer each of the questions stated in Section 5.2.1, we have designed

one set of experiments except for the case of common-mode faults, for which we

considered two sets of experiments: one for faults that affect a single message

and another for communication error bursts.

For each experiment, all frames have the same size. Furthermore, we assume

that each node transmits 2 frames per communication round, and that the com-

munication round is as short as possible. I.e. we assume that as soon as the last

node in a round finishes the transmission of its second frame the first node starts

the transmission of its first frame of the next round. Therefore, the duration of

a round depends on the number of nodes, the frame size and the bit-rate. An

alternative is to assume that a communication round has a fixed duration. We

decided to model the protocol as described, because most automotive applications

are real-time requiring high responsiveness.

Also, in all these experiments we consider that the fault inter-arrival times

have an exponential distribution. This is a common assumption for faults with

a physical cause such as electromagnetic interference (EMI). Furthermore, for

the model parameters we use values from the automotive domain, the main ap-

plication domain of DuST networks in the near future. These values are based
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Table 5.1: Parameter values used in all GMP experiments.

Parameter Values (units)

Number of nodes (N) 3, 4, 5, 6, 7, 8, 9, 10

Number of channels 1, 2

Frame Size (FS) 32, 128 (bytes)

Bit Rate 1, 10 (Mbps)

Bit-error rate (BER) 1E-6, 1E-7, 1E-8

Node Permanent Fault Rate (PHw) 1E-5 (faults/hour)

Channel Perm. Fault Rate (PCh) 1E-6 (faults/hour)

on figures provided both in [18] and in [52]. Table 7.2 shows the values of the

relevant parameters that we have used in virtually all experiments. Other param-

eters used in specific sets of experiments are presented when we describe those

experiments in more detail.

The number of nodes range from 3 to 10. The reason for this is threefold.

First, to limit the number of configurations. Second, because the time required

to evaluate the models increases almost exponentially with the number of nodes.

This is especially true for some models whose symmetry is limited. Third, and

most importantly, the reliability of the protocol improves with the number of

nodes, as we shall see, leveling off at the probability of failure of the communica-

tion channels.

We consider both single and duplicated channels. Indeed, whereas the use of

duplicated channels affords higher reliability, its cost is higher. In most appli-

cations, a single channel will be used if its reliability is acceptable. Thus, it is

important to evaluate the reliability of single channel configurations.

The frame size, the bit error rate (BER) and the bit-rate all affect the prob-

ability of transient communication faults. We consider frames of two sizes: 32

and 128 bytes. This is likely to cover most automotive applications. E.g. the

header, trailer and synchronization bits in FlexRay lead to an overhead of around

16 bytes. Frames with size of 128 bytes are probably very rare in automotive ap-

plications, however we have chosen this value because longer frames have a higher

probability of being affected by errors. For the BER we consider values in the

range typical of copper medium. Although, optical fiber has a much lower BER,

it is more expensive and therefore seldom used in the automotive domain. With
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respect to the bit-rate we consider 2 values: 1 Mbps and 10 Mbps. Again, these

are typical of the automotive domain. E.g., the timing parameters specified in

FlexRay were determined for a 10 Mbps. However, it mentions the possibility of

specifying values for lower bit-rates.

We assume that the only cause for transient faults in the GMP are communi-

cation errors. This is because for the parameter values considered, cf. Table 7.2,

the probability of transient faults in nodes ( [52] mentions a fault rate between

1E-3/hour and 1E-5/hour) is at least two orders of magnitude lower than the

probability of transient communication faults and does not affect the reliability

of the GMP.

For each of the permanent fault rates, hardware and channels, we used a single

value, 1E-5/hour and 1E-6/hour, commonly used in the literature. However,

we have performed some additional experiments to evaluate the effect of these

parameters on the reliability of the protocol.

All the results presented in this section are the result of the evaluation of the

probability of violation of the maximum fault assumption after one hour. This

is a standard time interval used for reliability evaluation. Also, all the results

were obtained starting from one initial state in which all components are working

properly and all nodes are members of the group.

5.4.1 Single-Round Diagnosis Period

The goal of these experiments was to determine the main factors that affect the

reliability of the GMP proposed in [7].

First, we carried out an experiment for all combinations of the values of the

parameters shown in Table 7.2.

In addition, in order to evaluate the effect of the permanent fault rates, of

both channels and nodes, and to keep the number of configurations evaluated

manageable, we run two additional sets of experiments. In one of them we varied

the channel permanent fault rate one order of magnitude above and below the val-

ues shown in Table 7.2 while maintaining the node permanent fault rate constant

(and equal to the value shown in Table 7.2). In the second one, we varied the

node permanent fault rate while maintaining the channel permanent fault rate
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Figure 5.6: Assumption violation probability in the first hour for the single-round

diagnosis period GMP [7].

constant. In each of these experiments we considered all possible combinations

for the remaining parameters.

5.4.1.1 Data Analysis

Figure 5.6 shows the unreliability of the GMP for a communication network with

two channels for bit-rates of both 1Mbps and 10 Mbps. The permanent hardware

fault rate is 1E-5 per hour and the permanent channel fault rate is 1E-6 per hour.

The figure shows that the GMP reliability is highly sensitive to transient com-

munication faults. In particular, it depends heavily on the BER. The effects of

the frame size are also visible but not as large. Indeed, larger frames lead to a

higher transient communication fault, but this is partially compensated in our

models by a decrease in the number of executions in the reliability evaluation

interval as a consequence of the increase in the duration of the communication

round. The effect of the number of protocols executions can be observed com-

paring the results for 1 Mbps and 10 Mbps channels. All other parameters being

equal, the difference between configurations with 1 Mbps and 10 Mbps channels

is on the number of protocol executions, and this leads to a reliability almost one
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order of magnitude lower for 10 Mbps channels, especially for configurations with

a small number of nodes.

The GMP sensitiveness to transient communication faults is especially acute

for configurations with a small number of nodes. This is because the GMP

perceives transient communication faults as faults in nodes, and the smaller the

number of nodes more likely is that the GMP will be unable to gather a majority.

As we increase the number of nodes, the reliability improves fast. Note however

that when we increase the number of nodes by one, the reliability improvement

is larger if the number of nodes before the increment is even. This is because

in that case the increment will allow for the failure (real or perceived) of one

additional node per protocol execution without violating the MFA, whereas if

the number of nodes before the increment is odd it will not. Ultimately, for the

factor values considered, the system reliability is bounded by the probability of

both communication channels failing permanently. For example, for a BER of

1E-6 and frames with the size of 32 bytes, this limit is reached for configurations

of 9 nodes.

From this discussion, it is clear that the best we can hope with a single

channel configuration is an unreliability of 1E-6 – this bound is determined by

the probability of the single channel failing permanently. (This is confirmed by

the experiments for single channel configurations whose results we do not show.)

It is obvious then that single channel configurations are not appropriate for safety-

critical applications, and we do not consider them further in this chapter.

These results hint that the probability of permanent channel faults affects

significantly the reliability of the GMP. This is because, if a channel fails perma-

nently, the protocol will operate with a single channel and therefore, the prob-

ability of a transient fault will be much higher. Indeed, the results we obtained

from our experiments show that for networks with duplicated channels and the

factor values shown in Table 7.2, a one order of magnitude variation in the prob-

ability of the permanent channel fault may lead to a variation up to two orders

of magnitude in the GMP unreliability, for configurations with a large number of

nodes. Conversely, for configurations with a small number of nodes and a high

transient communication fault rate, e.g. 128 byte frames, the communication

channel permanent fault rate has virtually no effect on the protocol reliability.

On the other hand, our experiments have shown that for the values of all the
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other factors that we have considered, one order of magnitude change above or

below the permanent hardware fault probability has no effect on the reliability

of the GMP.

5.4.2 Multiple-Round Diagnosis Periods

One approach to improve the resiliency of the GMP to transient communication

faults is to make the diagnosis period a multiple of the communication round and

to diagnose a node as faulty only if it is affected by transient communication faults

in more than some number, that we call diagnosis threshold, of these rounds.

In order to assess the efficacy of this approach we carried out an experiment

in which we varied both the diagnosis period from 2 to 5 communication rounds,

and considered thresholds of 1 and 2 messages.

We considered configurations with 3 to 6 nodes, only. This is because most

configurations for single round diagnosis periods and a larger number of nodes

already present an acceptable reliability for safety-critical applications. Further-

more, as shown in Figure 5.7, below, the reliability increases with the number

of nodes and configurations with 4 nodes already exhibit an unreliability below

1E-9.

For the BER we used only one value: 1E-6. This corresponds to the worst

case for the values considered in Table 7.2.

5.4.2.1 Data Analysis

Figure 5.7 shows the reliability of the GMP for diagnosis periods multiple of the

communication round, for communication network with two channels of 1 Mbps

and 10 Mbps. The threshold used by the fault diagnosis algorithm is 1 message.

These results show clearly the efficacy in terms of reliability improvement of

using longer diagnosis periods, even with a diagnosis threshold of only 1 message.

Note that this approach is especially advantageous for configurations with a low

number of nodes, which have a relatively low reliability for single round diagnosis

periods. Nevertheless, configurations with 3 nodes are still too unreliable to be

used in safety-critical applications, except for configurations of 1 Mbps and frame

sizes smaller than 32 bytes.
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Figure 5.7: Effect of the length of the diagnosis period on the MFA violation

probability.

We have also evaluated the reliability of the GMP for a diagnosis threshold of

2 messages. As expected, the reliability improved compared with that obtained

with 1 message thresholds, but 10 Mbps configurations with 3 nodes and 128

bytes still exhibit insufficient reliability for safety-critical applications.

5.4.3 Common-Mode Faults

In all previous experiments we considered only independent faults, i.e. faults

that affect only one node. However, virtually all transient communication faults

are caused by EMI, which may be localized and therefore affect a subset of the

nodes. Essentially, this corresponds to a partition of the network and may split

the group members almost evenly.

In order to assess how this kind of fault affects the reliability of the GMP, we

designed an experiment in which we modeled common-mode faults as a fault in

every node. To keep the model tractable we made two simplifications. First, we

considered that at most two common-mode faults may occur per diagnosis period.

Second, we handled the loss of votes just like that of heart-beat messages: they

are used to diagnose a node as faulty but are not otherwise taken into account in

the gathering of a majority. This leads to a slight overestimation of the reliability.
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violation probability.

Given that we did not find data on the rate of this kind of fault, we as-

sumed that it is a fraction of the transient communication faults, that we call the

common-mode to independent fault ratio (cir). We considered a range between

0.1% and 10% for this parameter.

Furthermore, we have considered diagnosis periods of both 2 and 5 commu-

nication rounds, and thresholds of 1 and 2 messages, respectively.

Because of the execution time of the model is large, we run this experiment

only for channels with a 1 Mpbs bit-rate, but nevertheless considered configura-

tions with 3 to 10 nodes.

5.4.3.1 Data Analysis

Figure 5.8 shows the results of these experiments.

As we might expect the reliability of the GMP is badly affected by the

common-mode faults, especially for common-mode to independent fault ratios

(CIR) above 1%, and for diagnosis thresholds of 1.

In contrast to the results of the previous experiments, for the values used,

the unreliability increases with the number of nodes, especially for thresholds of

one. This is partially an artifact of the way we model common-mode faults: for a

threshold of one, in diagnosis periods with common mode faults, one additional
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independent fault causes the violation of the MFA, and the probability of such

a fault occurring increases with the number of nodes. For configurations with a

threshold of two messages, the occurrence of one additional independent fault is

not enough to cause a violation of the MFA. This partially explains the much

better results obtained in experiments with that threshold, in spite of using a

higher diagnosis period.

Another factor that accounts for the much better results of configurations

with a threshold of two is that we limit the number of common-mode faults per

diagnosis period to two. For configurations with a threshold of one, this does

not affect the results because the occurrence of two common-mode faults leads

automatically to the violation of the MFA. However, for configurations with a

threshold of two this is not the case, leading to an overestimation of the reliability.

5.4.4 Communication Error Bursts

The goal of this experiment was to determine whether it is possible to make the

GMP resilient to long duration EMI bursts by using diagnosis periods multiple

of the communication round.

The conventional approach to deal with this kind of fault is to switch to a spe-

cial operating mode such as the black-out mode in the TTP/C architecture. The

main problem with this approach is that it requires that the nodes re-synchronize.

In the case of the GMP it would require the creation of a new group, usually a

lengthy procedure.

In order to tolerate faults that long, we propose to change the GMP so that it

allows failure of the protocol execution in as many consecutive diagnosis periods

as can be affected by the error burst. An alternative that we considered was

to lengthen the diagnosis period to a duration longer than the error burst and

to define a threshold that would tolerate the loss of as many messages as can

be affected by the error burst. However, this alternative makes the GMP less

responsive to permanent faults.

We characterize error burst faults with two parameters: the burst duration

and the burst rate. In our experiment we used values of 50 ms for the burst

duration, and varied the error burst rate (BR) one order of magnitude below and

above 1E-4 per hour. These values are based on the figures provided in [52] for

transient hardware faults in nodes caused by EMI.
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To keep the model tractable we handle the loss of votes just like that of

heart-beat messages, as described in the previous subsection.

We run this experiment for configurations of both 1 Mbps and 10 Mbps chan-

nels, diagnosis periods of 2 communication rounds and thresholds of 1 message.

We chose these values because the results obtained in Section 5.4.2 show that

they provide adequate reliability for almost all configurations.

5.4.4.1 Data Analysis

Figure 5.9 shows the results of these experiments.

These results indicate that the approach proposed is effective to tolerate error

bursts. Except for burst rates of 1E-3 per hour, the reliability is comparable

to that for the corresponding configurations of the models without burst errors

reported in Subsection 5.4.2. However, the reliability for configurations of 3 nodes

is larger than that shown in Figure 5.7. This is because the way we model the

effect of lost votes leads to an overestimation of the reliability.

Although at the time of writing we do not have values for 10 Mbps channels,

we expect them to be in agreement with those obtained for 1 Mbps channels.

5.5 Conclusions

We have evaluated the reliability of the assumptions made in the proof of a

group membership protocol (GMP) especially designed to take advantage of a
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new TDMA protocol that is likely to become the de facto standard for next

generation networks in the automotive domain.

In our study we considered several fault scenarios, including permanent, tran-

sient and common-mode faults, affecting both channels and nodes. Furthermore

we performed a sensitivity analysis to assess the influence of different parameters

on the protocol’s reliability, using value ranges typical of the automotive domain.

The results obtained show that the protocol as originally proposed is highly

sensitive to transient faults especially for configurations with a few nodes. How-

ever, reliability levels close to those required for safety critical applications can be

achieved, through the use of duplicated channel and a diagnosis period multiple

of the communication round. This same approach works also for common-mode

transient communication faults, both those that partition the network for a frame

duration and error-bursts that may affect several frames.





Chapter 6

Reliable Broadcast for Dust

Networks

This chapter presents a family of reliable broadcast protocols (RB-DuST) designed

for DuST protocols such as FlexRay that do not provide such protocols natively.

In addition to the specification of the protocols, we also present some arguments

on their correctness. We conclude the chapter with a discussion of the implemen-

tation of these protocols as a middleware layer on top of FlexRay.

6.1 Introduction

We have argued in previous chapters that safety critical applications domains

have extremely demanding reliability requirements. In particular, FlexRay is a

minimalist bus that provides only clock synchronization and basic communication

services, which do not provide sufficient fault tolerance for message broadcasting.

Although CRCs detect corrupted messages, limiting the effects of communication

faults [53], they do not prevent messages from being lost due to these transient

faults.

To fulfill this demand we present a family of reliable broadcast (RB) proto-

cols that can be implemented as a middleware layer on top of FlexRay’s basic

communication services. These protocols take advantage of the dual scheduling

85
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TDMA scheme used to achieve better performance than that achievable with

vanilla-TDMA.

In the next section we provide a brief introduction on reliable communication

principles. In Section 6.3, we specify a set of reliable broadcast protocols spe-

cially designed to take advantage of the DuST scheme. In Section 6.4 we present

some implementation issues of related reliable broadcast protocols on FlexRay.

Finally, we conclude in Section 6.5.

6.2 Reliable Broadcast Specification

Reliable communication services are designed to tolerate channel faults and re-

cover corrupted messages, usually by means of repeated retransmissions. A Re-

liable Broadcast (RB) service must ensure that broadcast messages are delivered

by all operational nodes even in spite of failures [26].

The properties of the RB services we present here are based on properties

defined by Hadzilacos and Toueg in [24]. However we have adjusted these prop-

erties to better represent the requirements imposed by safety critical systems.

The RB properties we consider in this work are the following:

RB1 (Flex-Validity): if a correct node broadcasts a message m, then all correct

receiver eventually delivers m or φ (which is a special null message).

RB2 (Integrity): Every correct receiver delivers at most one message, and if it

delivers m!=φ then the sender must have broadcast m.

RB3 (Agreement): If a correct receiver delivers a message m, then all correct

receivers eventually deliver m.

RB4 (Timeliness): There is a known constant ∆ such that if the broadcast is

initiated at real-time t, then all correct receivers deliver a message (either

m or φ) before t + ∆1.

Usually instead of RB1, the validity property used is:

RBV (Validity): If a correct node broadcasts a message m, then all correct

receiver eventually delivers m.
1Note that RB4 implies also termination since nodes are obligated to deliver m or φ before

the deadline.
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However, it is clear that this property cannot be satisfied in the presence of

faults on the communication channels, because even if the node that broadcasts

m is correct, this does not imply that m will be received by other correct nodes.

Thus, we have specified a weaker property, RB1. Although this property can be

satisfied by a protocol that always delivers φ, our protocols do satisfy RBV, if

there are no faults in the communication channels.

Note also that our reliable broadcast protocols are not designed to ensure

order in message delivery. However, order properties can be implemented as a

complement on top of the protocols described in this paper.

6.3 Reliable Broadcast Protocols

In this section, we specify four reliable broadcast protocols especially designed

for DuST communication networks like FlexRay. They all share the same system

model and fault assumptions. The protocols differ from each other on the strategy

used to deliver messages and on the type of acknowledgment messages (ACK

vs. NACK).

6.3.1 System Model

These reliable broadcast protocols were designed to work on a network composed

of a fixed number of nodes that are connected via a broadcast channel, in which

every node receives the messages sent by all nodes including itself. Each node re-

ceives its own broadcasts via its network interface, not via a loopback device. The

network uses a medium access control protocol based on a dual scheduled TDMA

scheme, e.g. FlexRay, and all nodes are aware of the slots assignment in both the

static and the dynamic segments. To simplify the presentation, we assume that

each node is associated only to one slot in each communication segment and uses

these slots to execute the reliable broadcast protocol. Furthermore, we assume

that the segments are long enough so that all nodes are able to send the mes-

sages required by the reliable broadcast protocol, except possibly in the presence

of faults.
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6.3.2 Fault Model

We assume that nodes can fail only by crashing. Channel faults can corrupt

messages in transit preventing their reception. All channel faults affect all nodes

in the same manner, i.e. we assume that all channel faults are symmetric. Fur-

thermore, channel faults are not persistent, i.e. if the channel drops a message,

it may deliver a subsequent frame.

6.3.3 Protocols Primitives

The reliable broadcast protocols have three primitives:

a)broadcast : transmits a message to all nodes in N (set of nodes) in every

available channel in C (set of channels).

b)receive: returns either a message previously broadcast, or some special

message such as φ indicating an error condition.

c)deliver : delivers a received message to the higher layer protocols or appli-

cations.

6.3.3.1 RB Execution

The execution of the RB protocols proceeds in rounds one after the other. Each

RB round comprises three phases, and takes two DuST communication rounds

(each of which comprises the static and dynamic segments). In the first phase,

the B-phase, which takes a communication round, the transmitters broadcast

a message which is received by the correct receivers in the same round, if no

channel fault occurs. In the second phase, the C-phase, which takes another

communication round, the receivers process the messages received in the previous

communication round and acknowledge the reception of messages. Finally, in the

last phase, the D-phase, which does not require any communication round, the

nodes deliver the messages received in the previous phase.
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6.3.4 Protocols

6.3.4.1 Receive & Deliver (RBRD) Protocols

In the RBRD protocols, each receiver delivers the broadcast message as soon as

it receives it. The confirmation can be done using either negative or positive

acknowledgments, leading to two different versions of the protocol. That we now

describe.

6.3.4.2 Receive & Deliver with Positive Acknowledgments - RBRD(a)

In the RBRD(a) protocol the transmitter uses positive acknowledgments to de-

cide whether or not it should retransmit a message broadcasted in the previous

RB round. The RBRD(a) protocol algorithm is presented in Figure 6.1. The

transmitter initiates a new RB round until either it has received acknowledge-

ments from all receivers or the maximum number of retransmissions is reached.

Receivers acknowledge every message they receive, and if the message has not

been delivered yet they deliver it.

6.3.4.3 Receive & Deliver with Negative Acknowledgments - RBRD(n)

In the RBRD(n) protocol the transmitter uses negative acknowledgments to de-

cide whether or not is should retransmit a message broadcasted in the previous

RB round. RBRD(n) algorithm is showed in Figure 6.2. The transmitter ini-

tiates a new RB round until it does not receive a negative acknowledgement or

the maximum number of rounds is reached. A receiver sends a negative acknowl-

edgement for every message it misses. Otherwise, if the message has not been

delivered yet it deliver it. If a receiver does not receive a correct message after

the maximum number of RB-rounds, it delivers φ.

In principle, the use of negative acknowledgments has the advantage that

they are sent only in the presence of faults. As faults are not that common,

the traffic generated by negative acknowledgments is lower than that by positive

acknowledgments. On the other hand, acknowledgment messages may also be

lost and as consequence some faults may not be detected. However in the case of

FlexRay we assume that all lost messages can be detectable.
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RBRD(a) Protocol

State

m: D-Message;

a: C-Message;

Rec − Set: set of Receivers;

ack − Set: set of C-Message;

ackbit: positive acknowledgment bit initialized as false;

delivery − Deadline: a flag that indicates the end of delivering time;

*** TRANSMITTER ***

B-Phase

Communication step:

1. broadcast (m)

C-Phase

Communication step:

2. receive()

Processing step:

3. for all receive() == a do

3.1 add a to the ack − Set

4. If ack − Set differs from the Rec − Set and not delivery − Deadline then

4.1. go to step 1 (retransmit m)

*** RECEIVER ***

B-Phase

Communication step:

1. receive()

Processing step:

2. if have received m then

2.1 set the ackbit to true

C-Phase

Communication step:

3. If ackbit is set to true then

3.1. set a with the value of ackbit

3.2. broadcast(a)

3.3. set ackbit to false

D-Phase

4. If have received m correctly and did not deliver it yet then

4.1. deliver (m)

Figure 6.1: RBRD protocol with retransmission based on positive acknowledg-

ments.
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RBRD(n) Protocol

State

m: D-Message;

n: C-Message;

nack − Set: Set of C-Message;

nackbit: negative acknowledgment bit initialized as false;

delivery − Deadline: a flag that indicates the end of delivering time;

*** TRANSMITTER ***

B-Phase

Communication step:

1. broadcast (m)

C-Phase

Communication step:

2. receive()

2.1 for all receive() = n do

2.2 add n to the nack − Set

Processing step:

3. If nack − Set is not null and not delivery − Deadline then

3.1. go to step 1 (retransmit m)

3.2. reset nack − Set

*** RECEIVER ***

B-Phase

Communication step:

1. receive()

Processing step:

2. if have not received m then

2.1 set the nackbit to true

C-Phase

Communication step:

3. If nackbit is set to true then

3.1. set n with the value of nackbit

3.2. broadcast(n)

3.3. set nackbit to false

D-Phase

4. If have received m and did not deliver it yetthen

4.1. deliver (m)

Figure 6.2: RBRD protocol with retransmission based on negative acknowledg-

ments.
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6.3.4.4 RBRD’s Correctness

Both versions of RBRD protocol (a and n) are very similar and so most correct-

ness arguments apply equally to both. Whenever necessary, however, we provide

separate arguments.

• RB1(Flex-Validity): if the transmitter fails then this property is trivially

satisfied. On the other hand, if the transmitter does not fail, the message

may not be received, depending on the occurrence of communications faults.

In any case, if the message is received, it will be delivered. If not, φ will be

delivered.

• RB2(Integrity): a receiver only delivers a message it received, if it has not

delivered it previously. Furthermore, if it receives no message it delivers φ.

• RB3(Agreement): because communication faults are symmetric all correct

receivers will receive the same messages. In addition, the protocol is deter-

ministic, therefore all correct receivers will deliver the same message: either

the message broadcasted by the transmitter or φ.

• RB4(Timeliness): the system is synchronous and the protocol has a maxi-

mum number of RB-rounds, r, each of which comprising two communication

rounds of fixed duration. Therefore, after r RB-rounds, in the worst case,

each receiver either delivers m or φ.

6.3.4.5 Threshold Delivery (RBTD) Protocols

In the threshold delivery protocols (RBTD) the messages are delivered based on

the information provided by receivers. Nodes only deliver the message if they

learn that number of receivers that received the messages reaches a specified

threshold.

6.3.4.6 Threshold Delivery with Positive Acknowledgments - RBTD(a)

Like in RBRD(a), in the RBTD(a) protocol the transmitter uses positive ac-

knowledgments to decide on message retransmission. However the delivery is

conditioned to the number of nodes that signal the reception of the message.
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Hence nodes that have received the message m correctly deliver it only if the

necessary threshold is reached. Otherwise, they deliver φ.

Figure 6.3 shows the RBTD(a) protocol’s algorithm. The operation of

RBTD(a) differs from RBRD(a) as shown in bold.

• The transmitter keeps retransmitting the message until either it has received

acknowledgments from all the receivers or the maximum number of rounds

is reached.

• The receiver acknowledges every message it have received. The message is

delivered if the it has been acknowledged by enough receivers and

has not been delivered yet.

Note that RBRD(a) and RBTD(a) do not differ with respect to transmitters.

The difference is with respect to the receivers, which only deliver a message if

they have received acknowledgements from enough receivers.

The advantage of the RBTD(a) protocol is that it guarantees that a message

is delivered only if it has been received by enough receivers, whereas RBRD(a)

would deliver the message even if it was acknowledged only by a smaller fraction of

the nodes. Thus, RBTD(a) can prevent correct nodes from delivering a message

because too many nodes are faulty.

6.3.4.7 Threshold Delivery with Negative Acknowledgments - RBTD(n)

In the RBTD(n) protocol the transmitter uses negative acknowledgments to de-

cide on the retransmission of messages. The retransmission occurs whenever the

transmitter gets a negative acknowledgment and the maximum number of RB-

rounds has not been reached. Receivers use negative acknowledgements to decide

on delivery of messages. All receivers that have correctly received a message m

deliver it, if the number of received negative acknowledgements is below a given

threshold. Otherwise, they deliver φ.

The Figure 6.4 shows the RBTD(n) protocol’s algorithm. The operation of

RBTD(n) differs from RBTD(a) as shown in bold.

• The transmitter keeps retransmitting the message until either the num-

ber of NACKs received in a round is zero or the maximum number

of rounds is reached.



94 CHAPTER 6. RELIABLE BROADCAST FOR DUST NETWORKS

RBTD(a) Protocol

State

m: D-Message;

a: C-Message;

ackbit: positive acknowledgment bit initialized as false;

rec − Set: set of Receivers;

ack − Set: received acknowledgment set;

delivery − Deadline: a flag that indicates the end of delivering time;

TSD: Constant that defines the threshold;

*** TRANSMITTER ***

B-Phase

Communication step:

1. broadcast (m)

C-Phase

Communication step:

2. receive()

Processing step:

3. for all receive()==a that do

3.1 add a to the ack − Set

4.If ack − Set differs from the rec − Set and not delivery − Deadline then

4.1. go to step 1 (retransmit m)

*** RECEIVER ***

B-Phase

Communication step:

1. receive()

Processing step:

2. if have received m then

2.1 set the ackbit to true

C-Phase

Communication step:

3. If ackbit is set to true then

3.1. set a with the value of ackbit

3.2. broadcast(a)

3.3. set ackbit to false

4. receive()

Processing step:

5. for all receive()==a do

5.1 add a to the ack − Set

D-Phase

6. If (have received m correctly) and ack − Set reaches the TSD then

6.1. deliver (m)

Figure 6.3: RBTD protocol with positive acknowledgments.
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• The receiver sends a NACK for every message it did not receive and

delivers the message if both the number of NACKs received in a C-

phase does not exceed a given threshold and it has not been delivered

yet.

The main advantage of RBTD(n) over RBTD(a) is that acknowledgments are

sent only in the presence of faults. On the other hand, acknowledgment message

are subject to be lost and as consequence some faults may not be detected. Note

that in the RBTD(n) nodes do not need to keep the information about received

acknowledgment among rounds. Therefore if some receiver fails permanently all

other will assume that it have received the message.

6.3.4.8 RBTD’s Correctness

Like with RBRD, both versions of RBTD protocol (a and n) are very similar and

so most arguments of their correctness apply equally to both versions. Whenever

necessary, however, we provide separate arguments.

• RB1 (Flex-Validity): As in the case of RBRD, channel faults may prevent a

receiver from delivering m. In RBTD this may happen even if the receiver

receives m. However, in this case, the receiver will deliver φ.

• RB3(Agreement): Like in RBRD, the argument relies on the determinism of

the algorithm and on the assumption of symmetry in channel faults. The

latter ensures that all correct receivers receive the same messages. This

together with the protocol’s determinism ensures that all receivers make

the same decisions, i.e. either φ or the message received.

• RB2(Integrity) and RB4 (Timeliness): The arguments presented for the

RBRD protocols are also applicable to the RBTD protocols.
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RBTD(n) Protocol

State

m: D-Message;

n: C-Message;

nackbit: positive acknowledgment bit initialized as false;

nack − Set: received negative acknowledgment set;

delivery − Deadline: a flag that indicates the end of delivering time;

TSD: Constant that defines the threshold;

*** TRANSMITTER ***

B-Phase

Communication step:

1. broadcast (m)

C-Phase

Communication step:

2. receive()

Processing step:

3. for all receive()==n do

3.1 add n to the nack − Set

4. If nack − Set is not null and not delivery − Deadline then

4.1. go to step 1 (retransmit m)

4.2. reset nack − Set

*** RECEIVER ***

B-Phase

Communication step:

1. receive(m)

Processing step:

2. if have not received m then

2.1 set the nackbit to true

C-Phase

Communication step:

3. If nackbit is set to true then

3.1. set n with the value of nackbit

3.2. broadcast(n)

3.3. set nackbit to false

4. receive()

Processing step:

5. for all receive()==n do

5.1 add n to the nack − Set

D-Phase

6. If (have received m correctly) and nack − Set does not surpass the TSD then

6.1. deliver (m)

Figure 6.4: RBTD protocol with negative acknowledgments.
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6.4 Implementation Issues

The proposed RB protocols are intended to be used in DuST networks such as

FlexRay. Due to the potential benefits of using such networks brings the possi-

bility to explore the reliable broadcast of sporadic urgent/critical messages (e.g.

in a car the engine temperature increase to a dangerous level, handbrakes on

and etc) over the dynamic scheduled communication segment. This option is

took because to provide reliable broadcast of sporadic messages in static seg-

ment seems not be profitable since message retransmissions must be scheduled a

priori, possibly causing excessive use of bandwidth transmitting useless or repet-

itive information. Therefore the use of a ”dynamic” reliable broadcast, through

DuST networks, can reduce the pre-allocated bandwidth destined to those static

sporadic messages and also to release bandwidth to other traffics.

In this section we present some implementation directions about a middle-

ware Reliable Broadcast service layer on top of dynamic scheduled segment of

DuST networks. Such middleware layer includes the implementation of RBTD

and RBRD protocols and shall provide the basic services to handle informa-

tion provided by network communication layer, such as RB protocols primitives

(broadcast, receive and deliver). In addition the middleware layer must also pro-

vide means to detect the loss of messages. This ”detection error” service can be

done handling information provided by the medium access protocol. Corrupted

messages are usually discarded by the network protocols unadvisedly, but in the

FlexRay protocol it is possible to get some extra information about discarded

messages. FlexRay provides state information about messages that it has re-

ceived in it’s reception buffers. The status information variables (namely V alid

Frame, Syntax Error, Content Error and BV iolation) are provided to from

FlexRay to the Controller Host Interface (CHI) and can be used to detect whether

messages were broadcast during a specific slot or not. More specifically a ”net-

work silence state” is determined if these all four status variables’s values are set

to false. Thus, in absence of the ”network silence state”, it is possible to presume

an attempt of message broadcast. This FlexRay feature are very important be-

cause it can directly influence on the increase the reliability of communications.

More specifically the detection of lost messages is useful to enforces the protocol

initialization on dynamic segment. Because without detection, the loss of any

starting reliable broadcast message may not be perceived by receivers. Similar
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effects can be observed in RBTD(n) and RBRD(n) protocols if all negative ac-

knowledgments are lost by the transmitters (possibly due to a transient fault

in channels). This may lead transmitters to skip the message retransmission by

assuming that all nodes have received correctly the message.

Another issue concerns about the allocation of the RB protocols in the dy-

namic segments. Evidently it is necessary to ensure sufficient time to reliable

broadcast each RB message in the dynamic scheduled segment. This can be

done by pre-allocating the initial slots of dynamic segment exclusively to reliable

broadcast messages. We assume that the initial portion of slots can be always

dedicated to RB protocols execution. Note that, in absence of reliable broadcast

transmissions, this strategy blocks only a small portion of the dynamic segment

that is occupied by the unused mini-slots and releases the major part of dynamic

segment to other traffic (OT). An example is illustrated in Figure 6.5 which

shows a execution of RBTD(n) and RBTD(a) protocols assuming a fail on the

first reliable broadcast message sent by a transmitter. Note that, independently

of protocol type, if no RB traffic is took than there is always significant space

available. Indeed this is only possible due to the flexible mini-slot approach used

by FlexRay.

SS DS

m1 n1 n2 m1

SS SSDS DSDS

SS DS

m1 m1 a1 a2

SS SSDS DSDS

minislot

empty
minislots

minislot

OT OT OT OT

OT OT OT OT

RBTD(n)

RBTD(a)

Message
Error

empty
minislots

Figure 6.5: Example of RBTD protocol executions assuming priority slot alloca-

tion on dynamic segment of FlexRay protocol

6.5 Conclusions

In this chapter we have presented a family of reliable broadcast protocols de-

signed to take advantage of DuST protocols. These protocols are considered to

be simple and differ essentially on two aspects: the type of acknowledge messages

used (positive vs. negative) and on the policy used to deliver a message. The
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delivery of messages can be based on a threshold (RBTD) or at reception time

(RBRD). The RBRD protocol can deliver messages faster than RBTD. However,

as drawback, they do not provide order and consistence on message delivery that

are inherent of RBTD protocols. We also have provided arguments for protocol’s

correctness. Finally we have presented some implementation issues concerning

about the use of presented protocols as a middleware service layer which provide

reliable communication on dynamic segment of FlexRay protocol.





Chapter 7

Reliability Analysis of RB-DuST

Protocols

This chapter presents a reliability analysis of the Reliable Broadcast Protocols

(RB-DuST) by means of probabilistic model checking. It includes a detailed de-

scription of the discrete-time Markov chains and of the PRISM models used in

the analysis. Furthermore, it describes the experiments carried out and discusses

the results obtained.

7.1 Introduction

Although the performance of the communication services is important in safety

critical applications, the dependability of these services is crucial. Given that

the automotive domain is the most likely application domain of DuST networks

such as FlexRay, we evaluate the reliability of Reliable Broadcast protocols pre-

sented in the previous section. For this evaluation we have developed a set of

discrete-time Markov chains (DTMCs) and solved them with the help of PRISM,

a symbolic probabilistic model checker.

The probabilistic model checking approach can help to improve the confidence

on the protocols’ correctness and allows to estimate its reliability under more

realistic fault assumptions than those considered in arguing their correctness.

101
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More specifically, we use it to perform reliability evaluation of RB protocols in

the presence of strictly omissive asymmetric (SOA) faults [49].

This chapter includes a channel fault case analysis showing the scenarios where

RB-DuST protocols are prone to fail. This case analysis is used as the starting

point in the development of the models that are used in our reliability analysis.

We have designed a set of discrete-time Markov chains (DTMC) models for each

variation of the RB-DuST protocols. The modeling, verification and reliability

evaluation are made using the Probabilistic Model Checker PRISM [54, 48]. Our

results show that the RB-DuST protocols proposed can provide reliability levels

required by safety-critical applications. However, this is achieved at a bandwidth

cost that depends mostly on the transient channel fault rate. Thus, to prevent

wasting bandwidth, the RB-DuST protocols should be carefully tuned to provide

only the required reliability levels.

In the next section we present the channel fault case scenarios used to elab-

orate the reliability models. In Section 7.3 we present the Markov models of the

proposed protocols followed by the examples of codes used in the implementa-

tion. An analysis of results obtained by evaluating these models in the PRISM

probabilistic model checker is presented in Section 7.4. Finally, we conclude in

Section 7.5.

7.2 Channel Fault Scenarios

Assuming the RB-DuST fault and communication models we present here eight

cases (Figure 7.1) where transient channel faults can induce the protocols to

violate those reliable broadcast properties specified in the previous chapter. In

addition we also show in which cases the traditional Validity property (RBV) can

be violated.

Note that permanent faults on transmitters and channels, in conjunction with

transient faults, can make the RB-DuST protocols to violate RB properties. For

example, the transmitter crashes or channels become permanent faulty imme-

diately after a broadcast. However this cases are upmost unlikely if compared

to transient faults cases. Because of that transient channel faults demands spe-

cial attention and must be correctly mapped in order to ensure more accuracy

in models design. In the fault cases presented we assume that B-phase and C-
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Phase are executed only in the dynamic segments (labeled as D in Figure 7.1) of

communication protocol.
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Figure 7.1: Channel fault cases (D: Dynamic Segment, S: static segment)

7.2.1 Effects of Symmetric Channel Faults on RBTD(a) and

RBRD(a) Protocols

Case 1 : repeatedly loss of messages due to symmetric channel failures.

RBTD(a): if transmitter is also receiver property RBV is violated. Other-
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wise no violation.

RBRD(a): if transmitter is also receiver then RB3, RBV and RB1 are vi-

olated. Otherwise no violation.

Case 2: acknowledgement messages are repeatedly lost due to symmetric chan-

nel failures.

RBTD(a): if the number of nodes whose ACKs are lost is a majority then

property RBV is violated (it does not depend whether transmitter is a

receiver or not). Otherwise there is no violation.

RBRD(a): no violation.

7.2.2 Effects of Symmetric Channel Faults on RBTD(n) and

RBRD(n) Protocols

Case 3: messages are repeatedly lost due to symmetric channel failures.

RBTD(n): if transmitter is a receiver then RBV is violated. Otherwise, no

violation.

RBRD(n): if transmitter is a receiver then RB3, RB1 and RBV are vio-

lated. Otherwise, no violation.

Case 4: messages and also negative acknowledgments are lost due to symmetric

channels failures.

RBTD(n): if transmitter is a receiver and the number of lost NACKs are

majority then RB1, RB3 and RBV are violated. Otherwise, if transmitter

is a receiver and the number of lost NACKs are not majority then only

RBV is violated.

RBRD(n): if transmitter is a receiver then RB3, RB1 and RBV are vio-

lated. Otherwise, no violation.
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7.2.3 Effects of Asymmetric Channel Faults on RBTD(a) and

RBRD(a) Protocols

Case 5: some receivers lose the message broadcast due to asymmetric channel

failures.

RBTD(a): if there is a majority of nodes that lose the message then RBV

is violated. Otherwise RB1, RB3 and RBV are violated.

RBRD(a): RB3,RB1 and RBV are violated

Case 6: acknowledge messages are lost, these case includes a arbitrary number

of faults.

RBTD(a): if the number of acknowledgement messages lost by at least one

node represents a majority then RB3, RB1 and RBV are violated. Oth-

erwise, if all nodes do not receive acknowledgments enough to deliver the

message then RBV is violated.

RBRD(a): no violation

Note that cases where messages are lost followed by fail in acknowledgements

are not showed because these scenarios represent a variation of Case 5, and

as consequence, are self included.

7.2.4 Effects of Asymmetric Channel Faults on RBTD(n) and

RBRD(n) Protocols

Case 7: some receivers lose the message broadcast due to asymmetric channel

failures. This case is similar to Case 5.

RBTD(n): if there is a majority of nodes that lose the message then RBV

is violated. Otherwise RB3, RB1 and RBV are violated.

RBRD(n): RB3, RB1 and RBV are violated

Case 8: some receivers lose message broadcast and some negative acknowledg-

ments due to asymmetric channel faults.
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RBTD(n): if there is a majority in the number of nodes that lose the mes-

sage and in the number of negative acknowledgments received by each node

then only RBV is violated. Otherwise RB1, RB3 and RBV are violated.

RBRD(n): RB3, RB1 and RBV are violated

7.2.5 Correctness Issues

Symmetric channels vs protocol’s correctness: as the case analysis have

shown the impact of symmetric faults on the presented RB-DuST protocols is

null when it is assumed that transmitters are not receivers of the messages they

transmit. Indeed the results of experiments with the models that we describe

in the next sections and that assume that transmitters are not receivers of their

own messages have shown that in the presence of symmetric channel faults only

the probabilities of Agreement (RB3) and Flex-V alidity (RB1) being violated

by any RB protocol is exactly zero.

RB1 violation assuming symmetric faults: the Flex-V alidity (RB1) prop-

erty can be violated if we assume that the transmitter is a direct receiver, i.e.

it receives the messages it transmits using some loopback mechanism that does

not comprise the physical layer. In that case the reliability is determined by the

probability of a single message being lost due to symmetric channels faults. How-

ever only the RBRD variations of the RB-DuST protocols violate RB1 in these

circumstances, as summarized in table 7.1. The RBTD protocols do not violate

RB1 because no other node will ever receive the broadcast message and therefore

the threshold condition will not be satisfied in any node, even on the transmitter.

Table 7.1: Violation of Flex-Validity (RB1), assuming that transmitters are direct

receivers and symmetric channel faults only.

RBRD RBTD

ACKs Yes No

NACKs Yes No
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7.3 Reliability Models

Model checking helps to improve the confidence on the correctness of the protocols

and allows to estimate the reliability under a more comprehensive fault model

than that considered in the arguing the protocols correctness in the previous

chapter. In this section, we present the DTMC models of the RB-DuST protocols

we developed to evaluate their reliability under a fault model that allows all

channel fault scenarios presented in the previous section. For each variation

of the RBRD and RBTD protocols, we have developed a different model and

implemented it in PRISM.

7.3.1 Models

All models are discrete time Markov chains (DTMC). These DTMCs model a

protocol execution and are used to determine the probability of violating the RB

specification, more specifically the agreement property. The time step used is a

TDMA slot. This allows us to model accurately the effect of channel faults on

different protocol messages, and thus better estimate the protocol reliability. The

set of faults considered is rather comprehensive, including permanent faults both

on the nodes and on the channels, and transient channel faults. Furthermore,

the transient channel faults considered are not only symmetric but also strictly

omissive asymmetric (SOA), i.e. they also consider faults in which some nodes

receive correctly a message, whereas other nodes receive no message at all.

The reliability model of each protocol comprises models for each of the system

components: the communication channels and the nodes. For the latter there are

actually different models depending on whether the node is a transmitter or a

receiver. In addition, to model the effect of SOA faults on the protocols, we use

different models for receivers that loose messages upon occurrence of a SOA fault

and for receivers that are not affected by SOA faults.

Note that some of the models presented here are only approximate. This is

because we abstract the differences among the different protocols with respect to

the acknowledgment and the delivery of broadcast messages.
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7.3.1.1 Channel model

A channel can be in one of four states: non-faulty (0), with a symmetric transient

fault (1), with a SOA transient fault (2) and permanently faulty (3). In state 0,

all messages transmitted on the channel are received by all correct nodes. In state

3, no message transmitted on the channel is received by any node. Furthermore,

once in state 3 a channel will remain in that state henceforth. The difference

between states 1 and 2 is that, in state 1, if a node transmits a message on the

channel no node will receive that message, whereas in state 2, some nodes receive

the message while other nodes will receive no message.

Figure 7.2 shows the DTMC for a channel. The labels t, pc and soa of the

arcs are the probabilities of occurrence of transient, permanent and SOA channel

faults respectively.

0 1

3

2

t

soa

1- - -soa t pc

1- - -soa t pc

soa

pc pc

pc

t

soa t

1- - -soa t pc

Figure 7.2: Channel Model.

7.3.1.2 Node model

Rather than using a single DTMC, as for the channel model, we model each

node as a set of smaller DTMCs that model separately the basic primitives of

the RB protocols as well as fault generation. This modularization leads not only

to simpler models but also to more scalable models, since these DTMCs can be

easily added or removed from the models, as necessary.

• Transmitter Model: Figure 7.3 shows the model for a transmitter node.

In contrast with the model for a channel, this model has three DTMCs. The

transmitter permanent fault (Tpf) DTMC models the operational state of
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the node. The transmitter transmission (Ttx) DTMC is used to model

the broadcast by a transmitter in a RB round. The SOA DTMC models

the occurrence of a SOA channel fault when the transmitter broadcasts its

message. The state of a transmitter node is determined by the state of

these three DTMCs. E.g., the state (Tpf=1, Ttx=0, SOA=0) indicates

that the transmitter failed permanently before it was able to successfully

broadcast a message in the current RB round.

Before moving to an explanation the models, we need to explain the no-

tation. In the model in Figure 7.3b. and in other figures below, labels of

some transitions are of the form [G] : p, where the guard G is a predicate

and p is a probability. The meaning is that if G is true then the probability

of taking the transition is p, otherwise it is 0. Thus the standard notation

where a transition is labeled with probability p corresponds to a label of

the form [true] : p. It should be noted that this extended notation only

allows for a more compact representation of the model, which is a standard

DTMC.

The Tpf DTMC models the operational state of the node: when in state

0, the node is operating correctly, whereas when in state 1, the node has

crashed. The variable p is the permanent fault probability for a node.

The Ttx DTMC models the broadcasting of a message in a RB round: state

1 is active if and only if the transmitter has successfully broadcasted a mes-

sage in the current RB round. A broadcast is successful only if, at time of

the broadcast (phi = txid), the channel is not transiently nor permanently

faulty (Channel! = (1, 3)) and the transmitter is not permanently faulty

(Tpf=0). At the end of each RB round (EoRBR) the Ttx DTMC is reset

to its initial state.

Note that in the case of a SOA fault, the broadcast is considered successful.

This is because receivers not affected by the fault will receive the broadcast

message. Instead, the occurrence of the SOA fault is recorded by the SOA

DTMC: state 0 means that no SOA fault occurred on the transmitter slot,

whereas state 1 means otherwise. The transition from state 0 to state 1

occurs, if at the time of the broadcast(phi = txid), the channel has a SOA

transient fault (Channel = 2). Like in the Ttx DTMC, at the end of the

RB round, the SOA DTMC is reset to its initial state.
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[G2]:1 [!EoRBR]

G2= [ phi=txid & Channel=2 ]

[EoRBR]:1

c. SOA

[!G2]: 1

Figure 7.3: Transmitter DTMCs: a. Transmitter permanent fault. b. Transmit-

ter tx. c. SOA fault.

• Receiver Model: the receiver model also comprises several DTMCs. How-

ever as receivers can be affected either by symmetric or by asymmetric

channel faults we use a different model for each of these fault types.

• Symmetric Receiver Model: to model the effect of SOA faults, we

also assume that SOA faults in a channel always affect the same nodes.

This assumption corresponds to the worst case, and has the added benefit

of leading to a simpler model: we can use different models depending on

whether or not a receiver is affected by a SOA fault. In this section, we

describe the model for symmetric receivers — receivers that are not affected

by SOA faults, i.e. that receive a message transmitted in a slot that has

a SOA fault. In the next section, we describe the model for asymmetric

receivers.

The model for symmetric receivers comprises 4 DTMCs, as shown in Fig-

ure 7.4: the Rpf, the Rrx, the Rtx, and the Delivery DTMCs. The Rpf

DTMC models the operational state of the receiver node and is similar to

the Tpf DTMC of the transmitter model. The Rrx DTMC is used to record

whether the broadcast message was received at least once: state 1 indicates
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that the receiver has correctly received the broadcast message in the cur-

rent execution of the RB protocol. The transition from state 0 to state

1 occurs upon reception (phi = rxid) of a successfully transmitted broad-

cast message (Ttx = 1), and depends on the receiver still being operational

(Rpf = 0).

The Rtx DTMC models the transmission of the acknowledgment message.

State 1 indicates that the receiver has successfully transmitted the acknowl-

edgment in the current execution of the RB protocol. The transition from

state 0 to state 1 is taken by a non-faulty receiver (Rpf = 0) when it success-

fully transmits (Channel! = (1, 3)) an acknowledgment (phi = rxid) in a

RB round when broadcast message was successfully transmitted (Ttx = 1).

Finally, the Delivery (DSR) DTMC models the delivery of a message by the

receiver. In the model, the delivery always occurs in the last step (phi = N),

only if at least one message was received (Rrx = 1), the receiver is not faulty

(Rpf = 0) and the threshold condition of the protocol is satisfied (TSD).

0 1

[G5]: 1

G5=[Rrx=1 &Rpf=0 & TSD & phi=N ]

[!G5]: 1
1

b. Rrx

0 1

[G3]: 1

G3=[Ttx=1 & Rpf=0 & phi=rxid]

[!G3]: 1
1

a. Rpf

0 1

p1-p
1

d. Delivery (DSR)

c. Rtx

0 1

[G4]: 1

G4=[Ttx=1 & Channel!=(1,3) & Rpf=0 & phi=rxid]

[!G4]: 1
1

Figure 7.4: Symmetric Receiver DTMCs: a. Receiver permanent fault, b. Re-

ceiver rx, c.Receiver tx and d. Delivery (DSR).
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Multiple Transmitters To prevent the state explosion problem typical of

model checking, the symmetric receiver models for multiple transmitters do

not keep track of the reception of individual messages, i.e., they use only

a single Rrx DTMC. However, in this case, the guard G3 from state 0 to

state 1 becomes:

Ttx1 = 1 & . . . &Txtj = 1& Rpf = 0& phi = rxid

That is, the transition now depends on the successful transmission by all

transmitters of their broadcast messages. Note that the major effect of this

simplification is that if, in every RB round, there is a symmetric fault affect-

ing always a message broadcasted by a different transmitter, the protocol

will actually deliver all messages, whereas in our model no node will de-

liver any message. However, this does not affect the value of the reliability

computed by the model.

• Asymmetric Receiver Model: The asymmetric receiver model, i.e. the

model for receivers that do not receive the message broadcasted when a

SOA occurs, is very similar to the one used for symmetric receivers. In

particular, the Rpf, the Rtx and the Delivery DTMCs do not change. The

only change occurs in the Rrx DTMC, which is now named ARrx and is

shown Figure 7.5. Like the Rrx, the ARrx DTMC models the reception of

messages, the difference is that the broadcast message will be received only

if no SOA fault (SOA = 0) occurred on the channel while the message was

broadcasted.

Multiple transmitters Like in the symmetric receiver model, the asyn-

chronous receiver model uses only one ARx DTMC, i.e. one DTMC to keep

track of all the messages received from the transmitters, independently

of the number of transmitters. To model the possibility of different

transmitters being affected by SOA faults in the same RB round, in these

models, the guard G6 from state 0 to state 1 becomes:

Ttx1 = 1 & . . . &Txtj = 1& Rpf = 0& phi = rxid

&SOA1 = 0 & . . . &SOAt = 0

That is, the transition now depends on the successful transmission by all
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transmitters of their broadcast messages, and on those transmissions not

being affected by SOA faults in models. This simplification, leads to an

underestimation of the protocols reliability.

0 1

[G6]: 1

G6=[Ttx=1 & Rpf=0 & phi=rxid & SOA=0]

[!G6]: 1
1

a. ARrx

Figure 7.5: DTMC specific to asymmetric receivers: a. Asymmetric Receiver rx.

7.3.2 Model Implementation

In this section we show the implementation of models that we have defined in

previous section. It is our intention to provide a light description of model imple-

mentation showing the main components used and their codification in PRISM

tool. We choose the codification of RBTD(a) protocol to exemplify our imple-

mentation.

Basically we distinct the model implementation in a set of components such

as modules, constants and formulas. Modules are used to implement the DTMCs

directly and also other functionalities such as rounds controlling. The formulas

and constants are essential and provide support to make short and plain models.

7.3.2.1 Constants

Constants do not vary during model evaluation and are typically used to calcu-

late the fault probabilities as well as the number of steps necessary to evaluate

the reliability of the protocol. Some constants are requested to be informed as

input values whereas other have predefined values. We show here only the main

constants used in the core of each implemented model such as follows(see Figure

7.6):

Input Value Constants : Frame Size (FS) which the value defines the frame

size in bytes, Bit Rate (BR) that indicates the bit rate in Mbps, BERPG that

sets the value of BER(Bit Error Rate) in FIT (Failure In Time) 1, SSR which

1FIT is commonly used as the unit of reliability (1FIT = 1failure/1X109 device hour)
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// These have to be initialized upon invocation

const int FS; // Frame size -- in bytes

const int BR; // Bit rate in Mbps

const int BERPG; // BER in FIT

const double SSR; // SOA faults Rate w.r.t Symmetric Channel Faults

// Predefined Constants

const NT=1; // Number of transmitters

const NR=3; // Number of receivers

const int N = NR + NT; // Total Number of nodes

const NS=N+1; // Number of steps per RB execution

const double BitRate=BR*Mega; // Bit rate

const double BER=BERPG/Giga; // BER Rate

// Transient faults probabilities

const double t = BER * FS * 8; // Frame loss probability for single channel

const double soa=t*(SSR/100); // SOA occurrence probability for single channel

// Permanent faults probabilities

const double PHw = 0.00001; // Permanent HW fault rate 1E-5 (faults/hour)

const double PCh = 0.000001; // Permanent channel fault rate 1E-6 (faults/hour)

// Slot is stated as:

const double Slot = ((FS + 1) * 8)/BitRate;

const double p = PHw*Slot/3600; // Probability of permanent fault in HW

const double pc = PCh*Slot/3600; // Probability of permanent fault in a channel

const MaxRoundRetransmission; // Number of message retransmissions

Figure 7.6: Constants

is the symmetric to SOA fault ratio and MaxRoundRetransmission (Maximum

number os rounds used to retransmit a message)

Predefined Constants are: NT (Number of Transmitters), NR (Total number

of Receivers), NS (Number of Slots), soa (SOA fault rate), PHw (Permanent

Hardware fault rate), PCh (Permanent Channel fault rate), Slot (Slot length in

bits), t (frame loss probability for single channel), p (Probability of permanent

fault in Hardware) and pc (Probability of permanent fault in a channel).

7.3.2.2 Formulas

Formulas are used to simplify some extensive guards and verifications that often

appear in models, making models simple and reading attractive. We classify

formulas as: state; decision and auxiliary for verification; State formulas are

helpful to determine some specific states of environment components, e.g. the

state of channels. Figure 7.7 shows some formulas used to define the state of

two channels (Ch1 and Ch2) and also formulas that identify the beginning and

ending of the protocol execution.

Decision formulas are used to calculate values required to execute model state

transitions, e.g. to calculate if the number of received positive acknowledgements

reaches a specified threshold (Figure 7.8).
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// Defines the general state of channels

formula gch = (Ch1=0 | Ch1=3) & (Ch2=0 | Ch2=3); // No fail for symmetric nodes

formula gchSOA = (Ch1!=0 & Ch2=3) | (Ch1=3 & Ch2!=0); // SOA channel

// Flags

formula EndOfPExecution = RoundCounter=MaxRoundRetransmission;

formula BegOfPExecution = RoundCounter=0;

Figure 7.7: State Formulas

// Threshold for ACK messages

formula TSD= Rtx1 + Rtx2 + ARtx1 >= (NR)/2;

// True if some confirmation was lost

formula MissSomeAck = Rtx1 + Rtx2 + ARtx1 < NR;

Figure 7.8: Decision Formulas

formula Agreement = phi=NS+1 & EndOfPExecution & Agg;

formula Agg= (((D1 & Rpf1=0) | Rpf1=1) & ((AD1 & Rpf1=0)|ARpf1=1))|

(((!D1 & Rpf1=0) | Rpf1=1) & ((!AD1 & ARpf1=0)| ARpf1=1));

formula FlexValidity = phi=NS+1 & EndOfRBExecution & FlexVa;

formula FlexVa = ( TCtx1=true & (( ((D1 & Rpf1=0)|Rpf1=1)

& (( AD1 & ARpf1=0)|ARpf1=1) ) |

( ((!D1 & Rpf1=0)|Rpf1=1) & ((!AD1 & ARpf1=0)|ARpf1=1) ))) | TCtx1=false;

Figure 7.9: Auxiliary Verification Formulas Example

Finally, the auxiliary verification formulas are used to evaluate the general

model state verifying if it satisfies the reliable broadcast properties. Figure 7.9

presents formulas used to verify the both Agreement and Flex-Validity properties

based in the delivery of message. The variables D1 and AD1 are used to indicate if

a specific message were delivered or not by a receiver. In this example we assume

a configuration of two receivers, one that can be affected only by symmetric

faults (D1) and another by both symmetric and SOA faults (AD1). Note that

agreement on delivery occurs only if (D1) and (AD1) have the same values.

7.3.2.3 Modules

Phases Module: the Phases module (Figure 7.10) is used to synchronize the

modules’s state transitions and operations during a RB-round. A variable de-

noted as phi is used to enumerates each step of the model. Therefore, modules

can only transit to new states only if they are labeled with the current value of
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module Phases

phi:[0..NS+1] init 0;

[step] true -> phi’= func(mod,phi+1,NS+2);

endmodule

Figure 7.10: Phases Module

module RetransmissionController

RBRoundCounter:[0..MaxRoundRetransmission] init MaxRoundRetransmission;

[step] phi=0 -> RoundCounter’= func(mod,RBRoundCounter+1,MaxRoundRetransmission+1);

[step] phi!=0 -> true;

endmodule

Figure 7.11: Retransmission Control

phi. The maximum value of phi is denoted by the total number of nodes plus

one (NS + 1). When phi reaches NS + 1 than the RB-round is finished.

Retransmission Controller Module: this module (Figure 7.11) is used to

count the number of RB-rounds which each protocol execution takes. The number

of RB-rounds is bounded by the MaxRoundRetransmission constant.

Channel Module: as seem before the module Channel implements the behav-

ior of a single channel, it includes the probabilities of the channel be transiently,

permanently and SOA faulty. Figure 7.12 shows the module channel implemen-

tation. The Ch1 variable is used to determine the currently state of the channel.

The initial state is defined as not faulty (0) and updates the channel state ac-

cording to the model execution progress. The possible channel faulty states are

transient(1), permanent(2) and SOA (3). All of these faults have their rates de-

fined by constants such as the permanent channel fault probability pc, the frame

loss probability for single channel t and the SOA frame loss probability soa. The

pc is a constant value given by the product of permanent fault rate per hour

(Pch) by the slot length. The value of t depends on the imputed frame size (FS)

and the BER (Bit Error Rate) values. Due to lack of accurate data about SOA

fault rates in the literature, in our models we define soa as a percentage of the t

that must be externally provided as the constant SSR value. Note that multiple

channels can be modeled by instantiation of multiple channel modules.

Transmitter Module: the transmitter module implements the Ttx and Tpf
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module Channel1

// 0: channel has no fails

// 1: channel has a transient fault

// 2: channel has a permanent fault

// 3: channel has SOA fault

Ch1: [0..3] init 0;

[step] Ch1!=2 -> pc:(Ch1’=2) + t:(Ch1’=1) + soa:(Ch1’=3) + 1-soa-t-pc:(Ch1’=0);

[step] Ch1=2 -> true;

endmodule

Figure 7.12: Channel Module

module Transmitter1

Ttx1 : [0..1] init 0;

TCtx1: bool init false;

Tpf1 : bool init false;

[step] phi=0 | Tpf1 -> (Ttx1’=0);

[step] phi=t1 & gch & MissSomeAck & !Tpf1-> p:(Tpf1’=true) + 1-p:(Ttx1’=1)&(TCtx1’=true);

[step] phi=t1 & (!gch | !MissSomeAck) & !Tpf1 -> p:(Tpf1’=true)&(Ttx1’=0) + 1-p:(Ttx1’=0);

[step] !phi=0 & !(phi=t1 & gch & MissSomeAck & !Tpf1) & !(phi=t1 &

(!gch | !MissSomeAck) &!Tpf1) & !Tpf1 -> true;

endmodule

Figure 7.13: Transmitter module

DTMCs (Figure 7.13) by using the follow set of variables. The transmitter broad-

cast variable (Ttx) indicates whether a message is broadcast correctly (set as 1)

or not (set as 0). The Transmitter permanent fault (Tpf) variable is set to

true whenever the transmitter experiences a permanent fault. Once the model

is executed cyclically (in multiple RB-rounds), it is not possible verify previous

values of modules variables. For this reason there is a need to keep information

about if messages were correctly broadcast at most once through the multiples

RB-rounds. Therefore, to do that we use the TCtx flag and set it to true as an

indication of message broadcast success.

SOA Module: this module implements the SOA DTMC and its state is stored

in a specific variable, i.e SOA1 in Figure 7.14. The variable SOA1 is set to true

whenever the state of the network is such that a message is affected by a SOA

fault; this is represented by the formula gchSOA shown in Figure 7.7. Note that

a model needs a SOA module per transmitter, because this module memorizes

the occurrence of a broadcast by a single node. Unfortunately formulas cannot

be used in this case because they do not hold past values.
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module MSOA1

SOA1:bool init false;

[step] phi=0 -> SOA1’=false;

[step] phi=t1 & gchSOA -> SOA1’=true;

[step] phi=t1 & !gchSOA -> SOA1’=false;

[step] !phi=0 & !(phi=t1 & gchSOA) & !(phi=t1 & !gchSOA) -> true;

endmodule

Figure 7.14: SOA module

7.3.2.4 Receiver Modules

As seen in Section 7.3.1.2 receivers can be affected by SOA faults whilst other may

not, for this reason we implement symmetric and asymmetric receivers (SOA)

in different modules. Figure 7.15 presents the Symmetric Receiver DTMCs

implementation. As defined in DTMCs the message reception is signaled by Rrx

whilst Rtx determines the state of confirmation message.

It is important note that reception and confirmation are modeled in the same

step (phi=r1) as an optimization for state space reduction purposes. Another

important aspect is the approach used to model multiple transmitter through the

formula gTS. Naturally multiple transmitters represent more messages. Hence

more variables are necessary to represent reception of messages in a particu-

lar fashion. The increasing of variables makes the models bigger and memory

spender due to state space explosion problem. To overcome this problem we

compress all Ttx states in the gTS formula (e.g., gTS = Ttx1&Ttx2&..T txn)

and allow symmetric receivers indicate the reception Rrx = 1 whenever all mes-

sages were correctly sent by transmitters. Actually what we do is to delay the

delivery of received messages, waiting for a RB-round without failures. Note that

this approach does not interfere on confidence of reliability results since we un-

derestimate the probability of faults reaching a reliability smaller than it really

is.

The modules for asymmetric receiver are similar to the ones used for sym-

metric receivers. However, in the asymmetric receiver module, the transitions

depend on the occurrence of SOA faults, which is memorized by the SOA mod-

ule (Figure 7.14). The codification used in the implementation of asymmet-

ric receiver module is shown in Figure 7.16. The formula gSOA (defined as

gSOA = SOA1|SOA2|...SOAn) groups all information about SOA faults oc-

curred during broadcasts. Like the gTS formula it is used to reduce the size of
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module SR1

Rrx1:[0..1] init 0;

Rtx1:[0..1] init 0;

Rpf1:bool init false;

[step] phi=r1 & gch & gTS & !Rpf1 -> p:(Rpf1’=true)&(Rrx1’=1)&(Rtx1’=1)

+ 1-p:(Rrx1’=1)&(Rtx1’=1);

[step] phi=r1 & !gch & gTS & !Rpf1 -> p:(Rpf1’=true)&(Rrx1’=1)

+ 1-p:(Rrx1’=1);

[step] !(phi=r1 & gch & gTS & !Rpf1) &

!(phi=r1 & !gch & gTS & !Rpf1) & !Rpf1 -> true;

[step] Rpf1-> true;

endmodule

Figure 7.15: Symmetric Receiver module

module AsR1

AsRrx1:[0..1] init 0;

AsRtx1:[0..1] init 0;

AsRpf1:bool init false;

[step] phi=r2 & gch & gTS & !gSOA & !AsRpf1 -> p:(AsRpf1’=true)&(AsRrx1’=1)

&(AsRtx1’=1) + 1-p:(AsRrx1’=1)&(AsRtx1’=1);

[step] phi=r2 & gch & gTS & gSOA & !AsRpf1 -> p:(AsRpf1’=true)

+ 1-p: true;

[step] phi=r2 & !gch & gTS & !gSOA & !AsRpf1 -> p:(AsRpf1’=true)&(AsRrx1’=1)

+ 1-p:(AsRrx1’=1);

[step] phi=r2 & !gch & gTS & gSOA & !AsRpf1 -> p:(AsRpf1’=true) + 1-p: true;

[step] !(phi=r2 & gch & gTS & !gSOA & !AsRpf1 )

& !(phi=r2 & gch & gTS & gSOA & !AsRpf1)

& !(phi=r2 & !gch & gTS & !gSOA & !AsRpf1)

& !(phi=r2 & !gch & gTS & gSOA & !AsRpf1)

& !AsRpf1 -> true;

[step] AsRpf1 ->true;

endmodule

Figure 7.16: Asymmetric Receiver module

the model for configurations with multiple transmitters.

7.3.2.5 Delivery Model

The model for delivery of message is generic. It can be used by both asymmetric

and symmetric receivers. Model delivery separately allows to easily modify the

models according to the protocols’ delivery policies. For example, Figure 7.17

presents the implementation of reception used in RBTD(a) protocol where the

threshold is specified in the formula TSD. In the RBRD protocols, no extra
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module Delivery1

DSR1: bool init false;

[step] phi=NS & Rrx1=1 & TSD-> DSR1’=true;

[step] !(phi=NS & Rrx1=1 & TSD) -> true;

endmodule

Figure 7.17: Delivery module

information is needed to delivery messages than the TSD is not necessary and

can be removed without any changes in the receiver’s codification.

7.3.2.6 Model Evaluation

Although PRISM offers symmetry reduction techniques, which can reduce the

time required used to evaluate models with symmetry, our models are not per-

fectly symmetric and therefore we cannot take advantage of these techniques.

For this reason we have first proceeded with the evaluation of reliability of the

protocols after a single execution instead of after one hour.

We have computed the reliability of one execution of the RB-DuST protocols

by evaluating the following PCTL properties:

( 1 - P = ? [ true U <= N (!Agreement | !FlexV alidity) ] )

where N, is the number of steps required to execute the RB protocol.

Agreement and FlexV alidity are auxiliary verification formulas shown in Figure

7.9.

To compute the reliability of the protocols for repeated executions, e.g. a

mission of one hour, we use an ”auxiliary model”, which receives as input pa-

rameter the unreliability values for single protocol execution model described in

the previous subsection. Figure 7.18 shows the PRISM modules of that auxiliary

model. The protocol state is represented by the variable State, which can switch

from an initial no-violation state (State = 0) to a violation state (State = 1).

The probability of this state transition depends on the number of operational

channels c (modeled in the ChannelsState module). More specifically, the prob-

abilities p1 and p2, are the probabilities of violating the RB specification in a
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single execution assuming configurations with one and two operation channels,

respectively.

The reliability after one hour of RB-DuST protocols was computed by the

following PCTL property:

( 1 - P = ? [ true U <= N State=1 ] )

where N is now the number of protocol executions in one hour. Note that

each step of this model represents one execution of the evaluated protocol. The

effect of the number of RB-rounds is reflected in the probabilities p1 and p2 and

on the number of protocol executions in one hour, N: all other things being equal,

the larger the number of RB-rounds in a protocol execution, the smaller N will

be.

module ChannelsState

// 0: two channels have failed permanently

// 1: one channel has failed permanently

// 2: no channel has failed permanently

c: [0..2] init 2;

[step] c=2 -> 2*pc*(1-pc):(c’=1) + pc*pc:(c’=0) + (1-pc)*(1-pc):(c’=2);

[step] c=1 -> pc:(c’=0) + 1-pc:(c’=1);

[step] c=0 -> true;

endmodule

module Protocol

State:[0..1] init 0; // 0: no violation; 1: violation

[step] State=0 & c=2 -> p2:(State’=1) + 1-p2:(State’=0);

[step] State=0 & c=1 -> p1:(State’=1) + 1-p1:(State’=0);

[step] State=0 & c=0 -> true;

[step] State!=0 -> true;

endmodule

Figure 7.18: Auxiliary model

7.4 Reliability Analysis

In this section we present a reliability analysis of the RB-DuST protocols. This

analysis is based on the results obtained from a set of experiments in which we

used PRISM to evaluate the models presented in the previous section and to com-

pute the unreliability of the corresponding RB-DuST protocol in one execution.

In all these experiments we used parameters values from the automotive domain,

the main application domain of DuST networks, extracted from [18] and [52].

Table 7.2 shows the values of the relevant parameters used in all experiments.
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Table 7.2: Parameter values used in all RB-DuST experiments.

Parameter Values (units)

Number of channels 1, 2

Frame Size (FS) 16, 32, 128 (bytes)

Bit Rate 1, 10 (Mbps)

Bit-error rate (BER) 1E-6, 1E-7, 1E-8

Node Permanent Fault Rate (PHw) 1E-5 (faults/hour)

Channel Perm. Fault Rate (PCh) 1E-6 (faults/hour)

7.4.1 Effect of Acknowledgment Policy

The two variants of RBRD protocols, like the two variants of RBTD protocols,

differ on the type of acknowledgment message used: RBRD(a) and RBTD(a) use

positive acknowledgments, and RBRD(n) and RBTD(n) use negative acknowl-

edgments. There are two crucial differences between these two types of acknowl-

edgment messages. First, with negative acknowledgments a receiver must know a

priori when it should receive the messages being acknowledged. Second, when the

sender of a message being acknowledged does not receive an acknowledgment it

usually cannot tell whether that was because the message was correctly received

or because the acknowledgment message was lost, and therefore assumes the for-

mer, which is more likely. However, FlexRay is able to distinguish silence in the

network from the occurrence of a communications error or fault. In addition,

this ability and the fact that in FlexRay slots are assigned to message ids even in

the dynamic segment make it possible for receivers to detect whether they should

have received a frame in a given slot. As a consequence, the reliability of the

RBRD(a) and RBRD(n) protocols obtained in our experiments are very similar.

The same applies to the reliability of the RBTD(a) and the RBTD(n) protocols.

Therefore, in the remainder of this section we will concentrate on the protocols

with positive acknowledgment.

7.4.2 Unreliability Contributors

In this subsection we discuss the main factors that affect the reliability of the RB-

DuST protocols, and show some results of the experiments we carried out that

support our conclusions. The reliability of protocols can be affected observing

the follow contributors:
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a) Number of Asymmetric Receivers: as argued in Section 6.3, the RB

protocols satisfy their specification in the presence of symmetric faults only.

Therefore, unless our models include asymmetric receivers, their reliability

is 1. The number of asymmetric receivers can have different effects on the

different protocols. For example in the RBRD(a) protocol, a SOA fault,

possibly in conjunction with other faults, may lead to a violation of RB

properties, independently of the number of receivers affected by the SOA

fault. This is because in this protocol receivers deliver a frame they receive,

independently of all other receivers, and, in the presence of SOA faults, it is

possible that the messages received by correct receivers be different. On the

other hand, in the RBTD(a) protocol, if the number of correct nodes not

affected by the asymmetric faults is below the threshold, then no correct

node will deliver the message. However, if the number of correct nodes

not affected by asymmetric faults is above the threshold, these nodes will

deliver the message, whereas nodes affected by SOA faults may not. Thus

RB properties such as Agreement and Flex-validity may also be violated by

the RBTD(a) protocol. I.e. a single SOA receiver is enough to induce all

reliable protocols to violate their specification.

In all our models, we assume that the number of receivers affected by SOA

faults, i.e. asymmetric receivers, is one. For RBTD protocols, this value

corresponds to the worst case, because the threshold becomes effective only

when the number of correct nodes minus those affected by SOA faults is

smaller than the delivery threshold. Indeed, only in this case will the oc-

currence of a SOA prevent all correct receivers from delivering the message,

and thus ensure agreement between symmetric and asymmetric receivers.

Thus, the larger the number of nodes affected by SOA faults less nodes

need to fail permanently for the threshold to become effective. Because

the probability of permanent faults on nodes is very small, the outcome

is that the results obtained for the RBTD protocols are indistinguishable

from those of the corresponding RBRD protocols. This is unfortunate, but

we could not find field values on the occurrence of SOA faults. For this

reason, we have estimated SOA faults rates on communication channels as

a percentage of symmetric faults that is given by the SOA to Symmetric

Faults Ratio (SSR) parameter.

b) Frame Size: as the frame size increases the reliability decreases, because
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the probability of the messages being affected by transient channel faults

increases. Figure 7.19 illustrates how the frame size can influence the reli-

ability of RBTD(a) protocol.

1 2 3
10

−15

10
−10

10
−5

Execution Length (number of RB rounds)

U
nr

el
ia

bi
lit

y 
(p

er
 e

xe
cu

tio
n)

RBTD(a): Dual Channel, BitRate=1 Mbit/s, Transmitter=1, 
Asym. Receiver=1, Sym. Receiver=2 ,SSR=100, BER=1E−6    

FS=16 Bytes
FS=32 Bytes
FS=128 Bytes

Figure 7.19: RBTD(a) unreliability as a function of the frame size (results per

execution).

c) Bit Rate: higher bit rates also decrease the reliability, because the number

of messages broadcast in a given time interval, and consequently the number

of protocol execution increases, thus increasing the probability that at least

one execution will violate the RB specification.

d) BER: the bit error ratio (BER) is the major contributor to unreliability of

the studied communication protocols. As the reliability decreases when the

BER values increase (Figure 7.20). In all experiments we have fixed the

value of BER to 1e-6. Although some authors consider it an extreme value

even for automotive protocols we chose this value because it represents our

worst case.

e) Number of RB-rounds: the number of RB-rounds determines the num-

ber of times the broadcast message may be retransmitted. As expected, the

reliability improves when the number of RB-rounds increases. For exam-

ple, Figure 7.21 shows the unreliability results for the RBTD(a) protocol for

different numbers of RB-rounds in the range between one and ten. These

results show that, for the parameter values used, the reliability increases



7.4. RELIABILITY ANALYSIS 125

1E−6 1E−7 1E−8

10
−15

10
−10

10
−5

BER values

U
nr

el
ia

bi
lit

y 
(p

er
 e

xe
cu

tio
n)

RBTD(a): Dual Channel, BitRate=1 Mbit/s,  
Transmitter=1, Asym. Receiver=1, Sym. Receiver=2, SSR=100

Frame Size= 16 Bytes
Frame Size= 128 Bytes

Figure 7.20: RBTD(a) unreliability as a function of the BER
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Figure 7.21: RBTD(a) unreliability as a function of the execution length, i.e.

number of RB-rounds.

fast when the number of RB-rounds increases from 1 to 5. However, there

is no improvement on the reliability when the number of RB-rounds in-

creases above 5. This is because for executions with 5 or more rounds,

the dominant factor of the reliability are the permanent faults, both on

the channel, and most importantly on the transmitter node, which cannot

be overcome by adding rounds, i.e. retransmissions. Thus, increasing the
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number of rounds beyond a few, does not improve the reliability, but it may

increase the protocol overhead and its latency. This applies not only to the

RBTD(a) protocol, but also to the other 3 RB protocols.

f) Number of Symmetric Receivers: the reliability of the RB protocols

is mostly independent of the number of receivers. This is in part a conse-

quence of the way we model SOA faults. Indeed, because we assume that

a SOA fault affects only one node, this means that for all RB protocols the

occurrence of one SOA fault in one RB-round and transient communication

faults, whether symmetric or asymmetric, in the remaining RB-rounds will

lead to a violation of both Agreement and Flex-validity. In addition, the

probabilities of the transient communication faults are essentially indepen-

dent of the number of symmetric receivers. This is not to say, that the

reliability of the RB protocols is completely independent of the number of

symmetric receivers, only that they have a very small effect. For exam-

ple, in the case of RBTD(a), the reliability decreases in an unperceptive

way with the number of symmetric receivers. This may be justified with

the effectiveness of the threshold mechanism. As already noted the use of

thresholds, under our assumptions, is only effective to defeat SOA faults

only when the number of operational receivers is equal to the threshold, or

enough acknowledgment messages are lost in all RB-rounds. The proba-

bility of these conditions being met are very low, and they decrease as the

number of receivers increases.

g) SOA to Symmetric Faults Ratio (SSR): Figure 7.22 shows, as ex-

pected, that the reliability of RBTD(a) increases with the SSR, for all

execution lengths (Ex. L.). This is because the RB protocols specified fail

only in the presence of asymmetric faults and, by increasing the SSR pa-

rameter, we increase the rate of SOA faults and hence the probability of

the RB protocols violating the RB specification.

h) Number of Transmitters: to model the case where the number of nodes

broadcasting in a given RB round, we assume that each receiver acknowl-

edges all transmitters with a single confirmation frame that is sent in the

C-phase of the RB round. As shown in Figure 7.23, the unreliability of the

RB protocols increases with the number of transmitters. The reason for this

variation is that, as the number of transmitters increases, the number of
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Figure 7.22: Comparison between protocols unreliability when increased SOA

fault rates

messages broadcasted in a RB round increases and therefore the probability

that at least one of them will be affected by a SOA fault increases. This

increase is slightly compensated by the decrease in the number of execu-

tions in one hour, because the duration of an RB round increases with the

number of transmitters. However, the effect of the increase on the number

of messages in a RB round susceptible to SOA faults is clearly dominant.

Again, for the parameter values used in these experiments, the differences

among the RB protocol variants are not significant.

Effects of Packing acknowledgment in messages: the RB protocols

pack acknowledgments to different transmitters in a single confirmation

frame for efficiency reasons. However this solution raises some issues upon

loss of the confirmation frame. These issues differ from protocol to protocol

and depend essentially on whether the protocol uses positive or negative

acknowledgments. The first drawback of packing acknowledgments stems

from the message overload produced by the loss of any confirmation message

(carrying ACKs or NACKs) which forces all transmitters to retransmit in

the next round.

The second drawback, with respect to reliability, is the impossibility of

nodes detecting the loss of confirmation messages. Protocols with posi-
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Figure 7.23: Effects of transmitter number on RB protocols reliability

tive acknowledgments are not affected by the loss of confirmation messages

because the absence of expected ACKs is detectable 2. Differently, Reli-

able broadcast protocols with negative acknowledgements are vulnerable to

the loss of confirmation messages and may not present acceptable reliabil-

ity levels when these losses are not detectable. One such scenario for the

RBRD(n) protocol occurs, for example, when a receiver does not receive a

message (because of SOA fault on the network) and the transmitter does

not receive the NACK sent by that receiver (because of a symmetric fault

on the network). Because of these undetectable losses, the transmitter may

skip message retransmission thus reducing the reliability of the protocol.

Fortunately, some network protocols such as FlexRay provide means to de-

tect loss of messages increasing the reliability levels of RB protocols that

rely on negative acknowledgments. We have carried out some experiments

in order to measure the reliability of the RB protocols under networks that

are not able to detect message loss. Figure 7.24 shows some results il-

lustrating the reliability reduction of RBTD(n) protocol in scenarios with

2However, the RBTD(a) can present a case where some receiver nodes do not receive suf-

ficient acknowledgments to deliver a message. This can be caused by persistent SOA faults on

channels. However these succession of faults have low probability occurrence compared with the

loss probability of a single data message.
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Figure 7.24: RBTD(n) reliability reduction in scenarios with undetectable mes-

sage loss

(un)detectable loss of messages. As conclusion, there is a notable reliability

advantage in being able to detect loss of messages. However, for the pa-

rameter values we used, this is true only for configurations with 4 or more

RB-rounds.

7.5 Conclusions

In this chapter we have presented a reliability analysis of the family of reliable

broadcast protocols designed to take advantage of DuST networks. The relia-

bility analysis was carried out with the probabilistic model checker PRISM. The

analysis allows to determine not only whether protocols satisfy the reliability re-

quirements of safety-critical applications, but also the main factors that affect

their reliability.

In this chapter we have presented a reliability analysis of the family of reliable

broadcast protocols designed to take advantage of DuST networks. It was carried

out with the help of the probabilistic model checker PRISM. This analysis has

shown that the RB protocols are highly sensitive to asymmetric transient faults.

But, by increasing the number of RB-rounds of the RB protocols, their reliability

becomes adequate for safety-critical applications. However, this is achieved at

the cost of additional bandwidth. Therefore designers have to look for the right
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balance between the number of rounds and the desired reliability. Indeed even if

the designers decide on adding more RB-rounds, the reliability will not improve

indefinitely, because of limits imposed by permanent fault rates.

Finally, we have presented very detailed description of designed models, show-

ing some techniques to make models simple and effective. Our models are reusable

and can be used by other researchers as an important reference about how to

model and evaluate similar protocols.



Chapter 8

Conclusions and Future Work

This chapter summarizes the research results achieved throughout this thesis, high-

lighting how the contributions have fulfilled the original research objectives. In

addition we present some future research directions that may emerge from this

work.

8.1 Conclusions

We have specified protocols for two core services that facilitate the development

of safety-critical applications that communicate on top of dual scheduled TDMA

communication protocols (DuST).

This new class of communication protocols is likely to become widely de-

ployed, because FlexRay was specified by a consortium of major players in the

automotive industry and is likely to become the next generation automotive com-

munication network de facto standard. Furthermore, the flexibility and determin-

ism of DuST protocols in general, and of FlexRay in particular, make it likely

that these protocols will also be deployed in the industrial domain.

The protocols proposed in this thesis were designed to take advantage of

the dual scheduling scheme in order to achieve better performance than existent

solutions,which were not developed for DuST protocols, and at the same time

to provide similar reliability levels. The GMP is very good example of how

the dual schedule approach can bring benefits, more specifically with respect

131
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to performance and bandwidth consumption, without compromising reliability,

what we claim as to be the fundamental assertion of this thesis. We have shown

that GMP has an overhead of only two bits per processor per cycle in absence

of faults and can tolerates benign failures of up to half of the group members

between consecutive executions. Even when there are group membership changes,

the overhead of the protocol is lower than that of other protocols that provide

the same level of fault tolerance. Moreover, both GMP and RB-DuST protocols

were proved to be efficient even in realistic scenarios where generally the specified

fault assumptions do not hold.

The validation of presented RB-DuST and GMP protocols comprised the

modeling and verification of their safety and liveness properties. In the modeling

context there are two possible directions to be followed. One of them leads to

design models that can reproduce exactly, or much close, the implementation of

the original verified protocol. That is the case of UPPAAL models developed

for GMP, such models have brought confidence in correctness of GMP protocol

specification but they have led to loss of scalability. More specifically we were

able to verify the GMP protocol, especially some properties, only for 6 nodes.

However, although this number seems rather small, it has provided a better un-

derstanding of the protocol, and it were assumed to be large enough to exhibit

all the idiosyncracies of the GMP protocol. Therefore, this gives us a confidence

that it works for a larger number of nodes. In the other hand, simple models are

scalable and can provide means to verify models with a large number of compo-

nents, but they provide also less confidence. In a balance, the choice between

simple or sophisticated models must be based on the complexity of the protocols.

For example, the proposed RB-DuST protocols are quite trivial in comparison

to GMP, which have permitted to skip the construction of sophisticated models

specifically to evaluate their correctness.

The models developed for reliability analysis are reusable and can be consid-

ered a source of information about how to model reliable broadcast and group

membership algorithms designed for DuST networks.

The reliability analysis results obtained have shown that GMP and RB-DuST

protocols are drastically affected by transient faults. The sensitive analysis has

shown the relation between protocols reliability and the different types of faults

and also that relation directly depends on the parameters used. We have pre-
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sented reliability evaluation assuming what the literature admits to be the worst

case values of involved parameters. In response to these aggressive scenarios both

the GMP and RB-DuST protocols have presented acceptable reliability levels.

These are very important results because, in particular, the GMP can tolerate a

variety of faults without execution of a blackout operating mode. Moreover the

results of reliability analysis of RB-DuST protocols can be used also by design-

ers to improve the performance and reliability of safety-critical applications by

choosing between the different delivery policies and the number of retransmissions

necessary to each kind of message broadcast.

8.2 Future Work

The main focus of this thesis is on the specification, validation and reliability

analysis of protocols for core safety-related services on top of DuST communica-

tions protocols. In spite of all the work we have reported, we believe that there

is still a lot of work that can be done. In the following paragraphs we describe

two possible directions that our work might take.

A performance analysis of proposed RB-Dust protocols can bring more clar-

ification about the impact of acknowledgment messages. In addition it could be

possible to estimate the benefits of a alternative allocation of acknowledgment

messages. More specifically, acknowledgments could be scheduled to be sent only

by a reduced portion of nodes. This could be interesting because this approach

could release time in dynamic segment that can be utilized to broadcast data

from other applications.

Another interesting future research consists in the integration between RB-

Dust protocols and the GMP. More specifically, the information provided by each

protocol could be combined to provide faster fault detection and fast group re-

configuration. This is possible because acknowledgments are important extra

information. Indeed reliable broadcast and group membership services are quite

different, but it is perceptible that faults detected by reliable broadcast proto-

cols, e.g. those occurred in dynamic segment, can complement the system view

provided by the GMP. Moreover, we believe that it could be possible to provide

a faster and consistent views, based on the threshold information, in a system

where all nodes execute the RBTD protocol.
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