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A Mechanism for Turing Pattern Formation with Active and Passive Transport∗

Heather A. Brooks† and Paul C. Bressloff†

Abstract. We propose a novel mechanism for Turing pattern formation that provides a possible explanation
for the regular spacing of synaptic puncta along the ventral cord of C. elegans during development.
The model consists of two interacting chemical species, where one is passively diffusing and the
other is actively trafficked by molecular motors. We identify the former as the kinase CaMKII and
the latter as the glutamate receptor GLR-1. We focus on a one-dimensional model in which the
motor-driven chemical switches between forward and backward moving states with identical speeds.
We use linear stability analysis to derive conditions on the associated nonlinear interaction functions
for which a Turing instability can occur. We find that the dimensionless quantity γ = αd/v2 has
to be sufficiently small for patterns to emerge, where α is the switching rate between motor states,
v is the motor speed, and d is the passive diffusion coefficient. One consequence is that patterns
emerge outside the parameter regime of fast switching where the model effectively reduces to a two-
component reaction-diffusion system. Numerical simulations of the model using experimentally based
parameter values generates patterns with a wavelength consistent with the synaptic spacing found
in C. elegans. Finally, in the case of biased transport, we show that the system supports spatially
periodic patterns in the presence of boundary forcing, analogous to flow distributed structures in
reaction-diffusion-advection systems. Such forcing could represent the insertion of new motor-bound
GLR-1 from the soma of ventral cord neurons.

Key words. pattern formation, Turing instability, motor-driven transport, switching dynamical systems,
diffusion
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1. Introduction. Pattern formation and symmetry breaking is a question of great theoret-
ical and experimental interest. While the study of morphogenesis has a rich history, perhaps
the most well-known contribution is the 1952 paper of Alan Turing [34]. In this classical
work, Turing suggested two necessary parts of pattern formation: two (or more) interacting
chemical species, with different rates of diffusion for the participating species. Turing derived
conditions such that the combination of nonlinear reaction kinetics and diffusion can lead to
instability of the homogeneous steady state. These instabilities are known as Turing patterns.
Gierer and Meinhardt [8] highlighted one important general example where these conditions
hold, namely, that the system involves a short-range activator and a long-range inhibitor.
Turing patterns in reaction-diffusion equations are well understood and have been studied in
a variety of contexts, including biology, chemistry, and physics [20].
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1824 HEATHER A. BROOKS AND PAUL C. BRESSLOFF

While interest in Turing pattern formation was initially primarily theoretical, there is an
ever expanding literature on applications and extensions. Reaction-diffusion mechanisms have
been implicated in the development of feather patterns, vertebrate skin patterns, seashells [17],
and zebrafish stripes [36], as well as limb development [1] and ocular dominance stripes [33].
In addition, there have been many efforts to expand the understanding of conditions beyond
the traditional reaction-diffusion paradigm under which patterns may form. To give a few
examples, Turing-type patterns have been shown to form on growing domains [5], via a signal
transduction mechanism [25], and via mechanical instability [10]. In this paper, we further
extend this literature by proposing a novel mechanism for Turing pattern formation, which is
driven by two interacting chemical species, where one is passively diffusing and the other is
being actively trafficked by molecular motors.

The biological motivation underlying our proposed active trafficking mechanism for Tur-
ing pattern formation comes from cellular biology, in particular, the observation that there
is a regularly spaced distribution of ventral cord and dorsal cord synapses in Caenorhabditis
elegans, as illustrated in Figure 1. There is growing experimental evidence that synaptogen-
esis involves the regulation of the active (kinesin-based) transport and delivery of glutamate
receptors (GLR-1) to synapses by type II calcium- and calmodulin-dependent protein kinase
(CaMKII) [26, 11, 12]; see Figure 2. First, the activation (autophosphorylation) of CaMKII
via voltage-gated calcium channels induces the formation of new synapses by enhancing the
active transport and delivery of GLR-1 to developing synaptic sites. On the other hand, the
resulting increase in excitation arising from the increase in membrane-bound receptors leads
to the synaptic delocalization of active CaMKII due to increased calcium levels. This is con-
sistent with the observation that the synaptic localization of CaMKII changes in response to
autophosphorylation [31]. In this paper, we show how a regular spacing of synapses can be
established in C. elegans via an underlying Turing mechanism for synaptogenesis involving a
short-range activator and a long-range inhibitor. We identify the former as slowly diffusing
CaMKII and the latter as a rapidly advecting GLR-1, which switches between anterograde
and retrograde motor-driven transport (bidirectional transport). Our Turing mechanism is
novel, since the inhibitor does not diffuse.

The outline of this paper is as follows. In section 2 we formulate a three-component
(two chemical species), one-dimensional (1D) model of synaptogenesis in C. elegans, with

Figure 1. Schematic figure showing distribution of synapses of the type D motor neurons. The D type
neurons include six DD and 13 VD neurons. DD form synapses to the dorsal body muscles and VD form
synapses to the ventral muscles. Blobs: synapses to muscles; arrows: synaptic inputs to the D neurons.
Below are GFP images of synaptic puncta in the dorsal and ventral cords, respectively. (Public domain figure
downloaded from WormBook/Synaptogenesis by Y. Jin, http://www.wormbook.org/.)
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Figure 2. Regulation of transport and delivery of GLR-1 to synapses by CaMKII. (A) Calcium influx
through voltage-gated calcium channels activates CaMKII, which enhances the active transport and delivery of
GLR-1 to synapses. (B) Under conditions of increased excitation, higher calcium levels result in active CaMKII
which fails to localize at synapses, leading to the removal of GLR-1 from synapses.

an activator CaMKII moving only via diffusion and an inhibitor GLR-1 traveling by active
(motor-driven) transport in either the leftward or rightward direction. We take the reaction
kinetics of the two chemical species to be based on a modified Gierer–Meinhardt model [8],
since CaMKII exhibits autophosphorylation. We then use linear stability analysis to derive
conditions for a Turing instability and construct dispersion curves (section 3). It could be
argued that occurrence of patten formation in our transport model is not particularly surpris-
ing, since one might be inclined to interpret switching between left and right moving states
as effectively equivalent to diffusion. However, this equivalence holds only in the limit of fast
switching, and we show that this lies outside the pattern forming regime of our model. In
section 4 we break the symmetry between the left- and right-moving active particles by taking
their speeds to be different. This biased transport model reduces to a reaction-diffusion-
advection (RDA) model in the fast switching limit. We show that the full system supports
spatially periodic flow-distributed structures (FDS) on a semi-infinite domain with boundary
forcing, analogous to what is found in RDAs [30]. Finally, in section 5 we highlight extensions
to this work and future areas of research.

2. Three-component trafficking model. Consider a 1D domain of fixed length L, which
represents a neurite in the ventral cord of C. elegans at a particular stage of larval development;
see Figure 3. Let R(x, t) denote the concentration of GLR-1 receptors at position x along the
cell at time t and let U(x, t) denote the corresponding concentration of active CaMKII. For
simplicity, we do not distinguish between membrane-bound and cytoplasmic densities. Within
the context of synaptogenesis, we will interpret steady-state regions of enhanced densities in
GLR-1 and CaMKII as potential synaptic sites. This imposes one constraint on our model,
namely, that spatially periodic distributions of CaMKII and GLR-1 are in-phase. (A more
detailed model would explicitly take into account the Ca2+-dependent localization of CaMKII
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GLR-1
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motor
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CaMKII

Figure 3. One-dimensional, three-component trafficking model. Passively transported molecules of CaMKII
(green) react with motor-driven actively transported molecules of GLR-1 (red). The latter can switch between
forward and backward moving states (traveling with velocities ±v). Interactions between motor-driven particles
such as exclusion effects (hard-core repulsion) are ignored.

at the membrane and the CaMKII-dependent delivery of GLR-1 to developing synaptic sites.)
We partition GLR-1 into two subpopulations: those that undergo anterograde (rightward)
transport with positive velocity v and density R+(x, t) and those that undergo retrograde
(leftward) transport with negative velocity −v and density R−(x, t):

(2.1) R(x, t) = R+(x, t) +R−(x, t).

(The case of different speeds in the left and right directions will be considered in section
4.) Individual receptors randomly switch between the two advective states according to a
two-state Markov process,

(2.2) R+
α


α
R−.

This is based on the assumption that actively transported particles (ATs) are transported
bidirectionally along a microtubule or actin filament by some motor complex [3]. We take the
various concentrations to evolve according to the system of equations

∂U

∂t
= D

∂2U

∂x2
+ f(U,R+, R−),(2.3a)

∂R+

∂t
= −v∂R+

∂x
− αR+ + αR− + g(U,R+, R−),(2.3b)

∂R−
∂t

= v
∂R−
∂x

+ αR+ − αR− + g(U,R+, R−).(2.3c)

The first term on the right-hand side of (2.3a) represents diffusive transport of CaMKII and
the first term on the right-hand side of (2.3b) and (2.3c) represents ballistic transport of
GLR-1 to the right or left, respectively. The terms ±α(r− l) represent the effects of switching
between the two advective states. The reaction term f represents both the autocatalysis of
CaMKII and the inhibition of CaMKII by GLR-1, whereas the reaction terms g represent
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Figure 4. Schematic diagram of modified Gierer and Meinhardt activator-inhibitor model with a passively
diffusing activator (U) and an actively transported inhibitor switching between left (R−) and right (R+) moving
states at a rate α.

the increase in actively transported GLR-1 due to the action of CaMKII. Finally, (2.3) are
supplemented by reflecting boundary conditions at the ends x = 0, L:

∂U(x, t)

∂x

∣∣∣∣
x=0,L

= 0, vR+(0, t) = vR−(0, t), vR+(L, t) = vR−(L, t).(2.4)

It remains to specify the form of the nonlinear reaction functions f and g. Since the precise
details of the interaction between CaMKII and GLR-1 are currently not known, we will adapt
a classical model of autocatalysis in pattern forming systems due to Gierer and Meinhardt
(GM model) [8]. The GM model consists of an activator-inhibitor system with bimolecular
activation and monomolecular inhibition; see Figure 4. More specifically, we take

f(U,R+, R−) =
ρU2

R+ +R−
− µ1U,(2.5a)

g(U,R+, R−) = ρU2 − µ2(R+ +R−).(2.5b)

Here, ρ > 0 represents the strength of interactions and µ1, µ2 represent the degradation rates
of CaMKII and GLR-1, respectively. We are assuming that both left and right GLR-1 have an
equal inhibitory effect on CaMKII, and for simplicity we have also taken g to be a symmetric
function of R±. (This can also be imposed by an appropriate shift in the switching rates; the
basic results of the paper do not depend on imposing such a symmetry; see also the discussion
of biased transport in section 4.) Another biologically based reason for choosing the GM model
is that it generates in-phase patterns for two-component reaction-diffusion systems [20].

3. Conditions for Turing instability in trafficking model. In the following it will be
convenient to rescale space and time such that x̂ = αx/v and t̂ = αt, so that (2.3) become
(after dropping the hat notation)

∂U

∂t
= γ

∂2U

∂x2
+

1

α
f(U,R+, R−),(3.1a)

∂R+

∂t
= −∂R+

∂x
+R− −R+ +

1

α
g(U,R+, R−),(3.1b)

∂R−
∂t

=
∂R−
∂x

+R+ −R− +
1

α
g(U,R+, R−),(3.1c)
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1828 HEATHER A. BROOKS AND PAUL C. BRESSLOFF

where

(3.2) γ =
αD

v2

is the nondimensional quantity relating the CaMKII diffusion coefficient, GLR-1 velocity, and
motor switching rate. As we shall see, γ is the analogue of the ratio of diffusivities in classical
reaction-diffusion systems [20].

3.1. Linear stability analysis. We are interested in deriving general conditions for a Turing
instability in the system of equations (3.1) and then applying them to the modified GM
model for synaptogenesis in C. elegans. We will proceed along lines analogous to the classical
theory of diffusion-driven pattern formation [20, 7] by linearizing about a spatially uniform
fixed point and studying the spectrum of the resulting linear operator. Since neurite length
is relatively large compared to the synapse density pattern, the boundaries don’t have a
major effect on wavelength. Thus, we consider a homogeneous partial differential equation
in the unbounded domain R, and the associated spectrum is continuous. However, with
a slight abuse of notation, we will still refer to elements λ(k), k ∈ R, of the continuous
spectrum as eigenvalues and the associated Fourier components eikx as eigenfunctions. The
goal is to determine conditions under which Re[λ(0)] < 0 (stable with respect to homogeneous
perturbations), whereas there exists a critical wavenumber kc such that

max
k∈R
{Re[λ(k)]} = Re[λ(kc)] = λ(kc) = 0.

Under these conditions, the fixed point is marginally stable with respect to excitation of a spa-
tially periodic pattern of critical wavelength 2π/kc. Typically, varying one of the parameters
of the underlying model can then push the associated dispersion curve λ = λ(k) above zero
in a neighborhood of kc, resulting in a Turing instability. Whether a stable periodic pattern
forms then depends on the nonlinearities of the system, which can be investigated numeri-
cally or by using weakly nonlinear analysis. In this paper, we shall treat the dimensionless
parameter γ of (3.2) as the bifurcation parameter.

Suppose that there exists a spatially uniform fixed point u∗ = (U∗, R∗+, R
∗
−) for which

f(U∗, R∗+, R
∗
−) = g(U∗, R∗+, R

∗
−) = 0 and R∗+ = R∗−. Linearizing about this fixed point by

setting

U(x, t) = U∗ + u(x, t), R+(x, t) = R∗+ + r(x, t), R−(x, t) = R∗− + l(x, t)

yields the linear equation

(3.3) ut = Duxx + Jux +
1

α
Au,

where u = (u r l)T and

D =

 γ 0 0
0 0 0
0 0 0

 , J =

 0 0 0
0 −1 0
0 0 1

 , A =

 fu fr fr
gu −α+ gr α+ gr
gu α+ gr −α+ gr

 ,
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with all derivatives evaluated at the fixed point. We have used the fact that fr = fl and
gr = gl at the fixed point. In the absence of spatial processes, the linearized system (3.3)
reads

(3.4) ut =
1

α
Au,

where u has solutions of the form u ∝ eλt. The eigenvalues λ of this system satisfy

0 = −λ3 + λ2
(
−2 +

1

α
(fu + 2gr)

)
+λ

(
2

α2
(−fugr + frgu) +

2

α
(fu + 2gr)

)
+

4

α2
(−fugr + frgu) .

This has solutions

λ1 = −2,(3.5)

λ2,3 =
1

2α

(
fu + 2gr ±

√
(fu + 2gr)

2 − 8 (fugr − frgu)

)
.(3.6)

We require the steady state to be stable in the absence of spatial effects, i.e., Re(λ) < 0 for
all λ. Conditions for λ to be negative in the absence of spatial components are as follows:

fu + 2gr < 0,(3.7a)

fugr − frgu > 0.(3.7b)

Now we consider the stability of the full system with respect to spatially periodic per-
turbations. We assume (3.3) has a solution of the form u(x, t) = uke

λteikx, which gives the
matrix equation

λuk = ∆(k)uk, ∆(k) = −k2γ + ikJ +
1

α
A.(3.8)

Hence, λ satisfies the characteristic equation

0 = det[∆(k)− λI3] = −λ3 + λ2
(
−2− γk2 +

1

α
(fu + 2gr)

)
+ λ

(
2

α2
(−fugr + frgu) +

2

α

(
fu + 2gr + γgrk

2
)
− k2 − 2γk2

)
+

4

α2
(−fugr + frgu) +

k2

α
(fu + 4γgr)− γk4.

This can be written in the more compact form

(3.9) λ3 + b(k)λ2 + c(k)λ+ h(k) = 0,

where

b(k) = 2 + γk2 − 1

α
(fu + 2gr) > 0,(3.10a)
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(3.10b) c(k) =
2

α2
(fugr − frgu)− 2

α

(
fu + 2gr + γgrk

2
)

+ k2 + 2γk2,

and

(3.10c) h(k) =
4

α2
(fugr − frgu)− k2

α
(fu + 4γgr) + γk4.

In general, for each value of k there will be three eigenvalues λj(k), j = 1, 2, 3, one of which
will be real and the other two either are real or form a complex conjugate pair. There are thus
three solution branches or dispersion curves. Note, in particular, that in the limit |k| → ∞,
the three roots behave as λ1(k) ∼ −k2γ, λ2,3(k) ∼ ±ik.

We now determine conditions for the fixed point to become unstable with respect to non-
oscillatory spatially periodic patterns. This means that a single real dispersion curve crosses
zero from below, while the other pair of (possibly complex conjugate) branches have negative
real parts for all k. A necessary condition is that there exists a wavenumber k for which there
is a single real root λ(k) = 0. In order for this to hold, the λ-independent term in (3.9) must
vanish, h(k) = 0, which implies

k2 =
1

2αγ

(
fu + 4γgr ±

√
(fu + 4γgr)

2 − 16γ (fugr − frgu)

)
.(3.11)

There are then two conditions for (3.11) to have a real solution k: (1) the discriminant is
positive, and (2) k2 is positive. The first condition implies that

(fu + 4γgr)
2 > 16γ (fugr − frgu) ,(3.12)

which certainly holds for sufficiently small γ. Positivity of k2 then requires

(3.13) fu + 4γgr > 0.

The condition (3.13) on γ depends on the sign of gr, that is,

γ > − fu
4gr

, gr > 0,

γ < − fu
4gr

gr < 0.(3.14)

The first case, gr > 0, implies that fu < 0 due to condition (3.7a). On the other hand, if
gr < 0, then fu > 0, since the condition fu < 0 would imply that the positive quantity γ
would be less than a negative quantity. We conclude that fu and gr must have opposite sign
and, hence, fr and gu also have opposite sign; see (3.7b).

In general, there will be two positive roots k for which λ(k) = 0, suggesting that when
the discriminant vanishes in (3.11) for some γ = γc and k = kc, the fixed point is marginally
stable with respect to the Fourier mode eikcx. However, in order to eliminate the possibility
of a Turing–Hopf bifurcation, we must check that a pair of pure imaginary roots ±iω cannot
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occur at some value of k. As we show below, this leads to the additional requirement that
gr < 0 and, hence, fu > 0. Conditions (3.7a), (3.7b), and (3.14) then imply that

γ < − fu
4gr

<
1

2
, gr < 0, fu > 0, frgu < 0.(3.15)

Setting λ(k) = iω(k) in (3.9) for real ω(k) and equating real and imaginary parts generates
the pair of equations

c(k)− ω2 = 0, h(k)− b(k)ω2 = 0⇒ c(k)b(k) = h(k) > 0.

Writing c(k)b(k) = a0 + a1k
2 + a2k

4 and h(k) = h0 +h1k
2 +h2k

4, we find from (3.7a), (3.7b),
(3.13) and gr < 0 that a0 > b0, a1 > 0, h1 < 0, and a2 > h2 so c(k)b(k) > h(k) for all k. In
other words, a pair of complex conjugate roots cannot cross the imaginary axis. This result
is a special case of a more general theorem due to Guckenheimer, Myers, and Sturmfels [9].
For completeness, we state the theorem here.

Theorem (Guckenheimer, Myers, and Sturmfels). Let S by the Sylvester matrix for
the characteristic polynomial p(λ) of an n × n matrix ∆. Then, ∆ has precisely one pair of
pure imaginary eigenvalues if det(S) = 0 and det(S0) · (S1) > 0, where Si=0,1 denotes the
matrices obtain from S by deleting row 1 and n/2 and columns 1 and i+ 2. If det(S) 6= 0, or
det(S0) · det(S1) < 0, then p(λ) has no purely imaginary roots.

For our n = 3 system the corresponding Sylvester matrix is

S(k) =

(
h(k) b(k)
c(k) 1

)
,(3.16)

and we have shown det(S(k)) 6= 0 for all k.

3.2. Dispersion curves. We now apply the above linear stability analysis to the modified
GM reaction scheme given by (2.5). In the absence of spatial disturbances, the steady state
for this model is

U∗ =
µ2
µ1
, R∗+ = R∗− =

ρµ2
2µ21

,

so we have the following derivatives evaluated at steady state:

fu = 2µ1, fr = −µ
2
1

ρ,
gu =

2ρµ2
µ1

, gr = −µ2.(3.17)

For this model, the condition that fu and gr have opposite signs at steady state is already
satisfied for any positive values of µ1 and µ2. To satisfy the remaining conditions (3.15) for
stability in the homogeneous steady state, we require

fu + 2gr < 0⇒ µ1 < µ2

from (3.7a). Second,
fugr − frgu = 0

which is a limiting case of (3.7b). Thus, we have a (marginally) stable homogeneous steady
state in the absence of spatial disturbances, provided that the inhibitor GLR-1 decays more
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Figure 5. Dispersion curves for the transport model (2.3) with modified GM kinetics (2.5). We choose
ρ = 1, µ1 = 0.25, µ2 = 1, α = 0.11, and v = 1 in order to match biophysical parameters and satisfy the spatially
homogeneous stability conditions. λ1 represents the eigenvalue of the system with largest real part for a given k.
We look at dispersion curves for four different values of D: D = 0.01 (blue), D = 0.05 (red), D = 0.5 (yellow),
D = 1.5 (purple). The maximum value of λ1 occurs at some value kmax, which gives the dominant mode for
pattern formation.

quickly than the activator CaMKII. It remains to consider the necessary condition (3.15) on
γ for a Turing instability to occur. In this case of the Gierer–Meinhardt model, the condition
reads

γ <
µ1
2µ2

<
1

2
.

In Figure 5, we show the dispersion curves for the trafficking system with Gierer–Meinhardt
nonlinearities. That is, we plot Re[λ1] against wavenumber k, where λ1 is the eigenvalue with
largest real part. One finds that in any region where Re[λ1] > 0, λ1 is real, thus signaling
the growth of nonoscillatory spatially periodic patterns, with the maximum of the curve rep-
resenting the fastest growing mode. As γ increases (i.e., either D increases or v decreases),
instabilities disappear as predicted by the theory. Figure 6 shows a numerically simulated
example of pattern formation in the 1D trafficking system with Gierer–Meinhardt dynamics.
The corresponding time evolution of the pattern is illustrated in Figure 7.

3.2.1. Parameter values. In order to justify the trafficking-based mechanism for pattern
formation in C. elegans, the conditions for Turing instability must be satisfied for biophysically
relevant parameters. Many of these parameters can be cited from the biological literature.
First, we note that the conditions for stability in the homogeneous steady state are satisfied
in this system because the decay rate of GLR-1 is approximately four times that of CaMKII
[13, Table 1]. For our simulations, we take µ1 = 0.25/s and µ2 = 1/s. Additionally, there
exists data on the transport of GLR-1 via molecular motors. The average velocity of GLR-1
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Figure 6. Synapse site pattern formation in C. elegans active transport model. (a) Spatial profiles of the
steady-state concentration of components U,R±. (b) Another example of spatial profiles showing that U and
R = R+ + R− are in-phase. Initial data are generated from a uniform random distribution. Nonlinearity
parameters are the same as in Figure 5, with D = 0.01 µm2/s. (c) Full solution in space and time. Colors
represent concentrations of GLR-1 = R+ + R−, with red representing areas of highest concentration. Our
simulation shows the emergence of ∼4 synapse sites in 10 µm. In this and subsequent figures, simulations were
performed using a Crank–Nicolson scheme for U and a Lax–Wendroff scheme for R± with time step dt = 0.005,
space step dx = 0.01, and no-flux boundary conditions.

undergoing active transport along the ventral cord is 1 µm/s, with an average run length of
9.2 µm [19]. From this, we can infer that our switching rate should be α ≈ 0.11/s.

We begin with concentrations chosen from a uniform random distribution near fixed point
values. As the system evolves, we initially observe growth of CAMKII concentrations, and
then patterns emerge as the activator is eventually tempered by increase of the inhibitor GLR-
1. In this case, the concentration of both activating and inhibiting species are in phase with
each other. In order to test the validity of our mechanism, we seek to match data due to Rongo
and Kaplan [26], which show that C. elegans synaptic density is fixed at 3.7 ± 0.1 per 10 µm.
With the parameter values discussed here, our numerical simulations show good agreement
with the biophysical system, with ∼4 potential synapse sites per 10 µm (see Figure 6).

3.3. The reaction-diffusion limit. At first sight it could be argued that the occurrence of
a Turing instability in the active transport model (2.3) is not surprising since it is well known
that in the fast switching limit α → ∞ the transport model reduces to a two-component
reaction-diffusion system [21]. However, recall from (3.2) that three quantities make up the
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Figure 7. Time evolution of synapse site pattern formation in C. elegans active transport model. Each plot
shows the concentration of species U,R± as a function of x for a specific time t. Initial data are generated from
a uniform random distribution. Nonlinearity parameters are the same as in Figure 5 with D = 0.01 µm2/s.

dimensionless bifurcation parameter γ: v, D, and α. We have shown that γ has to be suf-
ficiently small for pattern formation to occur in the active transport model. That is, in the
limit of fast switching we have v2/D � α, which suggests that the effective diffusive transport
of the inhibitor GLR-1 is much slower than the activator CaMKII. Since the occurrence of a
Turing instability in a reaction-diffusion model with GM kinetics requires fast inhibition and
slow activation [18, 20], we expect pattern formation to disappear in the fast switching limit,
which is indeed found to be the case.

In order to explore this issue in a little more detail, we apply a quasi-steady-state diffusion
approximation to the linearized version of (2.3) along the lines of [21]. First, we set α = α0/ε,
where ε << 1 is chosen so that α0 = O

(
v2/D

)
. We then rewrite the original system (2.3),

linearized about the fixed point, as

(3.18) ut = Duxx + Vux +
α0

ε
Au + Bu,

where u = (u r l)T and

D =

 D 0 0
0 0 0
0 0 0

 , V =

 0 0 0
0 −v 0
0 0 v

 ,
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A =

 0 0 0
0 −1 1
0 1 −1

 , B =

 fu fr fr
gu gr gr
gu gr gr

 .

Note that the symmetric matrix A has a 2D nullspace φ spanned byφ1 =

 1
0
0

 , φ2 =
1√
2

 0
1
1

 ,

with 〈φi, φj〉 = δij In order to separate the timescales and perform the quasi-steady-state
reduction, we introduce the decomposition

(3.19) u(x, t) =
∑
i=1,2

Ci(x, t)φi(x, t) + εw(x, t),

where Ci(x, t) = 〈φi,u〉. We observe two things about this decomposition: first, Ci(x, t) is a
projection, into the nullspace of A, and second, w must be orthogonal to the nullspace of A
so w = (w/

√
2)
(
(0, 1,−1)>

)
. Substituting (3.19) into (3.18) yields

∂

∂t

∑
i=1,2

Ciφi

+ ε
∂w

∂t
= α0Aw +

∑
i=1,2

CiBφi +
∂C2

∂x
Vφ2 +

∂2C1

∂x2
Dφ1

+ ε

(
Bw + V

∂w

∂x
+ D

∂2w

∂x2

)
.(3.20)

We project onto the slow manifold by multiplying by φTi to give

∂C1

∂t
=
∑
i=1,2

Ciφ
T
1 Bφi + d

∂2C1

∂x2
+ εφT1

(
Bw + D

∂2w

∂x2

)
,

∂C2

∂t
=
∑
i=1,2

Ciφ
T
2 Bφi + ε

(
φT2 Bw + φT2 V

∂w

∂x

)
.

Note that Bw = 0 and Dw = 0. Next, we plug the slow equations into (3.20) to obtain
an equation for w. After an application of the Fredholm alternative theorem we find that to
leading order

(3.21) w =
v

2α0

 0
−1
1

 ∂C2

∂x
.

Finally, we obtain the desired slow manifold equations by substituting in this leading order
approximation for w and simplifying. Doing so leaves us with the reduced system

∂C1

∂t
= fuC1 +

√
2frC2 +D

∂2C1

∂x2
,(3.22)

∂C2

∂t
=
√

2guC1 + 2grC2 + ε
v2√
2α0

∂2C2

∂x2
.(3.23)
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A in the full model (2.3), stability of the zero solution with respect to spatially uniform
perturbations is ensured by conditions (3.7a) and (3.7b). Let D1 = D and D2 = εv2/

√
2α0.

A standard analysis of reaction diffusion systems leads to the following necessary condition
for a Turing instability [20]:

(3.24) D2fu + 2D1gr > 0.

When this is combined with the conditions fu + 2gr < 0, fu > 0, and gr < 0, we deduce that
a necessary condition for a Turing instability is D2 > D1. This clearly cannot hold in the
small ε limit (fast switching). This establishes that in the regime where bidirectional active
transport effectively reduces to diffusion, a Turing instability cannot occur.

4. Biased active transport. So far we have assumed that the switching rates and speeds
are the same for left-moving and right-moving particles. Now suppose that the speeds of
the right-moving and left-moving states are vr and vl, respectively, with vl < vr. The mean
speed of the active particles is then v̄ = (vr − vl)/2 and there is an additional advection term
−v̄∂C2/∂x on the right-hand side of (3.23). We thus obtain a linearized version of an RDA
system. There is a growing literature on pattern formation in 1D RDA equations, where one
typically considers a finite or semi-infinite domain with some form of forcing at one end (x = 0,
say) [28, 29, 30, 37]. The combination of forcing, advection, diffusion, and nonlinear reactions
can lead to so-called stationary FDS. This suggests that we look for the analogue of an FDS in
a biased version of our three-component trafficking model. The nondimensionalized equations
with vr = v and vl = νv become (after rescaling)

∂U

∂t
= γ

∂2U

∂x2
+

1

α
f(U,R+, R−),(4.1a)

∂R+

∂t
= −∂R+

∂x
+R− −R+

1

α
g(U,R+, R−),(4.1b)

∂R−
∂t

= ν
∂R−
∂x

+R+ −R− +
1

α
g(U,R+, R−),(4.1c)

where now we take x ∈ [0,∞) with the following boundary conditions at x = 0 [30]:

(4.2) U(0, t) = U∗ + εu(t), R+(0, t) = R∗+ + εr(t), R−(0, t) = R∗− + εl(t),

for any t > 0, where

(4.3) εi(t) =

{
εi if 0 ≤ t ≤ T,
0 otherwise,

and εi, |εi| � 1 for i = u, r, l are small constant perturbations that are maintained for a long
but finite time T . Here u∗ = (u∗, r∗, l∗) is the spatially uniform steady state. Linearizing
about this steady-state solution leads to (3.3) with the same matrices A and D, and the
modified matrix

J =

 0 0 0
0 −1 0
0 0 ν

 .
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Equation (3.3) is supplemented by the boundary conditions

(4.4) u(0, t) = εu(t), r(0, t) = εr(t), l(0, t) = εl(t),

Since the time-dependent perturbations have compact support in time, they have well-
defined Fourier transforms. Therefore, we seek the general solution of (3.3) of the form [30]

(4.5) (u(x, t), r(x, t), l(x, t)) =

∫ ∞
−∞

(u0(ω), r0(ω), l0(ω))εiωt+z(ω)xdω,

where u0(ω), etc., are determined by the boundary data. Substituting the general solution
into (3.3) shows that (ω, z) must satisfy the characteristic equation

0 = −(iω)3 + (iω)2
(

(ν − 1)z − 2 + γz2 +
1

α
(fu + 2gr)

)
+iω

(
2

α2
(∆) +

2

α

(
fu + 2gr − γgrz2

)
+ νz2 + 2γz2

−(ν − 1)z

[
−1 + z2γ +

fu + gr
α

])
+

4

α2
(∆)− z2

α
(νfu + 4γgr)− γνz4

+(ν − 1)z

[
−∆

α2
− γz2 − fu − γz2gr

α

]
.(4.6)

For notational convenience, we let ∆ = frgu − fugr. A necessary condition for a stationary-
space periodic solution is that the ω-independent term in (4.6) vanishes:

γνz4 + γ(ν − 1)
(

1− gr
α

)
z3 +

z2

α
(νfu + 4γgr)

− (ν − 1)z

[
−∆

α2
− fu
α

]
− 4

α2
∆ = 0.(4.7)

Solutions that bifurcate to spatially periodic FDS have a purely imaginary wavenumber zc =
ikc. The vanishing of the imaginary part of (4.7) when z = ikc shows that the critical
wavenumber is

(4.8) k2c =
αfu + ∆

αγ (α− gr)
,

which exists provided that the right-hand side is positive. Note that kc is independent of the
speed bias ν.

We can now determine the neutral curve in (γ, ν) parameter space for the boundary-forcing
problem that corresponds to the bifurcation to stationary (FDS) solutions by requiring that
the real part of (4.7) vanishes when z = ikc and solving for ν:

ν∗(γ) =
4
(
∆ + αγgrk

2
c (γ)

)
αk2c (γ) (αγk2c (γ)− fu)

.(4.9)
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Figure 8. Plot of (a) the (α, ν∗) and (b) the (γ, ν∗) curves for the Gierer–Meinhardt synaptogenesis
model with biased active transport. We predict pattern forming instabilities to arise for regions where
ν > ν∗. For the Gierer–Meinhardt model, we take nonlinearity parameters ρ = 1, µ1 = 0.25, µ2 = 1.

We can further simplify this by plugging in our expression for k2c ,

ν∗(γ) =
4γα (α− gr)
αfu + ∆

,(4.10)

provided α − gr 6= 0 and αfu + ∆ 6= 0. In seeking stationary FDS solutions, we require that
k2c > 0 and ν∗(γ) > 0. We predict that for ν above this curve defined by ν∗, we will see such
solutions. We restrict our analysis here to the case we have explored previously, namely, the
Gierer–Meinhardt model. Figure 8 shows the neutral curves in (γ, ν) and (α, ν) parameter
space. Since gr < 0, we know that α − gr > 0. This implies that we have the following
condition for k2c > 0:

αfu + ∆ > 0.(4.11)

We show examples of pattern formation in this biased transport regime in Figure 9 for
the Gierer–Meinhardt model under multiple values of ν > ν∗. These patterns arise due to
instability and persist in time, despite the underlying net flow to the right. However, we
remark here that for certain parameter values, it is possible to generate transient convective
instabilities, where the emergent patterns are eventually convected away from their initial
perturbation and out of the domain in long times [27, 32]. Further explorations of types of
instabilities and conditions under which they arise are not explored in the present work, but
yield interesting opportunities for future analysis. Finally, it is important to note that, as
in the case of Turing instabilities, FDS solutions do not occur in the fast switching limit for
which biased bidirectional transport reduces to advection-diffusion.

5. Discussion. In summary, we have established the existence of an active trafficking-
based mechanism for Turing pattern formation in a simple 1D model of synaptogenesis in C.
elegans. Our model assumes that synaptogenesis is generated by an activator-inhibitor system
consisting of passively diffusing Ca2+/calmodulin-dependent protein kinase (CAMKII) and
actively transported glutamate receptor 1 (GLR-1). Interactions between the two chemical
species were modeled in terms of modified GM kinetics. We used linear stability analysis to
derive conditions for a Turing instability and found that γ = αD/v2 has to be sufficiently
small for patterns to emerge, where α is the motor switching rate, D is the CaMKII diffusion
coefficient, and v is the speed of motor-driven GLR-1. One consequence is that patternsD
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Figure 9. Examples of evolution of patterns in the Gierer–Meinhardt model under biased active
transport. We show two different values of ν > ν∗: (a) ν = 0.5 and (b) ν = 0.8. We take ρ =
1, µ1 = 0.25, µ2 = 1, γ = 0.0011, and α = .11, as in Figure 8. Despite a biasing in anterograde versus
retrograde transport speeds, the density of potential synaptic sites is still properly regulated. Note that
despite a net flow to the right, patterns persist in long times (as opposed to being convected out of the
domain). Numerical simulations were performed with the Crank–Nicolson scheme for diffusion and
Lax–Wendroff scheme for advection with ∆x = 0.01 and ∆t = 0.005. We take Dirichlet boundary
conditions on the left and no flux boundary conditions on the right.

emerge outside the parameter regime of fast switching, where the linearized model reduces
to a two-component reaction-diffusion system. In the case of GM kinetics, the spatially
periodic densities for CaMKII and GLR-1 were in-phase, consistent with the interpretation of
regions with enhanced densities corresponding to regularly spaced synaptic sites. Moreover,
for physiologically reasonable choices of various biophysical parameters such as the diffusivity,
motor speed, and degradation rates, the resulting synaptic spacing (pattern wavelength) isD
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consistent with experimental data. Our results were also robust to changes in these parameters
and persisted in the case of biased transport.

Further evidence for our hypothesis that synaptogenesis arises via a Turing mechanism is
the observation that the spacing between synapses is maintained during larval growth [26].
In the case of reaction-diffusion equations, the role of domain growth in pattern formation
has been investigated by a number of authors [35, 5, 24, 4, 6]. Much of this work has been
inspired by experimental observations concerning the skin pigmentation of the marine angelfish
[15]. In juvenile fish, the skin color is initially gray and then develops alternating white
stripes on a dark blue background. New white stripes are inserted between the existing older
stripes, resulting in a doubling of the number of stripes each time the fish doubles in size.
Stripe insertion has also been modeled within the context of ocular dominance columns within
developing cortex [23]. In the case of synaptogenesis in C. elegans, maintenance of synaptic
density could be analogous to a stripe insertion mechanism and is something we hope to
explore in future work. We will also develop a more detailed multicomponent model that
explicitly distinguishes between cytoplasmic and membrane-bound densities.

Another possible extension of our work would be to analyze the generation of patterns
in higher spatial dimensions. In the case of axonal or dendritic transport in neurons, micro-
tubules tend to be aligned in parallel so that one can treat the transport process as effectively
1D. On the other hand, intracellular transport within the cell body of neurons and most
nonpolarized animal cells occurs along a microtubular network that projects radially from
organizing centers (centrosomes) with outward polarity. This allows the delivery of cargo to
and from the nucleus. It has also been found that microtubules bend due to large internal
stresses, resulting in a locally disordered network. A detailed microscopic model of intracel-
lular transport within the cell would need to specify the spatial distribution of microtubular
orientations and polarity, in order to determine which velocity states are available to a motor-
cargo complex at a particular spatial location. However, a simplified model can be obtained
under the “homogenization” assumption that the network is sufficiently dense so that the set
of velocity states (and associated state transitions) available to a motor complex is indepen-
dent of position. In that case, one can effectively represent the active transport within the
cell in terms of a 2D or 3D model of active transport [2, 3].

For the sake of illustration, consider a disordered 2D microtubular network as illustrated
in Figure 10. We assume that ATs are transported along this network, randomly switching
between different motile states, and interacting with a second chemical species passively trans-
ported particles (PT) undergoing 2D diffusion. Suppose that after homogenization, an AT at
any point r = (x, y) in the plane can exhibit ballistic motion with velocity v(θ) = v(cos θ, sin θ)
for θ ∈ [0, 2π) or be in a stationary state. Transitions between different ballistic states are
governed by a discrete Markov process with θ-independent transition rate α. Let c(r, θ, t) be
the concentration of ATs in state (r, θ) at time t and u(r, t) denote the concentration of PT.
The 2D analogue of (2.3) is taken to be

∂u

∂t
= d∇2u+ f(u,C),

∂c

∂t
= −∇ · (v(θ)c)− αc(r, θ, t) + αC(r, t) + g(u,C),
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(a) (b)

d

v

Figure 10. Active transport on a disordered microtubular network. (a) Random orientational arrangement
of microtubules. (b) Effective 2D trajectory of an AT (red) randomly switching directions and reacting with the
ATs (green).

where

C(r, t) =
1

2π

∫ 2π

0
c(r, θ′, t)dθ′.

Alternatively, one could take g(u, c) rather than the more symmetric case of g(u,C).
Finally, the new class of model introduced in this paper raises many interesting questions

from a mathematical perspective. First, we are considering coupled hyperbolic and parabolic
nonlinear PDEs — what are the conditions for well-posedness (existence, uniqueness, stability)
for such equations? Second, we focused on the issue of linear stability in order to derive
necessary conditions for a Turing instability. However, if one wants to determine the selection
and stability of the emerging patterns, it is necessary to take into account the nonlinearities
of the system using methods such as weakly nonlinear analysis. This then raises a third issue,
namely, the role of symmetry in the selection of patterns. This is a well-studied area in the
case of reaction-diffusion systems with an underlying Euclidean symmetry [14]. An additional
complicating feature of our trafficking model is that a 2D or 3D microtubular network tends
to break Euclidean symmetry, and this depends on the spatial scale at which one is modeling.
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