8,528 research outputs found

    A mechanism for Turing pattern formation with active and passive transport

    Get PDF
    We propose a novel mechanism for Turing pattern formation that provides a possible explanation for the regular spacing of synaptic puncta along the ventral cord of C. elegans during development. The model consists of two interacting chemical species, where one is passively diffusing and the other is actively trafficked by molecular motors. We identify the former as the kinase CaMKII and the latter as the glutamate receptor GLR-1. We focus on a one-dimensional model in which the motor-driven chemical switches between forward and backward moving states with identical speeds. We use linear stability analysis to derive conditions on the associated nonlinear interaction functions for which a Turing instability can occur. We find that the dimensionless quantity γ = αd/v2 has to be sufficiently small for patterns to emerge, where α is the switching rate between motor states, v is the motor speed, and d is the passive diffusion coefficient. One consequence is that patterns emerge outside the parameter regime of fast switching where the model effectively reduces to a twocomponent reaction-diffusion system. Numerical simulations of the model using experimentally based parameter values generates patterns with a wavelength consistent with the synaptic spacing found in C. elegans. Finally, in the case of biased transport, we show that the system supports spatially periodic patterns in the presence of boundary forcing, analogous to flow distributed structures in reaction-diffusion-advection systems. Such forcing could represent the insertion of new motor-bound GLR-1 from the soma of ventral cord neurons

    An active poroelastic model for mechanochemical patterns in protoplasmic droplets of Physarum polycephalum

    Get PDF
    Motivated by recent experimental studies, we derive and analyze a twodimensional model for the contraction patterns observed in protoplasmic droplets of Physarum polycephalum. The model couples a model of an active poroelastic two-phase medium with equations describing the spatiotemporal dynamics of the intracellular free calcium concentration. The poroelastic medium is assumed to consist of an active viscoelastic solid representing the cytoskeleton and a viscous fluid describing the cytosol. The model equations for the poroelastic medium are obtained from continuum force-balance equations that include the relevant mechanical fields and an incompressibility relation for the two-phase medium. The reaction-diffusion equations for the calcium dynamics in the protoplasm of Physarum are extended by advective transport due to the flow of the cytosol generated by mechanical stresses. Moreover, we assume that the active tension in the solid cytoskeleton is regulated by the calcium concentration in the fluid phase at the same location, which introduces a chemomechanical feedback. A linear stability analysis of the homogeneous state without deformation and cytosolic flows exhibits an oscillatory Turing instability for a large enough mechanochemical coupling strength. Numerical simulations of the model equations reproduce a large variety of wave patterns, including traveling and standing waves, turbulent patterns, rotating spirals and antiphase oscillations in line with experimental observations of contraction patterns in the protoplasmic droplets.Comment: Additional supplemental material is supplie

    Intracellular mechanochemical waves in an active poroelastic model

    Get PDF
    Many processes in living cells are controlled by biochemical substances regulating active stresses. The cytoplasm is an active material with both viscoelastic and liquid properties. We incorporate the active stress into a two-phase model of the cytoplasm which accounts for the spatiotemporal dynamics of the cytoskeleton and the cytosol. The cytoskeleton is described as a solid matrix that together with the cytosol as an interstitial fluid constitutes a poroelastic material. We find different forms of mechanochemical waves including traveling, standing, and rotating waves by employing linear stability analysis and numerical simulations in one and two spatial dimensions.Peer ReviewedPostprint (published version

    Transverse Patterns in Nonlinear Optical Resonators

    Full text link
    The book is devoted to the formation and dynamics of localized structures (vortices, solitons) and extended patterns (stripes, hexagons, tilted waves) in nonlinear optical resonators such as lasers, optical parametric oscillators, and photorefractive oscillators. The theoretical analysis is performed by deriving order parameter equations, and also through numerical integration of microscopic models of the systems under investigation. Experimental observations, and possible technological implementations of transverse optical patterns are also discussed. A comparison with patterns found in other nonlinear systems, i.e. chemical, biological, and hydrodynamical systems, is given. This article contains the table of contents and the introductory chapter of the book.Comment: 37 pages, 14 figures. Table of contents and introductory chapter of the boo

    Stochastic Turing pattern formation in a model with active and passive transport

    Get PDF
    We investigate Turing pattern formation in a stochastic and spatially discretized version of a reaction diffusion advection (RDA) equation, which was previously introduced to model synaptogenesis in \textit{C. elegans}. The model describes the interactions between a passively diffusing molecular species and an advecting species that switches between anterograde and retrograde motor-driven transport (bidirectional transport). Within the context of synaptogenesis, the diffusing molecules can be identified with the protein kinase CaMKII and the advecting molecules as glutamate receptors. The stochastic dynamics evolves according to an RDA master equation, in which advection and diffusion are both modeled as hopping reactions along a one-dimensional array of chemical compartments. Carrying out a linear noise approximation of the RDA master equation leads to an effective Langevin equation, whose power spectrum provides a means of extending the definition of a Turing instability to stochastic systems, namely, in terms of the existence of a peak in the power spectrum at a non-zero spatial frequency. We thus show how noise can significantly extend the range over which spontaneous patterns occur, which is consistent with previous studies of RD systems.Comment: 26 pages, 8 figure

    Introduction: Localized Structures in Dissipative Media: From Optics to Plant Ecology

    Full text link
    Localised structures in dissipative appears in various fields of natural science such as biology, chemistry, plant ecology, optics and laser physics. The proposed theme issue is to gather specialists from various fields of non-linear science toward a cross-fertilisation among active areas of research. This is a cross-disciplinary area of research dominated by the nonlinear optics due to potential applications for all-optical control of light, optical storage, and information processing. This theme issue contains contributions from 18 active groups involved in localized structures field and have all made significant contributions in recent years.Comment: 14 pages, 0 figure, submitted to Phi. Trasaction Royal Societ

    Using mathematical models to help understand biological pattern formation

    Get PDF
    One of the characteristics of biological systems is their ability to produce and sustain spatial and spatio-temporal pattern. Elucidating the underlying mechanisms responsible for this phenomenon has been the goal of much experimental and theoretical research. This paper illustrates this area of research by presenting some of the mathematical models that have been proposed to account for pattern formation in biology and considering their implications.To cite this article: P.K. Maini, C. R. Biologies 327 (2004)

    Doctor of Philosophy

    Get PDF
    dissertationThe interplay of dynamics and structure is a common theme in both mathematics and biology. In this thesis, the author develops and analyzes mathematical models that give insight into the dynamics and structure of a variety of biological applications. The author presents a variety of contributions in applications of mathematics to explore biological systems across several scales. First, she analyzes pattern formation in a partial differential equation model based on two interacting proteins that are undergoing passive and active transport, respectively. This work is inspired by a longstanding problem in identifying a biophysical mechanism for the control of synaptic density in C. elegans and leads to a novel mathematical formulation of Turing-type patterns in intracellular transport. The author also demonstrates the persistence of these patterns on growing domains, and discusses extensions for a two-dimensional model. She then presents two models that explore how stochastic processes affect intracellular dynamics. First, the author and her collaborators derive effective stochastic differential equations that describe intermittent virus trafficking. Next, she shows how ion channel fluctuations lead to subthreshold oscillations in neuron models. In the final chapter, she discusses two projects for ongoing and future work: one on modeling parasite infection on dynamic social networks, and another on the bifurcation structure of localized patterns on lattices. All of these projects, presented together, chronicle the journey of the author through her mathematical development and attempts to identify, discover, create, and communicate mathematics that inspires and excites

    Pattern formation at cellular membranes by phosphorylation and dephosphorylation of proteins

    Get PDF
    We consider a classical model on activation of proteins, based in two reciprocal enzymatic biochemical reactions. The combination of phosphorylation and dephosphorylation reactions of proteins is a well established mechanism for protein activation in cell signalling. We introduce different affinity of the two versions of the proteins to the membrane and to the cytoplasm. The difference in the diffusion coefficient at the membrane and in the cytoplasm together with the high density of proteins at the membrane which reduces the accessible area produces domain formation of protein concentration at the membrane. We differentiate two mechanisms responsible for the pattern formation inside of living cells and discuss the consequences of these models for cell biology.Peer ReviewedPreprin
    • …
    corecore