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ABSTRACT

The interplay of dynamics and structure is a common theme in both mathematics and

biology. In this thesis, the author develops and analyzes mathematical models that give

insight into the dynamics and structure of a variety of biological applications. The author

presents a variety of contributions in applications of mathematics to explore biological

systems across several scales. First, she analyzes pattern formation in a partial differential

equation model based on two interacting proteins that are undergoing passive and active

transport, respectively. This work is inspired by a longstanding problem in identifying a

biophysical mechanism for the control of synaptic density in C. elegans and leads to a novel

mathematical formulation of Turing-type patterns in intracellular transport. The author

also demonstrates the persistence of these patterns on growing domains, and discusses

extensions for a two-dimensional model. She then presents two models that explore how

stochastic processes affect intracellular dynamics. First, the author and her collaborators

derive effective stochastic differential equations that describe intermittent virus trafficking.

Next, she shows how ion channel fluctuations lead to subthreshold oscillations in neuron

models. In the final chapter, she discusses two projects for ongoing and future work: one

on modeling parasite infection on dynamic social networks, and another on the bifurca-

tion structure of localized patterns on lattices. All of these projects, presented together,

chronicle the journey of the author through her mathematical development and attempts

to identify, discover, create, and communicate mathematics that inspires and excites.
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CHAPTER 1

OVERVIEW OF THE THESIS

This thesis and the work contained within is a reflection of two pieces of advice that I

received during my graduate studies in math. The first came to me at the very beginning of

my Ph.D. program from Paul Bressloff, the man who would eventually become my thesis

advisor. He advised me that if I wanted to be successful in academia, the most important

thing for me to do was work on problems that I was intrinsically driven and excited by. If

and when Paul complains that my thesis has too many different pieces of work, I like to

remind him that it’s a direct result of this advice. During my years as a graduate student,

I have been fortunate to encounter a variety of mathematics that has delighted me, and I

am grateful that I was given the space to pursue all of these questions.

This year, as I was finishing up my Ph.D., I received a complementary piece of advice

from my mentor and collaborator Nina Fefferman. Nina told me - or perhaps, reminded

me - that when communicating your work, it is important to identify what it is that mo-

tivates you. These two pieces of advice sum up what this thesis represents: a journey to

identify, discover, create, and communicate mathematics that inspires and excites me.

1.1 Motivation
I still vividly remember the first mathematical model I saw that really inspired me.

It was the Hodgkin-Huxley equations, which are a system of differential equations that

model the dynamics of ion channels and membrane potential of a neuron [8]. I was struck

by the fact that, while neural dynamics are complicated, the mathematics was not. This

model pointed to a profound concept – that neurons are subject to the same underlying

physical principles as circuits, and mathematics is the language by which we can ana-

lyze these general physical principles. I decided I wanted to become a mathematician

when I encountered models with this theme again and again in biological applications

as diverse as the synchrony of fireflies (as presented in [22]) and pattern formation in
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reaction-diffusion systems [23].

What has become clear to me during my mathematical development is that I am par-

ticularly motivated by problems where an underlying spatial structure contributes to the

self-organization of a given system. This interest was originally born from a delight in

beautiful patterns, but has developed into a desire to understand how the underlying

interplay of structure and movement creates self-organization – often in surprising ways.

During my graduate work, I have primarily pursued problems in biological applications

because these systems are a fruitful source of inspiration where these mathematical motifs

arise again and again, and in turn they lead to the development of new mathematics.

In this thesis, I present a variety of my contributions in applications of mathematics

to explore the dynamics and structure of biological systems across several scales. On

the molecular level, we use stochastic hybrid systems to understand the dynamics of ion

channel fluctuations (Chapter 6). On the cellular level, we use linear and weakly nonlin-

ear analysis on systems of partial differential equations to understand pattern formation

(Chapters 2, 3, and 4) and derive stochastic differential equations for virus trafficking

(Chapter 5). Finally, in Chapter 7, we look at how network structure affects the dynamics

of parasite spread on the population level.

1.2 The problems
In this section, I outline the structure of this thesis chapter-by-chapter, explaining my

personal motivation for each problem along the way.

In Chapter 2, we analyze pattern formation in a partial differential equation model

based on two interacting proteins that are undergoing passive and active transport, re-

spectively. I start with this project because it is the largest (in terms of page length and

content) and longest (in terms of time I spent working on it). This work is motivated by a

longstanding problem in identifying a biophysical mechanism for the control of synaptic

density in C. elegans [19] and leads to a novel mathematical formulation of Turing-type

patterns in intracellular transport [3]. This problem was exciting to me because Turing

mechanisms provide an elegant biophysical explanation for the spatial organization of

interacting particles, but existence of these pattern formation mechanisms has gone largely

unexplored in the context of intracellular transport.
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While the primary results are mathematical, the original inspiration for this problem is

biological. The dynamical processes underlying the establishment of synaptic connections

during neural development are thought to be critical in learning and memory. Since the

proteins and transport mechanisms that regulate synaptic development are conserved

across multiple species, considerable insights can be obtained by studying simpler organ-

isms such as the nematode worm Caenorhabditis elegans (abbreviated C. elegans). During

development, the density of synapses containing the glutamate receptor GLR-1 is main-

tained despite significant changes in length [19]. It is known that this maintenance also

requires the protein kinase CaMKII, which regulates the active transport and delivery of

GLR-1 to synapses [9, 10, 19]. However, a long outstanding problem has been identifying

a possible physical mechanism involving diffusing CaMKII molecules and motor-driven

GLR-1 that leads to the control of synaptic density [19]. Although the above problem

arises within the context of neural development, it raises a more general issue regarding

self-organization in systems of actively and passively transported particles. That is, the

formation of a regularly spaced distribution of synapses at an early stage of development

is suggestive of some form of Turing-like pattern formation. The traditional mechanism

for spontaneous pattern formation due to Turing [23] is the interaction of two or more

passively diffusing chemical species undergoing nonlinear reaction kinetics and having

different rates of diffusion [13, 17]. In joint work with Paul Bressloff, I propose an alterna-

tive pattern-forming mechanism [3], involving the interaction between a slowly diffusing

species (e.g., CaMKII) and a rapidly advecting species (e.g., GLR-1) switching between

anterograde and retrograde motor-driven transport (bidirectional transport).

To investigate the proposed pattern formation mechanism, we develop a model of

three partial differential equations on a one-dimensional domain with no flux boundary

conditions. Our main results are as follows:

1. Using linear stability analysis, we derive the conditions for the emergence of patterns

on a one-dimensional domain of fixed length. This allows us to derive analytic

conditions on the parameter γ, which is the ratio of switching rate and diffusion

coefficient to active transport velocity. We find an expression for the critical value of

γ, below which instabilities arise. This is analogous to the previous results obtained

in reaction-diffusion equations, where pattern formation requires fast (long-range)
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inhibition.

2. Pattern formation arises outside of the fast switching parameter regime, that is, when

bidirectional switching rate α = O(ε−1). It would be natural to suppose that patterns

arise in this transport mechanism because the bidirectional switching in some sense

“acts like” diffusion. However, this is not the case: in the adiabatic limit, this system

reduces to a reaction-diffusion equation that does not satisfy the necessary conditions

for pattern formation.

3. This pattern formation mechanism is robust to asymmetries in transport velocities.

We have derived analytical conditions under which the biased version of our model

supports patterns that persist in time.

With biologically relevant parameter values, our model produces ∼ 4 evenly distributed

peaks of GLR-1 in a 10 µm segment of ventral cord, which matches what is observed in the

in vivo data for a ventral cord of fixed length.

Chapter 3 is a natural extension of Chapter 2. According to the observations in [19],

synapse density is established early in larval development and is maintained as the worm

grows. Thus, in order to convincingly apply our pattern formation model to the C. elegans

system, we need to show that patterns can be maintained on a growing domain. In

this chapter, we show that if the domain grows isotropically, this system can continue to

self-organize and new synapses can be inserted to maintain patterns. Following the work

of Crampin et al. [5], we derive evolution equations for the growing domain by rewrit-

ing spatial position using a Lagrangian coordinate description and applying Reynold’s

transport theorem. Under this transformation, the domain growth can be interpreted as

time-dependent diffusion and velocity coefficients, representing dilution and local flow.

In this formulation, we then show that this mechanism supports synapse insertion on the

growing domain.

In Chapter 4, we present additional mathematical extensions of pattern formation in

the reaction-transport model. Linear stability analysis allows us to derive conditions to

understand when and how patterns arise in a particular system, but it does not give us

any information about the selection and stability of these patterns. These features are

determined by the nonlinearities of the system. In order to investigate the stability of the
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periodic patterns that arise in the one-dimensional model, we perform a weakly nonlinear

stability analysis. Using the method of multiple scales, we derive an amplitude equation to

describe the slow timescale evolution of patterns. It is important to note that, since patterns

do not arise in the fast switching limit, this analysis must be applied to the full model. In

the second part of this chapter, I present the future work for this project, which involves

developing a two-dimensional version of the reaction-transport model and performing

bifurcation analysis on the resulting model. In the two-dimensional case, the underlying

microtubule network structure will affect the resulting pattern dynamics.

Thinking about how the structure of microtubule networks influences intracellular

transport leads us naturally to Chapter 5, in which I present a stochastic model of intracel-

lular transport of viruses. The motivation for me to undertake this project was to explore

the interesting dynamics introduced to intracellular transport by random switching. As

a result of this randomness, careful mathematical analysis is required to capture how

domain geometry affects stochastic processes.

Cells rely on their transport structures to ensure proper cell function. However, these

transport mechanisms can also be exploited by viruses. Viruses lack cellular structure and

metabolism, and thus are unable to replicate themselves; they rely on the infrastructure of

infected host cells for this purpose. In order for a virus to replicate itself successfully within

its host, it needs to navigate to the cell’s nucleus, all without any of its own locomotion

mechanisms [6]. Single particle tracking experiments [1, 20] show that viral motion alter-

nates between passive diffusion in the cytosol and ballistic transport along microtubules.

This erratic, alternating motion behavior makes quantitative analysis difficult.

Most of the existing mathematical work on this topic takes an effective stochastic dif-

ferential equation as a starting point for study of these processes [11, 14]. There exists a

previous reduction of the full process to a stochastic differential equation (SDE) due to

Lagache and Holcman [15], but this method is only applicable for two-dimensional cell

geometries. Furthermore, their method captures only the mean first passage time for the

virus to reach the nucleus and not the mean first passage time distribution.

In this work, joint with Sean Lawley and Marie Tuft, we develop a method to derive

an effective SDE that encapsulates the switching transport dynamics and captures several

important features of the associated probability distributions when compared to Monte
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Carlo simulations of the full process for an illustration of this process cell modeled by a

two-dimensional disk. In order to write down an SDE with the correct drift and diffusion

coefficients, we need to know the probability that the virus is on a microtubule given its

radial position. By partitioning (or ‘coarse-graining’) the space between the microtubules

and approximating diffusion as a Markov jump process on this partition, we are able to

use the adiabatic limit to approximate the proportion of time spent on a microtubule.

Our primary results are as follows:

1. Our effective SDE matches the empirical first passage time distributions generated by

numerical simulations of the full intermittent process. This is in contrast to previous

work by other groups, which only matched mean first passage times. We also show

that the distribution of viral position x at various times t corresponds well with the

full process for all geometries that we explored.

2. Due to the generality, our coarse-graining method can be applied to a variety of cell

geometries. In particular, we have derived an effective SDE for virus trafficking in

a three-dimensional spherical cell as well as a three-dimensional cylindrical cell, in

addition to the two-dimensional disk model described above.

In Chapter 6, I present another problem where random fluctuations affect the dynamics

of the biological system – this time, on the molecular scale. In this work, we look at the

effects of stochastic ion channel fluctuations on subthreshold voltage oscillations in neu-

rons [2]. Intrinsic noise arising from the stochastic opening and closing of voltage-gated

ion channels has been shown experimentally and mathematically to have important effects

on a neuron’s function. Study of classical neuron models with stochastic ion channels is

becoming increasingly important, especially in understanding a cell’s ability to produce

subthreshold oscillations and a response to weak periodic stimuli. While it is known

that stochastic models can produce oscillations (quasicycles) in parameter regimes where

the corresponding deterministic model has only a stable fixed point, little work has been

done previously to explore these connections to channel noise. Using a stochastic hybrid

Morris-Lecar model [16, 21, 12, 18], we combined a system size expansion in potassium

ions (K+) and a quasi-steady-state diffusion approximation in persistent sodium (Na+)

in order to derive an effective SDE. By determining the corresponding power spectrum,
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we establish that noise significantly extends the parameter regime in which subthreshold

oscillations occur. Moreover, we found that under physiological conditions, the major

contributor to the existence of quasicycles is persistent sodium channel noise.

Finally, I present two projects in Chapter 7 that are currently in development: one that

explores dynamics and structure in a new biological application, and one that formalizes

new mathematics for patterns on lattices. First, I discuss a collaborative project with

Nina Fefferman, Maryann Hohn, Candice Price, Ami Radunskaya, Suzanne Sindi, Nakeya

Williams, and Shelby Wilson, where we examine dynamics and structure on the popula-

tion level; in particular, we examine how parasites alter the optimal social strategies for a

population’s evolutionary fitness. A population’s evolutionary fitness is inherently tied to

its social structure. On one hand, social animals experience group fitness benefits such as

predator protection or increased ability to locate resources. However, due to close contact,

these social groups may be more susceptible to infection from pathogens or parasites.

Previous work has shown that different social systems yield different epidemic burdens

for pathogens, which raises the interesting question of whether pathogen spread is a result

of complex social network structure or whether such structures evolved to mitigate the

effects of pathogens [7]. Prior to the work of this collaboration group, no such studies

have examined the results of parasite infection in dynamic social networks, despite the

fact that parasite transmission and infection is deeply intertwined with social behaviors

like allogrooming.

We will develop an agent-based simulation of a dynamic social network which orga-

nizes according to various social metrics. In particular, we focus on networks that self-

organize based on degree (the number of nodes to which a node is connected), closeness

(a measure of the average path length between nodes), and betweenness (the percentage

of shortest paths from one node in the network to another node). We will use these sim-

ulations to explore how pathogen spread differs on networks for each particular measure.

This agent-based model also allows us to explore how system parameters such as parasite

reproduction and grooming effectiveness alter the infection burden of the population, and

whether certain individuals are more influential in determining population risk because

of their social standing.

In addition to working toward an agent-based model, we have developed a model of
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ordinary differential equations to represent parasite infection load in a population. By

subdividing the population into individuals that are infected and uninfected by parasites,

we can analyze the steady-state behaviors and gain insight into the influence of model

parameters such as grooming efficiency and individual fitness. Preliminary results in this

continuous deterministic model suggest that a hub-periphery network structure may be

beneficial in allowing a population to mitigate parasite infection.

In the second portion of Chapter 7, I discuss a set of proposed problems on bifurcations

of localized patterns. This project is joint work with Jason Bramburger and Björn Sandst-

ede, and will advance the study of applied dynamical systems through investigation of

localized patterns on lattices. This project builds off of my previous analysis of pattern

formation in biological systems (for example [2, 3, 4]) to develop a more rigorous general

theory of pattern formation. First, we will prove the existence of snaking bifurcations

(and thus localized patterns) in the analog of the Swift-Hohenberg equation on a one-

dimensional lattice with no spatial coupling, and then extend this proof to the case of

general one-dimensional lattice maps that exhibit snaking. We then seek to investigate the

structure of bifurcation diagrams of localized patterns on two-dimensional lattices, where

a greater variety of patterns are possible and depend on the underlying symmetries of

the lattice. These problems provide opportunities for mastery of new bifurcation theory

techniques and will help me further my understanding of the effects of spatial coupling on

localized patterns in a variety of physical systems.
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[6] K. Döhner, C.-H. Nagel, and B. Sodeik, Viral stop-and-go along microtubules: Taking
a ride with dynein and kinesins, Trends Microbiol., 13 (2005), pp. 320–327.

[7] K. Hock and N. H. Fefferman, Social organization patterns can lower disease risk without
associated disease avoidance or immunity, Ecol. Complex., 12 (2012), pp. 34–42.

[8] A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its
application to conduction and excitation in nerve, J. Physiol., 117 (1952), pp. 500–544.

[9] F. J. Hoerndli, D. A. Maxfield, P. J. Brockie, J. E. Mellem, E. Jensen, R. Wang,

D. M. Madsen, and A. V. Maricq, Kinesin-1 regulates synaptic strength by mediating the
delivery, removal, and redistribution of AMPA receptors, Neuron, 80 (2013), pp. 1421–1437.

[10] F. J. Hoerndli, R. Wang, J. E. Mellem, A. Kallarackal, P. J. Brockie,

C. Thacker, D. M. Madsen, and A. V. Maricq, Neuronal activity and CaMKII regulate
kinesin-mediated transport of synaptic AMPARs, Neuron, 86 (2015), pp. 457–474.

[11] D. Holcman, Modeling DNA and virus trafficking in the cell cytoplasm, J. Stat. Phys., 127
(2007), pp. 471–494.

[12] J. P. Keener and J. M. Newby, Perturbation analysis of spontaneous action potential
initiation by stochastic ion channels, Phys. Rev. E, 84 (2011), p. 011918.

[13] A. Koch and H. Meinhardt, Biological pattern formation: From basic mechanisms to
complex structures, Rev. Modern Phys., 66 (1994), p. 1481.

[14] T. Lagache, E. Dauty, and D. Holcman, Quantitative analysis of virus and plasmid
trafficking in cells, Phys. Rev. E, 79 (2009), p. 011921.

[15] T. Lagache and D. Holcman, Effective motion of a virus trafficking inside a biological cell,
SIAM J. Appl. Math., 68 (2008), pp. 1146–1167.

[16] C. Morris and H. Lecar, Voltage oscillations in the barnacle giant muscle fiber, Biophys.
J., 35 (1981), pp. 193–213.

[17] J. D. Murray, Mathematical Biology II. Spatial Models and Biomedical Applications,
vol. 18, Springer-Verlag New York Incorporated, 2001.

[18] J. M. Newby, P. C. Bressloff, and J. P. Keener, Breakdown of fast-slow analysis in
an excitable system with channel noise, Phys. Rev. Lett., 111 (2013), p. 128101.

[19] C. Rongo and J. M. Kaplan, CaMKII regulates the density of central glutamatergic
synapses in vivo, Nature, 402 (1999), p. 195.

[20] G. Seisenberger, M. U. Ried, T. Endress, H. Büning, M. Hallek, and C. Bräuchle,
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A Mechanism for Turing Pattern Formation with Active and Passive Transport∗

Heather A. Brooks† and Paul C. Bressloff†

Abstract. We propose a novel mechanism for Turing pattern formation that provides a possible explanation
for the regular spacing of synaptic puncta along the ventral cord of C. elegans during development.
The model consists of two interacting chemical species, where one is passively diffusing and the
other is actively trafficked by molecular motors. We identify the former as the kinase CaMKII and
the latter as the glutamate receptor GLR-1. We focus on a one-dimensional model in which the
motor-driven chemical switches between forward and backward moving states with identical speeds.
We use linear stability analysis to derive conditions on the associated nonlinear interaction functions
for which a Turing instability can occur. We find that the dimensionless quantity γ = αd/v2 has
to be sufficiently small for patterns to emerge, where α is the switching rate between motor states,
v is the motor speed, and d is the passive diffusion coefficient. One consequence is that patterns
emerge outside the parameter regime of fast switching where the model effectively reduces to a two-
component reaction-diffusion system. Numerical simulations of the model using experimentally based
parameter values generates patterns with a wavelength consistent with the synaptic spacing found
in C. elegans. Finally, in the case of biased transport, we show that the system supports spatially
periodic patterns in the presence of boundary forcing, analogous to flow distributed structures in
reaction-diffusion-advection systems. Such forcing could represent the insertion of new motor-bound
GLR-1 from the soma of ventral cord neurons.

Key words. pattern formation, Turing instability, motor-driven transport, switching dynamical systems,
diffusion
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1. Introduction. Pattern formation and symmetry breaking is a question of great theoret-
ical and experimental interest. While the study of morphogenesis has a rich history, perhaps
the most well-known contribution is the 1952 paper of Alan Turing [34]. In this classical
work, Turing suggested two necessary parts of pattern formation: two (or more) interacting
chemical species, with different rates of diffusion for the participating species. Turing derived
conditions such that the combination of nonlinear reaction kinetics and diffusion can lead to
instability of the homogeneous steady state. These instabilities are known as Turing patterns.
Gierer and Meinhardt [8] highlighted one important general example where these conditions
hold, namely, that the system involves a short-range activator and a long-range inhibitor.
Turing patterns in reaction-diffusion equations are well understood and have been studied in
a variety of contexts, including biology, chemistry, and physics [20].
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While interest in Turing pattern formation was initially primarily theoretical, there is an
ever expanding literature on applications and extensions. Reaction-diffusion mechanisms have
been implicated in the development of feather patterns, vertebrate skin patterns, seashells [17],
and zebrafish stripes [36], as well as limb development [1] and ocular dominance stripes [33].
In addition, there have been many efforts to expand the understanding of conditions beyond
the traditional reaction-diffusion paradigm under which patterns may form. To give a few
examples, Turing-type patterns have been shown to form on growing domains [5], via a signal
transduction mechanism [25], and via mechanical instability [10]. In this paper, we further
extend this literature by proposing a novel mechanism for Turing pattern formation, which is
driven by two interacting chemical species, where one is passively diffusing and the other is
being actively trafficked by molecular motors.

The biological motivation underlying our proposed active trafficking mechanism for Tur-
ing pattern formation comes from cellular biology, in particular, the observation that there
is a regularly spaced distribution of ventral cord and dorsal cord synapses in Caenorhabditis
elegans, as illustrated in Figure 1. There is growing experimental evidence that synaptogen-
esis involves the regulation of the active (kinesin-based) transport and delivery of glutamate
receptors (GLR-1) to synapses by type II calcium- and calmodulin-dependent protein kinase
(CaMKII) [26, 11, 12]; see Figure 2. First, the activation (autophosphorylation) of CaMKII
via voltage-gated calcium channels induces the formation of new synapses by enhancing the
active transport and delivery of GLR-1 to developing synaptic sites. On the other hand, the
resulting increase in excitation arising from the increase in membrane-bound receptors leads
to the synaptic delocalization of active CaMKII due to increased calcium levels. This is con-
sistent with the observation that the synaptic localization of CaMKII changes in response to
autophosphorylation [31]. In this paper, we show how a regular spacing of synapses can be
established in C. elegans via an underlying Turing mechanism for synaptogenesis involving a
short-range activator and a long-range inhibitor. We identify the former as slowly diffusing
CaMKII and the latter as a rapidly advecting GLR-1, which switches between anterograde
and retrograde motor-driven transport (bidirectional transport). Our Turing mechanism is
novel, since the inhibitor does not diffuse.

The outline of this paper is as follows. In section 2 we formulate a three-component
(two chemical species), one-dimensional (1D) model of synaptogenesis in C. elegans, with

Figure 1. Schematic figure showing distribution of synapses of the type D motor neurons. The D type
neurons include six DD and 13 VD neurons. DD form synapses to the dorsal body muscles and VD form
synapses to the ventral muscles. Blobs: synapses to muscles; arrows: synaptic inputs to the D neurons.
Below are GFP images of synaptic puncta in the dorsal and ventral cords, respectively. (Public domain figure
downloaded from WormBook/Synaptogenesis by Y. Jin, http://www.wormbook.org/.)
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Figure 2. Regulation of transport and delivery of GLR-1 to synapses by CaMKII. (A) Calcium influx
through voltage-gated calcium channels activates CaMKII, which enhances the active transport and delivery of
GLR-1 to synapses. (B) Under conditions of increased excitation, higher calcium levels result in active CaMKII
which fails to localize at synapses, leading to the removal of GLR-1 from synapses.

an activator CaMKII moving only via diffusion and an inhibitor GLR-1 traveling by active
(motor-driven) transport in either the leftward or rightward direction. We take the reaction
kinetics of the two chemical species to be based on a modified Gierer–Meinhardt model [8],
since CaMKII exhibits autophosphorylation. We then use linear stability analysis to derive
conditions for a Turing instability and construct dispersion curves (section 3). It could be
argued that occurrence of patten formation in our transport model is not particularly surpris-
ing, since one might be inclined to interpret switching between left and right moving states
as effectively equivalent to diffusion. However, this equivalence holds only in the limit of fast
switching, and we show that this lies outside the pattern forming regime of our model. In
section 4 we break the symmetry between the left- and right-moving active particles by taking
their speeds to be different. This biased transport model reduces to a reaction-diffusion-
advection (RDA) model in the fast switching limit. We show that the full system supports
spatially periodic flow-distributed structures (FDS) on a semi-infinite domain with boundary
forcing, analogous to what is found in RDAs [30]. Finally, in section 5 we highlight extensions
to this work and future areas of research.

2. Three-component trafficking model. Consider a 1D domain of fixed length L, which
represents a neurite in the ventral cord of C. elegans at a particular stage of larval development;
see Figure 3. Let R(x, t) denote the concentration of GLR-1 receptors at position x along the
cell at time t and let U(x, t) denote the corresponding concentration of active CaMKII. For
simplicity, we do not distinguish between membrane-bound and cytoplasmic densities. Within
the context of synaptogenesis, we will interpret steady-state regions of enhanced densities in
GLR-1 and CaMKII as potential synaptic sites. This imposes one constraint on our model,
namely, that spatially periodic distributions of CaMKII and GLR-1 are in-phase. (A more
detailed model would explicitly take into account the Ca2+-dependent localization of CaMKII

14
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x

motor
-v

CaMKII

Figure 3. One-dimensional, three-component trafficking model. Passively transported molecules of CaMKII
(green) react with motor-driven actively transported molecules of GLR-1 (red). The latter can switch between
forward and backward moving states (traveling with velocities ±v). Interactions between motor-driven particles
such as exclusion effects (hard-core repulsion) are ignored.

at the membrane and the CaMKII-dependent delivery of GLR-1 to developing synaptic sites.)
We partition GLR-1 into two subpopulations: those that undergo anterograde (rightward)
transport with positive velocity v and density R+(x, t) and those that undergo retrograde
(leftward) transport with negative velocity −v and density R−(x, t):

(2.1) R(x, t) = R+(x, t) +R−(x, t).

(The case of different speeds in the left and right directions will be considered in section
4.) Individual receptors randomly switch between the two advective states according to a
two-state Markov process,

(2.2) R+
α

α
R−.

This is based on the assumption that actively transported particles (ATs) are transported
bidirectionally along a microtubule or actin filament by some motor complex [3]. We take the
various concentrations to evolve according to the system of equations

∂U

∂t
= D

∂2U

∂x2
+ f(U,R+, R−),(2.3a)

∂R+

∂t
= −v∂R+

∂x
− αR+ + αR− + g(U,R+, R−),(2.3b)

∂R−
∂t

= v
∂R−
∂x

+ αR+ − αR− + g(U,R+, R−).(2.3c)

The first term on the right-hand side of (2.3a) represents diffusive transport of CaMKII and
the first term on the right-hand side of (2.3b) and (2.3c) represents ballistic transport of
GLR-1 to the right or left, respectively. The terms ±α(r− l) represent the effects of switching
between the two advective states. The reaction term f represents both the autocatalysis of
CaMKII and the inhibition of CaMKII by GLR-1, whereas the reaction terms g represent
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Figure 4. Schematic diagram of modified Gierer and Meinhardt activator-inhibitor model with a passively
diffusing activator (U) and an actively transported inhibitor switching between left (R−) and right (R+) moving
states at a rate α.

the increase in actively transported GLR-1 due to the action of CaMKII. Finally, (2.3) are
supplemented by reflecting boundary conditions at the ends x = 0, L:

∂U(x, t)

∂x

∣∣∣∣
x=0,L

= 0, vR+(0, t) = vR−(0, t), vR+(L, t) = vR−(L, t).(2.4)

It remains to specify the form of the nonlinear reaction functions f and g. Since the precise
details of the interaction between CaMKII and GLR-1 are currently not known, we will adapt
a classical model of autocatalysis in pattern forming systems due to Gierer and Meinhardt
(GM model) [8]. The GM model consists of an activator-inhibitor system with bimolecular
activation and monomolecular inhibition; see Figure 4. More specifically, we take

f(U,R+, R−) =
ρU2

R+ +R−
− µ1U,(2.5a)

g(U,R+, R−) = ρU2 − µ2(R+ +R−).(2.5b)

Here, ρ > 0 represents the strength of interactions and µ1, µ2 represent the degradation rates
of CaMKII and GLR-1, respectively. We are assuming that both left and right GLR-1 have an
equal inhibitory effect on CaMKII, and for simplicity we have also taken g to be a symmetric
function of R±. (This can also be imposed by an appropriate shift in the switching rates; the
basic results of the paper do not depend on imposing such a symmetry; see also the discussion
of biased transport in section 4.) Another biologically based reason for choosing the GM model
is that it generates in-phase patterns for two-component reaction-diffusion systems [20].

3. Conditions for Turing instability in trafficking model. In the following it will be
convenient to rescale space and time such that x̂ = αx/v and t̂ = αt, so that (2.3) become
(after dropping the hat notation)

∂U

∂t
= γ

∂2U

∂x2
+

1

α
f(U,R+, R−),(3.1a)

∂R+

∂t
= −∂R+

∂x
+R− −R+ +

1

α
g(U,R+, R−),(3.1b)

∂R−
∂t

=
∂R−
∂x

+R+ −R− +
1

α
g(U,R+, R−),(3.1c)

16



Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1828 HEATHER A. BROOKS AND PAUL C. BRESSLOFF

where

(3.2) γ =
αD

v2

is the nondimensional quantity relating the CaMKII diffusion coefficient, GLR-1 velocity, and
motor switching rate. As we shall see, γ is the analogue of the ratio of diffusivities in classical
reaction-diffusion systems [20].

3.1. Linear stability analysis. We are interested in deriving general conditions for a Turing
instability in the system of equations (3.1) and then applying them to the modified GM
model for synaptogenesis in C. elegans. We will proceed along lines analogous to the classical
theory of diffusion-driven pattern formation [20, 7] by linearizing about a spatially uniform
fixed point and studying the spectrum of the resulting linear operator. Since neurite length
is relatively large compared to the synapse density pattern, the boundaries don’t have a
major effect on wavelength. Thus, we consider a homogeneous partial differential equation
in the unbounded domain R, and the associated spectrum is continuous. However, with
a slight abuse of notation, we will still refer to elements λ(k), k ∈ R, of the continuous
spectrum as eigenvalues and the associated Fourier components eikx as eigenfunctions. The
goal is to determine conditions under which Re[λ(0)] < 0 (stable with respect to homogeneous
perturbations), whereas there exists a critical wavenumber kc such that

max
k∈R
{Re[λ(k)]} = Re[λ(kc)] = λ(kc) = 0.

Under these conditions, the fixed point is marginally stable with respect to excitation of a spa-
tially periodic pattern of critical wavelength 2π/kc. Typically, varying one of the parameters
of the underlying model can then push the associated dispersion curve λ = λ(k) above zero
in a neighborhood of kc, resulting in a Turing instability. Whether a stable periodic pattern
forms then depends on the nonlinearities of the system, which can be investigated numeri-
cally or by using weakly nonlinear analysis. In this paper, we shall treat the dimensionless
parameter γ of (3.2) as the bifurcation parameter.

Suppose that there exists a spatially uniform fixed point u∗ = (U∗, R∗+, R
∗
−) for which

f(U∗, R∗+, R
∗
−) = g(U∗, R∗+, R

∗
−) = 0 and R∗+ = R∗−. Linearizing about this fixed point by

setting

U(x, t) = U∗ + u(x, t), R+(x, t) = R∗+ + r(x, t), R−(x, t) = R∗− + l(x, t)

yields the linear equation

(3.3) ut = Duxx + Jux +
1

α
Au,

where u = (u r l)T and

D =




γ 0 0
0 0 0
0 0 0


 , J =




0 0 0
0 −1 0
0 0 1


 , A =




fu fr fr
gu −α+ gr α+ gr
gu α+ gr −α+ gr


 ,
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with all derivatives evaluated at the fixed point. We have used the fact that fr = fl and
gr = gl at the fixed point. In the absence of spatial processes, the linearized system (3.3)
reads

(3.4) ut =
1

α
Au,

where u has solutions of the form u ∝ eλt. The eigenvalues λ of this system satisfy

0 = −λ3 + λ2
(
−2 +

1

α
(fu + 2gr)

)

+λ

(
2

α2
(−fugr + frgu) +

2

α
(fu + 2gr)

)
+

4

α2
(−fugr + frgu) .

This has solutions

λ1 = −2,(3.5)

λ2,3 =
1

2α

(
fu + 2gr ±

√
(fu + 2gr)

2 − 8 (fugr − frgu)

)
.(3.6)

We require the steady state to be stable in the absence of spatial effects, i.e., Re(λ) < 0 for
all λ. Conditions for λ to be negative in the absence of spatial components are as follows:

fu + 2gr < 0,(3.7a)

fugr − frgu > 0.(3.7b)

Now we consider the stability of the full system with respect to spatially periodic per-
turbations. We assume (3.3) has a solution of the form u(x, t) = uke

λteikx, which gives the
matrix equation

λuk = ∆(k)uk, ∆(k) = −k2γ + ikJ +
1

α
A.(3.8)

Hence, λ satisfies the characteristic equation

0 = det[∆(k)− λI3] = −λ3 + λ2
(
−2− γk2 +

1

α
(fu + 2gr)

)

+ λ

(
2

α2
(−fugr + frgu) +

2

α

(
fu + 2gr + γgrk

2
)
− k2 − 2γk2

)

+
4

α2
(−fugr + frgu) +

k2

α
(fu + 4γgr)− γk4.

This can be written in the more compact form

(3.9) λ3 + b(k)λ2 + c(k)λ+ h(k) = 0,

where

b(k) = 2 + γk2 − 1

α
(fu + 2gr) > 0,(3.10a)
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(3.10b) c(k) =
2

α2
(fugr − frgu)− 2

α

(
fu + 2gr + γgrk

2
)

+ k2 + 2γk2,

and

(3.10c) h(k) =
4

α2
(fugr − frgu)− k2

α
(fu + 4γgr) + γk4.

In general, for each value of k there will be three eigenvalues λj(k), j = 1, 2, 3, one of which
will be real and the other two either are real or form a complex conjugate pair. There are thus
three solution branches or dispersion curves. Note, in particular, that in the limit |k| → ∞,
the three roots behave as λ1(k) ∼ −k2γ, λ2,3(k) ∼ ±ik.

We now determine conditions for the fixed point to become unstable with respect to non-
oscillatory spatially periodic patterns. This means that a single real dispersion curve crosses
zero from below, while the other pair of (possibly complex conjugate) branches have negative
real parts for all k. A necessary condition is that there exists a wavenumber k for which there
is a single real root λ(k) = 0. In order for this to hold, the λ-independent term in (3.9) must
vanish, h(k) = 0, which implies

k2 =
1

2αγ

(
fu + 4γgr ±

√
(fu + 4γgr)

2 − 16γ (fugr − frgu)

)
.(3.11)

There are then two conditions for (3.11) to have a real solution k: (1) the discriminant is
positive, and (2) k2 is positive. The first condition implies that

(fu + 4γgr)
2 > 16γ (fugr − frgu) ,(3.12)

which certainly holds for sufficiently small γ. Positivity of k2 then requires

(3.13) fu + 4γgr > 0.

The condition (3.13) on γ depends on the sign of gr, that is,

γ > − fu
4gr

, gr > 0,

γ < − fu
4gr

gr < 0.(3.14)

The first case, gr > 0, implies that fu < 0 due to condition (3.7a). On the other hand, if
gr < 0, then fu > 0, since the condition fu < 0 would imply that the positive quantity γ
would be less than a negative quantity. We conclude that fu and gr must have opposite sign
and, hence, fr and gu also have opposite sign; see (3.7b).

In general, there will be two positive roots k for which λ(k) = 0, suggesting that when
the discriminant vanishes in (3.11) for some γ = γc and k = kc, the fixed point is marginally
stable with respect to the Fourier mode eikcx. However, in order to eliminate the possibility
of a Turing–Hopf bifurcation, we must check that a pair of pure imaginary roots ±iω cannot
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occur at some value of k. As we show below, this leads to the additional requirement that
gr < 0 and, hence, fu > 0. Conditions (3.7a), (3.7b), and (3.14) then imply that

γ < − fu
4gr

<
1

2
, gr < 0, fu > 0, frgu < 0.(3.15)

Setting λ(k) = iω(k) in (3.9) for real ω(k) and equating real and imaginary parts generates
the pair of equations

c(k)− ω2 = 0, h(k)− b(k)ω2 = 0⇒ c(k)b(k) = h(k) > 0.

Writing c(k)b(k) = a0 + a1k
2 + a2k

4 and h(k) = h0 +h1k
2 +h2k

4, we find from (3.7a), (3.7b),
(3.13) and gr < 0 that a0 > b0, a1 > 0, h1 < 0, and a2 > h2 so c(k)b(k) > h(k) for all k. In
other words, a pair of complex conjugate roots cannot cross the imaginary axis. This result
is a special case of a more general theorem due to Guckenheimer, Myers, and Sturmfels [9].
For completeness, we state the theorem here.

Theorem (Guckenheimer, Myers, and Sturmfels). Let S by the Sylvester matrix for
the characteristic polynomial p(λ) of an n × n matrix ∆. Then, ∆ has precisely one pair of
pure imaginary eigenvalues if det(S) = 0 and det(S0) · (S1) > 0, where Si=0,1 denotes the
matrices obtain from S by deleting row 1 and n/2 and columns 1 and i+ 2. If det(S) 6= 0, or
det(S0) · det(S1) < 0, then p(λ) has no purely imaginary roots.

For our n = 3 system the corresponding Sylvester matrix is

S(k) =

(
h(k) b(k)
c(k) 1

)
,(3.16)

and we have shown det(S(k)) 6= 0 for all k.

3.2. Dispersion curves. We now apply the above linear stability analysis to the modified
GM reaction scheme given by (2.5). In the absence of spatial disturbances, the steady state
for this model is

U∗ =
µ2
µ1
, R∗+ = R∗− =

ρµ2
2µ21

,

so we have the following derivatives evaluated at steady state:

fu = 2µ1, fr = −µ
2
1

ρ,
gu =

2ρµ2
µ1

, gr = −µ2.(3.17)

For this model, the condition that fu and gr have opposite signs at steady state is already
satisfied for any positive values of µ1 and µ2. To satisfy the remaining conditions (3.15) for
stability in the homogeneous steady state, we require

fu + 2gr < 0⇒ µ1 < µ2

from (3.7a). Second,
fugr − frgu = 0

which is a limiting case of (3.7b). Thus, we have a (marginally) stable homogeneous steady
state in the absence of spatial disturbances, provided that the inhibitor GLR-1 decays more
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Figure 5. Dispersion curves for the transport model (2.3) with modified GM kinetics (2.5). We choose
ρ = 1, µ1 = 0.25, µ2 = 1, α = 0.11, and v = 1 in order to match biophysical parameters and satisfy the spatially
homogeneous stability conditions. λ1 represents the eigenvalue of the system with largest real part for a given k.
We look at dispersion curves for four different values of D: D = 0.01 (blue), D = 0.05 (red), D = 0.5 (yellow),
D = 1.5 (purple). The maximum value of λ1 occurs at some value kmax, which gives the dominant mode for
pattern formation.

quickly than the activator CaMKII. It remains to consider the necessary condition (3.15) on
γ for a Turing instability to occur. In this case of the Gierer–Meinhardt model, the condition
reads

γ <
µ1
2µ2

<
1

2
.

In Figure 5, we show the dispersion curves for the trafficking system with Gierer–Meinhardt
nonlinearities. That is, we plot Re[λ1] against wavenumber k, where λ1 is the eigenvalue with
largest real part. One finds that in any region where Re[λ1] > 0, λ1 is real, thus signaling
the growth of nonoscillatory spatially periodic patterns, with the maximum of the curve rep-
resenting the fastest growing mode. As γ increases (i.e., either D increases or v decreases),
instabilities disappear as predicted by the theory. Figure 6 shows a numerically simulated
example of pattern formation in the 1D trafficking system with Gierer–Meinhardt dynamics.
The corresponding time evolution of the pattern is illustrated in Figure 7.

3.2.1. Parameter values. In order to justify the trafficking-based mechanism for pattern
formation in C. elegans, the conditions for Turing instability must be satisfied for biophysically
relevant parameters. Many of these parameters can be cited from the biological literature.
First, we note that the conditions for stability in the homogeneous steady state are satisfied
in this system because the decay rate of GLR-1 is approximately four times that of CaMKII
[13, Table 1]. For our simulations, we take µ1 = 0.25/s and µ2 = 1/s. Additionally, there
exists data on the transport of GLR-1 via molecular motors. The average velocity of GLR-1
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Figure 6. Synapse site pattern formation in C. elegans active transport model. (a) Spatial profiles of the
steady-state concentration of components U,R±. (b) Another example of spatial profiles showing that U and
R = R+ + R− are in-phase. Initial data are generated from a uniform random distribution. Nonlinearity
parameters are the same as in Figure 5, with D = 0.01 µm2/s. (c) Full solution in space and time. Colors
represent concentrations of GLR-1 = R+ + R−, with red representing areas of highest concentration. Our
simulation shows the emergence of ∼4 synapse sites in 10 µm. In this and subsequent figures, simulations were
performed using a Crank–Nicolson scheme for U and a Lax–Wendroff scheme for R± with time step dt = 0.005,
space step dx = 0.01, and no-flux boundary conditions.

undergoing active transport along the ventral cord is 1 µm/s, with an average run length of
9.2 µm [19]. From this, we can infer that our switching rate should be α ≈ 0.11/s.

We begin with concentrations chosen from a uniform random distribution near fixed point
values. As the system evolves, we initially observe growth of CAMKII concentrations, and
then patterns emerge as the activator is eventually tempered by increase of the inhibitor GLR-
1. In this case, the concentration of both activating and inhibiting species are in phase with
each other. In order to test the validity of our mechanism, we seek to match data due to Rongo
and Kaplan [26], which show that C. elegans synaptic density is fixed at 3.7 ± 0.1 per 10 µm.
With the parameter values discussed here, our numerical simulations show good agreement
with the biophysical system, with ∼4 potential synapse sites per 10 µm (see Figure 6).

3.3. The reaction-diffusion limit. At first sight it could be argued that the occurrence of
a Turing instability in the active transport model (2.3) is not surprising since it is well known
that in the fast switching limit α → ∞ the transport model reduces to a two-component
reaction-diffusion system [21]. However, recall from (3.2) that three quantities make up the
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Figure 7. Time evolution of synapse site pattern formation in C. elegans active transport model. Each plot
shows the concentration of species U,R± as a function of x for a specific time t. Initial data are generated from
a uniform random distribution. Nonlinearity parameters are the same as in Figure 5 with D = 0.01 µm2/s.

dimensionless bifurcation parameter γ: v, D, and α. We have shown that γ has to be suf-
ficiently small for pattern formation to occur in the active transport model. That is, in the
limit of fast switching we have v2/D � α, which suggests that the effective diffusive transport
of the inhibitor GLR-1 is much slower than the activator CaMKII. Since the occurrence of a
Turing instability in a reaction-diffusion model with GM kinetics requires fast inhibition and
slow activation [18, 20], we expect pattern formation to disappear in the fast switching limit,
which is indeed found to be the case.

In order to explore this issue in a little more detail, we apply a quasi-steady-state diffusion
approximation to the linearized version of (2.3) along the lines of [21]. First, we set α = α0/ε,
where ε << 1 is chosen so that α0 = O

(
v2/D

)
. We then rewrite the original system (2.3),

linearized about the fixed point, as

(3.18) ut = Duxx + Vux +
α0

ε
Au + Bu,

where u = (u r l)T and

D =




D 0 0
0 0 0
0 0 0


 , V =




0 0 0
0 −v 0
0 0 v


 ,
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A =




0 0 0
0 −1 1
0 1 −1


 , B =




fu fr fr
gu gr gr
gu gr gr


 .

Note that the symmetric matrix A has a 2D nullspace φ spanned by


φ1 =




1
0
0


 , φ2 =

1√
2




0
1
1





 ,

with 〈φi, φj〉 = δij In order to separate the timescales and perform the quasi-steady-state
reduction, we introduce the decomposition

(3.19) u(x, t) =
∑

i=1,2

Ci(x, t)φi(x, t) + εw(x, t),

where Ci(x, t) = 〈φi,u〉. We observe two things about this decomposition: first, Ci(x, t) is a
projection, into the nullspace of A, and second, w must be orthogonal to the nullspace of A
so w = (w/

√
2)
(
(0, 1,−1)>

)
. Substituting (3.19) into (3.18) yields

∂

∂t


∑

i=1,2

Ciφi


+ ε

∂w

∂t
= α0Aw +

∑

i=1,2

CiBφi +
∂C2

∂x
Vφ2 +

∂2C1

∂x2
Dφ1

+ ε

(
Bw + V

∂w

∂x
+ D

∂2w

∂x2

)
.(3.20)

We project onto the slow manifold by multiplying by φTi to give

∂C1

∂t
=
∑

i=1,2

Ciφ
T
1 Bφi + d

∂2C1

∂x2
+ εφT1

(
Bw + D

∂2w

∂x2

)
,

∂C2

∂t
=
∑

i=1,2

Ciφ
T
2 Bφi + ε

(
φT2 Bw + φT2 V

∂w

∂x

)
.

Note that Bw = 0 and Dw = 0. Next, we plug the slow equations into (3.20) to obtain
an equation for w. After an application of the Fredholm alternative theorem we find that to
leading order

(3.21) w =
v

2α0




0
−1
1


 ∂C2

∂x
.

Finally, we obtain the desired slow manifold equations by substituting in this leading order
approximation for w and simplifying. Doing so leaves us with the reduced system

∂C1

∂t
= fuC1 +

√
2frC2 +D

∂2C1

∂x2
,(3.22)

∂C2

∂t
=
√

2guC1 + 2grC2 + ε
v2√
2α0

∂2C2

∂x2
.(3.23)
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A in the full model (2.3), stability of the zero solution with respect to spatially uniform
perturbations is ensured by conditions (3.7a) and (3.7b). Let D1 = D and D2 = εv2/

√
2α0.

A standard analysis of reaction diffusion systems leads to the following necessary condition
for a Turing instability [20]:

(3.24) D2fu + 2D1gr > 0.

When this is combined with the conditions fu + 2gr < 0, fu > 0, and gr < 0, we deduce that
a necessary condition for a Turing instability is D2 > D1. This clearly cannot hold in the
small ε limit (fast switching). This establishes that in the regime where bidirectional active
transport effectively reduces to diffusion, a Turing instability cannot occur.

4. Biased active transport. So far we have assumed that the switching rates and speeds
are the same for left-moving and right-moving particles. Now suppose that the speeds of
the right-moving and left-moving states are vr and vl, respectively, with vl < vr. The mean
speed of the active particles is then v̄ = (vr − vl)/2 and there is an additional advection term
−v̄∂C2/∂x on the right-hand side of (3.23). We thus obtain a linearized version of an RDA
system. There is a growing literature on pattern formation in 1D RDA equations, where one
typically considers a finite or semi-infinite domain with some form of forcing at one end (x = 0,
say) [28, 29, 30, 37]. The combination of forcing, advection, diffusion, and nonlinear reactions
can lead to so-called stationary FDS. This suggests that we look for the analogue of an FDS in
a biased version of our three-component trafficking model. The nondimensionalized equations
with vr = v and vl = νv become (after rescaling)

∂U

∂t
= γ

∂2U

∂x2
+

1

α
f(U,R+, R−),(4.1a)

∂R+

∂t
= −∂R+

∂x
+R− −R+

1

α
g(U,R+, R−),(4.1b)

∂R−
∂t

= ν
∂R−
∂x

+R+ −R− +
1

α
g(U,R+, R−),(4.1c)

where now we take x ∈ [0,∞) with the following boundary conditions at x = 0 [30]:

(4.2) U(0, t) = U∗ + εu(t), R+(0, t) = R∗+ + εr(t), R−(0, t) = R∗− + εl(t),

for any t > 0, where

(4.3) εi(t) =

{
εi if 0 ≤ t ≤ T,
0 otherwise,

and εi, |εi| � 1 for i = u, r, l are small constant perturbations that are maintained for a long
but finite time T . Here u∗ = (u∗, r∗, l∗) is the spatially uniform steady state. Linearizing
about this steady-state solution leads to (3.3) with the same matrices A and D, and the
modified matrix

J =




0 0 0
0 −1 0
0 0 ν


 .
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Equation (3.3) is supplemented by the boundary conditions

(4.4) u(0, t) = εu(t), r(0, t) = εr(t), l(0, t) = εl(t),

Since the time-dependent perturbations have compact support in time, they have well-
defined Fourier transforms. Therefore, we seek the general solution of (3.3) of the form [30]

(4.5) (u(x, t), r(x, t), l(x, t)) =

∫ ∞

−∞
(u0(ω), r0(ω), l0(ω))εiωt+z(ω)xdω,

where u0(ω), etc., are determined by the boundary data. Substituting the general solution
into (3.3) shows that (ω, z) must satisfy the characteristic equation

0 = −(iω)3 + (iω)2
(

(ν − 1)z − 2 + γz2 +
1

α
(fu + 2gr)

)

+iω

(
2

α2
(∆) +

2

α

(
fu + 2gr − γgrz2

)
+ νz2 + 2γz2

−(ν − 1)z

[
−1 + z2γ +

fu + gr
α

])

+
4

α2
(∆)− z2

α
(νfu + 4γgr)− γνz4

+(ν − 1)z

[−∆

α2
− γz2 − fu − γz2gr

α

]
.(4.6)

For notational convenience, we let ∆ = frgu − fugr. A necessary condition for a stationary-
space periodic solution is that the ω-independent term in (4.6) vanishes:

γνz4 + γ(ν − 1)
(

1− gr
α

)
z3 +

z2

α
(νfu + 4γgr)

− (ν − 1)z

[−∆

α2
− fu
α

]
− 4

α2
∆ = 0.(4.7)

Solutions that bifurcate to spatially periodic FDS have a purely imaginary wavenumber zc =
ikc. The vanishing of the imaginary part of (4.7) when z = ikc shows that the critical
wavenumber is

(4.8) k2c =
αfu + ∆

αγ (α− gr)
,

which exists provided that the right-hand side is positive. Note that kc is independent of the
speed bias ν.

We can now determine the neutral curve in (γ, ν) parameter space for the boundary-forcing
problem that corresponds to the bifurcation to stationary (FDS) solutions by requiring that
the real part of (4.7) vanishes when z = ikc and solving for ν:

ν∗(γ) =
4
(
∆ + αγgrk

2
c (γ)

)

αk2c (γ) (αγk2c (γ)− fu)
.(4.9)
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Figure 8. Plot of (a) the (α, ν∗) and (b) the (γ, ν∗) curves for the Gierer–Meinhardt synaptogenesis
model with biased active transport. We predict pattern forming instabilities to arise for regions where
ν > ν∗. For the Gierer–Meinhardt model, we take nonlinearity parameters ρ = 1, µ1 = 0.25, µ2 = 1.

We can further simplify this by plugging in our expression for k2c ,

ν∗(γ) =
4γα (α− gr)
αfu + ∆

,(4.10)

provided α − gr 6= 0 and αfu + ∆ 6= 0. In seeking stationary FDS solutions, we require that
k2c > 0 and ν∗(γ) > 0. We predict that for ν above this curve defined by ν∗, we will see such
solutions. We restrict our analysis here to the case we have explored previously, namely, the
Gierer–Meinhardt model. Figure 8 shows the neutral curves in (γ, ν) and (α, ν) parameter
space. Since gr < 0, we know that α − gr > 0. This implies that we have the following
condition for k2c > 0:

αfu + ∆ > 0.(4.11)

We show examples of pattern formation in this biased transport regime in Figure 9 for
the Gierer–Meinhardt model under multiple values of ν > ν∗. These patterns arise due to
instability and persist in time, despite the underlying net flow to the right. However, we
remark here that for certain parameter values, it is possible to generate transient convective
instabilities, where the emergent patterns are eventually convected away from their initial
perturbation and out of the domain in long times [27, 32]. Further explorations of types of
instabilities and conditions under which they arise are not explored in the present work, but
yield interesting opportunities for future analysis. Finally, it is important to note that, as
in the case of Turing instabilities, FDS solutions do not occur in the fast switching limit for
which biased bidirectional transport reduces to advection-diffusion.

5. Discussion. In summary, we have established the existence of an active trafficking-
based mechanism for Turing pattern formation in a simple 1D model of synaptogenesis in C.
elegans. Our model assumes that synaptogenesis is generated by an activator-inhibitor system
consisting of passively diffusing Ca2+/calmodulin-dependent protein kinase (CAMKII) and
actively transported glutamate receptor 1 (GLR-1). Interactions between the two chemical
species were modeled in terms of modified GM kinetics. We used linear stability analysis to
derive conditions for a Turing instability and found that γ = αD/v2 has to be sufficiently
small for patterns to emerge, where α is the motor switching rate, D is the CaMKII diffusion
coefficient, and v is the speed of motor-driven GLR-1. One consequence is that patterns
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Figure 9. Examples of evolution of patterns in the Gierer–Meinhardt model under biased active
transport. We show two different values of ν > ν∗: (a) ν = 0.5 and (b) ν = 0.8. We take ρ =
1, µ1 = 0.25, µ2 = 1, γ = 0.0011, and α = .11, as in Figure 8. Despite a biasing in anterograde versus
retrograde transport speeds, the density of potential synaptic sites is still properly regulated. Note that
despite a net flow to the right, patterns persist in long times (as opposed to being convected out of the
domain). Numerical simulations were performed with the Crank–Nicolson scheme for diffusion and
Lax–Wendroff scheme for advection with ∆x = 0.01 and ∆t = 0.005. We take Dirichlet boundary
conditions on the left and no flux boundary conditions on the right.

emerge outside the parameter regime of fast switching, where the linearized model reduces
to a two-component reaction-diffusion system. In the case of GM kinetics, the spatially
periodic densities for CaMKII and GLR-1 were in-phase, consistent with the interpretation of
regions with enhanced densities corresponding to regularly spaced synaptic sites. Moreover,
for physiologically reasonable choices of various biophysical parameters such as the diffusivity,
motor speed, and degradation rates, the resulting synaptic spacing (pattern wavelength) is
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consistent with experimental data. Our results were also robust to changes in these parameters
and persisted in the case of biased transport.

Further evidence for our hypothesis that synaptogenesis arises via a Turing mechanism is
the observation that the spacing between synapses is maintained during larval growth [26].
In the case of reaction-diffusion equations, the role of domain growth in pattern formation
has been investigated by a number of authors [35, 5, 24, 4, 6]. Much of this work has been
inspired by experimental observations concerning the skin pigmentation of the marine angelfish
[15]. In juvenile fish, the skin color is initially gray and then develops alternating white
stripes on a dark blue background. New white stripes are inserted between the existing older
stripes, resulting in a doubling of the number of stripes each time the fish doubles in size.
Stripe insertion has also been modeled within the context of ocular dominance columns within
developing cortex [23]. In the case of synaptogenesis in C. elegans, maintenance of synaptic
density could be analogous to a stripe insertion mechanism and is something we hope to
explore in future work. We will also develop a more detailed multicomponent model that
explicitly distinguishes between cytoplasmic and membrane-bound densities.

Another possible extension of our work would be to analyze the generation of patterns
in higher spatial dimensions. In the case of axonal or dendritic transport in neurons, micro-
tubules tend to be aligned in parallel so that one can treat the transport process as effectively
1D. On the other hand, intracellular transport within the cell body of neurons and most
nonpolarized animal cells occurs along a microtubular network that projects radially from
organizing centers (centrosomes) with outward polarity. This allows the delivery of cargo to
and from the nucleus. It has also been found that microtubules bend due to large internal
stresses, resulting in a locally disordered network. A detailed microscopic model of intracel-
lular transport within the cell would need to specify the spatial distribution of microtubular
orientations and polarity, in order to determine which velocity states are available to a motor-
cargo complex at a particular spatial location. However, a simplified model can be obtained
under the “homogenization” assumption that the network is sufficiently dense so that the set
of velocity states (and associated state transitions) available to a motor complex is indepen-
dent of position. In that case, one can effectively represent the active transport within the
cell in terms of a 2D or 3D model of active transport [2, 3].

For the sake of illustration, consider a disordered 2D microtubular network as illustrated
in Figure 10. We assume that ATs are transported along this network, randomly switching
between different motile states, and interacting with a second chemical species passively trans-
ported particles (PT) undergoing 2D diffusion. Suppose that after homogenization, an AT at
any point r = (x, y) in the plane can exhibit ballistic motion with velocity v(θ) = v(cos θ, sin θ)
for θ ∈ [0, 2π) or be in a stationary state. Transitions between different ballistic states are
governed by a discrete Markov process with θ-independent transition rate α. Let c(r, θ, t) be
the concentration of ATs in state (r, θ) at time t and u(r, t) denote the concentration of PT.
The 2D analogue of (2.3) is taken to be

∂u

∂t
= d∇2u+ f(u,C),

∂c

∂t
= −∇ · (v(θ)c)− αc(r, θ, t) + αC(r, t) + g(u,C),
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(a) (b)

d

v

Figure 10. Active transport on a disordered microtubular network. (a) Random orientational arrangement
of microtubules. (b) Effective 2D trajectory of an AT (red) randomly switching directions and reacting with the
ATs (green).

where

C(r, t) =
1

2π

∫ 2π

0
c(r, θ′, t)dθ′.

Alternatively, one could take g(u, c) rather than the more symmetric case of g(u,C).
Finally, the new class of model introduced in this paper raises many interesting questions

from a mathematical perspective. First, we are considering coupled hyperbolic and parabolic
nonlinear PDEs — what are the conditions for well-posedness (existence, uniqueness, stability)
for such equations? Second, we focused on the issue of linear stability in order to derive
necessary conditions for a Turing instability. However, if one wants to determine the selection
and stability of the emerging patterns, it is necessary to take into account the nonlinearities
of the system using methods such as weakly nonlinear analysis. This then raises a third issue,
namely, the role of symmetry in the selection of patterns. This is a well-studied area in the
case of reaction-diffusion systems with an underlying Euclidean symmetry [14]. An additional
complicating feature of our trafficking model is that a 2D or 3D microtubular network tends
to break Euclidean symmetry, and this depends on the spatial scale at which one is modeling.
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We propose a mechanism for the homeostatic control of synapses along the ventral cord of Caenorhabditis
elegans during development, based on a form of Turing pattern formation on a growing domain. C. elegans
is an important animal model for understanding cellular mechanisms underlying learning and memory. Our
mathematical model consists of two interacting chemical species, where one is passively diffusing and the
other is actively trafficked by molecular motors, which switch between forward and backward moving states
(bidirectional transport). This differs significantly from the standard mechanism for Turing pattern formation
based on the interaction between fast and slow diffusing species. We derive evolution equations for the chemical
concentrations on a slowly growing one-dimensional domain, and use numerical simulations to demonstrate the
insertion of new concentration peaks as the length increases. Taking the passive component to be the protein
kinase CaMKII and the active component to be the glutamate receptor GLR-1, we interpret the concentration
peaks as sites of new synapses along the length of C. elegans, and thus show how the density of synaptic sites
can be maintained.

DOI: 10.1103/PhysRevE.96.012413

I. INTRODUCTION

The dynamical processes underlying the establishment of
synaptic connections during neural development are thought to
be critical in learning and memory. One of the most important
signaling pathways underlying the maturation, maintenance,
and elimination of synapses is the interplay between type II
calcium- and calmodulin-dependent protein kinase (CaMKII)
and the trafficking of glutamate receptors. Since these proteins
are conserved across multiple species, considerable insights
into synaptic development can be obtained by studying sim-
pler organisms, such as the nematode worm Caenorhabditis
elegans; see Fig. 1. During larval development of C. elegans,
the density of ventral and dorsal cord synapses containing the
glutamate receptor GLR-1 is maintained despite significant
changes in neurite length [1]. It is known that the coupling
of synapse number to neurite length requires CaMKII and
voltage-gated calcium channels, and that CaMKII regulates
the active (kinesin-based) transport and delivery of GLR-1 to
synapses [1–3]. However, a long outstanding problem has been
identifying a possible physical mechanism involving diffusing
CaMKII molecules and motor-driven GLR-1 that leads to the
homeostatic control of synaptic density.

Although the above problem arises within the context of
neural development, it raises a more general issue regarding
self-organization in systems of actively and passively trans-
ported particles. That is, (i) the formation of a regularly
spaced distribution of synaptic puncta at an early stage
of development is suggestive of some form of Turing-
like pattern formation and (ii) the maintenance of synaptic
density as the organism grows is suggestive of “pulse or
stripe insertion” in spatially periodic patterns on growing
domains [4]. Following the original work of Turing [5], the
traditional mechanism for spontaneous pattern formation is
the interaction of two or more passively diffusing chemical
species undergoing nonlinear reaction kinetics and having
different rates of diffusion [6–8]. Recently, motivated by issue
(i), we proposed an alternative pattern-forming mechanism [9],
involving the interaction between a slowly diffusing species

(e.g., CaMKII) and a rapidly advecting species (e.g., GLR-1)
switching between anterograde and retrograde motor-driven
transport (bidirectional transport). Using the classical Gierer
and Meinhardt mechanism for reaction kinetics [10], we
showed that our model supported in-phase Turing patterns
on a one-dimensional domain of fixed length. Within the
context of synaptogenesis in C. elegans, the periodically
spaced concentration peaks are interpreted as the locations of
synaptic puncta. (Note that Turing pattern formation based on
advecting species has also been considered within the context
of animal movement and chemotaxis [11]. However, in the
latter case, all species are assumed to undergo bidirectional
transport, and in the fast switching limit the model reduces to
a traditional reaction-diffusion model for pattern formation. In
our model, pattern formation cannot occur in the fast switching
limit. Advection also plays a role in reaction-diffusion systems
subject to active fluid flow [12].)

In this paper, we address issue (ii), namely, how is the
synaptic density of C. elegans maintained as the worm
grows? From the perspective of self-organizing systems,
this corresponds to the issue of whether or not the Turing
mechanism based on interacting diffusing and advecting
species exhibits pulse or stripe insertion on a growing domain.
We establish the latter by extending the analysis of Crampin
et al. [4] to our diffusion-advection model, and thus provide
an experimentally testable explanation for the homeostatic
control of synaptic density in C. elegans. Our main hypothesis
is that synaptogeneisis in C. elegans is an example of pattern
formation on a growing domain, analogous to stripe insertion
in patterns of skin pigmentation of the marine angelfish [13].

II. MODEL

The homeostatic control of synaptic density appears to
be mediated by two distinct antagonistic effects of CaMKII;
see Fig. 2. As the worm grows in size, the synaptic density
along the ventral cord decreases, which tends to result in
reduced synaptic excitation of the motor neurons. In this
situation, the activation of CaMKII via voltage-gated calcium
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early stage C elegans 

ventral cord synaptic punta

late stage C elegans 

FIG. 1. Schematic figure showing distribution of synaptic punta
along ventral cord of early and late stage C. elegans. New synapses
are inserted during development to maintain the synaptic density.

channels induces the formation of new synapses by enhancing
the active transport of GLR-1. On the other hand, when the
synaptic density becomes too high, the corresponding increase
in excitation leads to constitutive activation of CaMKII
(autophosphorylation) due to the increased calcium levels.
Although constitutively active CaMKII also enhances the
motor-driven transport of GLR-1 along the ventral cord, it fails
to localize the receptors at synaptic sites. This is consistent
with the observation that the synaptic localization of CaMKII
in rate changes in response to autophosphorylation [14].

To model this system, consider a one-dimensional domain
of fixed length L, which represents a neurite in the ventral
cord of C. elegans at a particular stage of larval development.
Let R(x,t) denote the concentration of GLR-1 receptors at
position x along the cell at time t and let C(x,t) denote the
corresponding concentration of active CaMKII. For simplicity,
no distinction is made between membrane-bound (synaptically
localized) and cytoplasmic CaMKII. On the other, GLR-1
is partitioned into two subpopulations: those that undergo
anterograde transport (R+) and those that undergo retrograde
transport (R−) with R(x,t) = R+(x,t) + R−(x,t). Individual
receptors randomly switch between the two advective states
according to a two-state Markov process R+ β�

α
R−, with transi-

cell body synapse

CaMKII
maintenance

Ca2+ channel

CaMKIIGLR-1

trafficking

cell body synapse

delocalization
of CaMKII

Ca2+ channel

CaMKIIGLR-1

trafficking

(a)

(b)

removal

high Ca2+

low Ca2+

FIG. 2. Regulation of transport and delivery of GLR-1 to
synapses by CaMKII. (a) Calcium influx through voltage-gated
calcium channels activates CaMKII, which enhances the active
transport and delivery of GLR-1 to synapses. (b) Under conditions
of increased excitation, higher calcium levels results in constitutively
active CaMKII which fails to localize at synapses, leading to the
removal of GLR-1 from synapses.

tion rates α,β. This yields the following system of equations
[9]:

∂C

∂t
= D

∂2C

∂x2
+ f (R+,R−,C), (1a)

∂R+
∂t

= −v
∂R+
∂x

+ αR− − βR+ + g(R+,C), (1b)

∂R−
∂t

= v
∂R−
∂x

+ βR+ − αR− + g(R−,C). (1c)

Here D is the CaMKII diffusion coefficient and v is the
speed of motor-driven GLR-1. The reaction term f (R+,R−,C)
represents both the self-activation of CaMKII and the in-
hibition of CaMKII by GLR-1. (In a more detailed model,
one could consider synaptic rather than cytoplasmic GLR-1
inhibiting synaptic rather than cytoplasmic CaMKII.) The
reaction terms g(R±,C) represents the increase in actively-
transported GLR-1 due to the action of CaMKII, which is
taken to be symmetric with regards anterograde and retro-
grade transport. Equations (1) are supplemented by reflecting
boundary conditions at the ends x = 0,L:

∂C(x,t)

∂x

∣∣∣∣
x=0,L

= 0, (2a)

vR+(0,t) = vR−(0,t), vR+(L,t) = vR−(L,t). (2b)

For simplicity, we will take α = β in the following.
It remains to specify the form of the chemical interaction

functions f and g. The precise details of the interactions
between CaMKII and GLR-1 are currently unknown. There-
fore, we choose the simplest model that can capture the
activation of GLR-1 transport and delivery by CaMKII and
the inhibition (synapse removal) of CaMKII by GLR-1
and the autophosphorylation properties of CaMKII. Another
requirement is that the nonlinear interactions yield Turing
patterns for which the peaks of the various concentrations
are in-phase. Hence, following our previous work [9], we
take the classical activator-inhibitor system due to Gierer and
Meinhardt (GM) [10]:

f (R+,R−,C) = ρ1
C2

R+ + R−
− μ1C + γ, (3a)

g(R,C) = ρ2C
2 − μ2R. (3b)

Here ρ1,ρ2 represent the strength of interactions, μ1 and
μ2 are the respective decay rates, and γ is the production
rate of CaMKII. To justify the trafficking-based mechanism
for pattern formation in C. elegans, the conditions for
Turing instability must be satisfied for biophysically relevant
parameters. Many of these parameters can be cited from the
biological literature. First, we require μ1 < μ2 for stability in
the homogeneous steady state in this system; this is satisfied
because the decay rate of GLR-1 is approximately four times
that of CaMKII [15]. For our simulations (see Sec. III), we
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take μ1 = 0.25/s and μ2 = 1/s. Additionally, data on the
transport of GLR-1 via molecular motors suggest an average
velocity along the ventral cord is 1 μm/s, with an average run
length of 9.2 μm [16]. From this, we infer a switching rate of
α ≈ 0.11/s. We take diffusion of CaMKII to be 0.01 μm2/s
and production rate to be γ = 0.02 μM/s. Finally, we set
the strength of interaction parameters to be ρ1 = 1/s and
ρ2 = 1/(μM s).

III. PATTERN FORMATION ON A GROWING DOMAIN

Previously, we used linear stability analysis to derive
conditions for a Turing instability, and confirmed numerically
that spatially periodic patterns emerge beyond the Turing
bifurcation point [9]. In particular, we found that γ = αD/v2

has to be sufficiently small for patterns to emerge. One
consequence is that patterns emerge outside the parameter
regime of fast switching (large α), where the linearized model
reduces to a two-component reaction-diffusion system. Here
we investigate pattern formation on a slowly growing 1D
domain, 0 < x < L(t), where L(t) is the increasing length
of the domain. The basic idea is that L(t) represents the length
of C. elegans at a time t during development, following an
initial phase of synaptogenesis at time t = 0. This means
that the model system is already operating beyond the Turing
bifurcation point identified in our previous paper [9]. If we
interpret the in-phase peaks of CaMKII and GLR-1 as synaptic
sites, then the wavelength of the pattern at time t = 0 is
equivalent to the spacing of the newly formed synapses. This
suggests that under uniform growth of the domain for t > 0,
the spacing of the synapses will increase. Therefore, to obtain
a similar synaptic density in the adult as in the first stages
of synaptiogenesis, it is necessary for new synaptic puncta to
be formed. From the mathematical perspective, this can be
interpreted as stripe insertion of a Turing pattern on a growing
domain.

In light of the above, consider the system of advecting and
diffusing particles (1) on the growing domain 0 < x < L(t).
Following previous studies of diffusion processes on growing
domains [4], we model domain growth in terms of a velocity
field u such that x → x + u(x,t)�t over the time interval
[t,t + �t]. We will assume spatially uniform growth by taking
∂xu = σ (t), which implies that

u(x,t) = x

L(t)

dL(t)

dt
. (4)

Let X ∈ [0,L0] be the local coordinate system at the initial
length L0. Using a Lagrangian description, we can then
represent spatial position at time t as

x = 	(X,t) ≡ XL(t)

L0
, L(0) = L0.

To derive the evolution equations on a growing domain,
let us focus on the diffusing component C(x,t); the other
components can be treated in a similar fashion. Consider the
particle conservation equation

d

dt

∫ L(t)

0
C(x,t)dx =

∫ L(t)

0

[
−∂J (x,t)

∂x
+ f

]
dx, (5)

with J (x,t) = −D ∂C(x,t)
∂x

. Using the Reynold’s transport the-
orem, the left-hand side becomes

d

dt

∫ L(t)

0
C(x,t)dx

=
∫ L(t)

0

[
∂C(x,t)

∂t
+ L̇(t)

L(t)

∂[xC(x,t)]

∂x

]
dx.

We thus obtain the following evolution equation for C on
0 < x < L(t):

∂C

∂t
+ L̇(t)

L(t)

∂[xC]

∂x
= D

∂2C

∂x2
+ f. (6)

Finally, we transform Eq. (6) to the fixed interval [0,L0]
by performing the change of variables x → X = (xL0)/L(t).
Under this transformation the advection term in Eq. (6) is
eliminated and we obtain the modified evolution equation,

∂C

∂t
= D

L(t)2

∂2C

∂x2
−

(
L̇

L

)
C + f (R+,R−,C). (7a)

Applying a similar analysis to the advecting variables R±(x,t),
with fluxes J±(x,t) = ∓vR± and f (R+,R−,C) replaced by
±(αR− − βR+) + g(R±,C), we derive the following evolu-
tion equations on [0,L0]:

∂R+
∂t

= − v

L(t)

∂R+
∂x

−
(

L̇

L

)
R+ + αR− − βR+

+ g(R+,C) (7b)

∂R−
∂t

= v

L(t)

∂R−
∂x

−
(

L̇

L

)
R− + βR+ − αR−

+ g(R−,C). (7c)

In the above equations, we have fixed the length-scale by
setting L0 = 1.

Equations (7a)–(7c) and (3a), (3b) are the starting point
for our investigation of Turing pattern formation on a growing
domain of length L(t). Following Ref. [4], we make one further
simplification by noting that for sufficiently slow growth,
the terms involving the dilution factor −L̇(t)/L(t) are small
compared to the remaining terms and can be neglected. It is
reasonable to assume slow growth for C. elegans, since the
larvae grow to the adult stage at an average rate of around
10−3 μm/s [17]. For the sake of illustration, we will assume
logistic growth [4],

L(t) = ert

[
1 + 1

	0
(ert − 1)

]−1

, (8)

with r = 0.001 μm/s and 	0 = 10. With this choice of growth
function, a section of the ventral cord grows from 10 μm
to 100 μm in 2 h. Although we choose this logistic growth
function because it represents the physical growth during
C. elegans development, similar results are obtained for other
choices of growth functions (such as exponential or linear).

In our numerical simulations, we assume that the system
of evolution equations operates beyond the Turing bifurcation
point for pattern formation at the initial length L0. The initial
concentrations are chosen from a uniform random distribution
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FIG. 3. Numerical simulations showing temporal evolution of the concentrations C,R± on a slowly growing domain. (a) t = 0 s;
(b) t = 100 s; (c) t = 850 s; (d) t = 1300 s; (e) t = 1400 s; (f) t = 1500 s. Initial concentrations are taken to be random fluctuations about
steady-state values. A spatially periodic pattern is becoming established with five potential synapse sites by t = 100 s, and as the domain
continues to grow, the synapse sites begin to spread out. At t = 1300 s, we can see the beginnings of pattern reorganization between the
synapse sites as CaMKII concentrations start to grow there. New peaks are inserted after the second, third, and fourth existing synapse
sites by t = 1400 s; the beginnings of a new CaMKII peak can also be observed between the first and second peak. Numerical simulations
were performed using a combination of Crank-Nicolson and Lax-Wendroff schemes, with no flux boundary conditions. Full solutions were
computed in the Lagrangian coordinate system, and then converted back into physical coordinates. We take space step dx = 0.05 and time step
dt = 0.025. The 1D domain grows with growth parameters r = 0.001 μm/s and 	0 = 10. Other parameters are ρ1 = 1/s, ρ2 = 1/(μM s),
μ1 = 0.25/s, μ2 = 1/s, α = 0.11/s, D = 0.01 μm2/s, γ = 0.02 μM/s, and v = 1 μm/s.

near fixed point values of the spatially uniform equations.
Example plots showing the evolution of the concentrations
C,R± are shown in Fig. 3. As the system evolves, we
initially observe growth of the concentration C of the diffusive
component, and then patterns emerge as the activator is
eventually tempered by increase of the advecting inhibitors
R±. In this case, the concentration of both activating and
inhibiting species are in phase with each other. Once the pattern
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FIG. 4. Space-time plot showing the insertion of new potential
synaptic sites as the domain representing a section of the ventral cord
grows over the course of 2.5 h. The horizontal axis represents position
along the C. elegans ventral cord and the vertical axis represents
time in seconds. Colors represent local concentration of GLR-1 (a
combined total of both leftward and rightward trafficking species) in
μM. Areas of high concentration represent potential synapse sites.
Numerical simulations and parameter values are as in Fig. 3.

is established, it persists as the domain length increases, with
areas of high concentration slowly growing farther apart. As
the areas of high concentration become sufficiently separated,
the pattern becomes reorganized and we see the emergence of
new peaks.

Having established that the Turing mechanism based on
interacting advecting and diffusing species supports pulse-
insertion on a growing domain, we can now relate our
results to the particular problem of homeostatic control of
synaptic density in C. elegans. That is, interpreting C and
R± as concentrations of CaMKII and GLR-1, respectively,
we can interpret the peaks in concentration as synaptic sites.
Hence, the insertion of additional peaks as the domain grows
provides a mechanism for maintaining synaptic density. This is
illustrated in Fig. 4, which shows a space-time plot of CaMKII
and GLR-1 concentrations in a growing domain. For the given
parameter values, our results match well the experimental
observations of Rongo and Kaplan [1], who found that C.
elegans synaptic density is maintained.

IV. DISCUSSION

In summary, we have shown how an active trafficking-
based mechanism for Turing pattern formation on a 1D
growing domain can account for the homeostatic regulation
of synapses in C. elegans during development. While the
important role of CaMKII in regulating the delivery of
GLR-1 to synapses along the ventral cord of C. elegans
is well known, the detailed mechanisms regarding their
interactions are still unclear. In future modeling work, it will
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be necessary to develop a more detailed biophysical model
of CaMKII-GLR-1 coupling, and to distinguish between
membrane-bound versus cytoplasmic CaMKII. Nevertheless,
our simple model can provide experimentally testable pre-
dictions, particularly with regard the spacing of synaptic
puncta. For example, linear stability analysis can determine
the wavelength of emerging patterns as a function of various
biophysical parameters such as the diffusivity of CaMKII,
the speed and switching rates of molecular motors, and the
rate of CaMKII phosphorylation. Our model predicts that
manipulation of these parameters should change the synaptic
spacing. On the other hand, the insertion of new puncta should
persist.

From the more general perspective of self-organizing
systems, our model provides a new paradigm for exploring
pattern-forming dynamical systems, based on nonlinear in-
teractions between distinct advecting and diffusing species.
Although our model involved molecular species, one could
equally well consider population models of animal species.
One obvious extension would be to analyze the generation
of patterns in higher spatial dimensions. In the case of the
neurites in C. elegans, the microtubles tend to be aligned in

parallel so that one can treat the active transport process as
effectively 1D. On the other hand, intracellular transport within
most non–polarized animal cells occurs along a microtubular
network projecting radially from an organizing centers or
centrosomes [18]. It has been found that microtubules bend
due to large internal stresses, resulting in a locally disordered
network, suggesting that in vivo transport on relatively short
length scales may be similar to transport observed in vitro,
where microtubular networks are not grown from a centrosome
and thus exhibit orientational and polarity disorder [19,20]. If
the network is sufficiently dense, then to a first approximation
one can assume that the set of velocity states (and associated
state transitions) available to an active particle is independent
of position. This means that one can effectively represent active
transport within the cell in terms of a two- or three-dimensional
velocity jump process [21–23], which is analogous to an
animal movement model with a turning function [24,25].
One of the interesting features of higher dimensional models,
is that one has to use weakly nonlinear analysis to derive
amplitude equations for the emerging patterns close to the
Turing bifurcation point, to investigate the selection and
stability of patterns (rolls, rhomboids, and hexagons).
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CHAPTER 4

MATHEMATICAL ANALYSIS OF PATTERN

FORMATION IN REACTION-TRANSPORT

MECHANISMS

The mathematical model for pattern formation due to reaction-transport mechanisms

discussed in Chapters 2 and 3 was originally formulated in the context of synapse density

maintenance in C. elegans. However, analysis of this mechanism leads to some natural

mathematical extensions. In this chapter, we discuss two of these extensions. In Section 4.1,

we use weakly nonlinear analysis to determine stability conditions for one-dimensional

patterns arising due to this mechanism. In Section 4.2, we develop a two-dimensional

analog of the reaction transport model. Future work on analysis of pattern formation in

the two-dimensional reaction transport mechanism is discussed in Section 4.2.2.

4.1 Weakly nonlinear analysis for the one-dimensional
reaction-transport mechanism

4.1.1 The one-dimensional model

For the purposes of clarity and to standardize notation for this chapter, we will briefly

review the one-dimensional reaction-transport model in this section. Let A(x, t) represent

the concentration of actively transported particles at position x ∈ R at time t; likewise,

P(x, t) will denote the corresponding concentration of passively transported particles. Pas-

sively transported (PT) particles undergo diffusion with constant diffusion coefficient D.

Actively transported (AT) particles undergo bidirectional transport and travel with con-

stant velocity states ±v±. The AT particles are partitioned into two subpopulations: those

that undergo anterograde (rightward) transport with positive velocity v+, represented by

density A+(x, t), and those that undergo retrograde (leftward) transport with negative

velocity −v− with density A−(x, t):

A(x, t) = A+(x, t) + A−(x, t). (4.1)



40

As the active transport is bidirectional, we allow these AT particles to switch between the

constant velocity states according to the two-state Markov process with switching rate α.

Therefore, this system is described by the following system of PDEs:

∂P
∂t = D

∂2 p
∂x2 + f (P,A), (4.2a)

∂A+
∂t = −v+

∂A+

∂x
− αA+ + αA− +

1
2

g(P,A) (4.2b)

∂A−
∂t = v−

∂A−
∂x

+ αA+ − αA− +
1
2

g(P,A), (4.2c)

where f and g are the nonlinear reaction terms that are functions of PT and AT concentra-

tion.

4.1.2 Weakly nonlinear stability analysis

Suppose that there exists a spatially uniform fixed point (P∗, A∗+, A∗−) for which

f (P∗,A∗) = g(P∗,A∗) = 0 and A∗± = A∗.

Linearizing about this fixed point by setting

P(x, t) = P∗ + p(x, t), A±(x, t) = A∗ + a±(x, t)

yields the system of linear equations

∂p
∂t

= D
∂2 p
∂x2 + f1 p + f2(a+ + a−) (4.3a)

∂a+
∂t

= −v
∂a+
∂x
− αa+ + αa− + g1 p + g2(a+ + a−) (4.3b)

∂a−
∂t

= v
∂a−
∂x

+ αa+ − αa− + g1 p + g2(a+ + a−). (4.3c)

Here f1 = ∂ f /∂P, f2 = ∂ f /∂A and similarly for g1,2, with all derivatives evaluated at

the fixed point. Setting p(x, t) = peλt+ikx, etc., then yields the following equations for the

continuous spectrum λ = λ(k) with k ∈ R:

λp = ( f1 − Dk2)p + f2(a+ + a−) (4.4a)

λa+ = (−ikv− α + g2)a+ + (α + g2)a− + g1 p (4.4b)

λa− = (ikv− α + g2)a− + (α + g2)a+ + g1 p. (4.4c)

In general, for each value of k, there will be three eigenvalues λj(k), j = 1, 2, 3, one of

which will be real and the other two either are real or form a complex conjugate pair.
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There are thus three solution branches or dispersion curves. Necessary conditions for a

Turing instability are as follows:

(i) Re[λ(0)] < 0 (fixed point is linearly stable with respect to homogeneous perturbations);

(ii) There exists a critical wavenumber kc such that for one of the branches

max
k∈R
{Re[λ(k)]} = Re[λ(kc)] = λ(kc) = 0;

(iii) λ(k) is real in a neighborhood of the critical point (excludes a Turing-Hopf bifurcation).

In our previous work discussed in Chapter 2 we proved that all of these conditions are

satisfied provided that [7]

γ ≡ αD
v2 < − f1

4g2
<

1
2

, g2 < 0, f1 > 0, f2g1 < 0. (4.5)

At the critical point, the fixed point is marginally stable with respect to excitation of a spa-

tially periodic pattern of critical wavelength 2π/kc. Typically, varying one of the parame-

ters of the underlying model can then push the associated real dispersion curve λ = λ(k)

above zero in a neighborhood of kc, resulting in a Turing instability. Whether or not a

stable periodic pattern forms then depends on the nonlinearities of the system, which can

be investigated numerically or using weakly nonlinear analysis, as discussed below.

Let us now focus on the real solution branch of equations (4.4), which we simply denote

by λ(k), and take p to be real. It immediately follows from equation (4.4a) that a+ + a− is

also real. Adding equations (4.4b,c) then establishes that a+ − a− has to be pure imaginary

and, hence, a+ = a = a−, where a denotes the complex conjugate (c. c.) of a. It follows

that the bifurcating planform u(x, t) takes the form

u(x, t) = eλ(k)t




1
a(k)
a(k)



[
zeikx + c . c.

]
, (4.6)

where we have set p(k) = z ∈ C, and a(k) = u(k) + iv(k) with

u(k) =
λ(k) + D(k2)− f1

2 f2
, v(k) =

kv
λ(k) + 2α

u(k). (4.7)

As amplitude z grows the linear approximation breaks down and the nonlinearities

dominate. We can use weakly nonlinear theory to investigate the selection and stability of

patterns in this regime. Denoting γ = γc as the bifurcation point where the homogeneous
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state becomes unstable, we seek to define a small parameter γ− γc = ε∆γ < 0 sufficiently

close to this bifurcation point. The dominant behavior just beyond this bifurcation point is

the slow growth of the mode eε∆γt, so it is justified to introduce a slow timescale τ = εt.

We proceed to derive amplitude equations for z(τ).

First, assuming the nonlinear reaction terms are sufficiently smooth, we can Taylor

expand the nonlinearities f , g locally about the steady state p∗,A∗.

f (p,A) = f (p∗,A∗) + f1∆p + f2∆A+
1
2
[

f11∆p2 + 2 f12∆p∆A+ f22∆A2] (4.8)

+
1
6
[

f111∆p3 + 3 f112∆p2∆A+ 3 f122∆p∆A2 + f222∆A3]+ . . . (4.9)

where ∆p = p − p∗, ∆A = A−A∗ and we use the notation f1 = ∂ f
∂P , f22 = ∂2 f

∂A2 , etc., all

evaluated at the fixed point. Note that g has a similar expansion, namely

g(p,A) =g(p∗,A∗) + g1∆p + g2∆A+
1
2
[
g11∆p2 + 2g12∆p∆A+ g22∆A2] (4.10)

+
1
6
[
g111∆p3 + 3g112∆p2∆A+ 3g122∆p∆A2 + g222∆A3]+ . . . . (4.11)

Once again, we represent the partial derivatives evaluated at the fixed point as g1 =

∂g
∂P , g22 = ∂2g

∂A2 , and so on.

We apply the following perturbation expansion, seeking solutions of the form

p(x, t) = p∗ + ε1/2 p1 + εp2 + ε3/2 p3 + . . . (4.12)

a+(x, t) = a∗+ + ε1/2a+1 + εa+2 + ε3/2a+3 + . . . (4.13)

a−(x, t) = a∗− + ε1/2a−1 + εa−2 + ε3/2a−3 + . . . (4.14)

We also set An = a+n + a−n. For the next step, we make the following substitutions.

First, we substitute in each of the perturbed solutions from Equations 4.14. We combine

this with the Taylor expansions of f (p,A) (given in Equation 4.9) and g(p,A) (given in

Equation 4.11) into the linearized system represented by Equations 4.3.
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Plugging these expansions into the full system yields

ε∂τ(p∗ + ε1/2 p1 + εp2 + ε3/2 + . . . ) =(γc + ε∆γ)∂xx(p∗ + ε1/2 p1 + εp2 + . . . )

+ f (p,A)

ε∂τ(a∗+ + ε1/2a+1 + εa+2 + ε3/2a+3 + . . . ) =− ∂x(a∗+ + ε1/2a+1 + εa+2 + ε3/2a+3 + . . . )

+ (a∗− + ε1/2a−1 + εa−2 + ε3/2a−3...)

− (a∗+ + ε1/2a+1 + εa+2 + ε3/2a+3 + . . . )

+ g(p,A)

ε∂τ(a∗− + ε1/2a−1 + εa−2 + ε3/2a−3 + . . . ) =∂x(a∗− + ε1/2a−1 + εa−2 + ε3/2a−3 + . . . )

+ (a∗+ + ε1/2a+1 + εa+2 + ε3/2a+3 + . . .)

− (a∗− + ε1/2a−1 + εa−2 + ε3/2a−3 + . . . )

+ g(p,A),

where the Taylor expansions listed above can be substituted in for f , g, along with the

appropriate perturbed solutions.

Next, we collect terms according to their power in ε. TheO(1) terms give us the steady

state equations

0 =γc∂xx p∗ + f (p∗,A∗)

0 =− ∂xa∗+ + a∗− − a∗+ + g(p∗,A∗)

0 =∂xa∗+ + a∗+ − a∗− + g(p∗,A∗).

The O(ε1/2) equations are

0 =γc∂xx p1 + f1 p1 + f2A1

0 =− ∂xa+1 + a−1 − a+1 + g1 p1 + g2A1

0 =∂xa−1 + a+1 − a−1 + g1 p1 + g2A1,

which is the homogeneous linear problem

Lu1 = 0

where

L =




γc
∂2

∂x2 + f1 f2 f2

g1 − ∂
∂x − 1 + g2 1 + g2

g1 1 + g2
∂

∂x − 1 + g2


 ,
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which has solutions

u1 =




1
a(k)
a(k)


 zeikx + c . c.

In particular,

p1 = zeikx + z̄e−ikx, A1 = (a + ā)(zeikx + z̄e−ikx).

Now we examine the O(ε) equations, which take the form

Lu2 = F2, (4.15)

where

F2 = −1
2




f11 p2
1 + f22A2

1 + 2 f12 p1A1
g11 p2

1 + g22A2
1 + 2g12 p1A1

g11 p2
1 + g22A2

1 + 2g12 p1A1


 . (4.16)

We can derive solvability conditions for these amplitude equations by applying the Fred-

holm alternative, which tells us that Lu2 = F2 has a solution u2 i.f.f. 〈ũ, F2〉 = 0, where

ũ ∈ Ker(L†), withL† the adjoint ofL. In contrast with a classical reaction-diffusion system,

it is important to note that L is not self adjoint. One can find the adjoint (at least formally)

by applying integration by parts. For this problem, we need to consider a large (but finite)

domain x ∈ [−L, L] with periodic boundary conditions such that u(−L, t) = u(L, t) and

ux(−L, t) = ux(L, t). Suppose u and w both satisfy these conditions. Then, if L† is the

adjoint of L, it must be true that

〈Lu, w〉 = 〈u,L†w〉,

with inner product

〈u, w〉 = 1
2L

∫ L

−L
(u ·w)dx.

Writing this out and applying integration by parts, we can show that

L† =




γ ∂2

∂x2 + f1 f2 f2

g1
∂

∂x − 1 + g2 1 + g2

g1 1 + g2 − ∂
∂x − 1 + g2


 . (4.17)

It is straightforward to find Ker(L†), which is spanned by (ũ, ũ) with

ũ =




1
a
a


 e−ikx. (4.18)
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We note here that the solvability condition 〈ũ, F2〉 = 0 is always satisfied, since all integral

terms go to 0. Thus a solution u2 exists, and we seek to find it using the ansatz

u2 = C2e2ikx + C−2e−2ikx + C0 + ζu1, (4.19)

where C±2 and C0 are x−independent coefficient vectors. Plugging equation (4.19) into

equation (4.15) and collecting terms yields

M(k)C2 = −z2B(a + ā), C−2 = C2, M(0)C0 = −2|z|2B(a + ā), (4.20)

with matrices

M(k) =



−4k2γc + f1 f2 f2

g1 −2ik− 1 + g2 1 + g2
g1 1 + g2 2ik− 1 + g2


 , (4.21)

B(a + ā) =
1
2




f11 + f22(a + ā)2 + 2 f12(a + ā)
g11 + g22(a + ā)2 + 2g12(a + ā)
g11 + g22(a + ā)2 + 2g12(a + ā)


 . (4.22)

Assuming that M(k) is invertible and introducing the vector

G(k) = −M(k)−1B(a + ā), (4.23)

we have the explicit solutions

C2 = z2G(k), C−2 = z̄2G(k), C0 = 2|z|2G(0). (4.24)

Setting G(k) = (Gp(k), G+(k), G−(k))>, we note that Gp(k), G+(k) + G−(k), and G±(0) are

real.

Collecting the O(ε3/2) terms, we find

Lu3 = ∂τu1 + F3, F3 = −



F3,1
F3,2
F3,3




where

F3,1 =∆γ∂xx p1 + f11 p1 p2 + f22A1A2 + f12(p1A2 + p2A1)

+
1
6
(

f111 p3
1 + 3 f112 p2

1A1 + 3 f122 p1A2
1 + f222A3

1
)

,

F3,2 =g11 p1 p2 + g22A1A2 + g12(p1A2 + p2A1)

+
1
6
(

g111 p3
1 + 3 f112 p2

1A1 + 3g122 p1A2
1 + g222A3

1
)

,

F3,3 =F3,2.



46

Once again, there exists a solution u3 if and only if 〈ũ, ∂τu1 + F3〉 = 0. Substituting in

the expression for u2 and calculating the various inner products, we obtain the following

equation:

dz
dτ

(1 + 2|a|2) = −k2∆γz +
1
2
[
h111 + 3h112(a + ā) + 3h122(a + ā)2 + h222(a + ā)3] z|z|2

+
[
h11(Gp(k) + 2Gp(0)) + h22(a + ā)(G+(k) + G−(k) + 2G+(0) + 2G−(0))

]
z|z|2

+h12
[
(G+(k) + G−(k) + 2G+(0) + 2G−(0)) + (a + ā)(Gp(k) + 2Gp(0))

]
z|z|2,

(4.25)

with

hij...l = fij...l + (a + ā)gij...l .

In summary, the amplitude equation takes the expected cubic form

dz
dτ

=
z

1 + 2|a|2 (−k2|∆γ|+ β(k)|z|2), (4.26)

with β the real coefficient

β =
1
2
[
h111 + 3h112(a + ā) + 3h122(a + ā)]2 + h222(a + ā)3]

+
[
h11(Gp(k) + 2Gp(0)) + h22(a + ā)(G+(k) + G−(k) + 2G+(0) + 2G−(0))

]

+ h12
[
(G+(k) + G−(k) + 2G+(0) + 2G−(0)) + (a + ā)(Gp(k) + 2Gp(0))

]
z|z|2. (4.27)

A stable pattern will occur provided that β(k) < 0 at the critical wavenumber.

4.2 Pattern formation in two dimensions
In this section, we seek to further develop our understanding of the reaction-transport

mechanism by considering the model in two dimensions. In the case of neurites in the C.

elegans ventral cord, microtubules tend to be aligned in parallel so that the active transport

process is effectively one-dimensional. In most nonpolarized animal cells, however, in-

tracellular transport occurs along a network where microtubules project radially from an

organizing center with outward polarity [2]. This organization is important for transport of

molecules to and from the nucleus. Furthermore, it is known that microtubules bend due

to large internal stresses, resulting in a locally disordered network. In other words, this

suggests that microtubules on short length scales in vivo exhibit disorder in orientation

and polarity, and thus may behave like transport in vitro [8, 11]. While specifying the exact
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spatial distribution of microtubules along with orientation and polarity would require a

detailed microscopic model, we can assume that the network is sufficiently dense so that

active transport within the cell can be represented in terms of a velocity jump process

[1, 5, 9]. This provides biological motivation for extending the reaction-transport model to

higher dimensions. A schematic of this model is shown in Figure 4.1.

4.2.1 The model

Once again, we let P(x, t) be the concentration of passively transported particles at

position x ∈ R2 at time t and A(x, v, t) denote the corresponding concentration of actively

transported particles with velocity v ∈ V ⊂ R2. The two dimensional formulation of the

model then reads

∂P
∂t = D∇2P + f (P,A) (4.28a)

∂A
∂t = −v · ∇A− αA + α

∫

V
T(v, v′)A(x, v′, t)dv′ + g(P,A), (4.28b)

where

A(x, t) =
∫

V
A(x, v, t)dv, (4.29)

and T(v, v′) is called the turning distribution [10]. The latter describes the probability that

an AT particle with velocity v′ switches to the velocity v. Here we consider some particular

types of turning functions relevant to intracellular transport, such as those considered by

Bressloff and Newby in [6]. First, we assume that the speed is the same in all directions so

that v can be parameterized by the direction angle θ ∈ [0, 2π) and v(θ) = v(cos θ, sin θ).

Under this assumption, we can write A = A(x, θ, t) and the turning operator as T(θ, θ′).

We can further simplify the model by assuming that T is independent of θ′. Then, the

model reads

∂P
∂t = D∇2P + f (P,A) (4.30a)

∂A
∂t = −v(θ) · ∇A− αA + αT(θ)A(x, t) + g(P,A), (4.30b)

with

A(x, t) =
∫ 2π

0
A(x, θ, t)dθ,

∫ 2π

0
T(θ)dθ = 1. (4.31)
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(a) (b)

D

v(θ)

v(θ')

Figure 4.1. Reaction-transport model on a disordered microtubular network. (a) Random
orientational arrangement of microtubules. (b) Hybrid 2D transport in which a particle
switches between diffusion and ballistic motion in a random direction θ. We ignore
the polarization of each filament, since we assume that a bound particle can reverse its
direction along a given filament, as in the one-dimensional model.

4.2.2 Future work: bifurcation analysis of two dimensional pattern formation

We will explore whether Turing-type instabilities can arise with a two-dimensional

version of this hybrid transport model, where it is necessary to consider the microtubular

network configuration. If we assume that the microtubule network is locally disordered

and sufficiently dense, we can make the simplifying homogenization assumption that all

velocity directions are possible independent of position. Alternatively, one can suppose

that the microtubules are arranged in a dense mesh in the plane, which is formed by

a regular planar lattice. For a given lattice type (e.g. square or hexagonal), there will

be a corresponding group generated by the rotations and reflections that preserve the

lattice. We can exploit this group structure to study the bifurcations of the solutions. In

general, unlike the classical reaction-diffusion models, the full hybrid reaction-transport

equations has an oriented structure which explicitly breaks O(2) symmetry. However,

we can exploit the existing shift-twist symmetries of the system to understand selection

and stability of patterns in higher dimensions. The same shift-twist Euclidean group

action occurs within the context of continuum neural field models of primary visual cortex,

where non–local interactions are mediated by axonal connections between neurons that are

tuned to respond to oriented visual stimuli [4, 3, 12]. These symmetries have not yet been

explored in the context of transport models.



49

4.3 References

[1] O. Benichou, C. Loverdo, M. Moreau, and R. Voituriez, A minimal model of
intermittent search in dimension two, J. Phys. Condens. Matter, 19 (2007), p. 065141.

[2] P. C. Bressloff, Stochastic processes in cell biology, vol. 41, Springer, 2014.

[3] P. C. Bressloff, J. D. Cowan, M. Golubitsky, and P. J. Thomas, Scalar and
pseudoscalar bifurcations motivated by pattern formation on the visual cortex, Nonlinearity,
14 (2001), p. 739.

[4] P. C. Bressloff, J. D. Cowan, M. Golubitsky, P. J. Thomas, and M. C. Wiener, Ge-
ometric visual hallucinations, Euclidean symmetry and the functional architecture of striate
cortex, Philos. Trans. R. Soc. Lond. B Biol. Sci., 356 (2001), pp. 299–330.

[5] P. C. Bressloff and J. M. Newby, Quasi-steady-state analysis of two-dimensional
random intermittent search processes, Phys. Rev. E, 83 (2011), p. 061139.

[6] , Stochastic models of intracellular transport, Rev. Modern Phys., 85 (2013), p. 135.

[7] H. A. Brooks and P. C. Bressloff, A mechanism for Turing pattern formation with active
and passive transport, SIAM J. Appl. Dyn. Syst., 15 (2016), pp. 1823–1843.

[8] A. Kahana, G. Kenan, M. Feingold, M. Elbaum, and R. Granek, Active transport
on disordered microtubule networks: The generalized random velocity model, Phys. Rev. E,
78 (2008), p. 051912.

[9] C. Loverdo, O. Bénichou, M. Moreau, and R. Voituriez, Robustness of optimal
intermittent search strategies in one, two, and three dimensions, Phys. Rev. E, 80 (2009),
p. 031146.

[10] H. G. Othmer and T. Hillen, The diffusion limit of transport equations derived from
velocity-jump processes, SIAM J. Appl. Math., 61 (2000), pp. 751–775.

[11] H. Salman, A. Abu-Arish, S. Oliel, A. Loyter, J. Klafter, R. Granek, and M. El-

baum, Nuclear localization signal peptides induce molecular delivery along microtubules,
Biophys. J., 89 (2005), pp. 2134–2145.

[12] P. J. Thomas and J. D. Cowan, Symmetry induced coupling of cortical feature maps,
Phys. Rev. Lett., 92 (2004), p. 188101.



CHAPTER 5

COARSE-GRAINING INTERMITTENT

INTRACELLULAR TRANSPORT:

TWO- AND THREE-

DIMENSIONAL

MODELS

The article in this chapter was originally published in Physical Review E 92, 042709

(2015). This article is reprinted with permission from Sean D. Lawley, Marie Tuft, and

Heather A. Brooks, Phys. Rev. E 92, 042709 (2015). Copyright (2015) by the American

Physical Society.



PHYSICAL REVIEW E 92, 042709 (2015)

Coarse-graining intermittent intracellular transport: Two- and three-dimensional models

Sean D. Lawley,* Marie Tuft, and Heather A. Brooks
Department of Mathematics, University of Utah, Salt Lake City, Utah 84112, USA

(Received 31 August 2015; published 20 October 2015)

Viruses and other cellular cargo that lack locomotion must rely on diffusion and cellular transport systems
to navigate through a biological cell. Indeed, advances in single particle tracking have revealed that viral
motion alternates between (a) diffusion in the cytoplasm and (b) active transport along microtubules. This
intermittency makes quantitative analysis of trajectories difficult. Therefore, the purpose of this paper is
to construct mathematical methods to approximate intermittent dynamics by effective stochastic differential
equations. The coarse-graining method that we develop is more accurate than existing techniques and applicable
to a wide range of intermittent transport models. In particular, we apply our method to two- and three-dimensional
cell geometries (disk, sphere, and cylinder) and demonstrate its accuracy. In addition to these specific applications,
we also explain our method in full generality for use on future intermittent models.

DOI: 10.1103/PhysRevE.92.042709 PACS number(s): 87.17.Aa, 87.16.A−, 05.10.Gg, 87.10.−e

I. INTRODUCTION

Intracellular transport of cargo (macromolecules and or-
ganelles) is fundamental to cellular function. Indeed, many
diseases are associated with defects in intracellular transport
[1]. In addition, trafficking through the cytoplasm is a crucial
step in viral and nonviral mediated gene transfer [2–4]. In order
to infect and multiply inside a host cell, viruses must travel
through the cytoplasm to the nucleus, and newly formed viral
progeny must travel back this route to exit the cell.

Lacking locomotion, viruses and other cellular cargo must
rely on diffusion and existing cellular transport systems to
maneuver through a biological cell. Advances in live cell
imaging and single particle tracking have revealed the complex
nature of viral motion. Viruses alternate between epochs of
(a) diffusion in the cytoplasm and (b) active transport along
microtubules [5–7]. This intermittency makes quantitative
analysis of trajectories difficult.

Therefore, we seek to approximate the intermittent dynam-
ics by some simpler effective dynamics. In this paper, we
answer the following question: given information about the
cell and the cargo (cellular and microtubular geometry, cargo
dynamics in cytoplasm, cargo dynamics on microtubules,
number of microtubules, etc.), how can we find an effective
stochastic differential equation (SDE) to approximate the
intermittent cargo motion? Put another way, we show how
to choose two parameters (the drift and diffusion coefficient in
an SDE) that encapsulate the full intermittent dynamics.

Using Monte Carlo simulations, we verify the accuracy of
our methods by showing that the probability distributions of
random variables stemming from our effective SDE match the
probability distributions of random variables stemming from
the full intermittent process. In particular, we compare the
distributions of first passage times (FPTs) and the distributions
of the spatial position of the process at a sequence of times. We
note that this is a more stringent test of accuracy than previous
methods which sought to match only means of FPTs and not
distributions of FPTs [8,9].

*lawley@math.utah.edu

Given its biological and medical importance, intracellular
transport has garnered mathematical attention for decades
[10]. Recently, mathematicians have developed techniques to
compute the efficiency of the delivery of plasmids or viral
DNAs from the cell membrane to nuclear pores [11–13]. These
techniques, however, take as their starting point a single SDE
describing cargo motion, not the full intermittent dynamics.
Our method for reducing intermittent dynamics to an SDE is
therefore well motivated. Existing methods for this reduction
exist, but they apply only to two-dimensional cells [8,9].
Our method applies to three-dimensional cells (Secs. IV and
V) and is in fact more accurate than previous methods for
two-dimensional cells (Sec. II).

The paper is organized as follows. We begin in Sec. II by
describing a well-known model of intermittent intracellular
transport in a two-dimensional cell that was first formulated
in Ref. [8]. In Refs. [8,9], the authors derive effective SDEs
to approximate this intermittent model, and so we compare
our coarse-graining method to theirs. We give our general
coarse-graining method in Sec. III and demonstrate its wide
applicability in Secs. IV and V by applying it to models of
intermittent intracellular transport in spherical and cylindrical
cellular geometries, respectively. In all cases, Monte Carlo
simulations show that our effective SDE closely resembles the
intermittent dynamics. We conclude with a brief summary.

II. TWO-DIMENSIONAL CELL—DISK

We begin by applying our coarse-graining method to a
well-known model of virus trafficking in a two-dimensional
cell that was formulated in Ref. [8] and further studied in
Refs. [9,12]. In this model, the cell is a two-dimensional disk
of radius R with its nucleus located in a concentric disk of
smaller radius δ < R (this cellular geometry would apply,
for example, to flat skin fibroblast culture cells [14]). There
are N microtubules radiating from the nucleus to the cellular
membrane that partition the cytoplasm into N wedges of equal
angular width � = 2π/N (see Fig. 1). By this symmetry, it is
enough to consider the viral motion restricted to one of these
N wedges:

C := {(r,θ ) : δ � r � R and θ ∈ [0,�]}.

1539-3755/2015/92(4)/042709(8) 042709-1 ©2015 American Physical Society
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FIG. 1. Two-dimensional cell model with cell radius R, nucleus
radius δ, and N = 5 microtubules. Each wedge has angular width
� = 2π/N .

A virus enters C at the cellular membrane at radius R at an
angle uniformly distributed in [0,�]. The virus then moves by
pure diffusion with diffusion coefficient D in the cytoplasm
(with a reflecting boundary condition at the cellular membrane
at radius R) until it either hits the nucleus at radius δ or hits a
microtubule at angle 0 or �. If the virus ever reaches radius δ,
then it is immediately absorbed. If the virus hits a microtubule,
then it moves along the microtubule toward the nucleus with
constant velocity V for an exponentially distributed amount
of time. After this exponential time, the virus is released back
into the cytoplasm at its current radius at an angle uniformly
distributed in [0,�] and begins to diffuse again (see Fig. 2).

The virus continues to alternate between epochs of diffusion
and directed motion along microtubules until it reaches the

FIG. 2. (Color online) Sample trajectory of intermittent dynam-
ics within a single wedge of two-dimensional cell model. Here, the
virus diffuses in the cytoplasm from radius r1 and angle θ1 until it
hits the microtubule at radius r2 and angle 0. It then moves along the
microtubule at velocity V for an exponentially distributed time t2.
Then, it is released back into the cytoplasm at radius r3 = r2 − V t2
and at an angle θ3 uniformly distributed in [0,�]. The process
continues until the virus is absorbed at radius δ.

nucleus. If we write the position of the virus at time t in polar
coordinates (rt ,θt ) ∈ C, then viral motion is described by

drt =
{−V dt on a microtubule

(D/rt )dt + √
2D dWr

t in cytoplasm,

dθt =
{

0 on a microtubule
(
√

2D/rt )dWθ
t in cytoplasm,

(2.1)

where Wr
t and Wθ

t are independent standard Brownian
motions.

The intermittent nature of this process makes it difficult
to analyze. Thus, much effort has gone into finding effective
coarse-grained SDE approximations. In Sec. II A below, we
outline this previous work and identify aspects that we seek
to improve. We then give our coarse-grained SDE in Sec. II B
and make comparisons in Sec. II C.

A. Previous coarse-grained dynamics by Lagache and Holcman

In Refs. [8,9], the authors use sophisticated asymptotic
analysis of partial differential equations to derive a radial drift
B(r) in terms of model parameters in order to approximate the
intermittent dynamics in Eq. (2.1) by an effective radial SDE

drt = [D/rt − B(rt )] dt +
√

2D dWt . (2.2)

In Ref. [8] the derived drift B(r) is constant in r , whereas in
Ref. [9] it a function of r . In both papers, the authors take the
effective angular SDE to be the cytoplasmic angular SDE from
the intermittent dynamics, namely,

dθt = (
√

2D/rt ) dWθ
t .

In both Refs. [8,9], the approximation in Eq. (2.2) is justified
by two criteria: (a) the mean first passage time (MFPT) to
the nucleus for the effective dynamics in Eq. (2.2) closely
matches the MFPT to the nucleus for the intermittent dynamics
in Eq. (2.1) if � � 1, and (b) if one imposes reflecting
boundary conditions at the nucleus, then the steady state radial
distribution of the effective dynamics in Eq. (2.2) resembles
the steady state distribution of the intermittent dynamics in
Eq. (2.1) for certain intermediate values of �.

The FPT to the nucleus is closely related to the probability
and timing of viral infection and is thus a key biological
quantity. Therefore, matching the FPTs for the two processes is
a good criteria for justifying the coarse-grained SDE, and so we
agree in principle with criteria (a). However, while the MFPTs
for Eqs. (2.1) and (2.2) match closely, we discover below that
the FPT distributions for the two processes are quite different.
We thus seek an effective SDE whose FPT distribution matches
that of the intermittent dynamics in Eq. (2.1). Furthermore, we
want the effective SDE to be valid for a larger range of �. We
see below that our effective SDE accomplishes both of these.

In addition, the criteria (b) of matching steady state
radial distributions could be sharpened since steady state
distributions contain (in principle) little information about
time scale. As a trivial example, consider a diffusing particle
in a one-dimensional interval with reflecting boundaries. The
steady state distribution (uniform) is completely independent
of the diffusion coefficient, but the dynamics are of course
highly dependent on the diffusion coefficient. Instead of
seeking to match the steady state radial distribution (which
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is essentially the radial distribution at infinite time), we match
the radial distribution at a sequence of finite times.

Furthermore, the fact that criteria (b) can only hold in
certain intermediate parameter regimes is made clear by the
form of the effective SDE in Eq. (2.2). Notice that the diffusion
term in Eq. (2.2) is the same as the cytoplasmic diffusion
term for the radial dynamics in Eq. (2.1). Thus, the effective
SDE (2.2) always has this same amount of noise. However,
this effective SDE was derived under the assumption that
� � 1, and it is clear that the intermittent process becomes
deterministic in this limit because the proportion of time
that the virus is bound to a microtubule converges to one.
Thus, the steady state radial distribution for the intermittent
process in this limit must be a delta function at the nucleus,
and so the steady state radial distributions of Eqs. (2.1) and
(2.2) cannot match in this limit. We see below that assuming
the diffusion term in the effective SDE is the same as the
cytoplasmic diffusion term causes other problems. We thus
allow the diffusion term in our effective SDE to depend on �.

B. New coarse-grained dynamics

A systematic exposition of our general coarse-graining
method is given below in Sec. III, but we first illustrate our
method for the two-dimensional cell model described above.
We approximate the intermittent dynamics of Eq. (2.1) by an
effective radial SDE that is a mixture of the cytoplasmic and
microtubular dynamics

drt = {[D/rt )(1 − p(rt )] − Vp(rt )}dt

+
√

2D[1 − p(rt )] dWt, (2.3)

where p(r) is related to the probability that the virus is on a
microtubule given that it is at radius r .

A precise definition of p(r) is given in Sec. III, but first
consider the following intuitive derivation. By assumption,
each time the virus hits a microtubule, it attaches to the
microtubule for an exponential amount of time (say with mean
μ). After this exponential time, the virus is released back
into the cytoplasm at its current radius (call it r) at an angle
uniformly distributed in [0,�]. Ignoring radial motion, we
approximate the amount of time it takes the virus to reach a
microtubule again by

T (r) := 1

�

∫ �

0
τ (θ ; r)dθ, (2.4)

where τ (θ ; r) satisfies boundary value problem

D

r2

d

dθ
τ (θ ; r) = −1, τ (0; r) = 0 = τ (�; r). (2.5)

For a particle diffusing in the interval [0,�] with diffusion
coefficient D/r2, the quantity T (r) is the MFPT to reach
either 0 or �, given a uniform initial position [15]. A quick
calculation yields T (r) = �2r2/(12D).

Setting p(r) as the proportion of time on a microtubule

p(r) = μ

μ + T (r)
,

our effective SDE in Eq. (2.3) becomes

drt =
(

D

rt

T (rt )

μ + T (rt )
− V

μ

μ + T (rt )

)
dt

×
√

2D
T (rt )

μ + T (rt )
dWt . (2.6)

C. Comparison

We now compare our effective SDE in Eq. (2.6) to both
the original intermittent process in Eq. (2.1) and the effective
SDE in Eq. (2.2) derived in Ref. [9]. In keeping with parameter
values used in Refs. [8,9] (taken from experimental papers
[5,16–18]), we take the radius of the cell to be R = 20 μm,
the radius of the nucleus to be δ = 5 μm, the cytoplasmic
diffusion coefficient to be D = 1.3 μm2 s−1, the velocity on
microtubules to be V = 0.7 μm s−1, and the average time on
a microtubule to be μ = 1 s.

Figure 3 compares the distributions of the FPT to
the nucleus for various numbers of microtubules (N =
12,24,48,96). These values of N are in keeping with [8,9]
which used N between 12 and 48. Figure 4 compares the
distributions of the radial positions at times t = 5,10,15 for
N = 48. That is, it compares the distribution of rt for (2.1),
(2.6), and (2.2) at t = 5,10,15. The standard Euler-Maruyama
method is used to simulate the cytoplasmic motion in the
intermittent process as well as the effective SDEs. It is clear
from these figures that our SDE in Eq. (2.6) approximates the
intermittent process more closely than the SDE in Eq. (2.2)
derived in Ref. [9].

III. GENERAL METHOD

Before considering higher dimensional and more compli-
cated cellular geometries in Secs. IV and V, we first give
our general coarse-graining method. Suppose one is given a
stochastic process {(ρt ,φt )}t�0 ∈ R × Rd . [We use the (ρ,φ)
notation for analogy to Sec. II above, but notice that (ρ,φ)
is not assumed to be a radius and angle as it takes values in
R × Rd .]

Let the sets {Ak}nk=1 ⊂ Rd partition the state space of φt

and suppose the dynamics of ρt depend only on which Ak the
process φt is in and not on the details of φt . That is, suppose
the dynamics of ρt are governed by the SDE

dρt =
(

n∑
k=1

bk(ρt )1φt∈Ak

)
dt +

(
n∑

k=1

σk(ρt )1φt∈Ak

)
dWt,

(3.1)

where 1{·} denotes the indicator function, for some given
functions {bk(ρ)}nk=1 and {σk(ρ)}nk=1. [In the case of the two-
dimensional cell considered in Sec. II above, ρt = rt , φt = θt ,
b1(ρ) = V , σ1(ρ) = 0, b2(ρ) = D/ρ, and σ2(ρ) = √

2D, with
partitioning sets A1 = {0,�} and A2 = (0,�).]

The dynamics of φt may be complicated and may depend
on ρt , but we suppose that which set Ak the process φt is in is
approximately Markovian. That is, we suppose there exists a
continuous-time Markov jump process Jt (with instantaneous
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FIG. 3. (Color online) Empirical distributions of FPT to nucleus of 2D cell for intermittent in Eq. (2.1), our new coarse grain in Eq. (2.6),
and the previous coarse grain in Eq. (2.2) derived in Ref. [9] for N = 12 (top left), N = 24 (top right), N = 48 (bottom left), and N = 96
(bottom right). Each distribution is calculated from 104 trials. Parameters are given in Sec. II C.

jump rates which may depend on ρt ) so that

Jt ≈
∑
k=1

k1φt∈Ak
.

[In the case of the two-dimensional cell considered in Sec. II
above, Jt jumps from state 1 to 2 with rate 1/μ and from 2 to
1 with rate 1/T (ρt ).]

Under this assumption, we approximate ρt by

dρ̃t =
(

n∑
k=1

bk(ρ̃t )1Jt=k

)
dt +

(
n∑

k=1

σk(ρ̃t )1Jt=k

)
dWt .

5 10 15 20
0

0.1
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FIG. 4. (Color online) Empirical distribution of radial position
for 2D cell for intermittent in Eq. (2.1), our new coarse grain in
Eq. (2.6), and the previous coarse grain in Eq. (2.2) derived in
Ref. [9] at times t = 5,10,15. Thicker lines correspond to larger
times. Each distribution is calculated from 105 trials and we take
N = 48. Parameters are given in Sec. II C.

This process ρ̃t is a hybrid switching diffusion [19]. If the
Jt dynamics are much faster than the ρ̃t dynamics, then one
can approximate ρ̃t to first order by the adiabatic limit (see
Ref. [19], Chap. 12)

dρ̄t =
(

n∑
k=1

bk(ρ̄t )pk(ρ̄t )

)
dt +

(
n∑

k=1

√
σ 2

k (ρ̄t )pk(ρ̄t )

)
dWt,

(3.2)

where {pk(ρ)}nk=1 is the quasi steady state distribution of Jt .
This time scale separation is the key assumption. The SDE in
Eq (3.2) is our coarse-grained effective SDE approximation to
Eq. (3.1).

IV. THREE-DIMENSIONAL CELL—SPHERE

In this section, we first formulate a mathematical model of
intermittent virus trafficking in a three-dimensional spherical
cell and then apply our general coarse-graining method of
Sec. III to derive an effective SDE describing viral motion.

In this intermittent model, the cell is a sphere of radius R

with its nucleus located in a concentric sphere of smaller radius
δ < R. The position of the virus is restricted to the cytoplasm

C := {x ∈ R3 : |x| � δ and |x| � R}.

There are N microtubules, each of radius ε, that radiate from
the nucleus at radius δ to the cellular membrane at radius R

(see Fig. 5). That is, for N points {ck}Nk=1 on the unit sphere,
we define the microtubules {mk}Nk=1 to be the sets

mk = {x ∈ R3 : |x − rck| � ε for some r ∈ [δ,R]}.
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FIG. 5. (Color online) Three-dimensional spherical cell model
with cell radius R, nucleus radius δ, and N = 7 microtubules with
radius ε. The N microtubules radiate from locations on the nucleus
which are randomly drawn from a uniform distribution.

We suppose that the N points {ck}Nk=1 on the surface of
the unit sphere are randomly placed according to a uniform
distribution.

A virus enters the cell at the cellular membrane at a
position uniformly distributed on the surface of the sphere
of radius R. The virus then moves by pure diffusion with
diffusion coefficient D in the three-dimensional cytoplasm
(with a reflecting boundary condition at the cellular membrane
at radius R) until it either hits the nucleus at radius δ or hits
one of the N microtubules. If the virus ever reaches radius δ,
then it is immediately absorbed. If the virus hits a microtubule,
then it moves along the microtubule toward the nucleus with
constant velocity V for an exponentially distributed amount
of time. After this exponential time, the virus is released back
into the cytoplasm at its current radius at a position uniformly
distributed on the surface of the sphere with that radius,
and then the virus begins to diffuse in the three-dimensional
cytoplasm again.

The virus continues to alternate between epochs of diffusion
and directed motion along microtubules until it reaches the
nucleus. If we let rt ∈ [δ,R] denote the radial position of the
virus at time t , then the radial viral motion is described by

drt =
{−V dt on a microtubule

(2D/rt )dt + √
2D dWt in cytoplasm.

(4.1)

A. Coarse-grained spherical dynamics

To derive an effective SDE for the intermittent dynamics in
Eq. (4.1), we cast the problem in the framework and notation
of Sec. III. Let rt denote the radial position of the virus and let
xt ∈ R3 denote its Cartesian coordinates. Define the (ρt ,φt ) of
Sec. III to be

(ρt ,φt ) = (rt ,xt ) ∈ R × R3.

The partitioning sets become

A1 = ∪N
k=1mk and A2 = R3\A1.

The drift and diffusion terms become

b1(ρ) = −V, σ1(ρ) = 0,

b2(ρ) = 2D/ρ, σ2(ρ) =
√

2D.

In order to apply the method of Sec. III, it remains to
approximate the process

1φt∈A1 + 21φt∈A2

by a continuous-time Markov jump process Jt on {1,2}.
Since the virus is assumed to attach to a microtubule for an
exponential amount of time (say with mean μ), we suppose Jt

jumps from state 1 to 2 with rate 1/μ.
Choosing the jump rate from state 2 to 1 is more difficult as

it represents the rate at which a virus finds a microtubule. We
choose it to be the inverse of the MFPT of a particle diffusing
on the surface of a sphere to one of the N microtubules.

More precisely, let S denote the surface of the unit sphere
and let η(ρ) ⊂ S denote the set

η(ρ) := {x ∈ S : |x − ck| � ε/ρ for some k = 1, . . . ,N}.
Suppose τ (x; ρ) : S → [0,∞) satisfies the following boundary
value problem:

�τ (x; ρ) = −ρ2/D, x ∈ S\η(ρ),

τ (x; ρ) = 0, x ∈ ∂η(ρ).

For a particle diffusing with diffusion coefficient D on the
surface of a sphere of radius ρ, the quantity

1

4π

∫
S

τ (x; ρ) dx (4.2)

is the MFPT to hit one of N traps of radius ε centered at
positions {ρck}Nk=1, assuming the particle is initially distributed
uniformly. Coombs, Straube, and Ward provide the following
asymptotic approximation of Eq. (4.2) in the small ε limit [20]:

T (ρ) := ρ2

D

[
− 2

N
ln

(
ε

ρ

)
+ 2 ln 2 − 1 − 4

N2
�

]
,

where

� =
N∑

k=1

N∑
j>k

ln |ck − cj |.

If we choose the jump rate of Jt from state 2 to 1 to be 1/T (ρ),
then the quasi steady state distribution of Jt is given by

p1(ρ) = μ

μ + T (ρ)
,

with p2(ρ) = 1 − p1(ρ).
Thus, using Eq. (3.2) in Sec. III, we approximate the

intermittent dynamics in Eq. (4.1) by the following effective
SDE:

dρt =
(

2D

ρt

T (ρt )

μ + T (ρt )
− V

μ

μ + T (ρt )

)
dt

+
√

2D
T (ρt )

μ + T (ρt )
dWt . (4.3)
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FIG. 6. (Color online) 3D spherical cell: comparison of intermit-
tent in Eq. (4.1) and our coarse grain in Eq. (4.3). Each distribution
is calculated from 104 trials and parameters are given in Sec. IV B.
Top: Empirical distributions of FPT to nucleus. Bottom: Empirical
distribution of radial position at times t = 5,10,15. Thicker lines
correspond to larger times.

B. Comparison

We now compare the 3D intermittent dynamics of Eq. (4.1)
to our effective SDE in Eq. (4.3).

In keeping with the parameters used in Sec. II, we take
the radius of the cell to be R = 20 μm, the radius of the
nucleus to be δ = 5 μm, the cytoplasmic diffusion coefficient
to be D = 1.3 μm2 s−1, the velocity on microtubules to be
V = 0.7 μm s−1, and the average time on a microtubule to
be μ = 1 s. A typical eukaryotic cell large aster has between
600 and 1000 microtubules [16], and so we take N = 1000.
A microtubule has approximate diameter 0.03 μm [21], an
Adeno associated virus has approximate diameter 0.03 μm
[5], and the interaction range between microtubules and
molecular motors is approximately 0.05 μm [17]. Thus, we
take ε = 0.1 μm. The standard Euler-Maruyama method is
used to simulate the cytoplasmic motion in the intermittent
process as well as the effective SDE.

The top of Fig. 6 compares the distributions of the FPT to the
nucleus and the bottom compares the distributions of the radial
positions at a sequence of times. That is, the bottom compares
the distribution of rt for Eqs. (4.1) and (4.3) at t = 5,10,15. In
both cases, the coarse-grained SDE closely approximates the
full intermittent dynamics.

V. THREE-DIMENSIONAL CELL—CYLINDER

In this section, we formulate a mathematical model of
virus trafficking in a three-dimensional cylindrical cell and
apply our general coarse-graining method of Sec. III to derive
an effective SDE describing viral motion. This cylindrical

geometry is well motivated as many viruses rely on trafficking
though axons and dendrites which resemble long cylinders.

Indeed, similar mathematical models of axonal transport
have a long and rich history. Following experimental work in
the 1970s and 1980s that showed radiolabeled amino acids
progressing through axons as slowly spreading waves, Reed
and Blum developed PDE models of axonal transport that
remarkably exhibited this same behavior [22–24]. These PDE
models have been generalized and have generated lots of
rigorous mathematical analysis [25–28]. In addition to PDE
models, probabilistic models (in both discrete and continuous
time) have been constructed that also demonstrate this same
behavior [29–32].

These previous models begin with two simplifying reduc-
tions: (a) the cell is one-dimensional, and (b) the rate at
which a virus (or other cargo) attaches to a microtubule is
some given exponential rate. Our intermittent model makes
neither reduction; the cell’s three-dimensional geometry is
included, and the time when a virus attaches to a microtubule
is determined by the random time that a virus diffusing in
the three-dimensional cytoplasm hits a microtubule. However,
the coarse-grained SDE that we derive in Sec. V A does
make use of these reductions. We show in Sec. V B that this
SDE compares favorably with the full intermittent model, and
therefore verify the efficacy of these reductions and show how
to make them. That is, we show how to choose the pair of
one-dimensional parameters (drift and diffusion coefficient)
in order to encapsulate the full three-dimensional model.

We now define the intermittent dynamics. In this model, the
cell is a cylinder of length L and radius R:

C := {(x,y,z) ∈ R3 : 0 � x � L and y2 + z2 � R2}.
There are N microtubules, each of radius ε and length L, that
run parallel to the principal axis of the cell (see Fig. 7). More
precisely, for N points {(yk,zk)}Nk=1 on the disk of radius R in
the (y,z) plane, we define the microtubules {mk}Nk=1 to be the
sets

mk = {(x,y,z) ∈ R3 : 0 � x � L, |(y,z) − (yk,zk)| � ε}.

We suppose the N points {(yk,zk)}Nk=1 are randomly placed on
the disk of radius R according to a uniform distribution.

FIG. 7. Three-dimensional cylindrical (axon) model with cell
radius R, length L, and N = 4 microtubules with radius ε. The
locations of the N microtubules are randomly drawn from a uniform
distribution.
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We suppose that a virus enters the cell at position
(0,y0,z0) ∈ C with (y0,z0) uniformly distributed on the disk
of radius R. The virus then moves by pure diffusion with
diffusion coefficient D in the three-dimensional cytoplasm
with a reflecting boundary condition at the cellular membrane

{(y,z) ∈ R2 : y2 + z2 = R2}
and at the left end of the cell (x = 0), until it either hits the right
end of the cell (x = L) or hits one of the N microtubules. If
the virus reaches x = L, then it is immediately absorbed. If the
virus hits a microtubule, then it moves along the microtubule
with constant velocity V > 0 for an exponentially distributed
amount of time. After this exponential time, the virus is
released back into the cytoplasm at its current x position at
a point in the (y,z) plane uniformly distributed on the disk of
radius R, and then the virus begins to diffuse again.

The virus continues to alternate between epochs of diffusion
and directed motion along microtubules until it reaches x = L.
If we let (xt ,yt ,zt ) ∈ C denote the position of the virus at time
t , then the viral motion in the x direction is described by

dxt =
{
V dt on a microtubule√

2D dWt in cytoplasm.
(5.1)

A. Coarse-grained cylindrical dynamics

To derive an effective SDE for the intermittent dynamics in
Eq. (5.1), we cast the problem in the framework and notation
of Sec. III. Define the (ρt ,φt ) of Sec. III to be

(ρt ,φt ) = (xt ,(yt ,zt )) ∈ C.

The partitioning sets become

A1 = ∪N
k=1mk and A2 = C\A1.

The drift and diffusion terms become

b1(ρ) = V, σ1(ρ) = 0,

b2(ρ) = 0, σ2(ρ) =
√

2D.

In order to apply the method of Sec. III, it remains to
approximate the process

1φt∈A1 + 21φt∈A2

by a continuous-time Markov jump process Jt on {1,2}.
Since the virus is assumed to attach to a microtubule for an
exponential amount of time (say with mean μ), we suppose Jt

jumps from state 1 to state 2 at rate 1/μ.
The jump rate from state 2 to state 1 represents the rate

at which a virus finds a microtubule. We choose it to be the
inverse of the MFPT of a particle diffusing on the disk of radius
R to one of N uniformly distributed circular traps of radius ε.
In the small ε limit, this MFPT is Ref. [9]

T = R2 ln(1/ε)

2ND
.

The quasi steady state distribution of Jt is then given by

p1 = μ

μ + T
and p2 = T

μ + T
.

Thus, using Eq. (3.2) in Sec. III, we approximate the
intermittent dynamics in Eq. (5.1) by the following effective
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FIG. 8. (Color online) 3D cylindrical cell: comparison of in-
termittent in Eq. (5.1) and our coarse grain in Eq. (5.2). Each
distribution is calculated from 104 trials and parameters are given
in Sec. V B. Top: Empirical distributions of FPT to nucleus. Bottom:
Empirical distribution of x position at times t = 5,10,15. Thicker
lines correspond to larger times.

SDE:

dρt = V
μ

μ + T
dt +

√
2D

T

μ + T
dWt . (5.2)

B. Comparison

We now compare the 3D intermittent dynamics of Eq. (5.1)
to our effective SDE in Eq. (5.2). As above, we take ε =
0.1 μm, D = 1.3 μm2 s−1, V = 0.7 μm s−1, and μ = 1 s.
We take R = 10 μm, L = 100, and N = 700 [33,34]. The
standard Euler-Maruyama method is used to simulate the cyto-
plasmic motion in the intermittent process as well as the
effective SDE.

The top of Fig. 8 compares distributions of the FPT to x = L

and the bottom compares the distributions of the x positions
at a sequence of times. That is, the bottom compares xt in
Eq. (5.1) and ρt in Eq. (5.2) at t = 5,10,15. In both cases, the
coarse-grained SDE closely approximates the full intermittent
dynamics.

VI. SUMMARY AND CONCLUSIONS

In this paper, we developed a method for coarse-graining
intermittent intracellular transport into effective SDEs. We
used Monte Carlo simulations to demonstrate the accuracy
of our method across a variety of cellular geometries. For
comparison and analogy to previous work, we incorporated
various assumptions into the intermittent models (determinis-
tic motion on microtubules, uniform placement in cytoplasm

042709-7

57



SEAN D. LAWLEY, MARIE TUFT, AND HEATHER A. BROOKS PHYSICAL REVIEW E 92, 042709 (2015)

after leaving a microtubule, etc.). However, we stress that our
method (as described in Sec. III) is easily applied without
these assumptions. We anticipate our method being used on
future intermittent models and the machinery of Ref. [11]
being applied to our effective SDEs [Eqs. (2.6) and (4.3)]
to estimate the efficiency of viral infection. Additional future
work includes combining our present coarse-grained models of
viral motion with the sequence of biochemical transformations
that viruses undergo during their journey through the cell,

as these are known to affect the probability and timing of
infection [35].
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Intrinsic noise arising from the stochastic opening and closing of voltage-gated ion channels has been
shown experimentally and mathematically to have important effects on a neuron’s function. Study of classical
neuron models with stochastic ion channels is becoming increasingly important, especially in understanding a
cell’s ability to produce subthreshold oscillations and to respond to weak periodic stimuli. While it is known
that stochastic models can produce oscillations (quasicycles) in parameter regimes where the corresponding
deterministic model has only a stable fixed point, little analytical work has been done to explore these
connections within the context of channel noise. Using a stochastic hybrid Morris-Lecar (ML) model, we
combine a system-size expansion in K+ and a quasi-steady-state (QSS) approximation in persistent Na+ in
order to derive an effective Langevin equation that preserves the low-dimensional (planar) structure of the
underlying deterministic ML model. (The QSS analysis exploits the fact that persistent Na+ channels are fast.)
By calculating the corresponding power spectrum, we determine analytically how noise significantly extends the
parameter regime in which subthreshold oscillations occur.

DOI: 10.1103/PhysRevE.92.012704 PACS number(s): 87.19.lc, 87.10.Mn, 05.40.−a

I. INTRODUCTION

Noise has emerged as a key component of a wide range of
biological systems [1]. In the particular case of neuroscience,
noise is present at all levels, yet neural networks are still
able to perform complex computations reliably [2]. The most
dominant source of intrinsic noise in neurons is ion channel
noise [3,4]. The membrane potential of a neuron changes as
ions such as Na+ and K+ pass in and out of the cell through
voltage-dependent channels within the membrane and the
opening and closing of the channels is stochastic due to thermal
fluctuations [5]. In classical approaches, the number of ion
channels is assumed to be very large and thus the fluctuations
in membrane potential from individual stochastic channels is
ignored in favor of a deterministic average. More recent work
has questioned this assumption. It has been shown that channel
noise indeed produces membrane potential fluctuations that
are large enough to affect action potential timing [6–11] and
increase the range of spiking behavior exhibited in some
neural populations [3], with the effects of channel noise
increasing dramatically as neurons become smaller. However,
even when large numbers of stochastic ion channels are present
in a neuron, fluctuations can become critical near the action
potential threshold [2,12]. In addition, sodium channel noise
places structural limits on neural anatomy [13], since in the
case of very small neurons, significant channel noise would
disrupt signal transmission [14].

Ion channel noise has also been implicated in subthreshold
membrane potential oscillations (STOs). These are observed
in a variety of neural cell types: stellate cells in the entorhinal
cortex, hippocampal cells, and mitral cells in the olfactory
bulb, to name a few. Intrinsic ion currents are sufficient to
produce oscillatory activity [15]. Tetrodotoxin blocks STOs,
implicating a persistent Na+ current in the generation of oscil-
latory activity [16–20]. Using the dynamic clamp technique,
it has been shown that stochastic flicker of these persistent

*bressloff@math.utah.edu

sodium channels is crucial for subthreshold oscillations and
phase locking to weak periodic stimuli in entorhinal spiny
stellate cells [13]. Hyperpolarization is due to a noninactivating
outward current, for example, a tetraethylammonium-sensitive
M current in layer-V pyramidal cells [20]. In addition to
the phase locking of periodic stimuli, it has been shown
experimentally and theoretically that noise can enhance weak
signal transduction in sensory neurons via tuning intrinsic
subthreshold oscillations [21]. White et al. [18] showed that the
presence of channel noise alters the dynamical behavior of a
medial entorhinal cortical cell model; in particular, subthresh-
old oscillations are most easily generated for intermediate
noise levels. In these cells, it is predicted that there are only on
the order of 1000–5000 persistent Na+ channels, a surprisingly
small number that does not match the assumptions of classical
deterministic neuron model approaches.

Deterministic conductance-based models of a single neuron
such as the Hodgkin-Huxley model have been widely used to
understand the dynamical mechanisms underlying membrane
excitability [22]. These models assume a large population of
ion channels so that their effect on membrane conductance
can be averaged. As a result, the average fraction of open ion
channels modulates the effective ion conductance, which in
turn depends on voltage. It is often convenient to consider
a simplified planar model of a neuron, which tracks the
membrane voltage v and a recovery variable w that represents
the fraction of open potassium channels. The advantage of
a two-dimensional model is that one can use phase-plane
analysis to develop a geometric picture of neuronal spiking.
One well-known example is the Morris-Lecar (ML)
model [23]. Although this model was originally developed
to model Ca2+ spikes in mollusks, it has been widely used to
study both type-I and type-II forms of neural excitability for
Na+ spikes [22] since it exhibits many of the same bifurcation
scenarios as more complex models. The ML model has also
been used to investigate STOs due to persistent Na+ currents
[24].

Another advantage of the ML model is that it is straightfor-
ward to incorporate intrinsic channel noise [25–27]. In order to
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capture the fluctuations in membrane potential from stochastic
switching in voltage-gated ion channels, the resulting model
includes both discrete jump processes (to represent the
opening and closing of ion channels) and a continuous-time
piecewise process (to represent the membrane potential). This
is an example of a stochastic hybrid system with piecewise
deterministic dynamics. There has been much recent interest
in such systems, within the context of both conductance-based
models and gene and biochemical networks [1].

In this paper we use a stochastic hybrid ML model of
a persistent (noninactivating) sodium current and a slower
outward potassium current to investigate analytically the
role of channel noise in the generation of STOs. Previous
computational studies have shown how channel noise can
significantly extend the parameter regime over which STOs
occur [18,28]. We show that such a phenomenon can be
analyzed in terms of the emergence of so-called quasicycles
below a supercritical Hopf bifurcation point of the correspond-
ing deterministic model. The emergence of quasicycles in
a stochastic model—periodic oscillations that arise outside
the limit cycle regime of a deterministic system—has been
studied in various biological applications (see [29–33]). In
some cases, such as calcium oscillations, the addition of noise
serves to expand the range of parameter values for which
limit cycle behavior is observed [29]; it is also possible in
some reaction networks to induce oscillations where there
are no limit cycles anywhere in the parameter space of the
deterministic system [30].

In addition to providing an analytical framework for
understanding noise-induced STOs, we introduce a math-
ematical approach to study quasicycles in stochastic hybrid
systems. Typically, the emergence of quaiscycles in a jump
Markov process is handled by carrying out a system-size
expansion of the underlying master equation. This generates a
Fokker-Planck (FP) equation, whose corresponding Langevin
equation can be linearized about the fixed point solution of
the deterministic system below the Hopf-bifurcation point. If
the resulting power spectrum exhibits a significant peak at
a nonzero frequency, then this indicates the existence of a
quasicycle. In the case of the stochastic ML model, one could
carry out a double system-size expansion with respect to the
total number N of Na+ channels and the total number M

of K+ channels. However, this would lead to a multivariate
Langevin equation in three stochastic variables: the voltage
v, the fraction w of open K+ channels, and the fraction A

of open Na+ channels. Instead, we would like to preserve
the low-dimensional (planar) structure of the ML model by
deriving a Langevin equation for v and w alone.1 We show how

1One motivation for preserving the planar structure of the ML
model is that we would ultimately like to incorporate our theory
of subthreshold oscillations into a model of spontaneous action
potentials for an excitable neuron. This would require including
a population of nonpersistent Na+ ion channels along the lines
of [27]. The analysis of the resulting escape problem becomes almost
intractable beyond planar systems, so it is preferable to carry out a
slow-fast analysis rather than a system-size expansion with respect
to the two classes of Na+ channels. The advantage of maintaining
a low-dimensional Langevin equation by performing a slow-fast

this can be achieved by exploiting the fact that the opening and
closing of the persistent Na+ channels is much faster than the
dynamics of the voltage and the K+ channels. We thus combine
a quasi-steady-state (QSS) analysis of the Na+ dynamics and
a system-size expansion of the K+ dynamics to derive a
Langevin equation for the pair (v,w) and relate the existence
of noise-induced STOs to the power spectrum of the resulting
stochastic voltage. We briefly review the deterministic ML
model in Sec. II, with parameter values chosen so that the
model supports subthreshold oscillations via a supercritical
Hopf bifurcation, rather than the more familiar spiking via a
subcritical Hopf bifurcation. The stochastic version of the ML
model is introduced in Sec. III, which is then systematically
reduced by carrying out a system-size expansion with respect
to K+ (Sec. IV) and a QSS approximation with respect to Na+

(Sec. V). The emergence of quasicycles (noise-induced STOs)
is then established in Sec. VI.

II. DETERMINISTIC MODEL

A version of the deterministic Morris-Lecar model [23]
has previously been used to understand the initiation and
behavior of STOs [24]. The model consists of a persistent
sodium current Na+, a slow potassium current K+, a leak
current L, and an applied current Iapp. For simplicity, each ion
channel is treated as a two-state system that switches between
an open and a closed state; the more detailed subunit structure
of ion channels is neglected [11,25]. The membrane voltage v

evolves as
dv

dt
= a∞(v)fNa(v) + wfK(v) + fL(v) + Iapp,

dw

dt
= (1 − w)αK(v) − wβK,

(2.1)

where w is the K+ gating variable. It is assumed that Na+

channels are in quasi-steady-state a∞(v), thus eliminating Na+

as a variable. For i = K,Na,L, let fi = gi(Vi − v), where gi

are ion conductances and Vi are reversal potentials. Opening
and closing rates of ion channels depending only on membrane
potential v are represented by α and β, respectively, so that

a∞(v) = αNa(v)

αNa(v) + βNa(v)
. (2.2)

For concreteness, take

αi(v) = βi exp

(
v − vi,1

vi,2

)
, i = K,Na, (2.3)

with βi , vi,1, and vi,2 constant. Parameters are chosen (see
Table I) such that there is no well-defined threshold above
which an action potential is generated; rather, stable small-
amplitude oscillations arise for a sufficient value of applied
current (this appears in the model as a supercritical Hopf
bifurcation). This corresponds well to the observed behavior
of STOs and is not meant to function as a traditional spiking
neuron model. Limit cycles in a traditional spiking model

analysis rather than a system-size expansion also becomes significant
when the complexity of the fast ion channels increases (see also
Sec. VII).
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TABLE I. Model parameters to generate subthreshold oscillations via a supercritical Hopf bifurcation. Note that we assume capacitance
C = 1 μF.

Sodium Leak Potassium

gNa VNa βNa vn,1 vn,2 gL VL gK VK βK vk,1 vk,2

4.4 mS 55 mV 100 ms−1 −1.2 mV 18 mV 2 mS −60 mV 8 mS −84 mV 0.35 ms−1 2 mV 30 mV

often appear via a subcritical Hopf bifurcation. We do not
provide further analysis for the subcritical Hopf case in this
work; however, in the presence of noise, a transition to the
oscillatory state has also been observed to shift in the vicinity
of a subcritical Hopf bifurcation (see, for example, [34]). Thus,
it is not unreasonable to expect that similar results may hold.

By evaluating the eigenvalues of the Jacobian of Eq. (2.1),
it is straightforward to show that there is a unique steady
state (v∗,w∗), which is linearly stable for Iapp < I ∗

app [22]. At
I ∗

app a supercritical Hopf bifurcation occurs; (v∗,w∗) becomes
unstable and a stable limit cycle emerges (see Fig. 1). Figure 2
shows the phase plane of the deterministic system; here one
can see how oscillations arise in the membrane potential v(t)
as the applied current is increased.

III. STOCHASTIC MODEL

The deterministic ML model holds under the assumption
that the number of ion channels is very large, thus the ion
channel activation can be approximated by the average ionic
currents. However, it is known that channel noise does affect
membrane potential fluctuations (and thus neural function)
and the number of persistent Na+ channels is on the order of
103 [3,18]. In order to account for ion channel fluctuations,
we consider a stochastic version of the Morris-Lecar model
[25–27], with M K+ channels and N Na+ channels. Let m(t)
denote the number of open K+ channels and n(t) the number
of open Na+ channels at time t . Since it follows that the
number of closed channels at time t is M − m and N − n,
respectively, there is no need to also track the number of
closed channels. Then, for m(t) = m and n(t) = n, the voltage
evolves according to the equation

dv

dt
= n

N
fNa(v) + m

M
fK(v) + fL(v) + Iapp. (3.1)

We assume that the state transitions of the ion channels are
given by a discrete Markov process, that is, ion channels are
memoryless and the probability per unit time of changing
states depends only on the current state, not on any past events
(including the amount of time spent in the current state). In this
case, sodium and potassium channels switch between open O

and closed C states as follows:

C
αNa(v)/ε

�
βNa/ε

O, C
αK(v)
�
βK

O. (3.2)

The opening and closing of these channels is a birth-death
process, where n and m evolve according to

n → n − 1, ω−
n = nβNa,

n → n + 1, ω+
n = (N − n)αNa(v),

(3.3)
m → m − 1, ω−

m = mβK,

m → m + 1, ω+
m = (M − m)αK(v).

The above model is an example of a stochastic hybrid
system based on a piecewise deterministic process. That
is, the transition rates depend on v, with the latter cou-
pled to the associated jump Markov process according to
Eq. (3.1), which is only defined between jumps, during
which v(t) evolves deterministically. Furthermore, we assume
that Na+ channels open and close much faster than K+
channels. We define ε = O(10−2) as a time scale vari-
able for Na+. Define P (v,n,m,t)dv = Prob[n(t) = n; m(t) =
m; v � v(t) � v + dv] at time t , given initial conditions
v(0) = v0, m(0) = m0, and n(0) = n0. Dropping the explicit
dependence on initial conditions, this probability density
will then satisfy the differential Chapman-Kolmogorov (CK)
equation

∂P

∂t
=− ∂

∂v

[(
n

N
fNa(v) + m

M
fK(v) + fL(v) + Iapp

)
P (v,n,m,t)

]

+ 1

ε
[ω+

n (v,n − 1)P (v,n − 1,m,t) + ω−
n (v,n + 1)P (v,n + 1,m,t)] − 1

ε
[(ω+

n (v,n) + ω−
n (v,n)]P (v,n,m,t)

+ [ω+
m(v,m − 1)P (v,n,m − 1,t) + ω−

m(v,m + 1)P (v,n,m + 1,t)] − [ω+
m(v,m) + ω−

m(v,m)]P (v,n,m,t). (3.4)

The first line on the right-hand side represents the piecewise

deterministic dynamics of v, whereas the second and third
lines represent the stochastic opening and closing of Na+ and
K+ ion channels, respectively. It is not possible to obtain exact
solutions of the CK equation, so some sort of approximation
is needed.

IV. SYSTEM-SIZE EXPANSION OF POTASSIUM

Suppose that M is large (but finite). Then it is possible
to carry out a perturbation expansion in terms of the system
size M−1, which allows us to approximate the potassium
dynamics as a continuous process [1,35,36]. The system-size
expansion is a standard technique in stochastic processes
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FIG. 1. (Color online) Bifurcation diagram of the deterministic
model. As Iapp is increased, the system undergoes a supercritical
Hopf bifurcation H at I ∗

app = 183, which leads to the generation of
stable oscillations. The maximum and minimum values of oscillations
are plotted as solid (black) curves. Oscillations disappear via another
supercritical Hopf bifurcation.

that allows us to describe fluctuations about the deterministic
theory via second-order terms in the expansion. It was first
introduced within the context of stochastic ion channels by
Fox and Lu [6] and further developed by Chow and White [7].
(More precisely, these authors assumed that the stochastic
dynamics of a large population of identical ion channels can be
approximated by a Gaussian process and then calculated the
mean and variance based on single-channel properties.) First
we introduce rescaled variables

w = m

M
, M�±(w) = ω±

m(Mw) (4.1)

and set pn(v,w,t) = P (v,n,Mw,t). In order for the system-
size expansion to be valid, it is important to note that the

transition rates ω±
m scale as specified. It is straightforward to

check that this condition is satisfied for our model. Thus we
rewrite Eq. (3.4) as

∂pn

∂t
= − ∂

∂v
{In(v,w)pn(v,w,t)} + 1

ε
[ω+

n (v,n − 1)

×pn−1(v,w,t) + ω−
n (v,n + 1)pn+1(v,w,t)]

− 1

ε
{[ω+

n (v,n) + ω−
n (v,n)]pn(v,w,t)} − M{[�+(v,w)

+�−(v,w)]pn(v,w,t)}

+M

{[
�+

(
v,w − 1

M

)
pn

(
v,w − 1

M
,t

)

+�−

(
v,w + 1

M

)
pn

(
v,w + 1

M
,t

)]}
, (4.2)

where

In(v,w,t) = wfK(v) + n

N
fNa(v) + fL(v) + Iapp. (4.3)

Note that for M sufficiently large, w can be treated as a
continuous variable, where 0 � w � 1. Taylor expanding in
1/M to O(1/M) yields

∂pn

∂t
= − ∂

∂v
[In(v,w,t)pn] − ∂

∂w
[B−(v,w)pn]

+ 1

2M

∂2

∂w2
[B+(v,w)pn] + 1

ε
[ω+

n (v,n − 1)pn−1

+ω−
n (v,n + 1)pn+1] − 1

ε
{[ω+

n (v,n) + ω−
n (v,n)]pn},

(4.4)

FIG. 2. (Color online) Phase plane diagrams of the deterministic model for (a) Iapp = 170 pA (below the Hopf bifurcation point) and (b)
Iapp = 190 pA (above the Hopf bifurcation point). The dashed (red) curve is the w nullcline and the solid (gray) curve represents the v nullcline.
The intersection of nullclines is the fixed point (v∗,w∗). (c) and (d) Corresponding voltage time courses.
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where

B−(v,w) = �+ − �−, B+(v,w) = �+ + �−. (4.5)

Note that the system-size expansion has replaced the
jump-Markov process for the K+ channels by a continuous
diffusionlike process for the fraction of open K+ channels.
The variance associated with the stochastic K+ channels scales
as σ 2

K ∼ M−1. One could proceed in a similar fashion for the
Na+ ion channels by carrying out a system-size expansion with
respect to N . This would then lead to a multivariate FP equation
for the three variables v, w, and a, where a is the fraction of
open Na+ ion channels. Note in particular that the variance
associated with the stochastic Na+ channels would scale
as σ 2

Na ∼ (εN )−1. Since ε � 1 and N � M , it immediately
follows that the main source of channel noise arises from the
persistent Na+. In this paper we wish to develop an alternative
approximation of the stochastic hybrid system that preserves
the planar nature of the deterministic ML model. We will make
use of the fact that the Na+ jump process is much faster than
potassium or voltage to perform a QSS approximation, also
known as the adiabatic approximation [1,26,35].

V. QUASI-STEADY-STATE DIFFUSION APPROXIMATION
OF SODIUM

Let Wnj (v) be the voltage-dependent transition matrix for
the Na+ jump process, that is,

Wnj (v) = ω+
n (v,n − 1)δj,n−1 + ω−

n (v,n + 1)δj,n+1

− [ω+
n (v,n) + ω−

n (v,n)]δj,n.

Rewrite Eq. (4.4) using this transition matrix

∂pn

∂t
=− ∂

∂v
[In(v,w)pn] − ∂

∂w
[B−(v,w)pn]

+ 1

2M

∂2

∂w2
[B+(v,w)pn] + 1

ε

∑
j

Wnj (v)pj . (5.1)

For fixed values of v, the transition matrix Wnj (v) is irre-
ducible. By the Perron-Frobenius theorem, W has a simple
zero eigenvalue, with all others having a negative real part.
This implies that there exists a unique right null vector ρn(v)
such that

∑
j Wnj (v)ρj (v) = 0. Furthermore, (1,1, . . . ,1)T is

the left null vector of W , so
∑

n Wnj (v) = 0 for all n. For
fixedv,w, it can be shown that the Markov process for sodium

dpn

dt
= 1

ε
[ω+

n (v,n − 1)pn−1 + ω−
n (v,n + 1)pn+1]

− 1

ε
{[ω+

n (v,n) + ω−
n (v,n)]pn} (5.2)

has a globally attracting steady state ρ(v,n) = ρn such that [27]

ρn = N !

n!(N − n)!

αn
Naβ

(N−n)
Na

(αNa + βNa)N
. (5.3)

Since Na+ is fast, there are many open-close transitions in n

while the voltage v and w change very little. Thus we expect
that the system will converge to the sodium QSS ρn, which
will be perturbed as v and w evolve. This can be analyzed
using a QSS approximation.

First, we decompose the probability density pn such that

pn(v,w,t) = C(v,w,t)ρn(v) + εxn(v,w,t), (5.4)

where∑
n

pn(v,w,t) = C(v,w,t),
∑

n

xn(v,w,t) = 0.

Substituting Eq. (5.4) into Eq. (5.1), the CK equation now
reads

ρn

∂C

∂t
+ ε

∂xn

∂t
=− ∂

∂v
[CInρn] − ε

∂

∂v
[Inxn]

+Lw[ρnC + εxn] +
∑

j

Wnjxj , (5.5)

where

Lwψ(w) = − ∂

∂w
[B−ψ(w)] + 1

2M

∂2

∂w2
[B+ψ(w)]. (5.6)

Summing both sides over n and setting I = ∑
n Inρn yields

∂C

∂t
= −∂CI

∂v
− ε

∂
∑

n Inxn

∂v
+ LwC. (5.7)

We rewrite Eq. (5.5) by using Eq. (5.7) for ∂C/∂t :

ε
∂xn

∂t
=

(
∂CI

∂v
+ ε

∂
∑

n Inxn

∂v

)
ρn − ∂CInρn

∂v

− ε
∂Inxn

∂v
+ εLwxn +

∑
j

Wnjxj . (5.8)

Introducing the asymptotic expansion x ∼ x(0) + εx(1) +
ε2x(2) + · · · and considering only O(1) terms gives

∑
j

Wnjx
(0)
j = −∂CI

∂v
ρn + ∂CInρn

∂v
. (5.9)

From the Fredholm alternative theorem, Eq. (5.9) has a
solution of the form

x
(0)
j =

∑
j

W
†
jn

(
− ∂CI

∂v
ρn + ∂CInρn

∂v

)
, (5.10)

where W † is the pseudoinverse of W . Using this solution for
x(0) as a leading-order approximation for xn in (5.7) gives the
Fokker-Planck equation

∂C

∂t
=− ∂

∂v

({
I − ε

∑
n

[
I

∂

∂v

(
In

∑
j

W
†
jnρn

)

− Inρn

∂

∂v

(
In

∑
j

W
†
jn

)]}
C

)
− ∂

∂w
[B−C]

+ 1

2M

∂2B+C

∂w2
+ ε

∂2

∂v2

(∑
n,j

W
†
jnInρn(I − In)C

)
.

(5.11)

012704-5

64



HEATHER A. BROOKS AND PAUL C. BRESSLOFF PHYSICAL REVIEW E 92, 012704 (2015)

Letting

μ1 = I − ε
∑

n

[
I

∂

∂v

(
In

∑
j

W
†
jnρn

)

− Inρn

∂

∂v

(
In

∑
j

W
†
jn

)]
, (5.12a)

μ2 = B−, (5.12b)

D =
(

ε
∑

n,j W
†
jnInρn(I − In) 0

0 B+/2M

)
, (5.12c)

we can simplify the Fokker-Planck equation as

∂C

∂t
= −

2∑
i=1

∂

∂zi

μiC +
2∑

i,i ′=1

∂2

∂zi∂zi ′
Dii ′C, (5.13)

which corresponds to the Langevin stochastic differential
equation (SDE)

dzi = μi(z)dt +
2∑

j=1

σij (z,t)dWj for i = 1,2, (5.14)

where z = (v,w),

σ =
(√

2D11 0
0

√
2D22

)
, (5.15)

and Wj is a Wiener process such that 〈Wj (t)〉 = 0 and
〈Wj (t)Wj ′(t ′)〉 = δjj ′min(t,t ′). In terms of the original model
parameters, we find that

D11 = 1

N
fNa(v)2a∞(v)[1 − a∞(v)]2

and

D22 = wβK + (1 − w)αK(v).

The latter result was previously obtained by Fox and Lu [6]
and the former by Keener and Newby [26]. Equation (5.14)
can now be linearized about the stable rest state by letting
zj = z∗

j + εηj (t) where μj (z∗) = 0. Taylor expanding to O(ε)
yields

dηi(t) =
2∑

j=1

Aijηj +
2∑

j=1

σij (z∗)dWj , (5.16)

where Aij is the Jacobian of the drift terms such that

Aij = ∂μi

∂zj

∣∣∣∣
z∗

.

Finally, introducing white noise processes ξj (t) such
that dWj (t) = ξj (t)dt with 〈ξj (t)〉 = 0 and 〈ξj (t)ξj ′(t ′)〉 =
δjj ′δ(t − t ′) allows us to formally write the SDE as

dηi(t)

dt
=

2∑
j=1

Aijηj +
2∑

l=1

σil(z∗)ξl. (5.17)

VI. QUASICYCLES IN THE STOCHASTIC MODEL

Using our linear SDE (5.17), we can now look for oscil-
lations in either voltage or potassium dynamics by obtaining

analytical expressions for the power spectra. Let η̃j (ω) denote
the Fourier transform of ηj (t), i.e.,

η̃j (ω) =
∫ ∞

−∞
e−iωtηj (t)dt. (6.1)

Here we follow standard steps to derive power spectra, as
in [31,32]. Taking the Fourier transform of (5.17) yields

η̃j (ω) =
2∑

i=1

�−1
ij (ω)σij ξ̃ (ω), (6.2)

where �ij = −iωδi,j − Aij . Recall that the power spectrum
Pi(ω) is defined such that 2πδ(0)Pi(ω) = 〈|η̃j (ω)|2〉. Using
Eq. (6.2), we obtain the power spectrum for the stochastic ML
model

Pi(ω) =
∑

j

∑
k

�−1
ij (ω)Djk(�†)−1

ki (ω), (6.3)

where we have used �ij (−ω) = �
†
ji(ω). It is worth mentioning

that when comparing the analytical power spectrum to one
that is generated numerically, one must take care to include a
proportionality factor. This arises from the use of the discrete
Fourier transform when computing numerical spectra and is
equal to a time increment of �t in the time series. A peak in the
voltage power spectrum for ω �= 0 indicates that the voltage is
oscillating with frequency ω.

As can be seen in Fig. 3, the spectrum of voltage when
Iapp = 150 in the model shows a maximum around the Hopf
frequency ωc = 1.51. This means that the model exhibits
subthreshold oscillations at this frequency, despite the fact
that this is well below the supercritical Hopf bifurcation point.
In other words, channel noise from the stochastic opening
and closing of Na+ and K+ channels is driving subthreshold
oscillations outside the deterministic regime. We also compare
our analytic power spectrum against numerical estimates of the
power spectrum obtained using the Gillespie algorithm [37]
and find good agreement. Next we explore the range of
applied current for which the membrane potential exhibits
a subthreshold oscillation. With channel noise, we first see
the emergence of oscillatory behavior for Iapp = 93. Including
channel noise from stochastic K+ and Na+ channels increases
both the range of applied currents for which subthreshold
oscillations are present and the range of frequencies of these
subthreshold oscillations (Fig. 4). This analysis provides
support for the claim that channel noise increases a neuron’s
ability to produce subthreshold oscillations, particularly for
stimuli that are weak.

As we already highlighted in Sec. IV within the context of
a double system-size expansion, we expect the contribution
of Na+ channel noise to be dominant. This is indeed found
to be the case under our QSS approximation. The relative
contribution of Na+ versus K+ channel noise can be quantified
by looking at the magnitude of the respective diagonal terms
in the diffusion matrix D (see Fig. 5). With physiological
parameter values (ε ∈ [10−3,10−2],N ∼ 103), D11, the term
in the diffusion matrix affected by N and ε (and thus Na+),
is orders of magnitude larger than D22. Therefore, in this
parameter regime, Na+ channel noise is dominant. While
fixing N and ε we asked whether there was a physiologically
plausible number of K+ channels M that would allow for Na+
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FIG. 3. (Color online) (a) Power spectrum of the voltage in the
stochastic hybrid ML model for Iapp = 150. The spectrum has a well-
defined peak around the Hopf frequency ωc = 1.51 rad/s, indicating
the presence of oscillations (quasicycles) below the supercritical Hopf
bifurcation point. Filled (red) circles are from numerical simulations
via the Gillespie algorithm, whereas the black solid line is the
analytical prediction. The simulation values are N = 103, M = 104,
and 50 trials. (b) Time domain response of voltage for a particular
realization of the simulation shows STO-like behavior.
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FIG. 4. (Color online) Channel noise increases the range of
applied current values for which subthreshold oscillations exist. It
also increases the range of frequencies that the model may produce.
Frequency of oscillation ω is defined as the maximum of the power
spectrum P (ω) for a given Iapp. Here N = 103, M = 104, and
ε = 10−3.
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FIG. 5. Comparison of the contribution of Na+ and K+ channel
noise to the diffusion term in the SDE. (a) Comparing D11 and
D22, with N = 103, M = 104, and ε = 10−2. Here D11 (and thus
the contribution of Na+ channel noise) is orders of magnitude larger
for all values of Iapp. (b) Fixing ε = 10−2 and N = 1000, there are
no values of M > 10 such that the magnitudes D11 and D22 are
comparable, i.e., the ratio � = D11/D22 is always greater than 1
(dotted black line).

and K+ channel noise to have a comparable effect. As shown
in Fig. 5, the neuron would have to have fewer than ten K+
channels for this to be the case. This leads us to the conclusion
that fast Na+ channel dynamics are the primary source of
channel noise.

Another factor that could be important is the degree
of coherence of the noise-induced subthreshold oscillations
as a function of applied current; only sufficiently coherent
oscillations would allow for a synchronization code, for
example. One measure of coherence is the so-called quality
factor Q = ωc/�w, where �w is the bandwidth of the power
spectrum and ωc is the peak. In Fig. 6 we plot Q as a function
of Iapp for three cases: Na+ channel noise, K+ channel noise,
and joint channel noise. It can be seen that over a wide
range of Iapp, the system with stochastic K+ channels exhibits
more coherent oscillations than the one with stochastic Na+

channels. Interestingly, the Q factor itself exhibits some form
of resonance, having a sharp peak at some critical value of the
applied current.

012704-7

66



HEATHER A. BROOKS AND PAUL C. BRESSLOFF PHYSICAL REVIEW E 92, 012704 (2015)

FIG. 6. (Color online) Quality factor Q = ωc/�ω for the model
with stochastic Na+ channels only (black dashed line), stochastic K+

channels only (gray dotted line), and both channel types stochastic
(red solid line). Here ωc is the the critical value of ω, i.e., the peak
of the power spectrum P (ω), and �ω is the bandwidth. With K+

channel noise, the oscillations tend to be more coherent (larger Q

factor). The parameter values are the same as in Fig. 4.

VII. DISCUSSION

In conclusion, we have shown how the noise-induced
formation of STOs can be modeled in terms of the emergence
of quasicycles in a stochastic hybrid ML model with both
persistent sodium and potassium channel noise. This is
consistent with biological data that show that channel noise
enables a neuron’s ability to generate subthreshold oscillations
and enhance signal transduction over a wide range of parameter
values. From a mathematical perspective, we have shown how
one can preserve the low-dimensional (planar) structure of the
deterministic ML model by carrying out a QSS approximation
of the stochastic sodium channel dynamics. This method for
reducing the dimensionality of the Langevin equation can be
applied to any stochastic hybrid system with fast kinetics.

The computational advantages of the QSS method over
a diffusion approximation based on a system-size expansion
become particularly significant when the complexity of the
ion channel model increases. As we highlighted in Sec. II,
one major simplification of the stochastic ML model is to
neglect that fact that ion channels typically have a subunit

structure resulting in multiple states [25]. If these features
were included, then the simple birth-death process used
to describe the opening and closing of a two-state ion
channel would need to be generalized to a more complicated
multistate master equation. (It might be possible to obtain
some simplifications by identifying invariant submanifolds
of the stochastic dynamics [38].) Carrying out a system-size
expansion of the resulting master equation would generate a
high-dimensional Langevin equation that couples the voltage
to additional variables representing the fraction of ion channels
in each of the states. However, the numerical calculation of the
associated diffusion matrix (or its square root) is numerically
expensive. Fox and Lu [6] tackle this by approximating the
multistate system in terms of uncoupled gating particles.
However, such a simplification can lead to a breakdown of the
diffusion approximation. More recently, a number of groups
have shown that the diffusion approximation holds provided
one considers coupled gating particles [11,39–41]. The QSS
reduction is also a Gaussian approximation, but is based on a
slow-fast decomposition rather than a system-size expansion,
which eliminates the fraction of ion channels in each state as
dynamical variables. Since the resulting Langevin equation
is lower dimensional than in the case of the system-size
expansion, one avoids the computational issues highlighted
in Refs. [11,39–41]. On the other hand, the calculation of the
pseudoinverse that determines the diffusion coefficient D11

in Eq. (5.13) could become computationally expensive as the
complexity of the fast ion channel models increases.

Another possible extension of this work would be to
consider the effects of noise-induced subthreshold oscillations
on spontaneous action potentials (SAPs) by including a second
class of nonpersistent Na+ channels. The effects of channel
noise on SAPs in excitable neuron models has recently
been investigated within the context of noise-induced escape
problems [1,26,27]. Diffusionlike approximations such as the
system-size expansion and QSS analysis break down for such
problems and one has to use alternative methods such as
Wentzel-Kramers-Brillouin and large-deviation theories.
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CHAPTER 7

FUTURE DIRECTIONS

In this chapter, we conclude by describing plans for current and future work that are

not direct extensions of the previously discussed projects. In Section 7.1, we describe an on-

going collaboration that explores the effects of grooming and social dynamics on parasite

spread in dynamic population networks. In Section 7.2, we discuss a proposed research

plan to solve the open problem in applied dynamical systems to prove the existence of

snaking bifurcations, which lead to localized patterns on lattices.

7.1 Parasite spread on dynamic social networks
Allogrooming (that is, social grooming between members of the same species) has been

observed across a wide variety of social animal populations. One of the potential benefits

of allogrooming is the mitigation of ectoparasite infection. While there is a large body of re-

search developing and analyzing mathematical models of the spread of pathogen infection

dating as far back as Kermack and McKendrick in 1927 [11], to the best of our knowledge

there is little work applying mathematical techniques to the dynamics of ectoparasite

spread in a population. In this section, we discuss some simple mathematical models

of the impact of allogrooming behavior on dynamic social networks and propose to tackle

this problem in future work with a combination of differential equation and agent-based

models. The work described in this section is from an ongoing collaborative project with

Maryann Hohn, Candice Price, Ami Radunskaya, Suzanne Sindi, Nakeya Williams, Shelby

Wilson, and Nina Fefferman.

In previous work, we began our exploration on the spread of parasites in social net-

works by considering a simple model of ectoparasitic infection in a population network.

This initial formulation consisted of a two-compartment model depicting the exchange of

ectoparasites among individuals with no social hierarchy (i.e. each individual, on average,

has the same number of grooming connections, as in Figure 7.1). Rather than model the
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Figure 7.1. A random social network with only periphery nodes (blue).

parasite burden of individual as a node in a network, we considered all individuals that

are in either an infected (I) or uninfected (U) state. Individuals may move between states

through social contact and allogrooming. As mentioned, we neglected the explicit network

structure and modeled the expected movement between compartments by averaging over

the expected number of contacts between individuals in the I and U states.

Let PU represent the number of parasite-free individuals and PI represent the number

of infected individuals. Uninfected individuals can become infected through their interac-

tions with infected individuals, and infected individuals can become uninfected through

grooming, with grooming efficiency parameter g (Figure 7.2). Note that the function

f represents the likelihood of infection and depends on the individual fitness and the

average number of infected connections. We take n ∈ {1, . . . , N − 1} to be the number of

grooming connections each individual has. Translating Figure 7.2 into a system of ordinary

differential equations yields

P′U(t) = − f (PI)PU + ngPI (7.1)

P′I(t) = f (PI)PU − ngPI . (7.2)

Because this model neglects population birth and death, the number of individuals re-

mains conserved, namely N = PU + PI . This conservation allows us to reduce the system

PU PI

f (PI)

ng

Figure 7.2. Simplified model of ectoparasites in a population lacking social hierarchy
consisting of infected (I) and uninfected (U) individuals.
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dynamics to a single differential equation, where we track only the number of infected

individuals

P′I(t) = f (PI)(N − PI)− ngPI . (7.3)

It remains to define the functional form of the infection rate function f (PI). In a full dy-

namic network, each node randomly chooses n connections out of N − 1 possible options,

of which
PI

N − 1
are infected. Thus, the number of infected connections an uninfected

individual has can be represented as a hypergeometric random variable X. In order to

represent this in a deterministic ordinary differential equation model (i.e. with no random

variables), we calculate the expected number of infected connections E[X] = X = n
PI

N − 1
.

In the spirit of making the analysis as simple as possible for our first model, we define f to

be the linear function

f (PI) =
1
x0

X = n
PI

x0(N − 1)
.

While this function is purposefully simple, it does have two important properties: (1)

f (0) = 0, so individuals cannot become infected if they have no infected connections,

and (2) it is an increasing function of PI . The constant x0 controls the steepness of the

function, with larger values of x0 representing a larger individual defense against parasites

(or alternatively, this means the infected connections have a weaker effect). We chose to

write the slope as 1/x0 instead of x0 for ease of interpretation of results.

We investigate the long-term dynamics of Equation (7.3). After rescaling the variables

by population size such that pi =
PI
N , we show that Equation (7.3) has only two possible

steady states:

(1) p∗I = 0 and (2) p∗I = 1− gx0

(
1− 1

N

)
.

Steady state (1) corresponds to no parasite infection in the population, and (2) indicates a

co-existence of the infected and uninfected states in the population. We note this interpre-

tation changes when g = 0, that is, there is no grooming effectiveness. In this case, the

steady state represents a fully infected population.

The stability of these steady states depends on the term gx0
(
1− 1

N

)
, which serves as

the bifurcation parameter for this system. This system undergoes a transcritical bifurcation

at gx0 = N
N−1 . When gx0 < N

N−1 , the uninfected state is unstable and the coexisting state

is stable. In this case, we expect to see lasting infection in a proportion of the population.
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At the bifurcation point gx0 = N
N−1 , the no-infection case is the only steady state, and it

is marginally stable (effectively, it is stable in this context because it is stable to positive

perturbations). When gx0 > N
N−1 , the coexisting state is unstable and the uninfected state

is stable. In this case, we expect to see no lasting infection in the population.

This analysis suggests (unsurprisingly) that higher grooming effectiveness contributes

to parasite eradication. Without grooming, a parasite-free state is unstable. Similarly,

having a strong individual defense contributes positively to parasite eradication. Since the

stability of the parasite-free state is determined by the product of grooming and individual

defense, this implies there are multiple successful strategies that can be employed by social

groups to manage ectoparasite infestation: Being good at grooming allows the individuals

to have less individually-derived parasite defense; conversely, if you aren’t particularly

good at grooming, you need to have more effective individual physiological defenses.

Interestingly, the number of grooming connections does not affect the outcome of this

system, but if your population is very small, it may be more difficult to manage infections.

We then compared these results with a more complex model depicting social hierarchy

arising from a hub-periphery social network, as demonstrated in Figure 7.3. We chose this

form of hierarchy to depict the structure of dynamic social networks where individuals

chose their connections to maximize a given centrality measure (e.g., degree). In these

cases, networks converge to a network topology where a subset of nodes called “hubs” are

connected with all other nodes [7]. We model this network structure as follows: Suppose

there are Nh hub individuals and Np periphery individuals such that N = Nh + Np. Let

HU be the uninfected hub individuals and HI the infected hub individuals; likewise PU

represents the uninfected periphery individuals and PI the infected periphery individuals.

Figure 7.3. A small-world network with Np = 10 periphery nodes (blue) and Nh = 2 hub
nodes (pink).
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A schematic diagram of this model is provided as Figure 7.4.

Once again, the likelihood of infection is determined by the function f , which depends

on individual fitness and the average number of infected connections (this time in both

hub and periphery categories). The equations for this system are as follows:

P′U(t) = − fp(PI , HI)PU + ngPI

P′I(t) = fp(PI , HI)PU − ngPI

H′U(t) = − fh(PI , HI)HU + (N − 1)gHI

H′I(t) = fh(PI , HI)HU − (N − 1)gHI ,

where, as before, we can employ the two conserved quantities PU + PI = Np and HU +

HI = Nh to reduce our system to

P′I(t) = fp(PI , HI)(Np − PI)− ngPI

H′I(t) = fh(PI , HI)(Nh − HI)− (N − 1)gHI .

Notice that, in this case, the infectivity function f is different for hub versus periphery

individuals. Now that we have hub individuals, our number of connections is n = Nh + k,

where we use k to represent the number of periphery-periphery connections. If an indi-

vidual is in the periphery, then the expected number of infected connections is

XP = HI + k
PI

Np − 1
,

and if the individual is in the hub, then

XH = HI + PI .

PU PI

HU HI

fp(PI , HI)

ng

fh(PI , HI)

(N − 1)g

Figure 7.4. Schematic of simplified model of parasite spread in a population with hub-pe-
riphery social structure.
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If we use the same functional form for infectivity as in the previous case, this implies

that

fp(PI , HI) =
HI + k PI

Np−1

x0
, fh(PI , HI) =

HI + PI

x0
.

Using these two functions, and applying the two conserved quantities PU + PI = Np

and HU + HI = Nh, we can reduce our system to the following system of two ODEs:

p′I(t) =
(1− pI)

x0
(NhhI +

kNp

Np − 1
pI)− (Nh + k)gpI

h′I(t) =
(1− hI)

x0
(NhhI + Np pI)− (Np + Nh − 1)ghI , (7.4)

where, as before, we have rescaled the variables such that pI = PI/Np and hI = HI/Nh.

For comparison, we want to perform a linear stability analysis on the noninfected

steady state (0, 0). The nullclines of the system (shown in Figure 7.5) are given by:

pI − null : hI = pI

((
Nh + k

Nh

)
gx0

1− pI
− kNp

Nh(Np − 1)

)

hI − null : pI = hI

((
N − 1

Np

)
gx0

1− hI
− Nh

Np

)
,

where we have used the fact that N = Np + Nh. Both nullclines are increasing and concave

up in the dependent variable, (as written above), and they both go through the origin.

Thus, they can have at most one nonzero intersection. This intersection will be in the

positive quadrant when the slope of the pI-nullcline at (0, 0) is strictly less than the slope

of the hI-nullcline at (0, 0), or when:

(gx0)
2 −

(
Nh

N − 1
+

k
n

Np

Np − 1

)
gx0 +

NpNh

n(N − 1)

(
k

Np − 1
− 1
)
< 0 (7.5)

Here we have used the fact that the total number of connections between nodes, n, satisfies:

n = Nh + k. The nullclines of this system for two different parameter sets, along with some

sample trajectories, are shown in Figure 7.5.

The Jacobian of this system evaluated at the steady state (0,0) is

J(0, 0) =




k
x0

(
1− 1

Np

)−1
− ng Nh

x0
Np
x0

Nh
x0
− (N − 1)g


 .

The steady state is stable, that is, the eigenvalues of this matrix have negative real part,

when Det(J) > 0 and Trace(J) < 0.
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Figure 7.5. There are two qualitatively different phase portraits for the system. (Left):
When grooming effectiveness, gx0, is high, there is one biologically relevant equilibrium
at (0,0) which is globally asymptotically stable. (Right): When grooming and individual
resistance are less efficient, the nullclines intersect in the positive quadrant at a nonzero sta-
ble equilibrium. This equilibrium attracts all trajectories with initial values in (0, 1)× (0, 1)
in the rescaled coordinates of Equation (7.4).

The first condition is analogous to the condition derived in Equation 7.5. The second

condition yields

gx0 >
n + k

Np−1

N + n− 1
.

It is clear that this second condition is less strict than in the periphery-only model since

N
N − 1

>
n + k

Np−1

N + n− 1
for all positive parameter values.

We use numerical simulation to aid in the interpretation of Equation (7.5). Figure 7.6

shows that, for reasonable parameter choices, the bifurcation value for stability of the un-

infected state is smaller in the hub-periphery case than in the periphery-only case. Several
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Figure 7.6. Stability conditions in (N, gx0) parameter space for the uninfected state with
n = 5 grooming connections. We plot the boundary condition for a population with no hub
nodes (dashed) and with Nh = 3 hub nodes (solid). The uninfected state is stable above
each curve. We see that the range of (N, gx0) parameter space where the uninfected state
is stable is smaller for the periphery-only model (gray area) than for the periphery-hub
model (both the blue and gray areas).

studies have shown that hubs contribute to increased pathogen spread on networks by

acting as super-spreaders of disease [8, 16]. However, in our model of parasite spread,

we find a surprising result: the hub-periphery structure increased the basin of attraction

for stability of the noninfected steady state as compared to the periphery only model.

This means that our models suggests a potential evolutionary benefit from having the

hub-periphery social structure frequently observed in animal populations; that is, the hub-

periphery social structure reduced burden from ectoparasitic infections. Consideration

of the relative intensities of selective pressures from pathogens versus parasites adds an

intriguing and important new layer to the ongoing effort to understand what role disease

may have played in the evolution of animal social systems.

7.1.1 Proposed problems for future work

Proposed Problem 1. Explore the effects of varying parasite loads, grooming dynamics,

individual fitness, and reproduction by analyzing extensions to the simple continuous model. An

interesting difference that distinguishes parasite infection from pathogen infection is that
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different levels of parasite load have varying effects on an individual’s fitness, whereas

pathogen exposure is typically viewed as a binary (infected/uninfected). It is possible for

an individual to have a small number of parasites and see no adverse effects on individual

fitness; however, a large number of parasites may affect both individual fitness as well as

ability to effectively groom others. In the extension of our ODE model, we will include

multiple levels of parasite load, with each group subject to different levels of individual

fitness and grooming efficiency. If we consider K possible infection load states, the system

reads

P′0(t) = − f0(P1, . . . , PK)P0 + ng(P0, . . . , PK)P1

...

P′j (t) = − f j(Pj+1, . . . , PK)Pj + f j−1(Pj, . . . , PK)Pj−1 + ng(P0, . . . , PK)
(

Pj+1 − Pj)
)

...

P′K(t) = −ng(P0, . . . , PK)PK + fK−1(PK)PK−1

for all j ∈ [1, K− 1]. In future work, we will also consider a model where birth and death

is included, meaning the population is no longer conserved. In this case, there is a source

term for P0 (healthy individuals can reproduce) and PK is an absorbing state (individuals

in state PK die and are removed from the population). Developing and analyzing the

extended model is important to aid in the understanding of how parasite infection might

affect population dynamics on an evolutionary scale.

Additionally, we would like to investigate how the functional form of the fitness- and

grooming-dependent transition rates affect the outcome of parasite load in the population.

In previous work, we considered the infection transition function f to be a linear function

with fitness parameter x0. A natural question is to explore how and when the functional

form of f affects the solutions to this system. We intend to analyze other monotonically

increasing functions satisfying f (0) = 0, including step functions, piecewise linear func-

tions, and logistic functions.

Furthermore, the transition functions will depend on whether we consider an undi-

rected versus directed network. In the context of grooming, an undirected network indi-

cates that social relationships provide reciprocal grooming, which is not guaranteed in the
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directed network. The calculation to find the expected number of grooming connections

in the directed network is outlined below.

Without loss of generality, we assume that grooming is represented by outgoing edges,

so the out degree of each node is n. It’s important to note that individuals can be exposed

to parasites from any social contact, that is, grooming or being groomed. For this network,

the average in degree is also n. However, one must be careful to not double count reciprocal

grooming relationships. If we define Y to be the random variable that represents the num-

ber of reciprocal grooming relationships in a randomly connected population network,

then by definition the average number of reciprocal grooms is

E(Y) =
n

∑
j=0

jP(Y = j), (7.6)

where P(Y = j) is the probability that the population contains j reciprocal grooming

relationships.

P(Y = j) is calculated as follows. There are (N−1
n ) possible options for an individual’s

grooming connections. The probability of choosing j connections is found by considering

that, out of the N − 1− k that aren’t connected to the individual, n− j are chosen. That is,

there are (N−1−k
n−j ) ways to do so. Then, with your remaining j choices, there are (n

j) ways

to choose a grooming connection. This implies that

P(Y = j) =
(n

j) · (N−1−n
n−j )

(N−1
n )

. (7.7)

Combining Equation 7.6 with Equation 7.7 yields

E(Y) =
n

∑
j=0

j
(n

j) · (N−1−n
n−j )

(N−1
n )

=
n2

N − 1
.

Notice this has the desired asymptotic behavior: for N → ∞, you would not expect to

choose any reciprocal grooming partners. For n = N − 1, you expect all N − 1 of them to

be reciprocal. Following this logic, the expected number of infected periphery connections

is

[X] =
Pi

N − 1

(
2n− n2

N − 1

)
=

nPi

N − 1

(
2− n

N − 1

)
.

Exploration of this question will allow us to better understand the effects of the sub-

tleties of population dynamics on parasite outbreaks.
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Proposed Problem 2. Develop a stochastic agent-based model of the full dynamic network

and compare these results to continuous models. As we are developing extensions to the

continuous model we will be concurrently developing a stochastic agent-based simulation

of the full dynamic population network. We will then be able to compare the simulation

results against our analytic results obtained with the ODE models. This will give us the

tools to either (a) validate the use of ODE models in this context, or (b) prove when the

ODE models break down in representing dynamic networks. This question will help us

inform the direction of future mathematical work comparing population networks and

continuous models.

Using MATLAB, we will be developing an agent-based simulation that allows for both

static and dynamic network structures. The goal is to explore how grooming effectiveness

and parasite reproductive rate effect the parasite load on the entire network. Following a

thorough search of the parameter space, we aim to investigate the differences in parasite

distribution between dynamic and social networks in an effort to understand which social

dynamics are best to minimize parasite load.

7.2 Localized patterns on lattices
It has been observed that systems with Turing instabilities can also support the forma-

tion of localized patterns. A localized pattern is a periodic pattern that does not extend

throughout the entire domain but is instead surrounded by a spatially uniform back-

ground state [12, 6]; this indicates a coexistence of the spatially homogeneous state and

the locally patterned state (Figure 7.7). It is important to note that these localized patterns

arise despite the system being driven in spatially uniform manner. These patterns have

been observed in applications as diverse as reaction-diffusion equations [14], the buckling

of elastic beams [10], nonlinear optics [1], hydrodynamics [3], and ferrofluid instability

[17]. Indeed, localized patterns are a general phenomenon in dissipative systems whose

understanding is central to several areas of applied mathematics.

A well-studied example of a system that admits localized patterns is the Swift-Hohenberg

equation

ut = (1 + ∂2
x)

2u− µu + cu3 − u5, x ∈ R,

where c is a positive constant and µ > 0 is the bifurcation parameter. The bifurcation



80

Figure 7.7. An example of a spatially localized pattern for a function u(x). The periodic
patterned state is pinned between the homogeneous background state.

structure of localized patterns in this system has been studied only comparatively recently;

in 2006, Burke and Knobloch [5] calculated bifurcation diagrams of this equation using

numerical continuation methods. When µ is plotted against the pattern size (i.e., the L2

norm) in the bifurcation diagram, these systems display a characteristic set of winding

curves corresponding to the localized patterns. These structures are called snaking bifurca-

tions. Since their discovery, some progress has been made in the analytical understanding

of snaking bifurcations, notably by Beck and colleagues [4]. In this work, the authors are

able to analytically investigate the existence of snaking of symmetric pulse patterns by

exploiting the known bifurcation structure of front patterns. Despite this progress, there

are still a number of open problems regarding snaking bifurcations of localized patterns

in dissipative systems [12]. In particular, a numerical study due to Taylor and Dawes [18]

suggested the existence of snaking bifurcations on 1- and 2-dimensional lattices. Further-

more, these localized patterns on lattices have been observed in the light field of an optical

medium with periodic optical cavities [19, 20] and in crystallographic pinning [9]. Using

analytical methods to prove the existence of snaking bifurcations on lattices remains an

open problem, and I detail below some strategies to solve this problem.

7.2.1 Proposed problems for future work

Proposed Problem 1. Demonstrate the existence of snaking bifurcations in the analog of the

Swift-Hohenberg equation on a one-dimensional lattice. That is, examine an equation of the form
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u̇n = α (un+1 − 2un + un−1)− µun + 2u3
n − u5

n, (n ∈ Z) (7.8)

in the anticontinuum limit, and prove that patterns persist and yield a connected smooth snaking

branch.

Initially, to make this problem more tractable, we will consider what happens in the

anticontinuum limit α → 0 (i.e., no spatial coupling between lattice points). As we take

α → 0, then (7.8) satisfies the steady-state problem µun − 2u3
n + u5

n = 0. Thus, for 0 <

µ < 1, there exist five possible solutions for each n: un = {0,±b(µ),±a(µ)}, where b(µ)

and a(µ) are the (nonzero) µ−dependent solution branches with 0 < b(µ) < a(µ) for all

µ ∈ (0, 1), as in Figure 7.8.

This allow us to construct the lattice version of a front pattern, that is,

un =





a(µ) n < N
b(µ) n = N
0 n > N

.

As µ increases, the value b(µ) increases and approaches a(µ). At µ = 1 (the saddle

node branch), uN = a(µ) and the plateau is broadened. If we continue to follow this

solution branch by decreasing µ, the value a(µ) increases and our front solution has grown

by adding an additional lattice point with the value a(µ). One can then construct the

Figure 7.8. The bifurcation plot for the discrete Swift-Hohenberg equation.
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bifurcation diagram where µ is plotted against the length of the pattern, here given by

the discrete L1-norm. This gives a snaking branch in the anticontinuum limit α = 0.

The next step is to prove that these patterns persist and that they yield a connected

smooth snaking branch. Away from µ = 0, 1, persistence of the patterns follows from

the implicit function theorem. Near µ = 0 and µ = 1, a Lyapunov-Schmidt reduction

is necessary and the resulting lower dimensional system can be analyzed for persistence.

Our preliminary calculations suggest that some branches yield snaking, while others do

not.

Proposed Problem 2. Analytically investigate the existence of snaking bifurcations in general

one-dimensional discrete maps

un = f (un−1, µ), where un ∈ Rd ∀n.

In order to prove the existence of snaking for general maps, we want to find patterns

that connect the fixed point a(µ) of the map to the fixed point 0. We will assume the

existence of two saddles for all µ, and note that snaking bifurcations occur with the ex-

istence of intersections in the stable and unstable manifolds. This will occur between two

values µ1, µ2, where the invariant manifolds have quadratic tangencies. Along the snaking

branch, L = L(µ) increases.

The spirit of the proof will follow Beck et al. in [4]. However, in the discrete map

setting, many of the techniques used in the continuous case do not apply. For example,

one needs to examine the eigenvalues of the Jacobian of the maps instead of relying on

Floquet multiplier arguments. We anticipate that one will need to apply a discrete Lin’s

method as discussed in [13].

Proposed Problem 3. Carry out analysis in the anticontinuum limit for pattern persistence

and stability on two-dimensional lattices.

The next goal is to investigate localized pattern formation on two-dimensional lattices.

Here, as in my previous work, choice of lattice will be important (square vs. hexagonal lat-

tices), and we will study various forms of coupling that respect the D4 and D6 symmetries

of these two lattices.

This problem contains several interesting mathematical challenges. First, there are

many more types of patterns possible than in the one-dimensional case. Studying patterns
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on two-dimensional lattices may help shed light on the complicated snaking of hexagon

patches observed by [15] in the continuous case. On a related note, when we examine

the bifurcation diagrams in these cases, there will likely be many asymmetric branches

bifurcating off of the symmetric branch. Numerical continuation studies will help us gain

insight here. It would be particularly interesting to investigate symmetry breaking pertur-

bations, as they may lead to isolas as observed in the two-dimensional Swift-Hohenberg

system in [2].

Furthermore, it is not clear that a local analysis of individual un (n fixed) near µ = 0 or

µ = 1 is sufficient for persistence in this case; more investigation will be needed. This is

one potential motivation for the following objective.

Proposed Problem 4. Analysis beyond the anticontinuum limit. While Objectives 1, 2,

and 3 all focus on analysis in the anticontinuum limit, our ultimate goal is to pursue

analysis away from the anticontinuum limit. By starting at the continuum limit and nu-

merically exploring the bifurcation structures that emerge away from this limit, we can

make connections between discrete and continuous space localized patterns and highlight

the differences between them.

Breaking the symmetry x 7→ −x leads to drift in models with continuous space; how-

ever, this feature is not present in these discrete lattice models. We propose to investigate

the “pinning” phenomenon in these lattice models, with the goal of understanding the

conditions for the patterns to “de-pin” and begin to move.
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