148 research outputs found

    Resolution enhancement for drill-core hyperspectral mineral mapping

    Get PDF
    Drill-core samples are a key component in mineral exploration campaigns, and their rapid and objective analysis is becoming increasingly important. Hyperspectral imaging of drill-cores is a non-destructive technique that allows for non-invasive and fast mapping of mineral phases and alteration patterns. The use of adapted machine learning techniques such as supervised learning algorithms allows for a robust and accurate analysis of drill-core hyperspectral data. One of the remaining challenge is the spatial sampling of hyperspectral sensors in operational conditions, which does not allow us to render the textural and mineral diversity that is required to map minerals with low abundances and fine structures such as veins and faults. In this work, we propose a methodology in which we implement a resolution enhancement technique, a coupled non-negative matrix factorization, using hyperspectral, RGB images and high-resolution mineralogical data to produce mineral maps at higher spatial resolutions and to improve the mapping of minerals. The results demonstrate that the enhanced maps not only provide better details in the alteration patterns such as veins but also allow for mapping minerals that were previously hidden in the hyperspectral data due to its low spatial sampling

    Hyperspectral drill-core scanning in geometallurgy

    Get PDF
    Driven by the need to use mineral resources more sustainably, and the increasing complexity of ore deposits still available for commercial exploitation, the acquisition of quantitative data on mineralogy and microfabric has become an important need in the execution of exploration and geometallurgical test programmes. Hyperspectral drill-core scanning has the potential to be an excellent tool for providing such data in a fast, non- destructive and reproducible manner. However, there is a distinct lack of integrated methodologies to make use of these data through-out the exploration and mining chain. This thesis presents a first framework for the use of hyperspectral drill-core scanning as a pillar in exploration and geometallurgical programmes. This is achieved through the development of methods for (1) the automated mapping of alteration minerals and assemblages, (2) the extraction of quantitative mineralogical data with high resolution over the drill-cores, (3) the evaluation of the suitability of hyperspectral sensors for the pre-concentration of ores and (4) the use of hyperspectral drill- core imaging as a basis for geometallurgical domain definition and the population of these domains with mineralogical and microfabric information.:Introduction Materials and methods Assessment of alteration mineralogy and vein types using hyperspectral data Hyperspectral imaging for quasi-quantitative mineralogical studies Hyperspectral sensors for ore beneficiation 3D integration of hyperspectral data for deposit modelling Concluding remarks Reference

    Editorial for the Special Issue: Multispectral and Hyperspectral Remote Sensing Data for Mineral Exploration and Environmental Monitoring of Mined Areas

    Get PDF
    In recent decades, multispectral and hyperspectral remote sensing data provide un- precedented opportunities for the initial stages of mineral exploration and environmental hazard monitoring. Increasing demands for minerals because of industrialization and ex- ponential growth in population emphasize the necessity for replenishing exploited reserves by exploration of new potential zones of mineral deposits. IdentiïŹcation of host-rock lithologies, geologic structural features, and hydrothermal alteration mineral zones are the most conspicuous applications of multispectral and hyperspectral remote sensing satel- lite data for mineral exploration in the metallogenic provinces and frontier areas around the world

    The Need for Accurate Pre-processing and Data Integration for the Application of Hyperspectral Imaging in Mineral Exploration

    Get PDF
    Die hyperspektrale Bildgebung stellt eine SchlĂŒsseltechnologie in der nicht-invasiven Mineralanalyse dar, sei es im Labormaßstab oder als fernerkundliche Methode. Rasante Entwicklungen im Sensordesign und in der Computertechnik hinsichtlich Miniaturisierung, Bildauflösung und DatenqualitĂ€t ermöglichen neue Einsatzgebiete in der Erkundung mineralischer Rohstoffe, wie die drohnen-gestĂŒtzte Datenaufnahme oder digitale Aufschluss- und Bohrkernkartierung. AllgemeingĂŒltige Datenverarbeitungsroutinen fehlen jedoch meist und erschweren die Etablierung dieser vielversprechenden AnsĂ€tze. Besondere Herausforderungen bestehen hinsichtlich notwendiger radiometrischer und geometrischer Datenkorrekturen, der rĂ€umlichen Georeferenzierung sowie der Integration mit anderen Datenquellen. Die vorliegende Arbeit beschreibt innovative ArbeitsablĂ€ufe zur Lösung dieser Problemstellungen und demonstriert die Wichtigkeit der einzelnen Schritte. Sie zeigt das Potenzial entsprechend prozessierter spektraler Bilddaten fĂŒr komplexe Aufgaben in Mineralexploration und Geowissenschaften.Hyperspectral imaging (HSI) is one of the key technologies in current non-invasive material analysis. Recent developments in sensor design and computer technology allow the acquisition and processing of high spectral and spatial resolution datasets. In contrast to active spectroscopic approaches such as X-ray fluorescence or laser-induced breakdown spectroscopy, passive hyperspectral reflectance measurements in the visible and infrared parts of the electromagnetic spectrum are considered rapid, non-destructive, and safe. Compared to true color or multi-spectral imagery, a much larger range and even small compositional changes of substances can be differentiated and analyzed. Applications of hyperspectral reflectance imaging can be found in a wide range of scientific and industrial fields, especially when physically inaccessible or sensitive samples and processes need to be analyzed. In geosciences, this method offers a possibility to obtain spatially continuous compositional information of samples, outcrops, or regions that might be otherwise inaccessible or too large, dangerous, or environmentally valuable for a traditional exploration at reasonable expenditure. Depending on the spectral range and resolution of the deployed sensor, HSI can provide information about the distribution of rock-forming and alteration minerals, specific chemical compounds and ions. Traditional operational applications comprise space-, airborne, and lab-scale measurements with a usually (near-)nadir viewing angle. The diversity of available sensors, in particular the ongoing miniaturization, enables their usage from a wide range of distances and viewing angles on a large variety of platforms. Many recent approaches focus on the application of hyperspectral sensors in an intermediate to close sensor-target distance (one to several hundred meters) between airborne and lab-scale, usually implying exceptional acquisition parameters. These comprise unusual viewing angles as for the imaging of vertical targets, specific geometric and radiometric distortions associated with the deployment of small moving platforms such as unmanned aerial systems (UAS), or extreme size and complexity of data created by large imaging campaigns. Accurate geometric and radiometric data corrections using established methods is often not possible. Another important challenge results from the overall variety of spatial scales, sensors, and viewing angles, which often impedes a combined interpretation of datasets, such as in a 2D geographic information system (GIS). Recent studies mostly referred to work with at least partly uncorrected data that is not able to set the results in a meaningful spatial context. These major unsolved challenges of hyperspectral imaging in mineral exploration initiated the motivation for this work. The core aim is the development of tools that bridge data acquisition and interpretation, by providing full image processing workflows from the acquisition of raw data in the field or lab, to fully corrected, validated and spatially registered at-target reflectance datasets, which are valuable for subsequent spectral analysis, image classification, or fusion in different operational environments at multiple scales. I focus on promising emerging HSI approaches, i.e.: (1) the use of lightweight UAS platforms, (2) mapping of inaccessible vertical outcrops, sometimes at up to several kilometers distance, (3) multi-sensor integration for versatile sample analysis in the near-field or lab-scale, and (4) the combination of reflectance HSI with other spectroscopic methods such as photoluminescence (PL) spectroscopy for the characterization of valuable elements in low-grade ores. In each topic, the state of the art is analyzed, tailored workflows are developed to meet key challenges and the potential of the resulting dataset is showcased on prominent mineral exploration related examples. Combined in a Python toolbox, the developed workflows aim to be versatile in regard to utilized sensors and desired applications

    A probablistic framework for classification and fusion of remotely sensed hyperspectral data

    Get PDF
    Reliable and accurate material identification is a crucial component underlying higher-level autonomous tasks within the context of autonomous mining. Such tasks can include exploration, reconnaissance and guidance of machines (e.g. autonomous diggers and haul trucks) to mine sites. This thesis focuses on the problem of classification of materials (rocks and minerals) using high spatial and high spectral resolution (hyperspectral) imagery, collected remotely from mine faces in operational open pit mines. A new method is developed for the classification of hyperspectral data including field spectra and imagery using a probabilistic framework and Gaussian Process regression. The developed method uses, for the first time, the Observation Angle Dependent (OAD) covariance function to classify high-dimensional sets of data. The performance of the proposed method of classification is assessed and compared to standard methods used for the classification of hyperspectral data. This is done using a staged experimental framework. First, the proposed method is tested using high-resolution field spectrometer data acquired in the laboratory and in the field. Second, the method is extended to work on hyperspectral imagery acquired in the laboratory and its performance evaluated. Finally, the method is evaluated for imagery acquired from a mine face under natural illumination and the use of independent spectral libraries to classify imagery is explored. A probabilistic framework was selected because it best enables the integration of internal and external information from a variety of sensors. To demonstrate advantages of the proposed GP-OAD method over existing, deterministic methods, a new framework is proposed to fuse hyperspectral images using the classified probabilistic outputs from several different images acquired of the same mine face. This method maximises the amount of information but reduces the amount of data by condensing all available information into a single map. Thus, the proposed fusion framework removes the need to manually select a single classification among many individual classifications of a mine face as the `best' one and increases the classification performance by combining more information. The methods proposed in this thesis are steps forward towards an automated mine face inspection system that can be used within the existing autonomous mining framework to improve productivity and efficiency. Last but not least the proposed methods will also contribute to increased mine safety

    Integrated Hyperspectral and Geochemical Analysis of the Upper Mississippian Meramec STACK Play and Outcrop Equivalents, Anadarko Basin and Ozark Uplift, Oklahoma

    Get PDF
    The principle goal of this project was to investigate compositional, textural, and sedimentological variability in the Oklahoma STACK Play’s Meramec Formation and time equivalent outcrops of the Pryor Creek Formation in northeastern Oklahoma and to assess the potential of a partial-SWIR (Short Wave Infrared, 900-1700 nm) hyperspectral imaging sensor for drill core and sUAS-based (small Unmanned Aircraft Systems) outcrop characterization. The STACK Play is a colloquial term that refers to stacked unconventional petroleum reservoirs that are primarily located in Canadian, Kingfisher, Blaine, and Dewey Counties, central Oklahoma. Discovery of, and commercial production from, the play was initiated in 2011 by Newfield Exploration Co. and today comprises a significant share of unconventional petroleum production in Oklahoma. The most prolific reservoir within the STACK Play is the Meramec Formation which is approximately Meramecian in age. Chapter 2 focuses on two drill cores from the producing Meramec Formation in Dewey and Canadian Counties of central Oklahoma. Conventional core analysis techniques, including analysis of core sedimentology, mineralogy, and geochemistry, are integrated with lab-based partial-SWIR hyperspectral analysis of both cores. The Meramec Formation comprises proximal and distal ramp deposits that include argillaceous quartz siltstones, calcareous quartz siltstones and sandstones, and lesser grainstones. Analysis of partial-SWIR hyperspectral imaging data establishes a relationship between reflectance and primary mineralogy in both cores, which was ultimately used in conjunction with other conventional core data to distinguish multiple orders of stratigraphic cyclicity in the Meramec Formation, including cyclicity that is below the resolution of typical core logging and sampling procedures. Chapter 3 details the study of outcrops located in Pryor Quarry (Mayes County, northeast Oklahoma), which are approximately age equivalent to the Meramec Formation. The potential of sUAS-based partial-SWIR hyperspectral imaging for outcrop analysis is evaluated using lab-based full-SWIR point spectral analysis of samples taken from a vertical outcrop transect in the quarry. Outcrops of the Meramecian Pryor Creek Formation are comprised of wackestones, mudstones, quartz siltstones and to a lesser extent

    Multispectral and Hyperspectral Remote Sensing Data for Mineral Exploration and Environmental Monitoring of Mined Areas

    Get PDF
    In recent decades, remote sensing technology has been incorporated in numerous mineral exploration projects in metallogenic provinces around the world. Multispectral and hyperspectral sensors play a significant role in affording unique data for mineral exploration and environmental hazard monitoring. This book covers the advances of remote sensing data processing algorithms in mineral exploration, and the technology can be used in monitoring and decision-making in relation to environmental mining hazard. This book presents state-of-the-art approaches on recent remote sensing and GIS-based mineral prospectivity modeling, offering excellent information to professional earth scientists, researchers, mineral exploration communities and mining companies

    Integrated Multi-Parameter Exploration Footprints of the Canadian Malartic Disseminated Au, McArthur River-Millennium Unconformity U, and Highland Valley Porphyry Cu Deposits: Preliminary Results from the NSERC-CMIC Mineral Exploration Footprints Research Network

    Get PDF
    Mineral exploration in Canada is increasingly focused on concealed and deeply buried targets, requiring more effective tools to detect large-scale ore-forming systems and to vector from their most distal margins to their high grade cores. A new generation of ore system models is required to achieve this. The Mineral Exploration Footprints Research Network is a consortium of 70 faculty, research associates, and students from 20 Canadian universities working with 30 mining, mineral exploration, and mining service providers to develop new approaches to ore system modelling based on more effective integration and visualization of multi-parameter geological-structural-mineralogical-lithogeochemical-petrophysical-geophysical exploration data. The Network is developing the next generation ore system models and exploration strategies at three sites based on integrated data visualization using self-consistent 3D Common Earth Models and geostatistical/machine learning technologies. Thus far over 60 footprint components and vectors have been identified at the Canadian Malartic stockwork-disseminated Au deposit, 20–30 at the McArthur-Millennium unconformity U deposits, and over 20 in the Highland Valley porphyry Cu system. For the first time, these are being assembled into comprehensive models that will serve as landmark case studies for data integration and analysis in the today’s challenging exploration environment

    Value of Mineralogical Monitoring for the Mining and Minerals Industry In memory of Prof. Dr. Herbert Pöllmann

    Get PDF
    This Special Issue, focusing on the value of mineralogical monitoring for the mining and minerals industry, should include detailed investigations and characterizations of minerals and ores of the following fields for ore and process control: Lithium ores—determination of lithium contents by XRD methods; Copper ores and their different mineralogy; Nickel lateritic ores; Iron ores and sinter; Bauxite and bauxite overburden; Heavy mineral sands. The value of quantitative mineralogical analysis, mainly by XRD methods, combined with other techniques for the evaluation of typical metal ores and other important minerals, will be shown and demonstrated for different minerals. The different steps of mineral processing and metal contents bound to different minerals will be included. Additionally, some processing steps, mineral enrichments, and optimization of mineral determinations using XRD will be demonstrated. Statistical methods for the treatment of a large set of XRD patterns of ores and mineral concentrates, as well as their value for the characterization of mineral concentrates and ores, will be demonstrated. Determinations of metal concentrations in minerals by different methods will be included, as well as the direct prediction of process parameters from raw XRD data

    Drone-based Integration of Hyperspectral Imaging and Magnetics for Mineral Exploration

    Get PDF
    The advent of unoccupied aerial systems (UAS) as disruptive technology has a lasting impact on remote sensing, geophysics and most geosciences. Small, lightweight, and low-cost UAS enable researchers and surveyors to acquire earth observation data in higher spatial and spectral resolution as compared to airborne and satellite data. UAS-based applications range from rapid topographic mapping using photogrammetric techniques to hyperspectral and geophysical measurements of surface and subsurface geology. UAS surveys contribute to identifying metal deposits, monitoring of mine sites and can reveal arising environmental issues associated with mining. Further, affordable UAS technology will boost exploration data availability and expertise in the global south. This thesis investigates the application of UAS-based multi-sensor data for mineral exploration, in particular the integration of hyperspectral imagers, magnetometers and digital cameras (covering the visible red, green, blue light spectrum). UAS-based research is maturing, however the aforementioned methods are not unified effectively. RGB-based photogrammetry is used to investigate topography and surface texture. Image spectrometers measure mineral-specific surface signatures. Magnetometers detect geomagnetic field changes caused by magnetic minerals at surface and depth. The integration of such UAS sensor-based methods in this thesis augments exploration potential with non-invasive, high-resolution, safe, rapid and practical survey methods. UAS-based surveying acquired, processed and integrated data from three distinct test sites. The sites are located in Finland (Fe-Ti-V at OtanmĂ€ki; apatite at SiilinjĂ€rvi) and Greenland (Ni-Cu-PGE at Qullissat, Disko Island) and were chosen as geologically diverse areas in subarctic to arctic environments. Restricted accessibility, unfavourable atmospheric conditions, dark rocks, debris and vegetation cover and low solar illumination were common features. While the topography in Finland was moderately flat, a steep landscape challenged the Greenland field work. These restraints meant that acquisitions varied from site to site and how data was integrated and interpreted is dependent on the commodity of interest. Iron-based spectral absorption and magnetic mineral response were detected using hyperspectral and magnetic surveying in OtanmĂ€ki. Multi-sensor-based image feature detection and classification combined with magnetic forward modelling enabled seamless geologic mapping in SiilinjĂ€rvi. Detailed magnetic inversion and multispectral photogrammetry led to the construction of a comprehensive 3D model of magmatic exploration targets in Greenland. Ground truth at different intensity was employed to verify UAS-based data interpretations during all case studies. Laboratory analysis was applied when deemed necessary to acquire geologic-mineralogic validation (e.g., X-ray diffraction and optical microscopy for mineral identification to establish lithologic domains, magnetic susceptibility measurements for subsurface modelling), for example for trace amounts of magnetite in carbonatite (SiilinjĂ€rvi) and native iron occurrence in basalt (Qullissat). Technical achievements were the integration of a multicopter-based prototype fluxgate-magnetometer data from different survey altitudes with ground truth, and a feasibility study with a high-speed multispectral image system for fixed-wing UAS. The employed case studies transfer the experiences made towards general recommendations for UAS application-based multi-sensor integration. This thesis highlights the feasibility of UAS-based surveying at target scale (1–50 km2) and solidifies versatile survey approaches for multi-sensor integration.Ziel dieser Arbeit war es, das Potenzial einer Drohnen-basierten Mineralexploration mit Multisensor-Datenintegration unter Verwendung optisch-spektroskopischer und magnetischer Methoden zu untersuchen, um u. a. ĂŒbertragbare ArbeitsablĂ€ufe zu erstellen. Die untersuchte Literatur legt nahe, dass Drohnen-basierte Bildspektroskopie und magnetische Sensoren ein ausgereiftes technologisches Niveau erreichen und erhebliches Potenzial fĂŒr die Anwendungsentwicklung bieten, aber es noch keine ausreichende Synergie von hyperspektralen und magnetischen Methoden gibt. Diese Arbeit umfasste drei Fallstudien, bei denen die DrohnengestĂŒtzte Vermessung von geologischen Zielen in subarktischen bis arktischen Regionen angewendet wurde. Eine Kombination von Drohnen-Technologie mit RGB, Multi- und Hyperspektralkameras und Magnetometern ist vorteilhaft und schuf die Grundlage fĂŒr eine integrierte Modellierung in den Fallstudien. Die Untersuchungen wurden in einem GelĂ€nde mit flacher und zerklĂŒfteter Topografie, verdeckten Zielen und unter oft schlechten LichtverhĂ€ltnissen durchgefĂŒhrt. Unter diesen Bedingungen war es das Ziel, die Anwendbarkeit von Drohnen-basierten Multisensordaten in verschiedenen Explorationsumgebungen zu bewerten. Hochauflösende OberflĂ€chenbilder und Untergrundinformationen aus der Magnetik wurden fusioniert und gemeinsam interpretiert, dabei war eine selektive Gesteinsprobennahme und Analyse ein wesentlicher Bestandteil dieser Arbeit und fĂŒr die Validierung notwendig. FĂŒr eine EisenerzlagerstĂ€tte wurde eine einfache RessourcenschĂ€tzung durchgefĂŒhrt, indem Magnetik, bildspektroskopisch-basierte Indizes und 2D-Strukturinterpretation integriert wurden. Fotogrammetrische 3D-Modellierung, magnetisches forward-modelling und hyperspektrale Klassifizierungen wurden fĂŒr eine Karbonatit-Intrusion angewendet, um einen kompletten Explorationsabschnitt zu erfassen. Eine Vektorinversion von magnetischen Daten von Disko Island, Grönland, wurden genutzt, um großrĂ€umige 3D-Modelle von undifferenzierten Erdrutschblöcken zu erstellen, sowie diese zu identifizieren und zu vermessen. Die integrierte spektrale und magnetische Kartierung in komplexen Gebieten verbesserte die Erkennungsrate und rĂ€umliche Auflösung von Erkundungszielen und reduzierte Zeit, Aufwand und benötigtes Probenmaterial fĂŒr eine komplexe Interpretation. Der Prototyp einer Multispektralkamera, gebaut fĂŒr eine StarrflĂŒgler-Drohne fĂŒr die schnelle Vermessung, wurde entwickelt, erfolgreich getestet und zum Teil ausgewertet. Die vorgelegte Arbeit zeigt die Vorteile und Potenziale von Multisensor-Drohnen als praktisches, leichtes, sicheres, schnelles und komfortabel einsetzbares geowissenschaftliches Werkzeug, um digitale Modelle fĂŒr prĂ€zise Rohstofferkundung und geologische Kartierung zu erstellen
    • 

    corecore