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Abstract We consider a classical model on activation of proteins, based in two re-

ciprocal enzymatic biochemical reactions. The combination of phosphorylation and

dephosphorylation reactions of proteins is a well established mechanism for protein

activation in cell signalling. We introduce different affinity of the two versions of

the proteins to the membrane and to the cytoplasm. The difference in the diffusion

coefficient at the membrane and in the cytoplasm together with the high density of

proteins at the membrane which reduces the accessible area produces domain for-

mation of protein concentration at the membrane. We differentiate two mechanisms

responsible of the pattern formation inside of living cells and discuss the conse-

quences of these models for cell biology.

1 Introduction

Cascades of biochemical reactions and interactions regulate multiple processes in-

side living cells [1]. Proteins, enzymes and small molecules strongly interact and

participate in genetic and metabolic networks.

Biochemical processes inside cells are highly non-linear and their dynamics com-

plex. Two characteristics examples of such complexity in the cell are genetic regu-

latory networks and cell signalling [2]. Regulatory pathways involve different types

of proteins, which control the transcription of the genes. They form the genetic net-

works in cell biology and governs processes at large times scales (hours). A protein

that represses the transcription of its own gene is a simple example of a regulatory

network. The repression produces a negative feedback and under certain conditions

it induces a periodic synthesis of the protein [3].
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On the other hand, interactions among different proteins can also produce com-

plex biochemical oscillations of protein concentration inside signalling pathways

[4]. Cell signalling controls the rapid response of the cell to external variations of

the environment, and corresponds to fast processes at small time scales (minutes).

One of the simplest components of such pathways are enzymatic reactions. An en-

zyme, is a protein which catalyzes and accelerates a particular biochemical reaction,

which under other circumtances would be much slower [5]. An important character-

istics of the enzyme is that it takes part in the reaction, however, after the reaction

occurs, the enzyme is completely recovered and can catalyze again another reaction.

A phosphorylation reaction consists in the incorporation of a phosphate group

to a certain protein, producing a phosphorylated version of the protein. Such type

of biochemical reactions are catalyzed by kinases. Protein kinases are enzymes and

the phosphorylation reaction is an enzymatic reaction. The opposite reaction is also

possible. The dephosphorylation reaction removes the phosphate group from the

phosphorylated protein, and it is catalyzed by the enzyme phosphatase. Protein ki-

nases and phosphatases are particularly active in signalling processes. Important

parts of biochemical pathways consist on multiple phosphorylations and dephos-

phorylations of diverse proteins [6].

When both processes occurs simultaneously, phosphorylation and dephosphory-

lation may control the activity of a particular protein in a pathway. Activation and

deactivation are important mechanisms in the regulation of many cellular processes.

Both reactions are usually described in well-mixed environments by the Goldbeter-

Koshland model of reciprocal covalent modifications [7]. The stiff response of the

system to small changes in the kinase or the phosphatase concentrations makes

the Goldbeter-Koshland mechanism a good model for activation of proteins in sig-

nalling pathways. The response of the model to the change of the enzyme concentra-

tion is stiff but monotonous and, therefore, no bistability or another kind of pattern

formation mechanisms are accessible from this model. The complexity necessary

for a non-monotonous behaviour can be incorporated by positive and negative inter-

actions among the two versions of the proteins and the enzymes [8].

An alternative strategy for the formation of complex dynamics is the incorpora-

tion of spatial restrictions. Living cells are not always well-mixed environments and

active or passive transport is crucial for the organization of some metabolic and ge-

netic processes [9]. Furthermore, there is a high degree of compartmentalization in

the cell and different types of proteins are located in different parts of the cell. Thus,

the spatial aspects of the interior of the cells become relevant in intracellular com-

munication [10] and self-organization may rule many processes in cell biology [11].

In particular, kinases and phosphatases may locate in opposite positions inside the

cell, e.g. membrane/cytoplasm [12, 13], nucleus/cytoplasm [14] or anterior/posterior

[15, 16]. It may produce the formation of spatial gradients in metabolic reactions.

The formation of biochemical gradients may induce the polarization of the cell [17],

and the definition of a preference direction for a posterior motion [18] or division

[19] of a living cell.

The equations employed for the mathematical modeling of cell polarity typi-

cally consist in two components, a membrane protein with very slow diffusion in
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comparison with a second protein which diffuses faster through the cytoplasm. The

interactions between these two components, which are highly non-linear, produce a

Turing-like instability of the homogeneous solution [20, 21, 22] or a wave-pinning

dynamics due to the frustration under bistable conditions of the wave between both

stable solution due to a mass-conservation condition [19, 23, 24, 25].

Here, we derive from the basis dynamics of enzymatic reactions a reaction-

diffusion system of three equations representing the concentrations of the same

protein at the membrane, phosphorylated and dephosphorylated in the cytoplasm.

A similar set of equations have been previously successfully employed for the mod-

eling of experimental observations on protein translocation results in an insulin-

secreting cell [26, 27].

This chapter is organized as follows, first we review in Sec.2 the derivation of

the simplest model on reciprocal covalent modification composed by the phospho-

rylation and dephosphorylation processes. Second, we introduce in Sec.3 the effects

of compartemization and the effects of saturation at the membrane where the large

amount of membrane proteins restricts the accessible area. Finally, in Sec. 4 the

transport by diffusion is incorporated to the model of the biochemical reactions to

generate the final reaction-diffusion model. The different mechanisms of pattern

formation are described and analyzed.

2 Modelling enzymatic kinetics

The basis of any enzymatic reaction is the fast conversion of a substrate S into a

product P. One is tempt to consider the next linear conversion

S+E→ P+E; (1)

for the modeling of an enzymatic reaction, see the simple sketch in Fig.1(a) of the

reaction in eq.(1). The velocity of reaction, which corresponds to the rate of produc-

tion of [P], has a simple linear relation with the concentration of the substrate and it

is linearly proportional to the concentration of the enzyme:

∂ [P]

∂ t
= k[E][S]; (2)

where k is the rate of the reaction in eq.(1). This simple dynamics holds when the

number of substrate molecules is small in comparison with the capacity of enzymes

to induce the reactions. If the number of substrate molecules is large, there is a delay

due to the lack of available enzymes to perform the reaction. In this case the linear

approximation shown in eq.(1) is not correct.



4 Sergio Alonso

Fig. 1 (a) Sketch of the conversion of a subtract into a product through a linear reaction. (b) Sketch

of the conversion of a substract into a product through an enzymatic reaction. (c) Dependence of

the velocity of reaction in the concentration of the substrate for the two types of reactions.

2.1 Michaelis-Menten model

Although the number of enzymes is the same before and after a reaction event, it

participates in the reaction. Enzymes change the structure of the substrate to enhance

the affinity to generate the product. We consider an intermediate step: the enzyme

reacts with the substrate giving rise to a complex molecule C. This complex state

may react and give rise to the product together with the original enzyme, however,

there is a small probability than the complex C reacts in the opposite direction giving

rise to the substrate and the enzyme. The three reactions together read:

S+E ⇀↽C→ P+E; (3)

and a schematic description of the reaction is shown in Fig. 1(b). If we apply the law

of mass action to the three reactions we obtain that the four concentrations follow

[5]:

∂ [S]

∂ t
= k−1[C]− k1[S][E],

∂ [E]

∂ t
= (k−1 + k2)[C]− k1[S][E],

∂ [C]

∂ t
= −(k−1 + k2)[C]+ k1[S][E],

∂ [P]

∂ t
= k2[C]; (4)

where k1, k−1 and k2 are the reaction rates for the three reactions shown in eq.(3).

Note that the total number of enzymes [C] + [E] = [E0] is conserved and that the

product is removed immediately from the system and, therefore, the reverse reaction

C← P+E is not considered.
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Assuming a quasi-steady approximation ∂ [C]/∂ t = 0, the steady concentration

of the complex C is derived from the equation of its evolution:

[C] =
[S][E0]

K +[S]
; (5)

where we have defined

K =
k−1 + k2

k1
; (6)

which can be used in eq.(4) to obtain the velocity of reaction as function of the

concentration of the substrate:

∂ [P]

∂ t
= k2[E0]

[S]

K +[S]
; (7)

within the condition [S]≪ K we recover the prediction of the linear model, com-

pare with eq.(2) using k = k2[E0]/K. For large values of the substrate concentration,

[S]≫ K, the velocity of the reaction saturates to a maximum velocity Vmax = k2[E0].
For a comparison between the linear and the Michaelis-Menten models see Fig.1(c).

While both types of dynamics coincide for small concentrations of the substrate,

they differ for intermediate and large values.

2.2 Goldbeter-Koshland model

There are multiple examples of enzymatic reactions in cell biology, but two of

the most characteristics are the phosphorylation and dephosphorylation of proteins.

They are close related because the product of the first is the substrate for the sec-

ond reaction and the product of the second is the substrate for the first reaction. The

protein develops a reciprocal covalent modification [7].

The Goldbeter-Koshland model incorporates the enzymatic dynamics to the

mechanism of phosphorylation and dephosphorylation. Therefore, assuming Michaelis-

Menten dynamics for both enzymes we arrive to the next set of biochemical reac-

tions:

M+Kin ⇀↽C1→Mp +Kin; (8)

for the phosphorylation by an enzyme Kinase Kin of a protein M into a phosphory-

lated protein Mp, and

Mp +Phos ⇀↽C2→M+Phos; (9)

for the dephosphorylation by an enzyme phosphatese Phos of a protein Mp. An

sketch of both reactions is shown in Fig.(2).
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Fig. 2 Sketch of the reciprocal phosphorylation-dephosphorylation process of proteins. An en-

zyme kinase binds to the unphosphorylated protein to add a phosphate group. An enzyme phos-

phatase binds to the phosphorylated protein to remove the phosphate group.

Finally, the evolution of the concentrations of the two types of proteins M and Mp

can be expressed with two non-linear equations after the assumption of quasi-static

conditions for both complex ∂ [C1]/∂t = 0 and ∂ [C2]/∂t = 0:

∂ [M]

∂ t
= −G1

[M]

K1 +[M]
+G2

[Mp]

K2 +[Mp]

∂ [Mp]

∂ t
= +G1

[M]

K1 +[M]
−G2

[Mp]

K2 +[Mp]
(10)

with G1 = k2[Kin] and G2 = k4[Phos] for the kinase and phosphatase controlled

reaction rates, and K1 = (k−1 + k2)/k1 and K2 = (k−3 + k4)/k3 for the equilibrium

reactions. Furthermore, the total number of proteins is conserved: [T ] = [M]+ [Mp].
The steady state condition is obtained when ∂ [M]/∂ t = 0 or equivalently ∂ [Mp]/∂ t =

0. For a given set of parameter values only a single combination of values [M] and

[Mp] is possible. It means that there is only a single solution.

With the tuning of a control parameter we may obtain large changes in the re-

sponse. It permits the definition of two activation states. In this case, we consider

G1 as control parameter (equivalent analysis is possible with G2), see for example

Fig.3. Two different states are obtained corresponding to high concentration of [M]
or to high concentration of [Mp]. Depending on the relative activity between the ki-

nase and the phosphatase, see Fig.3(a) and Fig.3(b), the solution of the steady state

can be very different, see Fig.3(c-d). More important, the transition between these

two states is not gradual but abrupt, a small change on the control parameter G1

implies a big change in the response. This particular dynamics is employed to ex-

plain the activation of certain proteins in cell biology. For example, in the case of

Fig.3, if we assume that the active form of the protein is Mp, for a value of G1 = 9

(low values of [kin]) the concentration of Mp is small, however, if there is a slightly
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Fig. 3 (a) Sketch of a high rate of phosphorylation of a protein (large value of G1). (b) Sketch of

a low rate of phosphorylation of a protein (low value of G1). (c-d) Dependence of the equilibrium

concentration of the inactive (c) and the active (d) version of the protein in the value of the rate G1

for different values of the total concentration of protein (T = [M]+ [Mp]).

increase of [kin] the parameter G1 changes (G1 = 11) and the concentrations of Mp

strongly increases, which is the activate state in this example.

2.3 Bistability and complex dynamics in protein activation

The Goldbeter-Koshland mechanism produces a monotonous dependence on the

response. Although the abrupt change in this dependence can be use as activation

mechanism in cell signalling, more complex dynamics are needed for the explana-

tion of some other observations in cell biology [2].

Interactions among enzymes, substrates and products may induce a bistable

switch [13]. For example, a positive feedback of the phosphorylated protein Mp

in the enzyme kinase, modifies the Michaelis-Menten kinetics into a system with

higher order terms:

∂ [M]

∂ t
= −G1

[M]

K1 +[M]

(

1+A
[Mp]

KB +[Mp]

)

+G2

[Mp]

K2 +[Mp]
,
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Fig. 4 Inhomogeneous affinity of enzymes. (a) Location of kinases and phosphatases at opposite

poles in bacteria. (b) Location of kinases at cellular membrane and of phosphatases in the cytosol

in Eukaryote.

∂ [Mp]

∂ t
= +G1

[M]

K1 +[M]

(

1+A
[Mp]

KB +[Mp]

)

−G2

[Mp]

K2 +[Mp]
; (11)

which induces bistability for a wide parameter range.

Although this interaction are observed in some experimental cases, equivalent

terms are also obtained due to a saturation at the different compartments of the cell,

as we discuss in the following sections.

3 Spatial aspects of enzymatic kinetics

The interior of living cells is outside of the well-mixed approach because the cyto-

plasm is heterogeneous. Therefore, the concentrations of enzymes and proteins are

not be homogeneous. Proteins may have tendency to accumulate in some parts of

the cell. A typical example of this heterogeneous distributions is the effect of mem-

branes. Enzymes can interact with the membranes and accumulate, for example in

opposite regions of a bacteria [16], see Fig.4(a). A different case corresponds to the

accumulation at the membrane of only one type of enzyme, for example the kinases

in Fig.4(b), such inhomogeneous distribution induces a gradient between the interior

and the exterior of the cytoplasm [13].

On the other hand, the spatial location of the protein implies important limita-

tions in the protein distribution. For example, the space at the membrane is limited

because of the high density of proteins and structures.

To model the effects of the compartments in the Goldbeter-Koshland mechanism,

first, we introduce a constrain related with the accessible space at the membrane

in the reaction equations for the protein concentrations. Second, we consider the

intermediate concentration to account for the time of the unphosphorylated protein

to diffuse to the membrane.
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3.1 Saturation at the membrane

The cellular membrane is a busy environment where the addition of large quantity of

a new protein may occupy an extended region of the available area at the inner part

of the membrane. It incorporates an extra constrain in the modeling of the dynamics

of the protein concentration because the saturation of the membrane prevents the

binding of new proteins from the cytoplasm.

3.1.1 Membrane-controlled binding

If the concentration of protein at the membrane approaches the saturation concentra-

tion, the binding rate decreases to zero. Assuming that the concentration of kinases

is low, we renormalized the binding rate G2 with a factor which accounts for the

available space.

∂ [M]

∂ t
= −G1

[M]

K1 +[M]
+G2

(

1−
[M]

[MS]

)

[Mp]

K2 +[Mp]
,

∂ [Mp]

∂ t
= +G1

[M]

K1 +[M]
−G2

(

1−
[M]

[MS]

)

[Mp]

K2 +[Mp]
; (12)

where MS is the saturation concentration at the membrane. If [M] = [MS] the mem-

brane is full, the prefactor (1− [M]/[MS]) is zero, and new proteins cannot bind to

the membrane.

The linear stability analysis of eqs.(12) shows the existence of three different so-

lutions. However, for a give value of the control parameter G1 only one of the three

solutions is stable. Therefore, there is a monotonous behaviour on the control param-

eter, see Fig.5(a). In the limit G1→ 0 the concentration of proteins at the membrane

approaches to [M] = T for T < [MS], e.g. all the proteins are at the membrane, or to

[M] = [MS] for T > [MS], because not all proteins can bind to the membrane. In the

opposite limit, large values of G1, the membrane is empty [M] = 0.

3.1.2 Membrane-controlled reaction

A saturated membrane precludes the binding of all types of proteins including the

enzymes. The high concentration of membrane-bound proteins incorporates an ad-

ditional constrain to the binding of the kinase at the membrane. In such case, the

unbinding rate of M, related with the enzymatic reaction leaded by the kinase, in-

corporates an equivalent constrain term than the binding rate, see the following set

of nonlinear equations for the concentrations:

∂ [M]

∂ t
= −G1

(

1−
[M]

[MS]

)

[M]

K1 +[M]
+G2

(

1−
[M]

[MS]

)

[Mp]

K2 +[Mp]
,
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Fig. 5 Dependence of the physically relevant solution ([M]0) of eqs.(12) (a) and of the two phys-

ically relevant solutions ([M]1 and [M]2) of eqs.(13) (b) of the inactive version of the protein in

the value of the rate G1 for different values of the total concentration of protein (T = [M]+ [Mp]).
Dashed lines correspond to unphysical or unstable solutions.

∂ [Mp]

∂ t
= +G1

(

1−
[M]

[MS]

)

[M]

K1 +[M]
−G2

(

1−
[M]

[MS]

)

[Mp]

K2 +[Mp]
; (13)

where MS is the saturation concentration at the membrane. The high concentration

of proteins at the membrane inhibits both binding and unbinding by phosphorylation

of proteins.

The linear stability analysis of eqs.(13) reveals the existence of two physical solu-

tions. One of the solutions corresponds to the complete saturation of the membrane

with [M]2 = MS. Increasing the control parameter G1, the complete saturation con-

dition becomes unstable and the new stable solution with [M]1 < MS decreases to

[M]1 = 0 at large values of G1. The combination of the two stable solutions produces

a monotonous response and no bistability is obtained.

In Fig.5(b) three cases are studied for different values of T , keeping MS = 1.

If T < 1 there is a unique solutions [M]1 for all the values of G1. In this case, for

G1 < 10 the value of [M]1 saturates to M = T . Such saturation is unphysical for

T > 1 and the solution M = T is not possible. In this case, the second solution

[M]2 = MS = 1 is stable for G1 < 10 and exchanges stability with the the solution

[M]1 at G1 = 10. For large values of G1 the solutions [M]2 = MS is not stable, see

Fig.5(b).

3.2 Cytosolic diffusion

The models previously discussed relate unphosphorylated proteins to the membrane

and phosphorylated proteins to the cytoplasm. With these assumptions we neglect

the concentration of phosphorylated proteins at the membrane and unphosphory-

lated proteins in the cytosol. The first assumption seems adequate because there is

an immediate lose of affinity of the proteins to the membrane after phosphoryla-
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Fig. 6 Cyclic dynamics of the protein, from the membrane to the cytoplasm, phosphorylation, and

from the cytoplasm back to the membrane.

tion. However, after the dephosphorylation reaction the resulting protein needs to

diffuse to the membrane and the binding to the membrane is not immediate. A third

concentration of unphosphorylated cytosolic protein [Mc] can be considered.

In summary, the protein is translocated from the membrane when it is phospho-

rylated by a kinase. Back in the cytoplasm, the translocated proteins are dephospho-

rylated by a phosphatase. The resulting unphosphorylated proteins diffuse and bind

again at the membrane. These three processes give rise to a cyclic dynamics, see

Fig.6. We derive the next set of equations for the three concentrations:

∂ [M]

∂ t
= −G1

(

1−
[M]

[MS]

)

[M]

K1 +[M]
+G3

(

1−
[M]

[MS]

)

[Mc],

∂ [Mp]

∂ t
= +G1

(

1−
[M]

[MS]

)

[M]

K1 +[M]
−G2

[Mp]

K2 +[Mp]
,

∂ [Mc]

∂ t
= −G3

(

1−
[M]

[MS]

)

[Mc]+G2

[Mp]

K2 +[Mp]
; (14)

where G3 is the binding rate to the membrane of the cytosolic proteins. We assume

that the affinity to the membrane is linear on [Mc] and it is penalized by a possible

saturation of the membrane. Note also that the total number of proteins is conserved

[M]+ [Mc]+ [Mp] = T , giving rise to a mass-conserved model [25].

The linear stability analysis of eqs.(14) shows the simultaneous existence of three

different physically relevant steady solutions for a window of values of the control

parameter. There is non-monotonous dependence on the parameter G1 and bistabil-

ity appears, see Fig.7.

For a total number of proteins below the saturation value T < [Ms] there is only

one solution and its dependence on G1 is monotonous, see Fig.7(a). The concentra-

tion at the membrane decreases to zero for large values of G1.
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Fig. 7 Dependence of the physically relevant solutions of the inactive version of the protein in the

value of the rate G1 for different values of the total concentration of protein (T = [M] + [Mp] +
[Mc]): T = 0.8 (a), T = 1.2 (b), and T = 1.4 (c). Solid and dashed lines correspond, respectively,

to stable and unstable solutions. Gray areas mark region of bistability where two possible values

of [M] are stable.

For T > [Ms] a new solution is possible. It consists in a completely saturated

membrane, full of proteins [M] = [Ms], and the excess of proteins are located in the

cytoplasm, see Fig.7(b,c). It produces a bistable condition for a window of values of

the parameter G1. The saturation condition for the membrane is not stable for large

values of G1, see Fig.7(b,c).

4 Reaction-diffusion model of phosphorylation and

dephosphorylation of proteins

Now, we explicitly consider the spatial distribution of the proteins with the use of

spatio-temporal equations for the three concentrations. We take into account the dif-

fusion (Dc) of the unphosphorylated (Mc) and phosphorylated (Mp) proteins at the

cytoplasm and the diffusion of the unphosphorylated bound proteins at the mem-

brane (Dm). The set of reaction-diffusion equations read:

∂ [M]

∂ t
= −G1

(

1−
[M]

[MS]

)

[M]

K1 +[M]
+G3

(

1−
[M]

[MS]

)

[Mc]+∇ ·Dm∇[M],

∂ [Mp]

∂ t
= +G1

(

1−
[M]

[MS]

)

[M]

K1 +[M]
−G2

[Mp]

K2 +[Mp]
+∇ ·Dc∇[M],

∂ [Mc]

∂ t
= −G3

(

1−
[M]

[MS]

)

[Mc]+G2

[Mp]

K2 +[Mp]
+∇ ·Dc∇[M]; (15)
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Fig. 8 Geometry reduction for the implementation of the model on Pattern formation inside liv-

ing cells. (a) Reduction to a simple one dimensional geometry using to different values for the

concentration at the membrane and in the cytoplasm. (b) Simplification of the cell to symmetric

two-dimensional geometry with no-flux boundary conditions and binding to the membrane.

where the diffusion of the proteins in the cytosol is higher than at the membrane

(Dm << Dc). The characteristic values of the diffusion coefficient in the cytosol are

around two orders of magnitude larger than the value of a equivalent molecule at the

membrane [31].

For the integration of eqs.(15) we have to define adequate boundary conditions.

One possibility is the use of non-flux boundaries in a one-dimensional approach of

the cell, see Fig.8(a). This type of models are commonly used for the description

of cell polarity [20, 23, 19, 25]. We employ this model for the calculation of the

linear stability analysis in Sec.4.1. On the other hand, we can employ the cell mem-

brane as boundary conditions in a two-dimensional domain, see Fig.8(b). Such type

of models has been employed to simulate insulin-secreting cells [27] and in polar-

ity of yeast cell [21]. We use such approach to perform the numerical simulations

appearing in Sec.4.2 and 4.3.

4.1 Linear stability analysis

The number of homogeneous solutions depends on the parameter values. Changing

the parameters T and G1 two different zones appear: a region where a single so-

lution is possible and a region where three solutions appear. To study its stability

we calculate the linear stability analysis of eqs.(15). For a particular homogeneous

steady state, composed by the concentrations [M]0, [Mc]0, and [Mp]0, we introduce

a perturbation:

[M] = [M]0 +(δM)eωt+ikx,

[Mc] = [Mc]0 +(δMc)e
ωt+ikx,
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Fig. 9 Analytic phase diagram of the reaction-diffusion system, see eqs.(15). The linear stability

problem of the homogeneous solutions is solved in the parameter space defined by G1 and T for

three different ratios Dm/Dc.

[Mp] = [Mp]0 +(δMp)e
ωt+ikx, (16)

and evaluate if the perturbations grow or decrease with time using eqs.(15). The

variable ω is the growing rate and indicates the stability of the solution to small

perturbations.

The results of the linear stability analysis of eqs.(15) is plotted in Fig.9. It shows

a region where only two of the three solutions are stable (bistability), corresponding

to the situation described in the previous section 3.2, and a region where the unique

physically relevant solution is unstable due to a long-wave instability. This instabil-

ity produces spontaneous domain formation and, because of the conserved protein

concentration, the posterior coarsening into a reduced number of domains.

While bistability is independent of the diffusion coefficients, the long wave in-

stability appears initially at a given value of wavenumber which will depend on

the quotient Dm/Dc. The area of the phase diagram where the solution is unstable

changes with the diffusion as it is shown in Fig.9 for three values of the quotient

Dm/Dc.

Two different types of pattern formation, with different dynamics, are expected

depending on the parameter values. Next we analyze separately both mechanisms.

4.2 Long-wave instability

For the parameter values inside the region of long-wave instability, a one-dimensional

system, see Sketch in Fig.8(a), spontaneously develops the formation of domains as

predicted by the linear stability analysis. If we change the symmetry of the integra-

tion domain, see Sketch in Fig.8(b), the linear stability analysis shown in the previ-



Pattern formation at cellular membranes 15

Fig. 10 Pattern formation by the a long wave instability mechanism. A circular domain is em-

ployed, representing the interior and the membrane of a living cell. (a) Spatio-temporal plot of the

concentration of membrane-bound protein. (b-d) Profiles of the membrane protein and spatial dis-

tribution of the membrane-bound, cytosolic unphosphorylated and phosphorylated protein at times:

t = 0 (b), t = ttot/2 (c), and t = ttot (d), where ttot is the total time of the numerical simulation.

ous section cannot be applied directly. However, it is known [26] that the parameter

values can be renormalized considering the size of the two-dimensional cytoplasm

in comparison with the one-dimensional membrane.

Numerical simulations for a convenient choice of the parameter values are shown

in Fig.10. First, the spatio-temporal plot in Fig.10(a) shows the evolution of the con-

centration of membrane-bound proteins. From an initially homogeneous condition

with a small spatially distributed random perturbation, two evolving maxima appear.

While one of the domains grows the other one decreases, and finally, only one single

large domain survives. Such competition among the domains is a typical signature

of coarsening.

In panel (b) of Fig.10 the initial condition is plotted, an homogeneous concentra-

tion with a small random perturbation around the unstable value. Two-dimensional

panels with the distribution of free protein concentration and phosphorylated con-

centration at the membrane and in the cytosol are also shown.

In the other two panels (c) and (d) of Fig.10 the spatial distributions of the

concentrations are shown at two different times. Note that the concentrations of

[M]c and [M]p are complementary: large (small) values of [M]c coincide with small

(large) [M]p. Furthermore, [M]p accumulates in the region of the cytoplasm close to

regions of the membrane where no proteins are bound.
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Fig. 11 Pattern formation by the bistable-induced mechanism. A circular domain is employed,

representing the interior and the membrane of a living cell. (a) Spatio-temporal plot of the concen-

tration of membrane-bound protein. (b-d) Profiles of the membrane protein and spatial distribution

of the membrane-bound, cytosolic unphosphorylated and phosphorylated protein at times: t = 0

(b), t = ttot/2 (c), and t = ttot (d), where ttot is the total time of the numerical simulation.

4.3 Bistability-induced instability

Numerical simulations in the bistable region of the parameter space produce similar

final domains than numerical results shown in the previous section, see a represen-

tative example in Fig.11. However, the mechanism and the conditions are different.

Under bistability the two homogeneous solution are stable, and, therefore, an small

perturbation of the homogeneous solution decreases, and eventually, the homoge-

neous condition is recovered.

However, if the two solutions are connected by a front, see Fig.11(b), it moves

as it is shown in the spatio-temporal plot in Fig.11(a). In contrast to a classical

bistable system, here there is a mass-conserved condition which precludes the com-

plete translocation to the membrane of the proteins in the cytoplasm. Finally, the

two solutions are separated by an pinned wave [23], see Fig.11(c) and (d).

5 Conclusions

We employ an extended version of the classical Goldbeter-Koshland model on cova-

lent modification in biological systems for phosphorylation and dephosphorylation

of proteins. From a simple activation model based in two opposite enzymatic reac-
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tions following Michaelis-Menten kinetics, we have generated a scenario for pattern

formation in the interior of a living cell. The mechanism is based on the different lo-

calization inside the cell of the two enzymatic reactions: while phosphorylation only

occurs at the membrane of the cell, the opposite reaction occurs in the cytoplasm.

After dephosphorylation the resulting proteins diffuse to the membrane where they

bind and the cycle can start again.

We analyze two different mechanisms of pattern formation for protein at mem-

branes: A long wave instability and a bistability-related mechanism, previously de-

scribed in models of cell polarization [20] and [23] respectively. The conditions of

the model to fulfill the requirements for pattern formation are simple and generic:

• Difference on the diffusion coefficients. The first important condition is the large

diffusion in the cytoplasm in comparison with the diffusion in the membrane

Dc ≫ Dm [31]. This constrain is naturally achieved by living cells where diffu-

sion of proteins in the cytoplasm is estimated to be around Dc ∼ 1− 10µm2/s

[32], while membrane diffusion coefficient of proteins in mammalian cells has

been estimated to be Dm ∼ 0.1µm2/s [33].

• Compartmentalization of the reaction. The separation of the two enzymatic pro-

cesses in two different compartments of the cell (phosphorylation at the mem-

brane and dephosphorylation in the cytoplasm) introduces a delay between de-

phosphorylation and the re-binding of the protein to the membrane. This tempo-

ral delay accounts for the diffusion time of the proteins in the cytoplasm.

• Mass-conservation. The conservation of the total number of proteins is an im-

portant condition for the bistability-related mechanism, this constrain stops the

bistable front going from the metastable to a stable solution [23].

Similar extensions of the Goldbeter-Koshland mechanism may be applicable to

a large variety of biological systems. Phosphorylation by kinases regulates multiple

processes in living cells, e.g. the formation of polarity of cells induced by PAR

proteins [19], the cyclic dynamics of Rho GTPases [20] or the regulation of the cell

division of E. Coli controlled by the Min proteins [36].

The approach described here has been employed in the modeling of the myristoyl-

electrostatic switch [9] composed by a cyclic binding and unbinding dynamics of the

myristoylated alanine-rich C kinase substrate proteins (MARCKS). After phospho-

rylation of MARCKS proteins by protein kinase C (PKC), MARCKS proteins lose

their affinity to membranes. The phosphates reduce the positive charge of the pro-

tein and cause the unbinding from the membrane. In the cytoplasm, phosphatases

remove the phosphates from the protein and, consequently, MARCKS can bind

again at the membrane. This system has been recently described in terms of mass-

conserved reaction-diffusion equations [26, 27] and the resulting equations have

been employed for the calibration of the binding of the MARCKS at lipid monolay-

ers [28, 29].

In our approach stochastic effects due to a low number of proteins have been ne-

glected. The typical large concentration of proteins in cells permits the use of deter-

ministic dynamics, however, the concentration of enzymes is smaller and stochastic
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effects may become relevant. The use of a stochastic model may enhance domain

formation [34, 35].

Living cells are three-dimensional and future models will take this condition into

account. The mechanisms are, however, equivalent at different levels of spatial com-

plexity. One-dimensional approximation is employed to calculate linear stability

analysis and identify the instabilities. The two-dimensional view is, however, suffi-

cient to perform numerical simulations and describe proteins concentrations at the

membrane and in the different regions of the cytoplasm, see Fig.10 and Fig.11. Such

two-dimensional modeling considers the cytoplasm volume and diffusion orthogo-

nal to the membrane. The proteins can diffuse from the membrane and are, hence,

diluted near the membrane. As the cytosolic volume increases, the concentration of

proteins close to the membrane decreases and the binding process is affected. How-

ever, the change of the cytosolic volume is equivalent to a renormalization of some

of the reaction rates in the model [26].

In summary, we have developed a simple model of binding, phosphorylation and

desphosphorylation for membrane proteins, which predicts the spontaneous appear-

ance of domains of high protein concentration at the membrane of living cells.
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