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Trends in Automotive Communication Systems

NICOLAS NAVET, YEQIONG SONG, FRANÇOISE SIMONOT-LION, AND CÉDRIC WILWERT

Invited Paper

The use of networks for communications between the electronic
control units (ECU) of a vehicle in production cars dates from the
beginning of the 1990s. The specific requirements of the different
car domains have led to the development of a large number of auto-
motive networks such as Local Interconnect Network, J1850, CAN,
TTP/C, FlexRay, media-oriented system transport, IDB1394, etc.
This paper first introduces the context of in-vehicle embedded sys-
tems and, in particular, the requirements imposed on the commu-
nication systems. Then, a comprehensive review of the most widely
used automotive networks, as well as the emerging ones, is given.
Next, the current efforts of the automotive industry on middleware
technologies, which may be of great help in mastering the hetero-
geneity, are reviewed. Finally, we highlight future trends in the de-
velopment of automotive communication systems.

Keywords—Car domains, in-vehicle embedded systems, field-
buses, middlewares (MWs), networks, real-time systems.

I. AUTOMOTIVE COMMUNICATION SYSTEMS:
CHARACTERISTICS AND CONSTRAINTS

From Point-to-Point to Multiplexed Communica-
tions: Since the 1970s, one observes an exponential
increase in the number of electronic systems that have
gradually replaced those that are purely mechanical or
hydraulic. The growing performance and reliability of hard-
ware components and the possibilities brought by software
technologies enabled implementing complex functions that
improve the comfort of the vehicle’s occupant as well as their
safety. In particular, one of the main purposes of electronic
systems is to assist the driver to control the vehicle through
functions related to the steering, traction (i.e., control of
the driving torque) or braking such as the antilock braking
system (ABS), electronic stability program (ESP), electric
power steering (EPS), active suspensions, or engine control.
Another reason for using electronic systems is to control
devices in the body of a vehicle such as lights, wipers, doors,

Manuscript received September 6, 2004; revised March 11, 2005.
N. Navet, Y. Song, and F. Simonot-Lion are with the Loria Laboratory,

Vandoeuvre-lés-Nancy 54506, France (e-mail: nicolas.navet@loria.fr;
song@loria.fr; simonot@loria.fr).

C. Wilwert is with PSA Peugeot Citröen, La Garenne-Colombes Cedex
92256, France (e-mail: cedric.wilwert@mpsa.com).

Digital Object Identifier 10.1109/JPROC.2005.849725

windows, and, recently, entertainment and communication
equipment (e.g., radio, DVD, hands-free phones, navigation
systems).

In the early days of automotive electronics, each new
function was implemented as a stand-alone electronic
control unit (ECU), which is a subsytem composed of a
microcontroller and a set of sensors and actuators. This
approach quickly proved to be insufficient with the need for
functions to be distributed over several ECUs and the need
for information exchanges among functions. For example,
the vehicle speed estimated by the engine controller or by
wheel rotation sensors has to be known in order to adapt
the steering effort, to control the suspension, or simply to
choose the right wiping speed. In today’s luxury cars, up to
2500 signals (i.e., elementary information such as the speed
of the vehicle) are exchanged by up to 70 ECUs [1]. Until
the beginning of the 1990s, data was exchanged through
point-to-point links between ECUs. However this strategy,
which required an amount of communication channels of
the order of where is the number of ECUs (i.e., if each
node is interconnected with all the others, the number of
links grows in the square of ), was unable to cope with
the increasing use of ECUs due to the problems of weight,
cost, complexity, and reliability induced by the wires and
the connectors. These issues motivated the use of networks
where the communications are multiplexed over a shared
medium, which consequently required defining rules—pro-
tocols—for managing communications and, in particular,
for granting bus access. It was mentioned in a 1998 press
release (quoted in [2]) that the replacement of a “wiring
harness with LANs in the four doors of a BMW reduced
the weight by 15 kilograms.” In the mid–1980s, the third
part supplier Bosch developed the Controller Area Network
(CAN), which was first integrated in Mercedes production
cars in the early 1990s. Today, it has become the most widely
used network in automotive systems and it is estimated [3]
that the number of CAN nodes sold per year is currently
around 400 million (all application fields). Other communi-
cation networks, providing different services, are now being
integrated in automotive applications. A description of the
major networks is given in Section II.

0018-9219/$20.00 © 2005 IEEE
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Car Domains and Their Evolution: As all the functions
embedded in cars do not have the same performance or
safety needs, different QoSs (e.g., response time, jitter,
bandwidth, redundant communication channels for toler-
ating transmission errors, efficiency of the error detection
mechanisms, etc.) are expected from the communication
systems. Typically, an in-car embedded system is divided
into several functional domains that correspond to different
features and constraints [4]. Two of them are concerned
specifically with real-time control and safety of the ve-
hicle’s behavior: the “powertrain” (i.e., control of engine
and transmission) and the “chassis” (i.e., control of suspen-
sion, steering, and braking) domains. The third, the “body,”
mostly implements comfort functions. The “telematics”
(i.e., integration of wireless communications, vehicle mon-
itoring systems and location devices), “multimedia,” and
“human–machine interface” (HMI) domains take advantage
of the continuous progress in the field of multimedia and
mobile communications. Finally, an emerging domain is
concerned with the safety of the occupant.

The main function of the powertrain domain is control-
ling the engine. It is realized through several complex control
laws with sampling periods of a magnitude of some millisec-
onds (due to the rotation speed of the engine) and imple-
mented in microcontrollers with high computing power. In
order to cope with the diversity of critical tasks to be treated,
multitasking is required and stringent time constraints are im-
posed on the scheduling of the tasks. Furthermore, frequent
data exchanges with other car domains, such as the chassis
(e.g., ESP, ABS) and the body (e.g., dashboard, climate con-
trol), are required.

The chassis domain gathers functions such as ABS,
ESP, ASC (Automatic Stability Control), 4WD (4 Wheel
Drive), which control the chassis components according
to steering/braking solicitations and driving conditions
(ground surface, wind, etc). Communication requirements
for this domain are quite similar to those for the powertrain
but, because they have a stronger impact on the vehicle’s
stability, agility and dynamics, the chassis functions are
more critical from a safety standpoint. Furthermore, the
“x-by-wire” technology, currently used for avionic systems,
is now being introduced to execute steering or braking
functions. “X-by-wire” is a generic term referring to the
replacement of mechanical or hydraulic systems by fully
electrical/electronic ones, which led and still leads to new
design methods for developing them safely [5] and, in
particular, for mastering the interferences between functions
[6]. Chassis and powertrain functions operate mainly as
closed-loop control systems and their implementation is
moving toward a time-triggered approach [7]–[9], which
facilitates composability (i.e., ability to integrate individ-
ually developed components) and deterministic real-time
behavior of the system.

Dashboard, wipers, lights, doors, windows, seats, mirrors,
and climate control are increasingly controlled by software-
based systems that make up the “body” domain. This do-
main is characterized by numerous functions that necessitate
many exchanges of small pieces of information among them-

selves. Not all nodes require a large bandwidth, such as the
one offered by CAN; this lead to the design of low-cost net-
works such as Local Interconnect Network (LIN) and TTP/A
(see Section II). On these networks, only one node, termed
the master, possesses an accurate clock and drives the com-
munication by polling the other nodes—the slaves—period-
ically. The mixture of different communication needs inside
the body domain lead to a hierarchical network architecture
where integrated mechatronic subsystems based on low-cost
networks are interconnected through a CAN backbone. The
activation of body functions is mainly triggered according
to the driver and passengers’ solicitation (e.g., opening a
window, locking doors, etc).

Telematics functions are becoming more and more nu-
merous: hands-free phones, car radio, CD, DVD, in-car
navigation systems, rear seat entertainment, remote vehicle
diagnostics, etc. These functions require a lot of data to be
exchanged within the vehicle but also with the external world
through the use of wireless technology (see, for instance,
[10]). Here, the emphasis shifts from messages and tasks
subject to stringent deadline constraints to multimedia data
streams, bandwidth sharing, multimedia QoS where pre-
serving the integrity (i.e., ensuring that information will not
be accidentally or maliciously altered) and confidentiality of
information is crucial. HMI aims to provide HMIs that are
easy to use and that limit the risk of driver inattention [11].

Electronic-based systems for ensuring the safety of the oc-
cupants are increasingly embedded in vehicles. Examples of
such systems are impact and rollover sensors, deployment
of airbags and belt pretensioners, tire pressure monitoring,
or adaptive cruise control (ACC) (in which the car’s speed
is adjusted to maintain a safe distance from the car ahead).
These functions form an emerging domain usually referred
to as “active and passive safety.”

Different Networks for Different Requirements: The
steadily increasing need for bandwidth1 and the diversifica-
tion of performance, costs and dependability2 requirements
lead to a diversification of the networks used throughout
the car. In 1994, the Society for Automotive Engineers
(SAE) defined a classification for automotive communica-
tion protocols [13]–[15] based on data transmission speed
and functions that are distributed over the network. Class A
networks have a data rate lower than 10 kb/s and are used
to transmit simple control data with low-cost technology.
They are mainly integrated in the “body” domain (seat
control, door lock, lighting, trunk release, rain sensor, etc.).
Examples of class A networks are LIN [16], [17] and TTP/A
[18]. Class B networks are dedicated to supporting data
exchanges between ECUs in order to reduce the number of
sensors by sharing information. They operate from 10 to 125
kb/s. The J1850 [19] and low-speed CAN [20] are the main
representations of this class. Applications that need high
speed real-time communications require class C networks

1For instance, in [6], the average bandwith needed for the engine and the
chassis control is estimated to reach 1500 kb/s in 2008 while it was 765 kb/s
in 2004 and 122 kb/s in 1994.

2Dependability is usually defined as the ability to deliver a service that
can justifiably be trusted; see [12] for more details.
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(speed of 125 kb/s–1 Mb/s) or class D networks3 (speed over
1 Mb/s). Class C networks, such as high-speed CAN [21],
are used for the powertrain and currently for the chassis
domains, while class D networks are devoted to multimedia
data (e.g., media-oriented system transport (MOST) [22])
and x-by-wire applications that need predictability and fault
tolerance (e.g., TTP/C [23] or FlexRay [24], [25] networks).

It is common, in today’s vehicles, that the electronic
architecture include four different types of networks in-
terconnected by gateways. For example, the Volvo XC90
[3] embeds up to 40 ECUs interconnected by a LIN bus, a
MOST bus, a low-speed CAN, and a high-speed CAN. In
the near future, it is likely that a bus dedicated to occupant
safety systems (e.g., airbag deployment, crash sensing) such
as the “safe-by-wire plus” [26] will be added.

Event Triggered Versus Time Triggered: One of the
main objectives of the design step of an in-vehicle em-
bedded system is to ensure a proper execution of the vehicle
functions, with a predefined level of safety, in the normal
functioning mode but also when some components fail (e.g.,
reboot of an ECU) or when the environment of the vehicle
creates perturbations (e.g., electromagnetic interference
(EMI) causing frames to be corrupted). Networks play a
central role in maintaining the embedded systems in a “safe”
state, since most critical functions are now distributed and
need to communicate. Thus, the different communication
systems have to be analyzed in regard to this objective;
in particular, messages transmitted on the bus must meet
their real-time constraints, which mainly consist of bounded
response times and bounded jitters.

There are two main paradigms for communications in
automotive systems: time triggered and event triggered.
Event triggered means that messages are transmitted to
signal the occurrence of significant events (e.g., a door has
been closed). In this case, the system possesses the ability to
take into account, as quickly as possible, any asynchronous
events such as an alarm. The communication protocol must
define a policy to grant access to the bus in order to avoid
collisions; for instance, the strategy used in CAN (see Sec-
tion II-A1) is to assign a priority to each frame and to give
the bus access to the highest priority frame. Event-triggered
communication is very efficient in terms of bandwidth usage
since only necessary messages are transmitted. Furthermore,
the evolution of the system without redesigning existing
nodes is generally possible, which is important in the auto-
motive industry where incremental design is a usual practice.
However, verifying that temporal constraints are met is not
obvious and the detection of node failures is problematic.

When communications are time triggered, frames are
transmitted at predetermined points in time, which is well
suited for the periodic transmission of messages as required
in distributed control loops. Each frame is scheduled for
transmission at one predefined interval of time, usually
termed a slot, and the schedule repeats itself indefinitely.
This medium access strategy is referred to as time-division

3Class D is not formally defined, but it is generally considered that net-
works over 1 Mb/s belong to class D.

multiple access (TDMA). As the frame scheduling is stat-
ically defined, the temporal behavior is fully predictable;
thus, it is easy to check whether the timing constraints
expressed on data exchanges are met. Another interesting
property of time-triggered protocols is that missing messages
are immediately identified; this can serve to detect, in a short
and bounded amount of time, nodes that are presumably no
longer operational.

The first negative aspect is the inefficiency in terms of
network utilization and response times with regard to the
transmission of a periodic messages (i.e., messages that are
not transmitted in a periodic manner). A second drawback
of time-triggered protocols is the lack of flexibility even if
different schedules (corresponding to different functioning
modes of the application) can be defined and switching
from one mode to another is possible at runtime. Finally,
the unplanned addition of a new transmitting node on the
network induces changes in the message schedule and, thus,
necessitateS the update of all other nodes. TTP/C [23] is a
purely time-triggered network but there are networks, such
as TTCAN [27], FTT-CAN [28], and FlexRay [24], [25],
that can support a combination of both time-triggered and
event-triggered transmissions. This capability to convey
both types of traffic fits in well with the automotive context,
since data for control loops as well as alarms and events has
to be transmitted.

Several comparisons have been done between event-trig-
gered and time-triggered approaches; the reader can refer to
[1], [28], [29] for good starting points.

II. IN-CAR EMBEDDED NETWORKS

The different performance requirements throughout a ve-
hicle, as well as competition among companies of the auto-
motive industry, have led to the design of a large number of
communication networks. The aim of this section is to give
a description of the most representative networks for each
main domain of utilization.

A. Priority Buses

To ensure at runtime the “freshness”4 of the exchanged
data and the timely delivery of commands to actuators, it is
crucial that the Medium Access Control (MAC) protocol is
able to ensure bounded response times of frames. An efficient
and conceptually simple MAC scheme that possesses this ca-
pability is the granting of bus access according to the priority
of the messages (the reader can refer to [30] and [31] for how
to compute bounds on response times for priority buses). To
this end, each message is assigned an identifier, unique to the
whole system. This serves two purposes: giving priority for
transmission (the lower the numerical value, the greater the
priority) and allowing message filtering upon reception. The
two main representatives of such “priority buses” are CAN
and J1850.

4The freshness property is verified if data has been produced recently
enough to be safely consumed: the difference between the time when data
is used and the last production time must be always smaller than a specified
value.
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Fig. 1. Format of the CAN 2.0A data frame.

Fig. 2. Format of the header field of the CAN 2.0A data frame.

1) CAN: CAN is without a doubt the most widely
used in-vehicle network. It was designed by Bosch in the
mid–1980s for multiplexing communication between ECUs
in vehicles and thus for decreasing the overall wire harness:
length of wires and number of dedicated wires (e.g., the
number of wires has been reduced by 40%, from 635 to 370,
in the Peugeot 307, which embeds two CAN buses with re-
gard to the nonmultiplexed Peugeot 306 [32]). Furthermore,
it allows to share sensors among ECUs.

CAN on a twisted pair of copper wires became an ISO
standard in 1994 [20], [21] and is now a de facto standard in
Europe for data transmission in automotive applications, due
to its low cost, its robustness, and the bounded communica-
tion delay (see [3], [33]). In today’s car, CAN is used as an
SAE class C network for real-time control in the powertrain
and chassis domains (at 250 or 500 kb/s), but it also serves
as an SAE class B network for the electronics in the body
domain, usually at a data rate of 125 kb/s.

On CAN, data, possibly segmented in several frames, may
be transmitted periodically, aperiodically, or on demand (i.e.,
client–server paradigm). A CAN frame is labeled by an iden-
tifier, transmitted within the frame (see Figs. 1 and 2), whose
numerical value determines the frame priority. There are two
versions of the CAN protocol differing in the size of the
identifier: CAN 2.0A (or “standard CAN”) with an 11-b iden-
tifier and CAN 2.0B (or “extended CAN”) with a 29-b identi-
fier. For in-vehicle communications, only CAN 2.0A is used,
since it provides a sufficient number of identifiers (i.e., the
number of distinct frames exchanged over one CAN network
is lower than ).

CAN uses nonreturn-to-zero (NRZ) bit representation
with a bit stuffing of length 5. In order not to lose the bit time
(i.e., the time between the emission of two successive bits of
the same frame), stations need to resynchronize periodically,
and this procedure requires edges on the signal. Bit stuffing
is an encoding method that enables resynchronization when

using NRZ bit representation where the signal level on
the bus can remain constant over a longer period (e.g.,
transmission of 000 000 ). Edges are generated into the
outgoing bit stream in such a way to avoid the transmission
of more than a maximum number of consecutive equal-level
bits (five for CAN). The receiver will apply the inverse
procedure and destuff the frame. CAN requires the physical
layer to implement the logical “and” operator: if at least one
node is transmitting the “0” bit level on the bus, then the bus
is in that state regardless if other nodes have transmitted the
“1” bit level. For this reason, “0” is termed the dominant bit
value, while “1” is the recessive bit value.

The standard CAN data frame (CAN 2.0A; see Fig. 1) can
contain up to 8 B of data for an overall size of, at most, 135
b, including all the protocol overheads such as the stuff bits.
The sections of the frames are:

— The header field (see Fig. 2), which contains the iden-
tifier of the frame, the remote transmission request
(RTR) bit that distinguishes between data frame (RTR
set to zero) and data request frame (RTR set to 1)
and the data length code (DLC) used to inform of the
number of bytes of the data field.

— The data field, having a maximum length of 8 B.
— The 15-bit cyclic redundancy check (CRC) field,

which ensures the integrity of the data transmitted.
— The Acknowledgment field (Ack). On CAN, the ac-

knowledgment scheme solely enables the sender to
know that at least one station, but not necessarily the
intended recipient, has received the frame correctly.

— The end-of-frame (EOF) field and the intermission
frame space, which is the minimum number of bits
separating consecutive messages.

Any CAN node may start a transmission when the bus is
idle. Possible conflicts are resolved by a priority-based ar-
bitration process, which is said to be nondestructive in the
sense that, in case of simultaneous transmissions, the highest
priority frame will be sent despite the contention with lower
priority frames. The arbitration is determined by the arbitra-
tion fields (identifier plus RTR bit) of the contending nodes.
An example illustrating CAN arbitration is shown in Fig. 3.
If one node transmits a recessive bit on the bus while an-
other transmits a dominant bit, the resulting bus level is dom-
inant due to the AND operator realized by the physical layer.
Therefore, the node transmitting a recessive bit will observe a
dominant bit on the bus and then will immediately stop trans-
mitting. Since the identifier is transmitted “most significant
bit first,” the node with the numerically lowest identifier field
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Fig. 3. CAN arbitration phase with two nodes starting transmitting
simultaneously. Node 2 detects that a frame with a higher priority
than its own is being transmitted when it monitors a level 0 (i.e.,
dominant level) on the bus while it has sent a bit with a level
1 (i.e., recessive level). Afterwards, Node 2 immediately stops
transmitting.

will gain access to the bus. A node that has lost the arbitra-
tion will wait until the bus becomes free again before trying
to retransmit its frame. CAN arbitration procedure relies on
the fact that a sending node monitors the bus while transmit-
ting. The signal must be able to propagate to the most remote
node and return back before the bit value is decided. This re-
quires the bit time to be at least twice as long as the propaga-
tion delay, which limits the data rate: for instance, 1 Mb/s is
feasible on a 40-m bus at maximum, while 250 kb/s can be
achieved over 250 m.

CAN has several mechanisms for error detection. For in-
stance, it is checked that the CRC transmitted in the frame
is identical to the CRC computed at the receiver end, that
the structure of the frame is valid, and that no bit-stuffing
error occurred. Each station which detects an error sends an
“error flag,” which is a particular type of frame composed
of six consecutive dominant bits that allows all the stations
on the bus to be aware of the transmission error. The cor-
rupted frame automatically reenters into the next arbitration
phase, which might lead it to miss its deadline due to the
additional delay. The error recovery time, defined as the time
from detecting an error until the possible start of a new frame,
is 17–31 bit times. CAN possesses some fault-confinement
mechanisms aimed at identifying permanent failures due to
hardware dysfunctioning at the level of the microcontroller,
communication controller, or physical layer. The scheme is
based on error counters that are increased and decreased ac-
cording to particular events (e.g., successful reception of a
frame, reception of a corrupted frame, etc.). The relevance
of the algorithms involved is questionable (see [34]), but the
main drawback is that a node has to diagnose itself, which
can lead to the nondetection of some critical errors. For in-
stance, a faulty oscillator can cause a node to transmit con-
tinuously a dominant bit, which is one manifestation of the

“babbling idiot” fault; see [35]. Furthermore, other faults
such as the partitioning of the network into several subnet-
works may prevent all nodes from communicating due to
bad signal reflection at the extremities. Without additional
fault-tolerance facilities, CAN is not suited for safety-critical
applications such as some future x-by-wire systems. For in-
stance, a single node can perturb the functioning of the whole
network by sending messages outside their specification (i.e.,
length and period of the frames). Many mechanisms were
proposed for increasing the dependability of CAN-based net-
works (see [36]–[42]), but as pointed out in [38], if each pro-
posal solves a particular problem, they have not been con-
ceived to be combined. Furthermore, the fault hypotheses
used in the design of theses mechanisms are not necessarily
the same, and the interactions between them remain to be
studied in a formal way.

The CAN standard only defines the physical layer and data
link layer (DLL). Several higher level protocols have been
proposed, for instance, standardizing startup procedures, im-
plementing data segmentation, or sending periodic messages
(see OSEK/VDX communication in Section III-B1). Other
higher level protocols standardize the content of messages in
order to ease the interoperability between ECUs. This is the
case for J1939, which is used, for instance, in Scania’s trucks
and buses [43].

2) Vehicle Area Network (VAN): VAN (see [44]) is very
similar to CAN (e.g., frame format, data rate) but possesses
some additional or different features that are advantageous
from a technical point of view (e.g., no need for bit stuffing;
in-frame response: a node being asked for data answers in
the same frame that contained the request). VAN was used in
production cars by the French carmaker PSA (Peugeot–Cit-
roën) in the body domain, but, as it was not adopted by the
market, it was abandoned in favor of CAN.

3) The J1850 Network: The J1850 [19] is an SAE class
B priority bus that was adopted in the United States for com-
munications with nonstringent real-time requirements, such
as the control of body electronics or diagnostics. Two vari-
ants of the J1850 are defined: a 10.4-kb/s single-wire version
and a 41.6-kb/s two-wire version. The trend in new designs
seems to be the replacement of J1850 by CAN or a low-cost
network such as LIN (see Section II-C1).

B. Time-Triggered Networks

Among communication networks, as discussed before,
one distinguishes time-triggered networks, where activities
are driven by the progress of time, and event-triggered ones,
where activities are driven by the occurrence of events. Both
types of communication have advantages, but one considers
that, in general, dependability is much easier to ensure
using a time-triggered bus (refer, for instance, to [7] for a
discussion on this topic). This explains that, currently, only
time-triggered communication systems are being considered
for use in x-by-wire applications. In this category, multiac-
cess protocols based on TDMA are particularly well suited;
they provide deterministic access to the medium (the order
of the transmissions is defined statically at the design time),
and thus bounded response times. Moreover, their regular
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Fig. 4. Example of a TTP/C communication cycle with four nodes, A, B, C, and D.

message transmissions can be used as “heartbeats” for
detecting station failures. The three TDMA based networks
that are candidates for supporting x-by-wire applications are
TTP/C (see Section II-B1), FlexRay (see Section II-B2) and
TTCAN (see [27]). At the time of writing, FlexRay, which
is backed by the world’s automotive industry, seems to be
in a very strong position for becoming the standard in the
industry.

1) The TTP/C Protocol: The time-triggered protocol
TTP/C, which is defined in [23], is a central part of the
Time-Triggered Architecture (TTA) (see [45]), and it
possesses numerous features and services related to de-
pendability, such as the bus guardian (components that
prevent a node from transmitting outside its specification,
for instance, at the wrong time or sending a larger frame),
the group membership algorithm (knowledge of the set of
stations that are functioning properly), and support for mode
changes (i.e., specific operational phases of an application;
see [46]). The TTA architecture and the TTP/C protocol
have been designed and extensively studied at the Vienna
University of Technology, Vienna, Austria. Hardware im-
plementations of the TTP/C protocol, as well as software
tools for the design of the application, are commercialized
by the TTTech company5 and available today.

On a TTP/C network, transmission relies on redundant
channels and each channel transports its own copy of the
same message. Although EMI is likely to affect both chan-
nels in quite a similar manner, the redundancy provides some
resilience to transmission errors. TTP/C can be implemented
with a bus topology or a star topology. The latter topology
provides better fault tolerance, since, in the star topology,
guardians are integrated into central star couplers and protect
against errors that cannot be avoided by a local bus guardian.
For instance, a star topology is more resilient to spatial prox-
imity faults (i.e., faults that affect all components located in
a given area, such as temperature peaks) and to faults due to
a desynchronization of an ECU. To avoid a single point of
failure, a dual star topology should be used with the draw-
back that the length of the wires is significantly increased.
At the MAC level, the TTP/C protocol implements a syn-
chronous TDMA scheme: the stations (or nodes) have access
to the bus in a strict deterministic sequential order and each
station possesses the bus for a constant period called a slot,
during which it has to transmit one frame. The sequence of
slots such that all stations have accessed the bus one time, is

5See http://www.tttech.com

called a TDMA round. An example of a round is shown in
Fig. 4.

The size of the slot is not necessarily identical for all sta-
tions in the TDMA round, but a slot belonging to one station
is the same size in each round. Consecutive TDMA rounds
may differ according to the data transmitted during the slots,
and the sequence of all TDMA rounds is the “cluster cycle”
which repeats itself in a cycle.

TTP/C defines three types of frames:

— The “cold start frame,” solely used at the initialization
of the network.

— The data frame with explicit C-State. The C-State is a
field that indicates the internal state of the communica-
tion controller: current time, frame being transmitted,
current functioning mode of the cluster, membership
vector (i.e., the list of stations that are considered as
being operational), etc. This information is needed by
stations willing to integrate the cluster at startup or
reintegrate it at runtime.

— The data frame with implicit C-State. In that case, the
C-State is not explicitly transmitted, but the receiver
can still detect if it disagrees with the sender on the
C-State, since the CRC is computed on the fields of
the frame plus the C-State.

A TTP/C frame is composed of a field for indicating mode
change requests, of application data, of a CRC and, de-
pending on the frame type, of the C-state. A data frame can
carry a payload of up to 240 B [47] but, at the time of writing,
the “compatibility layer” specification, which defines the
exact format of the frame, is not publicly available for the
latest version of the protocol [23].

In order to ease and speed up the design of fault-tolerant
applications, TTP/C implements the main services for fault-
tolerance. In particular, TTP/C offers a clique6 avoidance al-
gorithm and a membership algorithm that also provides data
acknowledgment. These powerful algorithms have been for-
mally verified (see, for instance, [48] and [49]). The assump-
tions on the faults that can be handled by the network (i.e., the
fault hypothesis) used for the design of TTP/C are precisely
stated. These assumptions are quite restrictive; for example,
two successive faults must occur at least two rounds apart.
In our opinion, future research should investigate whether
the fault hypothesis considered in the TTP/C design are rel-
evant in the context of automotive embedded systems where

6“Cliques” are sets of stations that disagree on the state of the system, for
instance, on the set of nodes that are operational at a given time.
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Fig. 5. Example of a FlexRay communication cycle with 4 nodes A, B, C and D.

Fig. 6. Example of message scheduling in the dynamic segment of the FlexRay communication
cycle.

the environment can be very harsh. Situations outside the
fault hypothesis of TTP/C are treated using “never give up”
(NUP) strategies which aim to continue operating in a de-
graded mode. For example, a usual method is that each node
switches to local control according to the information still
available, while trying to return to the normal mode.

2) FlexRay Protocol: A consortium of major compa-
nies from the automotive field is currently developing the
FlexRay protocol. The core members are BMW, Bosch,
DaimlerChrysler, General Motors, Motorola, Philips, and
Volkswagen. The first publicly available specifications of
the FlexRay protocol [24] have been recently released.

The FlexRay network is very flexible with regard to
topology and transmission support redundancy. It can be
configured as a bus, a star, or a multistar. It is not mandatory
that each station possess replicated channels nor a bus
guardian, even though this should be the case for critical
functions such as steer-by-wire. At the MAC level, FlexRay
defines a communication cycle as the concatenation of a
time-triggered (or static) window and an event triggered (or
dynamic) window. In each communication window, the size
of which is set statically at design time, two distinct protocols
are applied. The communication cycles are executed peri-
odically. The time-triggered window uses a TDMA MAC
protocol; the main difference with TTP/C is that a station
in FlexRay might possess several slots in the time-triggered
window, but the size of all the slots is identical (see Fig. 5).
In the event-triggered part of the communication cycle, the
protocol is Flexible TDMA (FTDMA): the time is divided
into so-called minislots, each station possesses a given
number of minislots (not necessarily consecutive), and it
can start the transmission of a frame inside each of its own

minislots. A minislot remains idle if the station has nothing
to transmit which actually induces a loss of bandwidth (see
[50] for a discussion on that topic). An example of a dynamic
window is shown in Fig. 6: on channel B, frames have been
transmitted in minislots and while minislot
has not been used. It is noteworthy that frame is not
received simultaneously on channels A and B, since, in the
dynamic window, transmissions are independent in both
channels.

The FlexRay MAC protocol is more flexible than the
TTP/C MAC, since in the static window nodes are assigned
as many slots as necessary (up to 2047 overall) and since the
frames are only transmitted if necessary in the dynamic part
of the communication cycle. In a similar way as with TTP/C,
the structure of the communication cycle is statically stored
in the nodes; however, unlike TTP/C, mode changes with
a different communication schedule for each mode are not
possible.

The FlexRay frame consists of three parts: the header, the
payload segment containing up to 254 B of data, and the CRC
of 24 b. The header of 5 B includes the identifier of the frame
and the length of the data payload. The use of identifiers al-
lows to move a software component, which sends a frame ,
from one ECU to another ECU without changing anything in
the nodes that consume frame . It has to be noted that this
is no more possible when signals produced by distinct com-
ponents are packed into the same frame for the purpose of
saving bandwidth (see the description of frame packing in
Section III-A).

From the dependability point of view, the FlexRay doc-
ument [24] specifies solely the bus guardian and the clock
synchronization algorithms. Other features, such as a mem-
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Fig. 7. Example of a TTCAN basic cycle.

bership service or mode management facilities, will have
to be implemented in software or hardware layers on top
of FlexRay. This will allow to conceive and implement ex-
actly the services that are needed with the drawback that cor-
rect and efficient implementations might be more difficult to
achieve in a layer above the communication controller.

In the FlexRay specification ([24], p. 8), it is argued that
the protocol provides scalable dependability i.e., the “ability
to operate in configurations that provide various degrees of
fault tolerance.” Indeed, the protocol allows for mixing links
with single and dual transmission supports on the same net-
work, subnetworks of nodes without bus guardians or with
different fault-tolerance capability with regards to clock syn-
chronization, etc. In the automotive context, where critical
and noncritical functions will increasingly coexist and inter-
operate, this flexibility can prove to be efficient in terms of
cost and reuse of existing components if missing fault-toler-
ance features are provided in a middleware (MW) layer such
as OSEK FTCom [51] or the one currently under develop-
ment within the automotive industry project AUTOSAR (see
Section III-B).

3) Time-Triggered CAN (TTCAN) Protocol: TTCAN
(see [27]) is a communication protocol developed by Robert
Bosch GmbH on top of the CAN physical layer and DLL.
TTCAN uses the CAN standard but, in addition, requires
that the controllers must have the possibility to disable auto-
matic retransmission of frames upon transmission errors and
to provide the upper layers with the point in time at which
the first bit of a frame was sent or received [52]. The bus
topology of the network, the characteristics of the transmis-
sion support, the frame format, as well as the maximum data
rate—1 Mb/s—are imposed by the CAN protocol. Channel
redundancy is possible (see [53] for a proposal), but not
standardized and no bus guardian is implemented in the
node. The key idea is to propose, as with FlexRay, a flexible
time-triggered/event-triggered protocol. As illustrated in
Fig. 7, TTCAN defines a basic cycle (the equivalent of
the FlexRay communication cycle) as the concatenation of
one or several time-triggered (or “exclusive”) windows and
one event-triggered (or “arbitrating”) window. Exclusive
windows are devoted to time-triggered transmissions (i.e.,
periodic messages), while the arbitrating window is ruled

by the standard CAN protocol: transmissions are dynamic
and bus access is granted according to the priority of the
frames. Several basic cycles that differ by their organization
in exclusive and arbitrating windows and by the messages
sent inside exclusive windows can be defined. The list of
successive basic cycles is called the system matrix, which
is executed in loops. Interestingly, the protocol enables the
master node (i.e., the node that initiates the basic cycle
through the transmission of the “reference message”) to
stop functioning in TTCAN mode and to resume in standard
CAN mode. Later, the master node can switch back to
TTCAN mode by sending a reference message.

TTCAN is built on a well-mastered and low-cost tech-
nology, CAN, but, as defined by the standard, does not
provide important dependability services such as the bus
guardian, membership service, and reliable acknowledg-
ment. It is, of course, possible to implement some of these
mechanisms at the application or MW level but with reduced
efficiency. Probably, carmakers might consider the use of
TTCAN for some systems during a transition period until
FlexRay technology is fully mature.

C. Low-Cost Automotive Networks

Several fieldbus networks have been developed to fulfill
the need for low-speed/low-cost communication inside
mechatronic-based subsystems generally made of an ECU
and its set of sensors and actuators. Two representatives of
such networks are LIN and TTP/A. The low-cost objective
is achieved not only because of the simplicity of the com-
munication controllers but also because the requirements
set on the microcontrollers driving the communication are
reduced (i.e., low computational power, small amount of
memory, low-cost oscillator). Typical applications involving
these networks include controlling doors (e.g., door locks,
opening/closing windows) or controlling seats (e.g., seat
position motors, occupancy control). Besides cost consider-
ations, a hierarchical communication architecture, including
a backbone such as CAN and several subnetworks such as
LIN, enables reducing the total traffic load on the backbone.

Both LIN and TTP/A are master–slave networks where a
single master node, the only node that has to possess a pre-
cise and stable time base, coordinates the communication on
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Fig. 8. Format of the LIN frame. A frame is transmitted during its “frame slot” which corresponds
to an entry of the schedule table.

the bus: a slave is only allowed to send a message when it
is polled. More precisely, the dialogue begins with the trans-
mission by the master of a “command frame” that contains
the identifier of the message whose transmission is requested.
The command frame is then followed by a “data frame” that
contains the requested message sent by one of the slaves or
by the master itself (i.e., the message can be produced by the
master).

1) LIN: LIN (see [16] and [17]) is a low-cost serial com-
munication system used as SAE class A network, where the
needs in terms of communication do not require the imple-
mentation of higher bandwidth multiplexing networks such
as CAN. LIN is developed by a set of major companies from
the automotive industry (e.g., DaimlerChrysler, Volkswagen,
BMW, and Volvo) and is already widely used in production
cars.

The LIN specification package (LIN version 2.0 [16]) in-
cludes not only the specification of the transmission pro-
tocol (physical layer and DLL) for master–slave communi-
cations but also the specification of a diagnostic protocol on
top of the DLL. A language for describing the capability of
a node (e.g., bit rates that can be used, characteristics of the
frames published and subscribed by the node, etc.) and for
describing the whole network is provided (e.g., nodes on the
network, table of the transmissions’ schedule, etc.). This de-
scription language facilitates the automatic generation of the
network configuration by software tools.

A LIN cluster consists of one “master” node and several
“slave” nodes connected to a common bus. For achieving a
low-cost implementation, the physical layer is defined as a
single wire with a data rate limited to 20 kb/s due to EMI limi-
tations. The master node decides when and which frame shall
be transmitted according to the schedule table. The schedule
table is a key element in LIN; it contains the list of frames
that are to be sent and their associated frame slots, thus en-
suring determinism in the transmission order. At the moment
a frame is scheduled for transmission, the master sends a
header (a kind of transmission request or command frame)
inviting a slave node to send its data in response. Any node
interested can read a data frame transmitted on the bus. As in
CAN, each message has to be identified: 64 distinct message
identifiers are available. Fig. 8 depicts the LIN frame format
and the period, termed a “frame slot,” during which a frame
is transmitted.

The header of the frame that contains an identifier is broad-
cast by the master node, and the slave node that possesses the

identifier inserts the data in the response field. The “break”
symbol is used to signal the beginning of a frame. It con-
tains at least 13 dominant bits (logical value zero) followed
by one recessive bit (logical value one) as a break delimiter.
The rest of the frame is made of byte fields delimited by one
start bit (value zero) and one stop bit (value one), thus re-
sulting in a 10-b stream per byte. The “sync” byte has a fixed
value (which corresponds to a bit stream of alternatively zero
and one); it allows slave nodes to detect the beginning of a
new frame and be synchronized at the start of the identifier
field. The so-called protected identifier is composed of two
subfields: the first 6 b are used to encode the identifier and
the last 2 b the identifier parity. The data field can contain up
to 8 B of data. A checksum is calculated over the protected
identifier and the data field. Parity bits and checksum enable
the receiver of a frame to detect bits that have been inverted
during transmission.

LIN defines five different frame types: unconditional,
event-triggered, sporadic, diagnostic, and user defined.
Frames of the latter type are assigned a specific identifier
value and are intended to be used in an application-specific
way that is not described in the specification. The first three
types of frames are used to convey signals. Unconditional
frames are the usual type of frames used in the master–slave
dialog and are always sent in their frame slots. Sporadic
frames are frames sent by the master, only if at least one
signal composing the frame has been updated. Usually, mul-
tiple sporadic frames are assigned to the same frame slot,
and the higher priority frame that has an updated signal is
transmitted. An event-triggered frame is used by the master
willing to obtain a list of several signals from different
nodes. A slave will only answer the master if the signals it
produces have been updated, thus resulting in bandwidth
savings if updates do not take place very often. If more than
one slave answers, a collision will occur. The master resolves
the collision by requesting all signals in the list one by one.
A typical example of the use of the event-triggered transfer
given in [16] is the doorknob monitoring in a central locking
system. As it is rare that multiple passengers simultaneously
press a knob, instead of polling each of the four doors, a
single event-triggered frame can be used. Of course, in the
rare event when more than one slave responds, a collision
will occur. The master will then resolve the collision by
sending one by one the individual identifiers of the list
during the successive frame slots reserved for polling the
list. Finally, diagnostic frames have a fixed size of 8 B fixed
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value identifiers for both the master’s request and the slaves’
answers and always contain diagnostic or configuration data
whose interpretation is defined in the specification.

It is also worth noting that LIN offers services to send
nodes into a sleep mode (through a special diagnostic frame
termed “go-to-sleep-command”) and to wake them up, which
is convenient, since optimizing energy consumption, espe-
cially when the engine is not running, is a real matter of con-
cern in the automotive context.

2) The TTP/A Network: Like TTP/C, TTP/A [18] was
initially invented at the Vienna University of Technology and
is now commercially available from the TTTech company.
TTP/A pursues the same aims and shares the main design
principles as LIN, and it offers, at the communication con-
troller level, some similar functionalities—in particular, in
the areas of plug-and-play capabilities and online diagnostics
services. TTP/A implements the classic master–slave dia-
logue, termed master–slave round, where the slave answers
the master’s request with a data frame having a fixed length
data payload of 4 B. The “multipartner” rounds enable several
slaves to send up to an overall amount of 62 B of data after
a single command frame. A “broadcast round” is a special
master–slave round in which the slaves do not send data; it
is, for instance, used to implement sleep/wake-up services.
The data rate on a single wire transmission support is, as
for LIN, equal to 20 kb/s, but other transmission supports
enabling higher data rates are possible. To the best of our
knowledge, TTP/A is not currently in use in production
cars.

D. Multimedia Networks

Many protocols have been adapted or specifically con-
ceived for transmitting the large amount of data needed by
emerging multimedia applications in automotive systems.
Two major contenders in this category are MOST and
IDB-1394.

1) MOST Network: MOST (see [22]) is a multimedia
network development of which was initiated in 1998 by
the MOST Cooperation (a consortium of carmakers and
component suppliers). MOST provides point-to-point audio
and video data transfer with a data rate of 24.8 Mb/s. This
support end-user applications like radios, global positioning
system (GPS) navigation, video displays, and entertainment
systems. The MOST’s physical layer is a plastic optical
fiber (POF) transmission support which provides a much
better resilience to EMI and higher transmission rates than
classical copper wires. Current production cars from BMW
and DaimlerChrysler employ a MOST network.

2) The IDB-1394 Network: IDB-1394 is an automotive
version of IEEE 1394 for in-vehicle multimedia and telem-
atic applications jointly developed by the IDB Forum7 and
the 1394 Trade Association.8 The system architecture of
IDB-1394 permits existing IEEE 1394 consumer electronics
devices to interoperate with embedded automotive grade
devices. IDB-1394 supports a data rate of 100 Mb/s over a

7See http://www.idbforum.org
8See http://www.1394ta.org

twisted pair or POF, with a maximum number of embedded
devices which are limited to 63 nodes. From the point of
view of transmission rate and interoperability with existing
IEEE 1394 consumer electronic devices, IDB-1394 is a
serious competitor for MOST technology.

III. MW LAYER

The design of automotive electronic systems has to take
into account several constraints. First, these systems are
moving to integrated electronics architectures in the sense
that a tight cooperation between functions is increasingly
needed. Second, they are produced through a complex coop-
erative multipartner development process. Finally, these new
systems are subject to increasingly stringent requirements
in terms of safety, availability, and fault tolerance. A classic
approach for easing the integration of software-based com-
ponents is to furnish an MW layer that provides common
services and a common interface to application software
components. In practice, an MW is made up of a set of
existing communication protocols and carmarker-specific
layers. Among the existing automotive protocols, some,
such as OSEK-Com (see Section III-B) or ISO transport
layer (see [54]), are communication oriented, but several
others offer specialized services: diagnostic modules (e.g.,
ISO 15 765 [54]–[56]), calibration services (e.g., CCP [57]),
or I/O abstraction layers (e.g., HIS consortium I/O library).

A. Functions of an Automotive MW

The main functions related to the communication services
that have to be realized by an MW are listed below.

— Hiding the distribution. Ideally, communication
services should be fully independent from the location
of the involved entities. The same services and the
same interface should be available for intra-ECU,
inter-ECU, and interdomain communications what-
ever the underlying protocols.

— Hiding the heterogeneity of the platforms. A large
diversity of microcontrollers, protocols, and operating
systems (OSs) are used inside the same vehicle. The
MW should encapsulate the OS services and provide
an application programming interface (API) indepen-
dent of the underlying protocols, of the CPU architec-
ture (e.g., 8/16/32 b, endianness). As much as possible,
the MW should provide common services to access I/O
devices.

— Providing high-level services. The aim here is to
diminish the development time and increase quality
through the reuse of validated services. Examples
of high-level services include working mode man-
agement, remote procedure call (RPC), redundancy
management, membership service, downloading func-
tionalities, etc. Application processes in the different
ECUs of a vehicle exchange data, termed signals (e.g.,
the number of revolutions per minute, the speed of
the vehicle, etc.) while frames are transmitted over
the network; since control functions of a vehicle are
subject to heavy timing constraints, many signals have
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a limited lifetime, and the problem is to realize the
communication in such a way as to ensure that these
“freshness” constraints are met; so, in particular, one
important service of an MW is to pack the signals that
are sent by application processes into frames and to
send the frames at the right point in time for ensuring
the deadline constraint on each signal it contains. This
function is generally called frame packing, and it is
performed according to an offline generated configu-
ration (this point will be discussed in Section III-C1).

— Ensuring QoS. It can be necessary for the MW to
improve the QoS provided by the lower level protocols.
For instance, if the Hamming distance of the CRC is
too small with regards to the dependability objectives,
an additional CRC can be transparently inserted by
the MW in the data field of the MAC level frame.
The MW can also serve to implement mechanisms for
correcting “bugs” in the lower level protocols such as
the “inconsistent message duplicate” of CAN (see [41]
for such a proposal). In addition, the MW can offer
QoS guarantees that are not considered by lower level
communication layers. We saw previously that one of
its roles at runtime is to realize the packing of signals
into frames and the sending of frames according to
freshness properties required on signals. Other typical
examples include reliable acknowledgment service on
CAN, supplying status information on the data that is
consumed by the application-level software (e.g., data
was refreshed since last reading; its freshness constraint
was not respected), or providing filtering mechanisms
(e.g., notify the application for each reception or
when the data value has changed in a significant
way). Finally, an MW can implement algorithms to
adapt, at runtime, the parameters of the communication
protocols (e.g., priorities, transmission rate) according
to the requirements of the application or changing
environmental conditions (e.g., EMI level).

B. State of the Art in Automotive MW

Some carmakers, such as DaimlerChrysler with the
TITUS/DBKOM communication stack, possess proprietary
MW that helps to integrate ECUs and software modules
developed by their third-party suppliers. To the best of
our knowledge, no publicly available precise description
of such MW exists. Several cooperative projects aimed at
the development of standard MW have been undertaken
within the automotive industry (European ITEA EAST-EEA
project9 or, more recently, AUTOSAR10). The only results
publicly available have been produced in the context of the
OSEK/VDX consortium,11 whose objective is to build a
standard architecture for in-vehicle control units. Among
the results of the OSEK/VDX group, two specifications
are of particular interest: the communication layer [58] and
the fault-tolerant communication layer [51]. Finally, we

9See http://www.east-eea.net
10See http://www.autosar.org and [6].
11Detailed information can be obtained at http://www.osek-vdx.org

shall review the Volcano MW [59], which is a commercial
product.

1) OSEK/VDX Communication: The OSEK/VDX con-
sortium12 specifies a communication layer [58] that defines
common software interfaces and common behavior for
internal and external communications between application
processes. At the application layer level, processes exchange
signals, or “messages” in OSEK/VDX terminology, that
are stored in “message objects,” while communicating
OSEK/VDX entities exchange so-called interaction layer
protocol data units (I-PDUs) that are a collection of mes-
sages. Each receiver for a message can specify it as queued
(first-in, first-out (FIFO) buffer of fixed length) or unqueued
(i.e., a new value overwrites the old one) and associate it
with a filtering mechanism. How signals are packed into a
frame is statically specified offline, and OSEK/VDX Com-
munication automatically realizes the packing/unpacking
at runtime. I-PDU and messages are described through the
OSEK/VDX Implementation Language (see [60]).

The I-PDU containing a message can be transmitted
each time the message is refreshed (message object has the
“Triggered Transfer Property”) or not (message object has
the “Pending Transfer Property”). The transmission mode
is a characteristic of the I-PDU; it can be “direct” (the
I-PDU contains at least one message having the “Triggered
Transfer Property” and a new value for this message is
written), “periodic” (the I-PDU contains only messages with
“Pending Transfer Property”), or “mixed” (the I-PDU is at
leastperiodicallytransmittedbut itcanalsobetransmittedasin
the direct mode). Two examples illustrate these mechanisms.
In Fig. 9, and are message objects with the Triggered
Transfer Property that are attached to an I-PDU named ,
which possesses the direct transmission mode. Each time

or is updated, the I-PDU is sent to the underlying
layer. For instance, at time , is updated and is sent
with messages and . Fig. 10 illustrates a configuration
where is a message object with the Triggered Transfer
Property and a message object with the Pending Transfer
Property. They are both attached to , an I-PDU with
mixed transmission mode. Each time a new value of
is provided by the application, is sent (time and
in the example) but is also sent at a predefined rate
(at time and ).

The transmission of messages is nonblocking for the
application, so OSEK/VDX Communication includes noti-
fication mechanisms for informing the application on the
status of a transmission or reception. In particular, it is
possible for a sender to know if the time between a trans-
mission request and the successful transmission over the
network exceeds a given threshold (“Transmission Deadline
Monitoring”). Similarly, a receiving node can be informed
if a periodic message has not been received within a given
time interval (“Reception Deadline Monitoring”). Finally,
a minimum delay between two successive transmissions
can be specified (i.e., transmission requests are postponed
until the delay expires), which provides some resilience

12See http://www.osek-vdx.org
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Fig. 9. I-PDU with direct transmission mode: the I-PDU is sent each time one of its message
is updated.

against nodes transmitting outside their specification due to
a software dysfunctioning.

OSEK/VDX Communication runs on top of a transport
layer (e.g., ISO 15 765-2 [54] for CAN as DLL) that takes
care of the I-PDU segmentation, and it can operate on any
OS compliant with OSEK/VDX OS services for tasks,
events, and interrupt management (see [61]). Some ques-
tions deserve to be raised. In particular, communications
between application processes that are internal to one ECU
or located in two distant ECUs do not obey exactly the same
rules (see [62] for more details); thus, the designer has to
take into account the distribution of the functions, which is
a hindrance to portability.

2) Volcano: Volcano [59], [63] is a commercial product
of Volcano Communications Technologies initially de-
veloped in partnership with Volvo Car Corporation
(1994–1998). It consists of a communication layer and
a tool chain which supports requirement capturing, variant
and version handling, and facilities for a multipartner devel-
opment process. Originally, this product aimed to support
CAN and Volcano Lite (a Volvo-proprietary low-speed
network based on a “single master–multiple slaves” pro-
tocol). It was then extended to fit LIN protocol and is being
prepared to support FlexRay and MOST protocols.

The concept of Volcano is based on signals. These sig-
nals represent data produced and consumed by functions im-
plemented on each ECU while at the communication layer,
frames are transmitted over the network. The communication
model of Volcano is “publisher–subscriber.”

Volcano aimed to make an optimized usage of resources
online, e.g., the CAN bandwidth, and to build solutions
that would ensure timing properties on signals by using
schedulability analysis techniques (see [30], [59] for CAN
protocol). For this purpose, Volcano configuration tools
include a “frame-packing” algorithm (see Section III-C1).
Furthermore, Volcano offers an API that hides the commu-
nication on the nework from the application developers. The
Volcano API provides four main services, termed “read,”
“write,” “v_input,” and “v_output.” A “read” call returns
the latest value of a signal that is stored in the Volcano
layer to the application, and a “write” call updates the
value of a signal. A “v_output” call copies the frames in
the communication controller, while a “v_input” copies the
received frames and makes the signal available to the ap-
plication (through a “read” call). Fig. 11 shows an example
that illustrates these mechanisms: is a signal whose value
is produced by an application process activated through
an external event (e.g., a button pressed) on the ECU1
(publisher of ); this signal is consumed by an application
process located on the ECU2 (subscriber of ) in order to
apply an action (e.g., lights switch on); the different steps
for the production, the transmission, and the consumption
of are:

1) the processing of the external event ;
2) at , the “write” call makes the value of available

at the Volcano layer;
3) at , the frame including the value of is

copied in the communication controller (“v_output”
call);
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Fig. 10. I-PDU with mixed transmission mode: the I-PDU is sent with a predefined period plus
each time a message with Triggered Transfer Property is updated.

4) the frame is sent (e.g., on CAN bus, start of
arbitration) at ;

5) the transmission of ends at time ;
6) a “v_input” call done by the ECU2 copies the value

of the signal in the Volcano layer at time ;
7) a“read”call readsthisvalueat theapplicationlevel(time

) and processes it in order to apply the corresponding
action .

According to their values, three kinds of signals are han-
dled: integer signals (unsigned number, static length between
1 and 16 b), Boolean signals (1 b), and byte signals that define
a sequence of bytes (between 1 and 8) not interpreted by the
online Volcano part. As said previously, a signal is described
by its “publisher” ECU and each of its “subscriber” ECUs.
More precisely, at design time a database of signals is consti-
tuted where their intrinsic characteristics (e.g., size) as well
as the “publishing” and “subscribing” nodes are recorded.
Each signal is characterized by a set of attributes; some of
them specify timing constraints that have to be respected
online.

— Type of information: it can be a state signal (each
production carries a complete description of the infor-
mation and some signal values can be missed by a sub-
scriber of such a signal) or state change signal (this
signal carries an incremental description of data, e.g.,
an OFF–ON button pressed; each production of these
signals has to be consumed).

— Generation rule: it can be periodic (produced at regular
intervals) or sporadic (produced by the application in
response to some external events).

— Latency: for the publisher of a signal, it represents
the time interval between the occurrence of the event
that generates a value of this signal (external event or
timeout) and the first “v_output” call copying the frame
containing this value (e.g., in Fig. 11); for a
subscriber of the signal, it is the estimated delay be-
tween two events, its availability to the application and
the effective application consumption (e.g., in
Fig. 11).

— Intervals between signal instances: it includes two
attributes, min_interval and max_interval; for the
publisher of a signal, the min_interval defines the
minimum time between two “write” requests; for a
subscriber of a signal, this optional attribute corre-
sponds to a constraint that defines the minimum time
interval between two consecutive arrivals of the signal.
The max_interval attribute is not useful for a published
signal (already captured through min_interval and la-
tency attributes), while for a subscribed signal, it is
the maximum interval between two consecutive con-
sumptions of the signal by application functions.

— Freshness constraint: the max_age attribute (see
Fig. 11) concerns only subscribed signals and repre-
sents the maximum acceptable age of the signal at
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Fig. 11. Volcano services.

its consumption by an application function (on the
Fig. 11, the “age” of signal is and this interval
has to be less than the specified max-age).

From this description, a set of frames is produced by the
so-called “frame compiler” with the main objective of
meeting temporal constraints. Detailed specifications of
offline configuration strategies are, to the best of our knowl-
edge, not publicly available.

At runtime, the Volcano communication layer forms the
frames according to the specifications derived from the
configuration step and it checks that the assumptions made
offline are met. Furthermore, at runtime, several published
signals that are updated at different rates can be placed in the
same frame. So a special mechanism is provided by Volcano
in order to indicate which signal of a received frame has
been updated from the last transmission of the same frame.
This mechanism is based on the so-called update bit attached
to each signal composing a frame. An update bit is set for
a published signal each time this signal has been written
(“write” call) and reset, each time the frame containing the
signal is sent on the network. On the receiving side, the Vol-
cano layer can determine which signal in the received frame
has been modified and can propagate this information to the
application thanks to a “flag” that is set when the update
bit is set and reset explicitly by the application. Finally, in
order to verify on line that timing constraints are respected,
“timeouts” can be handled by the Volcano layer. A timeout
can be attached to a subscribed signal and is associated to a
given time interval and to a default value of the signal. Each
time the concerned signal is not received within the given
time interval, the signal is set to the given default value. The

timeout reset is done after reception of a frame containing
the updated signal.

More information about Volcano concepts can be found at
Volcano Automotive Group.13

3) OSEK/VDX Fault-Tolerant Communication
(FTCom): OSEK/VDX Communication, like the current
version of Volcano, is not intended to be used on top of a
time-triggered network. However, higher level services are
still needed on top of FlexRay or TTP/C for facilitating the
development of fault-tolerant applications. OSEK/VDX
FTCom (see [51]) is a proposal that pursues this objective.
It mainly provides message handling but also supports
clock synchronization services, lifesign update, and start-up
functions. An optional service is the membership status of
the nodes, which can be implemented at the FTCom level
when the underlying network does not provide it, as is the
case with FlexRay. In the remainder of this section, we
describe message handling and synchronization services.

a) Message Handling: OSEK/VDX FTCom architec-
ture is structured in several layers, as illustrated in Fig. 12.
The interaction layer is in charge of the communication to
and from the Communication Network Interface (CNI, a
memory area shared by the controller and the host computer
where data is written), of the packing and unpacking of the
frames (according to an offline generated configuration) and,
finally, of the byte-order conversion that may be necessary
on the local CPU.

The fault-tolerant layer contains mechanisms for handling
the redundancy of the communication: message instances
can be replicated and transmitted in several distinct frames.

13See http://www.volcanoautomotive.com
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Fig. 12. Structure and services of OSEK/VDX FTCom.

Fig. 13. Fault tolerance through replicated channels and redundant nodes: the same message m
is transmitted, on both communication channels, by each of the two nodes (i and k) that compose
the fault-tolerant unit.

The replication of nodes is a second way of ensuring fault
tolerance: the same information can be produced by a set of
replicated nodes called a fault-tolerant unit (FTU). Fig. 13
shows an example where two nodes and composing a
FTU send four instances of the same message . The frame
packing can be different for each node and each commu-
nication channel, as in the example shown in Fig. 13. One
of the main functions of OSEK/VDX FTCom, implemented
in the fault-tolerant layer, is to manage the redundancy of
data needed for achieving fault-tolerance. In the example of
Fig. 13, four message instances are received by the interac-
tion layer during each TDMA round. From an implementa-
tion standpoint, it is usually preferable to present only one
copy of data to the application located on a receiver node.

This simplifies the application code and keeps it independent
from the level of redundancy which, subsequently, facili-
tate the portability of the application. In OSEK/VDX ter-
minology, the algorithm responsible for the choice of the
value that will be transmitted to the application is termed the
Replica Determinate Agreement (RDA). Many agreement
strategies are possible: pick-any (fail-silent node), average-
value, pick-a-particular-one, majority vote, etc. FTCom pro-
vides some predefined algorithm and, when none of them can
be applied, it provides a generic way for specifying the agree-
ment strategy of replicated data.

The message filtering layer consists of mechanisms for
passing only “significant” data to the application or to the
fault-tolerant layer (on a receiver node and a producer node,
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Fig. 14. OSEK/VDX FTCom synchronization service on a time-triggered OS.

respectively). Several generic algorithms, as well as a frame-
work for user-defined ones, are available. Among the prede-
fined filtering algorithms, we can cite the following: passing
messages whose value has been modified, passing messages
whose value is included in a predefined interval, etc. The fil-
tering mechanisms are statically defined at the configuration
step.

b) Synchronization Service: On a time-triggered OS
such as OSEK Time [38], the scheduling of tasks is speci-
fied in an offline generated time table called the dispatcher
table. OSEK/VDX FTCom provides a service, used by the
OS, to synchronize the start of the task schedule defined in
the dispatcher table, to a particular point in time in the mes-
sage schedule (i.e., the TDMA round). Since the message
schedule is the same over the whole network, this service
can be used to synchronize applications running on different
ECUs.

As illustrated in Fig. 14, a dispatcher table (or dispatcher
round) is defined on a given ECU. Its length has to be a
multiple of the TDMA round (that is why, as shown in the
example, an idle task completes the dispatcher round). The
synchronization service configuration requires the identifica-
tion of the TDMA round during which the dispatcher table
will start, the length of the round and the phase (or offset) be-
tween the beginning of the TDMA and the dispatcher rounds.

C. MW Configuration

In the previous paragraphs, we identified the main services
that are to be provided by an automotive MW and the solu-
tions that are available or under development. Additionally,
an important issue is the generation of an MW optimized for
the needs of a given application, or even for the particular
needs of a given ECU. This step is crucial because it will
have an direct impact on the performances and implementa-
tion costs.

Two main problems can be identified. The first one is to
minimize the overheads, in terms of memory and CPU usage,
induced by the MW on each node. After the minimum set of
services needed have been identified and, assuming the MW
has a modular design, the most compact implementation of
the MW can be generated. Another issue is to make tech-
nical implementation choices that are efficient with respect to
the platform (i.e., OS, hardware, networks) and the workload

(CPU, messages). In particular, one has to decide the charac-
teristics of the MW tasks: segmentation in tasks and interrupt
routines, allocation of task priorities, activation pattern (e.g.,
a task is periodic or invoked by the application), etc.

The second major configuration problem is to set the char-
acteristics of the communication in such a way as to meet the
freshness constraints of the signals and to minimize the band-
width utilization. The latter point is important for enabling
the use of low-cost electronic components and for facilitating
an incremental design process. Knowing the transmission
protocols, the set of ECUs, and, for each ECU, the set of
signals that are to be sent over the network, their size, their
deadline, and their production period, the problem consists
of building the set of frames and choosing the characteris-
tics of transmission. In particular, on a priority bus such as
CAN, the periods and the priorities of the frames have to
be chosen while on a TTP/C network; the problem is to de-
fine the cluster cycle: the number of transmissions of each
frame per cluster cycle and the location of the transmissions
inside the cycle. These latter two points are discussed in Sec-
tion III-C1 and Section III-C2, respectively.

1) Frame Packing Over a Priority-Based Network: On
a priority-based protocol, the packing of the signals into
frames and the sending of the frames at the right point in
time is done by the MW. The whole problem is to constitute,
offline, the set of frames from a given set of signals in such
a way as to respect the deadline constraints and minimize
bandwidth consumption. Each signal is characterized by its
sending station, its production period (or minimum inter-
arrival for sporadic signals) on this station, its size, and its
relative deadline. The classic frame-packing method is to
bind, statically, each signal to a frame. The frames are then
periodically transmitted even if some signals having lower
frequencies than the frame have not been generated. The
results of the frame-packing step is a set of frames where
each frame is characterized by the transmitting station, the
priority on the network, the signals composing it, and the
transmission period (which is the smallest period of the
signals contained in the frame).

The frame-packing problem, which is closely related to
“bin packing,” was shown to be NP-complete in [64] and
that it cannot be solved using an exhaustive approach even
for a very small number of signals and/or ECUs (see [65] for
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more details). The solution is thus to find efficient heuristics.
A solution is implemented in the configuration tools of the
Volcano MW (see Section III-B2), but the algorithms imple-
mented in this commercial product are not published. Several
heuristics are presented in [64] to build a set of frames over
CAN that minimizes the bandwidth consumption but without
explicitly searching for a feasible solution. In particular, the
problem of deciding the priorities of the frames is not ad-
dressed. Two heuristics are proposed in [65]. The first one
is a greedy algorithm inspired by bin-packing approaches;
its complexity allows using it on large size problems. The
second heuristic explores the solution’s space more exten-
sively; it can only be applied to problems of limited size
but, in this case, it is slightly more efficient. More recently,
a greedy algorithm that proved to be efficient on the authors’
experiments was proposed in [66].

2) Frame Packing Over a Time-Triggered Protocol: In
TTP/C, the transmission order inside a round can be freely
chosen by the application designer. Among the criteria for
constructing the TDMA round, applicative constraints like
computation times and sampling rates have to be taken into
account. But, as shown in [67], [68], the robustness of a
TDMA-based system against transmission errors depends
heavily on the location of the slots inside the round.

In automotive systems, one observes that transmission er-
rors can be correlated: there occur perturbations that cor-
rupt several consecutive frames (so-called bursts of errors).
Should two frames that belong to the same FTU (see Sec-
tion III-B3) be transmitted just one after the other, then a
single perturbation could corrupt both of the frames. The ob-
jective to pursue depends on the status of the FTU with re-
gard to the concept of “fail-silence” (basically, a node is said
fail-silent if one can safely consume the data that we have
received from this node; see [45] and [69] for more details
on that subject). For FTUs composed of a set of fail-silent
nodes, the successful transmission of one single frame for
the whole set of replicas is sufficient, since the value carried
by the frame is necessarily correct. In this case, the objec-
tive to achieve with regard to the robustness against trans-
mission errors is minimizing the probability that all frames
of the FTU (carrying data corresponding to the same produc-
tion cycle) be corrupted. This probability is denoted P_all in
[67]. In practice, replicated sensors may return slightly dif-
ferent observations and, without extra communication for an
agreement, replicated nodes of a same FTU may transmit dif-
ferent data. If a decision, such as a majority vote, has to be
taken by a node with regard to the value of the transmitted
data, the objective is to maximize probability that at least one
frame of each FTU is successfully transmitted during a pro-
duction cycle. If the production cycle is equal to one round
then it comes back to minimizing P_one, the probability that
one or more frames of an FTU have become corrupted. It
was shown in [67], with some reasonable assumptions on the
error model, that the optimal solution to minimize P_all is
to “spread” the different frames of a same FTU uniformly
over the TDMA round. An algorithm that ensures the op-
timal solution is provided for the case where the FTUs have,
at most, two different cardinalities (for instance, one FTU

is made of two replicas, and other FTUs are made of three
replicas). For the other cases, a low-complexity heuristic is
proposed [67], and it was proven to be close to the optimal
on simulations that were performed. In [68], it was demon-
strated that, under very weak assumptions on the error model
and whatever the number of FTUs and their cardinalities, the
clustering together of the transmission of all the frames of an
FTU minimizes P_one when the production cycle of the data
sent is equal to the length of a TDMA round. These two re-
sults, for the fail-silent case and non-fail-silent case, provide
simple guidelines for the application designer in designing
the schedule of transmission.

IV. OPEN ISSUES FOR AUTOMOTIVE

COMMUNICATION SYSTEMS

A. Optimized Networking Architectures

The traditional partitioning of the automotive application
into several distinct functional domains with their own
characteristics and requirements is useful in mastering the
complexity, but this leads to the development of several
independent subsystems with their specific architectures,
networks, and software technologies.

Some difficulties arise from this partitioning, since more
and more cross-domain data exchanges are needed. This re-
quires implementing gateways whose performances in terms
of CPU load and impact on data freshness have to be care-
fully assessed. For instance, an ECU belonging, from a func-
tional point of view, to a particular domain can be connected,
for wiring reasons, onto a network of another domain. For
example, the diesel particulate filter (DPF) is connected onto
the body network in some vehicles even though it belongs,
from a functional standpoint, to the powertrain. This can
raise performance problems, since the DPF needs a stream
of data with strong temporal constraints coming from the en-
gine controller located on the powertrain network. Numerous
other examples of cross-domain data exchanges can be cited
such as the engine controller (powertrain) that takes input
from the climate control (body) or information from the pow-
ertrain displayed on the dashboard (body). There are also
some functions that one can consider as being cross domains
such as the immobilizer, which belongs both to the body
and powertrain domains. Upcoming x-by-wire functions will
also need very tight cooperation between the ECUs of the
chassis, the powertrain, and the body.

A current practice is to transfer data between different do-
mains through a gateway usually called the “central body
electronic,” belonging to the body domain. This subsystem
is recognized as being critical in the vehicle: it constitutes a
single point of failure, its design is overly complex, and per-
formance problems arise due to an increasing workload.

An initial foreseeable domain of improvement is to further
develop the technologies needed for the interoperability be-
tween applications located on different subnetworks. In par-
ticular, much work remains to be done in the area of MW,
since existing ones are far from the desirable characteristics
listed in Section III-A.
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Future work should also be devoted to optimizing net-
working architectures. This implies rethinking the current
practice that consists of implementing networks on a per-do-
main basis. The use of technologies that could fulfill several
communication requirements (e.g., high-speed, event-trig-
gered, and time-triggered communication, all with FlexRay)
with scalable performances is certainly one possible direc-
tion for facilitating design.

B. System Engineering

The verification of the performances of a communication
system is twofold. On the one hand, some properties of the
communication system services can be proved independently
of theapplication.For instance, thecorrectnessof thesynchro-
nization and the membership and clique avoidance services
of TTP/C have been studied using formal methods in [48] and
[70].

There are other constraints whose fulfillment cannot be
determined without a precise model of the system. This is
typically the case for real-time constraints on tasks and signals
where the patterns of activations and transmissions have to
be identified. Much work has already been done in this field
during the last ten years: schedulability analysis on priority
buses [30], joint schedulability analysis of tasks and messages
[71], probabilistic assessment of the reliability of communi-
cations under EMI [34], [72], etc. What is now needed is to
extend these analyzes to take into account the peculiarities of
theplatforms inuse(e.g.,overheadsdueto theOSandthestack
ofcommunication layers) and to integrate themin thedevelop-
ment process of thesystem. The problemis complicatedby the
development process being shared between several partners
(the carmaker and various third-party suppliers). Ways have to
be found to facilitate the integration of components developed
independently and to ensure their interoperability.

Intermsofthecriticalityoftheinvolvedfunctions,futureau-
tomotive x-by-wire systems can reasonably be compared with
flight-by-wire systems in the avionic field. According to [73],
the probability of encountering a critical safety failure in vehi-
clesmustnotexceed5 10 perhourandpersystem,butother
studies consider 10 . It will be a real challenge to reach such
dependability, inparticularbecauseof thecostconstraints. It is
certainthattheknow-howgatheredovertheyearsintheavionic
industrycanbeofgreathelp,butdesignmethodologiesadapted
to the automotive constraints have to be developed.

The first step is to develop technologies able to integrate
different subsystems inside a domain (see Section III), but a
real challenge is to shift the development process from sub-
system integration to a complete integrated design process.
The increasing amount of networked control functions inside
in-car embedded systems leads to developing specific design
processes based, among others, on formal analysis and ver-
ification techniques of both dependability properties of the
networks and dependability requirements of the embedded
application.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their helpful criticisms and suggestions.

REFERENCES

[1] A. Albert, “Comparison of event-triggered and time-triggered con-
cepts with regards to distributed control systems,” presented at the
Embedded World Conf. 2004, Nürnberg, Germany, 2004.

[2] G. Leen and D. Heffernan, “Expanding automotive electronic sys-
tems,” IEEE Comput., vol. 35, no. 1, pp. 88–93, Jan. 2002.

[3] K. Johansson, M. Törngren, and L. Nielsen, Handbook of Net-
worked and Embedded Control Systems, D. Hristu-Varsakelis and
W. S. Levine, Eds. Boston, MA: Birkhäuser, 2005.

[4] F. Simonot-Lion, “In-car embedded electronic architectures: how to
ensure their safety,” presented at the 5th IFAC Int. Conf. Fieldbus
Systems and Their Applications (FeT 2003), Aveiro, Portugal, 2003.

[5] C. Wilwert, N. Navet, Y.-Q. Song, and F. Simonot-Lion, “Design of
automotive X-by-Wire systems,” in The Industrial Communication
Technology Handbook, R. Zurawski, Ed. Boca Raton, FL: CRC,
2004.

[6] M. Ayoubi, T. Demmeler, H. Leffler, and P. Köhn, “X-by-Wire func-
tionality, performance and infrastructure,” presented at the Conver-
gence Conf. 2004, Detroit, MI.

[7] J. Rushby, “A Comparison of Bus Architecture for Safety-Critical
Embedded Systems,” NASA/CR, Tech. Rep. NASA/CR-2003-
212161, Mar. 2003.

[8] M. Krug and A. V. Schedl, “New demands for in-vehicle networks,”
in Proc. 23rd EUROMICRO Conf. ’97, pp. 601–605.

[9] S. Poledna, W. Ettlmayr, and M. Novak, “Communication bus for
automotive applications,” presented at the 27th Eur. Solid-State Cir-
cuits Conf., Villach, Austria, 2001.

[10] K. Ramaswamy and J. Cooper, “Delivering multimedia content to
automobiles using wireless networks,” presented at the Convergence
Conf. 2004, Detroit, MI.

[11] Ford Motor Co. (2001) Ford to study in-vehicle electronic
devices with advanced simulators. [Online]. Available:
http://media.ford.com/article_display.cfm?article_id=7010

[12] A. Avizienis, J. Laprie, and B. Randell, “Fundamental concepts of
dependability,” in Proc. 3rd Information Survivability Workshop,
2000, pp. 7–12.

[13] “J2056/2 survey of known protocols,” in SAE Handbook. Warren-
dale, PA: Soc. Automotive Eng. (SAE), 1994, vol. 2.

[14] “J2056/1 class C application requirements classifications,” in SAE
Handbook. Warrendale, PA: Soc. Automotive Eng. (SAE), 1994.

[15] Intel Corp.. (2004) Introduction to in-vehicle networking. [Online].
Available: http://support.intel.com/design/auto/autolxbk.htm

[16] LIN Consortium. (2003, Sep.) LIN Specification Package, Revision
2.0. [Online]. Available: http://www.lin~subbus.org/

[17] A. Rajnák, The Industrial Communication Technology Handbook,
R. Zurawski, Ed. Boca Raton, FL: CRC, 2005.

[18] H. Kopetz et al., Specification of the TTP/A Protocol. Vienna, Aus-
tria: Univ. Technol. Vienna, 2002.

[19] Class B Data Communications Network Interface—SAE J1850 Stan-
dard—Rev. Nov. ’96.

[20] Road Vehicles—Low Speed Serial Data Communication—Part 2:
Low Speed Controller Area Network, ISO 11 519-2, 1994.

[21] Road Vehicles—Interchange of Digital Information—Controller
Area Network for High-Speed Communication, ISO 11 898, 1994.

[22] MOST Cooperation. (2004, Aug.) MOST Specification Revision
2.3. [Online]. Available: http://www.mostnet.de

[23] TTTech Computertechnik GmbH. (2003, Nov.) Time-Triggered Pro-
tocol TTP/C, High-Level Specification Document, Protocol Version
1.1. [Online]. Available: http://www.tttech.com

[24] FlexRay Consortium. (2004, Jun.) FlexRay Communication
System, Protocol Specification, Version 2.0. [Online]. Available:
http://www.flexray.com

[25] D. Millinger and R. Nossal, The Industrial Communication Tech-
nology Handbook, R. Zurawski, Ed. Boca Raton, FL: CRC, 2005.

[26] P. Bühring, “Safe-by-wire plus: bus communication for the occupant
safety system,” presented at the Convergence Conf. 2004, Detroit,
MI.

[27] Road Vehicles—Controller Area Network (CAN)—Part 4:
Time-Triggered Communication, ISO 11 898-4, 2000.

[28] J. Ferreira, P. Pedreiras, L. Almeida, and J. A. Fonseca, “The
FTT-CAN protocol for flexibility in safety-critical systems,” IEEE
Micro (Special Issue on Critical Embedded Automotive Networks),
vol. 22, no. 4, pp. 46–55, July–Aug. 2002.

[29] P. Koopman, “Critical embedded automotive networks,” IEEE Micro
(Special Issue on Critical Embedded Automotive Networks), vol. 22,
no. 4, pp. 14–18, July–Aug. 2002.

NAVET et al.: TRENDS IN AUTOMOTIVE COMMUNICATION SYSTEMS 1221



[30] K. Tindell, A. Burns, and A. J. Wellings, “Calculating Controller
Area Network (CAN) message response times,” Control Eng. Prac-
tice, vol. 3, no. 8, pp. 1163–1169, 1995.

[31] N. Navet and Y.-Q. Song, “Validation of real-time in-vehicle appli-
cations,” Comput. Ind., vol. 46, no. 2, pp. 107–122, Nov. 2001.

[32] Y. Martin, “L’avenir de l’automobile tient à un fil,” L’argus de l’au-
tomobile, vol. 3969, pp. 22–23, Mar. 2005.

[33] CAN in Automation. (2005) Challenges in automotive applica-
tions. [Online]. Available: http://www.can-cia.org/applications/
passengercars/challenge.html

[34] B. Gaujal and N. Navet, “Fault confinement mechanisms on CAN:
analysis and improvements,” IEEE Trans. Veh. Technol., to be pub-
lished.

[35] M. Barranco, G. Rodriguez-Navas, J. Proenza, and L. Almeida,
“CANcentrate: an active star topology for can networks,” presented
at the 5th Int. Workshop Factory Communication System, Vienna,
Austria, 2004.

[36] G. Lima and A. Bums, “Timing-independent safety on top of CAN,”
presented at the 1st Int. Workshop Real-Time LAN’s in the Internet
Age , Vienna, Austria, 2002.

[37] , “A consensus protocol for CAN-based systems,” in Proc. 24th
Real-Time Systems Symp., 2003, pp. 420–429.

[38] G. Rodriguez-Navas, M. Barranco, and J. Proenza, “Harmonizing
dependability and real time in CAN networks,” presented at the 2nd
Int. Workshop Real-Time LANs in the Internet Age, Porto, Portugal,
2003.

[39] J. Ferreira, L. Almeida, J. Fonseca, G. Rodriguez-Navas, and J.
Proenza, “Enforcing consistency of communication requirements
updates in FTT-CAN,” presented at the Int. Workshop Dependable
Embedded Systems, Florence, Italy, 2003.

[40] G. Rodriguez-Navas and J. Proenza, “Clock synchronization in CAN
distributed embedded systems,” presented at the 3rd Int. Workshop
Real-Time Networks, Catania, Italy, 2004.

[41] L. M. Pinho and F. Vasques, “Reliable real-time communication in
can networks,” IEEE Trans. Comput., vol. 52, no. 12, pp. 1594–1607,
Dec. 2003.

[42] L.-B. Fredriksson, “CAN for critical embedded automotive net-
works,” IEEE Micro, vol. 22, no. 4, pp. 28–35, July–Aug. 2002.

[43] M. Waern, “Evaluation of protocols for automotive systems,” M.S.
thesis, KTH Machine Design, Stockholm, Sweden, 2003.

[44] Road Vehicles—Low Speed Serial Data Communication—Part 3:
Vehicle Area Network (VAN), ISO 11 519-3, 1994.

[45] H. Kopetz, Real-Time Systems: Design Principles for Distributed
Embedded Applications. Norwell, MA: Kluwer, 1997.

[46] H. Kopetz, R. Nossal, R. Hexel, A. Krüger, D. Millinger, R. Pallierer,
C. Temple, and M. Krug, “Mode handling in the time-triggered ar-
chitecture,” presented at the IFAC-DCCS ’97, Seoul, Korea, 1997.

[47] TTA Group. (2004) TTP—Frequently asked questions. [Online].
Available: http://www.ttagroup.org/technology/faq.htm

[48] G. Bauer and M. Paulitsch, “An investigation of membership and
clique avoidance in TTP/C,” in Proc. 19th IEEE Symp. Reliable Dis-
tributed Systems, 2000, pp. 118–124.

[49] H. Pfeifer, “Formal verification of the TTP group membership algo-
rithm,” presented at the FORTE/PSTV 2000, Pisa, Italy.

[50] G. Cena and A. Valenzano, “Performance analysis of byteflight net-
works,” in Proc. IEEE Workshop Factory Communication Systems
2004, pp. 157–166.

[51] OSEK Consortium. (2001, Jul.) OSEK/VDX Fault-Tolerant Com-
munication, Version 1.0. [Online]. Available: http://www.osek-vdx.
org/

[52] Robert Bosch GmbH. (2004) Time Triggered Communication on
CAN. [Online] . Available: http://www.can.bosch.com/content/
TT_CAN.html

[53] B. Müller, T. Führer, F. Hartwich, R. Hugel, and H. Weiler, “Fault
tolerant TTCAN networks,” presented at the 8th Int. CAN Conf.
(iCC), Las Vegas, NV, 2002.

[54] Road Vehicles—Diagnostics on CAN—Part 2: Network Layer Ser-
vices, ISO 15 765-2, 1999.

[55] Road Vehicles—Diagnostics on CAN—Part 1: General Information,
ISO 15 765-1, 1999.

[56] Road Vehicles—Diagnostics on CAN—Part 3: Application Layer
Services, ISO 15 765-3, 1999.

[57] CAN calibration protocol, version 2.1, ASAP Task Force, 1999.
[58] OSEK/VDX Communication, Version 3.0.3, OSEK Consortium.

(2004, Jul.). [Online]. Available: http://www.osek-vdx.org/

[59] L. Casparsson, A. Rajnak, K. Tindell, and P. Malmberg, “Vol-
cano—A revolution in on-board communications,” Volvo, Tech.
Rep. 98-12-10, 1999.

[60] OSEK Consortium. (2004, Jul.) OSER/VOX System Genera-
tion—OIL: OSEK Implementation Language, Version 2.5. [Online].
Available: http://www.osek-vdx.org/

[61] , (2004, July) OSEK/VDX Operating System, Version 2.2.2.
[Online]. Available: http://www.osek-vdx.org

[62] P. Feller, “Real-time application development with OSEK—A re-
view of OSEK standards,” Software Eng. Inst., Carnegie Mellon
Univ., Pittsburgh, PA, Tech. Note CMU/SEI 2003-TN-004, 2003.

[63] A. Rajnák and M. Ramnefors, “The volcano communication con-
cept,” presented at the Convergence Conf. 2002, Detroit, MI.

[64] C. Norström, K. Sandström, and M. Ahlmark, “Frame packing in
real-time communication,” Mälardalen Real-Time Res. Ctr., Tech.
Rep. 00-07-25, 2000.

[65] R. Santos Marques, N. Navel, and F. Simonot-Lion, “Frame packing
under real-time constraints,” in Proc. 5th IFAC Int. Conf. Fieldbus
Systems and Their Applications—FeT’2003, pp. 185–192.

[66] R. Saket and N. Navet. (2003) Frame packing algorithms
for automotive applications. INRIA. [Online]. Available:
http://www.inria.fr/rrrt/rr-9998.html

[67] B. Gaujal and N. Navet. (2002) Maximizing the robustness of
TDMA networks with application to TTP/C. INRIA. [Online].
Available: http://www.inria.fr/rrrt/rr-9619.html

[68] , “Optimal replica allocation for TTP/C based systems,” pre-
sented at the 5th IFAC Int. Conf. Fieldbus Systems and Their Appli-
cations—FeT’2003, Aveiro, Portugal.

[69] S. Poledna, Fault-Tolerant Real-Time Systems: The Problem of
Replica Determinism. Norwell, MA: Kluwer, 1996.

[70] H. Pfeifer and F. W. von Henke, “Formal analysis for dependability
properties: the time-triggered architecture example,” in Proc. 8th
IEEE Int. Conf. Emerging Technologies and Factory Automation
(ETFA 2001), pp. 343–352.

[71] K. Tindell and J. Clark, “Holistic schedulability analysis for dis-
tributed hard real-time systems,” Microprocess. Microprogram., vol.
40, pp. 117–134, 1994.

[72] N. Navet, Y.-Q. Song, and F. Simonot, “Worst-case deadline failure
probability in real-time applications distributed over CAN (con-
troller area network),” J. Syst. Arch., vol. 46, no. 7, pp. 607–618,
2000.

[73] “X-by-wire—Safety related fault tolerant systems in vehicles (final
report),” X-by-Wire Project, Brite-EuRam 111 Program, Rep. No.
XByWire-DB-6/6-24, 1998.

Nicolas Navet received the M.S. degree in computer science from the Uni-
versity of Berlin, Berlin, Germany, in 1994 and the Ph.D. degree in computer
science from the University of Nancy, Nancy, France, in 1999.

Before joining the INRIA, LORIA Laboratory, Nancy, France, in
November 2000, he was a Research Scientist at Gemplus Software. His
research interests include scheduling theory, the design of communi-
cation protocols for real-time and fault-tolerant data transmission, and
probabilistic risk evaluation when transient faults may occur (e.g., elec-
tromagnetic interference). More information on his work can be found at
http://www.loria.fr/~nnavet.

YeQiong Song received the B.S. degree in telecommunications and com-
puter science from Beijing University of Posts and Telecommunication, Bei-
jing, China, in 1984, the M.Sc. degree in telecommunications and computer
science from University of Paris 6, Paris, France, in 1988, the Ph.D. degree in
telecommunications and computer science from the Institut National Poly-
technique de Lorraine, Lorraine, France, in 1991, and the Habilitation to
Lead Research (HdR) degree in telecommunications and computer science
from University of Henri Poincaré Nancy 1, Nancy, France, in 2004.

Since 1992, he has been an Associate Professor at University of Henri
Poincaré Nancy 1 and a Member of the TRIO research group, LORIA labo-
ratory, Vandoeuvre-lés-Nancy, France, since 1988. He was also a Full-Time
Researcher from 2001 to 2003 at INRIA Lorraine, Lorraine, France. His
research interests include on the one hand the modeling and performance
evaluation of networks and real-time distributed systems using queueing
analysis, network calculus, and scheduling theory, and on the other hand,
the implementation of real-time QoS mechanisms in fieldbuses, in-vehicle
networks, switched Ethernet, IP networks, and power line communication
networks.

1222 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 6, JUNE 2005



Françoise Simonot-Lion received the Habilitation to Lead Researches
(HdR) degree in computer science from the University of Nancy, Nancy,
France, in 1999

Since 1997, she has been the scientific team leader of TRIO, an INRIA
research project team (Real Time and InterOperability), at LORIA Lab-
oratory, Nancy, France, and was for four years (2001–2004) responsible
of CARAMELS, a Technological Research Team, granted by the ministry
for Research and Technology and associated with PSA Peugeot Citroën.
She participated in the French project Embedded Electronic Architec-
ture (AEE 1999–2001) and in the European project ITEA EAST-EEA
(2001–2004), whose purpose was to define a layered software architecture
focused on a middleware concept and a common architecture description
language supporting the formal description of in-vehicle embedded sys-
tems (EAST-ADL). She is currently Professor in Computer Science at
the Institut National Polytechnique de Lorraine (INPL), Nancy, France.
Since 2004, she is responsible for the “Safe Design for Embedded and
Ambient Systems” cursus at Ecole des Mines de Nancy—INPL. Her main
research topics are, on the one hand, modeling and verification techniques
for the design of optimized real time distributed applications under safety
constraints, and on the other hand, specification of embedded services
ensuring a real-time QoS (scheduling of tasks and messages, real-time
middleware, frame packing).

Cédric Wilwert received the Ph.D. degree in Computer Science at the
LORIA Laboratory (Nancy, France) in 2005 for work on the dependability
of x-by-wire automotive applications.

He is now working for the French carmaker PSA Peugeot Citroën, La
Garenne-Colombes Cedex, France, on the dependability of electronic engine
control systems.

NAVET et al.: TRENDS IN AUTOMOTIVE COMMUNICATION SYSTEMS 1223


	toc
	Trends in Automotive Communication Systems
	NICOLAS NAVET, YEQIONG SONG, FRANÇOISE SIMONOT-LION, and CÉDRIC 
	I. A UTOMOTIVE C OMMUNICATION S YSTEMS: C HARACTERISTICS AND C O
	From Point-to-Point to Multiplexed Communications: Since the 197
	Car Domains and Their Evolution: As all the functions embedded i
	Different Networks for Different Requirements: The steadily incr
	Event Triggered Versus Time Triggered: One of the main objective

	II. I N -C AR E MBEDDED N ETWORKS
	A. Priority Buses


	Fig.€1. Format of the CAN 2.0A data frame.
	Fig.€2. Format of the header field of the CAN 2.0A data frame.
	1) CAN: CAN is without a doubt the most widely used in-vehicle n

	Fig.€3. CAN arbitration phase with two nodes starting transmitti
	2) Vehicle Area Network (VAN): VAN (see [ 44 ] ) is very similar
	3) The J1850 Network: The J1850 [ 19 ] is an SAE class B priorit
	B. Time-Triggered Networks

	Fig.€4. Example of a TTP/C communication cycle with four nodes, 
	1) The TTP/C Protocol: The time-triggered protocol TTP/C, which 

	Fig.€5. Example of a FlexRay communication cycle with 4 nodes A,
	Fig.€6. Example of message scheduling in the dynamic segment of 
	2) FlexRay Protocol: A consortium of major companies from the au

	Fig.€7. Example of a TTCAN basic cycle.
	3) Time-Triggered CAN (TTCAN) Protocol: TTCAN (see [ 27 ] ) is a
	C. Low-Cost Automotive Networks

	Fig.€8. Format of the LIN frame. A frame is transmitted during i
	1) LIN: LIN (see [ 16 ] and [ 17 ] ) is a low-cost serial commun
	2) The TTP/A Network: Like TTP/C, TTP/A [ 18 ] was initially inv
	D. Multimedia Networks
	1) MOST Network: MOST (see [ 22 ] ) is a multimedia network deve
	2) The IDB-1394 Network: IDB-1394 is an automotive version of IE

	III. MW L AYER
	A. Functions of an Automotive MW
	B. State of the Art in Automotive MW
	1) OSEK/VDX Communication: The OSEK/VDX consortium 12 specifies 



	Fig.€9. I-PDU with direct transmission mode: the I-PDU is sent e
	2) Volcano: Volcano [ 59 ], [ 63 ] is a commercial product of Vo

	Fig.€10. I-PDU with mixed transmission mode: the I-PDU is sent w
	Fig.€11. Volcano services.
	3) OSEK/VDX Fault-Tolerant Communication (FTCom): OSEK/VDX Commu
	a) Message Handling: OSEK/VDX FTCom architecture is structured i


	Fig.€12. Structure and services of OSEK/VDX FTCom.
	Fig.€13. Fault tolerance through replicated channels and redunda
	Fig.€14. OSEK/VDX FTCom synchronization service on a time-trigge
	b) Synchronization Service: On a time-triggered OS such as OSEK 
	C. MW Configuration
	1) Frame Packing Over a Priority-Based Network: On a priority-ba
	2) Frame Packing Over a Time-Triggered Protocol: In TTP/C, the t

	IV. O PEN I SSUES FOR A UTOMOTIVE C OMMUNICATION S YSTEMS
	A. Optimized Networking Architectures
	B. System Engineering

	A. Albert, Comparison of event-triggered and time-triggered conc
	G. Leen and D. Heffernan, Expanding automotive electronic system
	K. Johansson, M. Törngren, and L. Nielsen, Handbook of Networked
	F. Simonot-Lion, In-car embedded electronic architectures: how t
	C. Wilwert, N. Navet, Y.-Q. Song, and F. Simonot-Lion, Design of
	M. Ayoubi, T. Demmeler, H. Leffler, and P. Köhn, X-by-Wire funct
	J. Rushby, A Comparison of Bus Architecture for Safety-Critical 
	M. Krug and A. V. Schedl, New demands for in-vehicle networks, i
	S. Poledna, W. Ettlmayr, and M. Novak, Communication bus for aut
	K. Ramaswamy and J. Cooper, Delivering multimedia content to aut
	Ford Motor Co . (2001) Ford to study in-vehicle electronic devic
	A. Avizienis, J. Laprie, and B. Randell, Fundamental concepts of

	J2056/2 survey of known protocols, in SAE Handbook . Warrendale,
	J2056/1 class C application requirements classifications, in SAE
	Intel Corp. . (2004) Introduction to in-vehicle networking . [On
	LIN Consortium . (2003, Sep.) LIN Specification Package, Revisio
	A. Rajnák, The Industrial Communication Technology Handbook, R. 
	H. Kopetz et al., Specification of the TTP/A Protocol . Vienna, 

	Class B Data Communications Network Interface SAE J1850 Standard
	Road Vehicles Low Speed Serial Data Communication Part 2: Low Sp
	Road Vehicles Interchange of Digital Information Controller Area
	MOST Cooperation . (2004, Aug.) MOST Specification Revision 2.3 
	TTTech Computertechnik GmbH . (2003, Nov.) Time-Triggered Protoc
	FlexRay Consortium . (2004, Jun.) FlexRay Communication System, 
	D. Millinger and R. Nossal, The Industrial Communication Technol
	P. Bühring, Safe-by-wire plus: bus communication for the occupan

	Road Vehicles Controller Area Network (CAN) Part 4: Time-Trigger
	J. Ferreira, P. Pedreiras, L. Almeida, and J. A. Fonseca, The FT
	P. Koopman, Critical embedded automotive networks, IEEE Micro (S
	K. Tindell, A. Burns, and A. J. Wellings, Calculating Controller
	N. Navet and Y.-Q. Song, Validation of real-time in-vehicle appl
	Y. Martin, L'avenir de l'automobile tient à un fil, L'argus de l
	CAN in Automation . (2005) Challenges in automotive applications
	B. Gaujal and N. Navet, Fault confinement mechanisms on CAN: ana
	M. Barranco, G. Rodriguez-Navas, J. Proenza, and L. Almeida, CAN
	G. Lima and A. Bums, Timing-independent safety on top of CAN, pr
	G. Rodriguez-Navas, M. Barranco, and J. Proenza, Harmonizing dep
	J. Ferreira, L. Almeida, J. Fonseca, G. Rodriguez-Navas, and J. 
	G. Rodriguez-Navas and J. Proenza, Clock synchronization in CAN 
	L. M. Pinho and F. Vasques, Reliable real-time communication in 
	L.-B. Fredriksson, CAN for critical embedded automotive networks
	M. Waern, Evaluation of protocols for automotive systems, M.S. t

	Road Vehicles Low Speed Serial Data Communication Part 3: Vehicl
	H. Kopetz, Real-Time Systems: Design Principles for Distributed 
	H. Kopetz, R. Nossal, R. Hexel, A. Krüger, D. Millinger, R. Pall
	TTA Group . (2004) TTP Frequently asked questions . [Online] . A
	G. Bauer and M. Paulitsch, An investigation of membership and cl
	H. Pfeifer, Formal verification of the TTP group membership algo
	G. Cena and A. Valenzano, Performance analysis of byteflight net
	OSEK Consortium . (2001, Jul.) OSEK/VDX Fault-Tolerant Communica
	Robert Bosch GmbH . (2004) Time Triggered Communication on CAN .
	B. Müller, T. Führer, F. Hartwich, R. Hugel, and H. Weiler, Faul

	Road Vehicles Diagnostics on CAN Part 2: Network Layer Services,
	Road Vehicles Diagnostics on CAN Part 1: General Information, IS
	Road Vehicles Diagnostics on CAN Part 3: Application Layer Servi
	CAN calibration protocol, version 2.1, ASAP Task Force, 1999.
	OSEK/VDX Communication, Version 3.0.3, OSEK Consortium . (2004, 
	L. Casparsson, A. Rajnak, K. Tindell, and P. Malmberg, Volcano A
	OSEK Consortium . (2004, Jul.) OSER/VOX System Generation OIL: O
	P. Feller, Real-time application development with OSEK A review 
	A. Rajnák and M. Ramnefors, The volcano communication concept, p
	C. Norström, K. Sandström, and M. Ahlmark, Frame packing in real
	R. Santos Marques, N. Navel, and F. Simonot-Lion, Frame packing 
	R. Saket and N. Navet . (2003) Frame packing algorithms for auto
	B. Gaujal and N. Navet . (2002) Maximizing the robustness of TDM
	S. Poledna, Fault-Tolerant Real-Time Systems: The Problem of Rep
	H. Pfeifer and F. W. von Henke, Formal analysis for dependabilit
	K. Tindell and J. Clark, Holistic schedulability analysis for di
	N. Navet, Y.-Q. Song, and F. Simonot, Worst-case deadline failur

	X-by-wire Safety related fault tolerant systems in vehicles (fin


