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Abstract

Raw materials from geogenic resources will be essential to enable the global shift to renewable energy
sources. A steady supply of ores and metals requires mineral exploration that is both efficient and successful
in discovering new ore deposits. Mineral exploration programs rely on the acquisition of a multitude of
geological, geophysical, mineralogical and geochemical data. A significant amount of geological data comes
from drill-cores targeted to test subsurface areas for their mineralisation potential. Exploration drilling is,
however, time-consuming and expensive, whilst quantitative data extracted from these cores is commonly
limited to whole-rock geochemistry. Quantitative data on mineralogy and microfabric become steadily more
important in the process of ore deposit characterisation and evaluation, in order to develop so-called
geometallurgical models that are required for deposit valuation. Hyperspectral drill-core scanning has the
potential to be an excellent tool for providing quantitative data on mineralogy and microfabric at high spatial
resolution in a fast, non-destructive and reproducible manner. However, there has been a distinct lack of data
processing tools as well as integrated methodologies to make use of quantitative data on mineralogy and

microfabric from early exploration through to the development of robust geometallurgical models.

The main aim of this thesis was thus to develop a framework for the use of hyperspectral drill-core
scanning as a pillar in geometallurgical programmes through its use from early exploration and targeting to
resource definition and eventual mining. This is achieved in three distinct stages of method development. As a
case study the Bolcana porphyry copper-gold deposit in Romania is used as it shows variable and complex
mineralogy and mineralization styles, representing therefore a challenge for most established methods for ore

characterisation and geometallurgical modelling.

In the first stage, a methodology was developed to identify alteration assemblages and extract structural
features from exploration drill core for the preliminary characterisation of the architecture of the Bolcana
deposit. This methodology is combining algorithms previously applied in different fields of hyperspectral
image processing. The methodology does not only allow the identification of main alteration minerals but also
the mapping of their relative abundances. From the relative abundance maps, veins are delineated and their
geometric parameters extracted allowing therefore to discriminate between pervasive alteration and that related
to vein selvages. These types of data are key to the understanding of alteration zonation in a porphyry system.
Together with the assay data obtained from geochemical analyses, the alteration data can be used to define the

drilling strategy for further exploration targeting and resource evaluation.

In the second stage, a methodology is proposed to fuse quantitative high resolution mineralogical data
from thin section with hyperspectral data obtained for entire exploration cores. This upscaling of quantitative
mineralogical data becomes key for the definition of various mineralogical and engineering parameters in the
context of resource evaluation. Quantitative mineralogical estimates for spectrally diagnostic minerals in the
short-wave infrared spectrum in the Bolcana porphyry system is the most important outcome of this study. In
addition, quasi-quantitative estimates of non-diagnostic minerals and mineral groups based on their subtle

association with the spectrally diagnostic phases was achieved together with the estimation of further
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mineralogical parameters such as an adapted mineral association calculation at the coarse resolution of the

hyperspectral data.

Following the application of hyperspectral drill-core scanning in resource characterisation the potential
use of hyperspectral sensors in the beneficiation stage was evaluated in the third and final stage. Hyperspectral
sensors are usually not suited for the direct detection and identification of ore minerals. Yet, they can prove
suitable for identifying proxies for mineralization. Due to the complexity of the Bolcana porphyry system and
the lack of a direct mineral proxy for copper or gold grades, a machine learning approach was developed for
the estimation of commodity grade. The methodology relies again on the resampling and coregistration of
quantitative high resolution mineralogical data obtained by scanning electron microscope-based image analysis
with hyperspectral imaging data. This final stage proves that subtle proxies for porphyry mineralization can

be identified which are not clear by direct spectral and mineralogical analysis.

The individual methodologies are finally combined into a workflow suitable for the development of a
geometallurgical model already at the exploration stage. This model can be further populated with various
engineering, environmental and economical parameters allowing for reduced risk of operations and improved

decision-making through the entire raw materials value chain.
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Hyperspectral drill-core scanning in geometallurgy

Chapter 1 Introduction

1.1 Motivation of the thesis
Mineral resources are essential to the energy transition. The transition is driven by sustainability

concerns, a key factor being the ambition to combat climate change (Markard, 2018). One of the main steps
taken into this direction is the decarbonisation of the energy sector through the replacement of fossil or nuclear
fuels by renewable energy sources such as wind or solar (Mitchell, 2016). The transition towards a low-carbon
economy has however increased the demand for raw materials to supply the new technological developments.
In an ideal circular economy, recycling of end-of-life goods would account for the demand of raw materials.
In the current environment however, recycling cannot supply the increased demand for metals needed for the
technologies supporting the energy transition. Copper for instance is one of the key metals supporting the
industrialisation as well as the energy transition, being widely used due to its high electrical conductivity, in
conjunction with its excellent corrosion resistance, formability, and joinability (Schlesinger et al., 2011). Even
though it has one of the highest recycling rates, exceeding 50% (Graedel et al., 2011), in 2020, only around 16
% of the copper production came from recycling while the remaining 84% (20.6 million tons) came from
primary ore production (Copper International Study Group, 2021). Copper supply and demand is currently
considered to be in deficit, meaning there is more market demand than available product. The copper demand
is expected to grow from 1-5.3 % yearly depending on the sector (Sutton, 2021). With the transition towards
electromobility the demand for copper will additionally increase as electric cars require 3 to 4 times the copper
amount needed for traditional vehicles. The increase in copper demand is also supported by the development
of renewable energy systems (Herrington, 2021), and therefore the discovery and mining of new primary
deposits is needed. In many cases, resources are increasingly complex in terms of mineralogy (Mudd and

Jowitt, 2018), hidden under cover or may be deeper than previously known mineralization (Thompson, 2020).

There are numerous ore deposits discovered worldwide which have not been mined due to various
reasons, including low grades, tonnages, high mineralogical complexity or environmental impact rendering
them uneconomical. To reduce the related technical and financial risks associated to these projects, the use of
a geometallurgical programme can support the resource characterisation and mining process. Through
integrated, multidisciplinary approaches, geometallurgical programmes are designed to ensure the resource
optimization and increased energy efficiency in exploration and mining operations (Michaux and O’Connor,

2020).

A successful geometallurgical programme relies on the strategic integration of geological, mining,
metallurgical, economical and geoenvironmental parameters to maximize the project value through responsible
resource management (Dominy et al., 2018b). One of the pillars in the development of a geometallurgical
model is the acquisition of compositional data through systematic sampling and analysis. This sampling is
usually achieved during exploration campaigns in which thousands of kilometres of diamond drill-cores are
extracted to test subsurface regions with high mineral resource potential. The extracted cylindrical core samples
are traditionally analysed visually by geologists and subjected to geochemical analyses (Kruse, 1996; R. Wang

et al., 2017). Bulk geochemical analysis is a standard routine applied to drill-core, but the turnaround time is
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long and the analysis is performed on crushed large drill-core intervals, presenting limitations in terms of spatial
resolution and making the conversion to mineralogy difficult, if not impossible. Quantitative mineralogical
information is usually restricted to selected regions of interest assumed as representative in terms or
mineralization style and grade for the respective sampled interval. Standard quantitative analyses include X-
Ray diffraction (XRD) applied on powder samples (Lindholm, 1987) or Scanning Electron Microscopy (SEM)
based image analytical techniques (Fandrich et al., 2007) applied on polished thin sections prepared from the
selected samples. Qualitative mineralogical and petrographic (e.g. textural) analyses are performed through
optical microscopy on (polished) thin sections. These laboratory techniques provide valuable mineralogical
information and derived mineralogical and metallurgical parameters, but they are only local in scale, require a
very high level of expertise, are marred by a subjective bias and are rather expensive and time-consuming to
obtain. As spatial variability in terms of grade, mineralogy and microfabric attributes is key for the
understanding of a deposit as well as the definition of geometallurgical domains, hyperspectral drill-core
scanning is becoming an emerging technique for this purpose as it provides a rapid, spatially continuous,
automated and non-invasive tool for mineralogical and possibly textural data acquisition. While the use of
hyperspectral drill-core scanning in the context of geometallurgy continues to be researched and achievements
have been made particularly in the context of grade control (Johnson et al., 2019) and selective mining using
tripod-based system for mine face mapping (Barton et al., 2021), there is a need for an integrated approach for

the analysis and use of hyperspectral data from early exploration through mining.

To address the remaining challenges the Bolcana porphyry system (Apuseni Mountains, Romania) is
used in this work as a case study. Its variable and complex mineralogy and mineralization styles represent a
challenge for most established methods for ore characterisation and geometallurgical models, making therefore

the Bolcana porphyry system ideal for testing new technologies and methodologies

1.2 Objective and structure of the thesis
The purpose of this thesis is to assess the opportunities of the use of hyperspectral imaging for alteration

mapping and semi-quantitative mineralogical analyses of cores during exploration and mining. In this regard,
four methodological approaches are proposed, each relying on a different degree of understanding of the
mineralogy, structure and texture of a porphyry system. This way, the current thesis provides guidelines on the
use of hyperspectral drill-core scanning in a geometallurgical framework, through its implementation from
early exploration to resource characterisation, and finally mining and beneficiation. The development of a
geometallurgical model using the developed workflows will have profound impact on planning of the stage of
active exploitation and post-mining environmental impact. During mining, adopting a geometallurgical
approach will optimize resource and energy efficiency, decrease environmental impact, decrease technical and

financial risk and broadly improve sustainability.

The following chapter will lay the theoretical foundations for the proposed methodological approaches
in Chapters 3-6. Chapter 2 will therefore provide a summarized description of the Bolcana porphyry deposit,
an introduction to the reflectance spectroscopy of minerals, its potential applications in the characterization of

ore deposits and a brief overview on the state of the art in hyperspectral imaging for exploration and mining.
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In the third chapter a new methodology for the analysis of drill-core hyperspectral data in early
exploration projects, where no pre-existing mineralogical information is available, is presented. The proposed
methods allow for a rapid mapping of the main alteration assemblages, both pervasive and related to veins and
link them to different vein types and alteration zones. The obtained results consist of mineral and vein
distribution maps with quantified vein abundances and azimuths. This approach is validated using mineral
maps obtained through the analysis of thin sections prepared from regions of interest of the drill-core samples
and analysed by Scanning Electron Microscopy-based Mineral Liberation Analysis. The proposed approach is
therefore ideal for early exploration stages, enabling the characterization of the main alteration assemblages
associated to different vein types within the porphyry system. The approach helps to demonstrate that the use
of hyperspectral scanning allows for faster, non-invasive and more efficient drill-core mapping, providing a

useful tool for complementing core-logging performed by on-site geologists.

With the availability of quantitative mineralogical information usually obtained on selected samples in
advanced exploration stages, the need for upscaling arises in order to obtain results on mineral abundances and
associated mineralogical parameters over entire boreholes. To address this need, the fourth chapter presents a
new methodology for upscaling high resolution mineralogical data (i.e., SEM-MLA) to entire drill-cores as
well as for the estimation of the mineral association of sulphides, considered here, the main ore-bearing
minerals over the drill-cores. The methodology relies on the fusion of hyperspectral data and SEM-MLA
mineral maps. Within the chapter, three multivariate regression algorithms are presented and evaluated in order

to identify their suitability.

The fifth chapter illustrates a methodology to assess the potential to extend the impact of hyperspectral
imaging beyond the exploration stage. While direct sensing of the ore using hyperspectral imaging can be
performed for minerals with diagnostic absorption features in the VNIR-SWIR regions of the electromagnetic
spectrum, in the case of porphyry copper deposits, where the target commodities (i.e., copper, gold) are hosted
in the sulphides, mineralogical and spectral proxies are required to estimate their abundance and association.
In the case of the Bolcana porphyry mineralization, the ore minerals show different mineralogical associations
depending on the location in the system, and therefore the use of direct proxies, such as the abundance of a
selected alteration mineral or mineral assemblage is not possible. In order to tackle this issue, the use of
machine learning (ML) algorithms is proposed to classify the samples as either ore or waste based on a selected
cut-off (minimum equivalent copper grade). Like in Chapter 4, this methodology relies on the fusion of

hyperspectral and SEM-MLA data to train an ML classifier to predict the ore grade on new samples.

Following the investigation of the use of hyperspectral sensors in distinct stages of an exploration or
mining project, in the sixth chapter, the use of hyperspectral data in the broad geometallurgical context is
explored. This research is motivated by the strong need for continuous data over large drill-core intervals that
can be used to define mineralogical and textural (geometallurgical) domains. Hyperspectral imaging of drill-
cores is identified in this study as a key technology to deliver such data, provided that suitable processing tools
are made available. In this regard, a processing and analysis methodology is developed for the available
hyperspectral data, allowing for a broad domain definition based on spectral point analysis which can be further

used for strategic sampling for higher resolution analyses (for example by SEM-based image analysis at
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micrometer-scale). These high-resolution data on a local scale can be co-registered to the hyperspectral data.
The mineralogical and textural information is further upscaled to entire drill-core samples for mineral
abundance estimation, using random forest, the algorithm identified in Chapter 4 as best suited for the dataset.
The mineral abundances obtained can in a next step be used for extraction of structural or morphological
features as well as for defining domains of known average mineralogical composition. This mineralogical
knowledge can further support decision making for metallurgical testing and can be incorporated into a 3D

model for predicted metallurgical performance in the subsequent mining stages.

Based on the experience gained in the developed individual methodologies on a small number of
samples, in the concluding chapter (Chapter 7) a methodological framework is proposed for the use of
hyperspectral drill-core scanning in the geometallurgical context, from early exploration drilling to mining, as

well as for the continuous updating of the geological, resource and mining models.
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Chapter 2 Materials and methods

2.1 The Bolcana mineralized system
Bolcana is a porphyry copper-gold mineralized system located in the “Gold Quadrilateral” epithermal

Au-Ag-Te and porphyry Cu-Au province in South Apuseni Mountains, Romania (Berbeleac et al., 2014). This
region is considered one of Europe’s most significant porphyry Cu-Au and epithermal provinces (Figure 2-1)
(Berbeleac et al., 2014; Cioaca et al., 2014). The district has been historically mined for gold with an estimated
production of c¢.a.100 tonnes of gold since pre-Roman times (Ghitulescu and Socolescu, 1941; Udubasa et al.,
2001). Porphyry Cu systems are major global sources of metals, supplying >80% of the world’s Cu (Sun et al.,
2013) ~50% of the Mo, and 20% of the Au (Sillitoe, 2010). To meet future demands of metal resources, the
discovery and exploitation of new porphyry deposits is essential. Being located in a metallogenic province with
a long history of exploration and mining, Bolcana is surrounded by multiple epithermal and porphyry-type
deposits on which the developed methodologies could be tested in the future. As it shows variable and complex
mineralogy and mineralization styles, Bolcana represents a challenge for most established methods of
characterisation. Furthermore, the variable copper grades represent a strong motivation for the understanding
of the different ore types and their composition for the pre-concentration of the ore after crushing, prior to

further beneficiation stages.
2.1.1 Regional geology

At regional scale, the Bolcana porphyry system is located in the Western Tethyan magmatic belt which
is distributed in Slovakia, Hungary, Romania, Serbia, Bulgaria, Kosovo, Macedonia, Greece and Turkey
(Baker, 2019). Here, the tectonic setting and geodynamic evolution along the 3,500-km strike broadly developed
from Cretaceous subduction-related arc magmatism, transitioning from convergence and collision to post-orogenic
extension from the late Eocene to early Oligocene, and widespread post-collisional extension-related magmatism
during the Miocene (Baker, 2019; Richards, 2005).

In the South Apuseni Mountains, the metallogenic endowment is related to a Miocene post-collision
extension-related magmatic event, mainly between 14.9 and 9 Ma (Pécskay et al., 2006; Rosu et al., 1997) The
significant metallogenic activity leading to the emplacement of porphyry systems (Cu-Au + Mo) and
epithermal veins (Neubauer et al., 2005; Pécskay et al., 2006; Rosu et al., 1997). Three main mineralization

styles can be defined based on age, geological setting and geochemistry (Marcoux et al., 2002):
I. Mid Miocene Au-Ag epithermal deposits hosted in acidic rocks (Rosia Montana);

2. Mid to late Miocene Au—Ag—(Te) epithermal deposits (Sacdramb, Baia de Aries), Pb—Zn—
Cu—(Au, Ag) mineralisation and porphyry Cu—Au=Mo deposits (Bolcana, Rosia Poieni, Valea Morii)

3. Mid to late Miocene quartz andesite-hosted Cu—As—(Au) mineralisation
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Figure 2-1. Regional and local geological setting for the Bolcana Porphyry system.
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Porphyry-style mineralisation occurs in the core of subvolcanic bodies, associated with peripheral base
metal (Pb—Zn—Cu £ Au, Ag) and Au—Ag epithermal veins (Cardon et al., 2008; Cioaca et al., 2014). Bolcana
falls within the belt of NW trending Miocene age andesitic subvolcanic intrusive rocks and local volcanic
rocks within the South Apuseni Mountains and more precisely in the south-eastern part of the Brad-
Sacaramb metallogenic district (Figure 2-1) (Apopei et al., 2014). Here the main direction of the distribution
of the ore deposits follows an ESE-trending dextral, strike-slip fault system (Neubauer et al., 2005). The
basement in the area consists of Middle Jurassic-Lower Cretaceous basaltic andesites, lava flows and
pyroclastics, as well as Lower Cretaceous rhyolites, overlain by Palacocene and Miocene sedimentary series.
Neogene subvolcanic bodies, of dioritic composition, intrude the basement and the older sedimentary units

(Rhys, 2014).
2.1.2  Local geology and mineralogy

Bolcana is a porphyry-type Cu-Au ore deposit with associated epithermal veins hosted by a microdioritic
subvolcanic body. At the surface, the system has a broad 2 by 1 km N-S elongated argillic footprint, controlled
by faults that host late epithermal veins flanking the deposit (Ivascanu et al., 2019). The Bolcana system has a
known depth extent of approximately 1.5 km. The main alteration types encountered are phyllic-argillic
alteration on the flanks of the system and near-surface. The latter transitions to a magnetite-chlorite dominant
assemblage and further to a potassic alteration style towards the centre of the system (Figure 2-2) (Blannin et
al., 2019; Ivascanu et al., 2019). Additionally, a sodic-calcic core was described by Ivascanu et. al (2019). The
ore minerals are represented by chalcopyrite, bornite, chalcocite, covellite and native gold and occur mainly as
stockworks, hydrothermal breccias and subordinately as disseminations. Vein types and vein densities are
variable, and linked to the lithology and depth of occurrence. Quartz-magnetite veins are prevalent in the
carapace of the system. Vuggy quartz and quartz-magnetite veins are typically associated with early and
intermineral porphyries. Quartz or anhydrite veins with sulphide centreline are dominant in intermineral
porphyries and commonly occur with magnetite veins and locally with quartz-carbonate sulphide veins. The
latter two become dominant in late intermineral and late porphyries. The associations of vein types with the
breccias are more variable, but dominated by sulphide, quartz with sulphide centreline veins and magnetite

stringers.

Chalcopyrite is the main copper-bearing mineral, with minor contributions to the copper grade from
bornite, chalcocite, covellite, tetrahedrite and freibergite (Blannin et al., 2019). Chalcopyrite is generally found
in veins, and frequently as disseminations in the groundmass or alteration haloes of veins. At shallow depths,
bornite, chalcocite and covellite occur as rims around chalcopyrite grains, as a result of supergene processes
and/or alteration related to late epithermal events. At greater depths, primary bornite occurs, and both
chalcopyrite and primary bornite grains commonly present rims of chalcocite and covellite. The gold
association varies with its location in the deposit. At shallow levels, in the phyllic and argillic zones, gold is
mostly present as fine inclusions in pyrite, while at depth it is dominantly associated with copper sulphides

(Blannin et al., 2019).
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Figure 2-2. North-South and West-East simplified cross sections over the Bolcana system, illustrating the main
mapped alteration assemblages and grade domains (Ivascanu et al., 2019).

2.1.3  History of exploration

Ore deposits of the Bolcana-Certej district have been exploited for gold since Austro-Hungarian times
(Ghitulescu and Socolescu, 1941) and continued until 1990. Originally, the mining was focused on epithermal
veins outcropping on the western flank of the system and only later transitioned to underground mining. The
presence of the copper mineralization was only discovered late in the 19+ century but mining was not attempted
then. In more recent times, the main focus for industrial mining in the Bolcana-Certej district has been the
Coranda-Hondol open pit where base metals and gold were mined between 1983 and 2006. The first
exploration performed on the Bolcana system started in the mid 1980s, performed by the Romanian state as
part of the program targeting porphyry-copper mineralisation in the South Apuseni Mountains (Bostinescu,
1984). The main target commodity being copper, the samples were never assayed for gold until the exploration
licence was taken over by European Goldfields in 2002 when near-surface drilling was conducted. In 2006,
Minvest SA conducted a concentration experiment of the ore by mining the top part of the system and
subjecting it to flotation. The preliminary results not being promising and the time of the experiment coinciding
with the closing of all mines that depended on state subsidies, no further work was performed in Bolcana until
2016 (Ivascanu et al., 2019). In 2016, Eldorado Gold acquired the license and conducted extensive near-surface
exploration which has revealed a 1x2 km phyllic alteration footprint with distal stockwork veins. The drilling
campaign conducted between 2017 and 2018 defined a mineralized system of 1200 m and 900 m lateral lengths
and around 1200 m depth. This led to an inferred resource of 38 1mt at 0.53 g/t gold and 0.18 % copper, resulting
in an inferred resource of 6.5 Moz gold and 686 000 tons of copper (Ivascanu et al., 2019).
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2.1.4  Project and sampling strategy

Following the start of exploration drilling in 2017, in the context of the current study, a total of 188 drill-
core samples from three boreholes were collected during two sampling campaigns. These samples were
selected to ensure the representation of the main alteration and mineralization styles encountered in the Bolcana
deposit as known from exploration drill core. The first borehole (BH1) from the early drilling campaigns
crosses the mineralized system from ENE to WSW, with a length of around 2 km and vertical extent of 1.5
km. From this borehole, 43 samples were selected based on visual analysis and they were considered
representative of the mineralization and alteration styles identified in the system until that point. Further drilling
and investigation have led to the delineation of the mineralized body, identifying an additional prospective
porphyry body near the surface. Two boreholes crossing this area of the system and capturing varying
mineralization stages continued to be studied for a better mineralogical understanding and economic potential.
In the second sampling campaign 83 samples were collected from BH2 and 62 samples from BH3. These

samples were transferred to Freiberg for further studies.
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2.2  Hyperspectral imaging in the minerals industry
This section provides an introduction into the reflectance spectroscopy of minerals, including the main

trends particularly focused on drill-core scanning, a description of the main principles and processes causing
absorption features diagnostic of minerals and mineral groups, followed by an overview of the motivation of

the use of reflectance spectroscopy in mineral exploration and mining.
2.2.1 Reflectance spectroscopy — principles

Reflectance spectroscopy is the study of light as a function of the reflected wavelength from a solid,
liquid or gas (Clark, 1999). In the case of minerals, as photons enter a mineral grain, some are reflected, some
pass through the mineral grain while others are absorbed. The photons that are reflected from the surface of the
mineral sample and those which are refracted through the mineral grain are referred to as scattered (Clark,
1999). The photons can be absorbed in mineral samples by several processes and the specific wavelengths at
which photons are absorbed by a mineral can be used as a proxy for its presence and composition (Laukamp
et al., 2021). For the specific case of reflectance spectroscopy applied to minerals there is a small range of the
electromagnetic spectrum that is being used, characterized by the highest atmospheric transmittance of light
(Figure 2-3) (Clark, 1999). These regions range from visible to near infrared (VNIR = 380-1300 nm), short-
wave infrared (SWIR = 1300-2600 nm), mid-wave infrared (MWIR =2600-5500 nm) and long-wave infrared
(LWIR = 5500-15000 nm). In these regions of the electromagnetic spectrum, minerals produce diagnostic
features. The obtained reflectance spectra from geological materials contain the spectral signature of their
constituting minerals, signatures which can be used for identification of mineral species, their relative
abundance. In some cases, additional information can be retrieved on chemistry and crystallinity of the minerals

in question (Laukamp et al., 2021).
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Figure 2-3 The ranges of the electromagnetic spectrum with highlighted areas of highest atmospheric
transmittance where reflectance spectroscopy is most commonly used (Modified after Lorenz, 2019).
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2.2.2  Reflectance spectroscopy of minerals

In the current study, the focus will be assigned to the VNIR-SWIR range of the electromagnetic spectrum
and more specifically to the 380-2500 nm range used by most commercially available VNIR-SWIR
spectrometers. The absorption of photons in minerals is caused by several processes. The main processes
encountered in the visible to near-infrared (VNIR) relate to electronic processes. The lower wavelengths of the
SWIR (1300-1850 nm) are dominated by the first overtones of the OH-stretching related fundamental
vibrations (Laukamp et al., 2021). In the higher wavelength range of the SWIR the absorption features are
dominated by the OH combination bands of fundamental stretching and bending vibrations as well as other
overtones such as those related to the CO. group (Clark, 1999; Hunt, 1977). In the MWIR, the main spectral
signatures are caused by OH-related fundamentals and overtones. Overtones and combinations of many
fundamental vibrational modes of C-O, B-0O, S-O, P-O and Si-O are characteristic for the LWIR (Laukamp et
al., 2021).

In the VNIR, absorption features in minerals most commonly result from the crystal field effects. These
are encountered in the case of transition elements such as Ni, Cr, Co or Fe. This effect occurs when an atom
is located in a crystal field, leading to the splitting of the d orbital energy states. As a result, an electron can be
moved from a lower to a higher level through the absorption of a photon having a matching energy to the
difference between the states. The energy levels are given by the atom valence state, the coordination number
as well as by the symmetry of the site it occupies within the mineral. As the crystal field effects are controlled
by the crystal structure of the mineral, the same ion can produce different absorption features. A common case
where this effect is observed is that of Fe?" (Hunt, 1977). Fe*" presents a different spectral response depending
on the host mineral, such as amphibole or chlorite (Figure 2-4). Charge transfer is another electronic process
causing absorption features in the VNIR. In this case, the absorption of a photon causes the electron to move
between ions or ions and ligands. The transition between different valence states of the same metal is also
common, particularly in the case of iron. Charge-transfer related absorption is the main cause of the red colour
of iron oxides and hydroxides (Clark, 1999). Some minerals present band gaps, caused by the difference
between two energy levels, a higher one, called the conduction band and the lower called the valence band.
In the conduction band the electrons are moving freely throughout the lattice while in the valence band they
are attached to individual atoms. This band gap can cause the specific colour of minerals such as native sulphur
and show distinct features in the visible region of the electromagnetic spectrum. Another cause for colour in
minerals can be the absorption of colour centres caused by the irradiation of an imperfect crystal. The defects
in the crystal lattice tend to produce energy levels and therefore electrons can be bound to them (Clark et al.,

2006; Hunt, 1977).

In the SWIR, the main mineral absorption features are caused by vibrational processes. Within the
bonds of a molecule, the frequency of vibration depends on the strength of each bond in a molecule and
elemental masses of the atoms in the respective molecule. The normal modes of vibration are called
fundamentals and overtones occurring at roughly multiples of the fundamental frequency. Absorption features

caused by vibrational processes only occur in the infrared spectrum if the respective molecule shows a dipole
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moment — called infrared-active (Hollas, 2004). The wavelength at which absorption features occur depends
on the energy that is associated with the change in dipole moment. Minerals for which vibrating molecule
bonds do not change the dipole moment will not absorb electromagnetic radiation (Clark, 1999; Clark et al.,

2006).

The lower wavelengths of the SWIR range (1300-1950nm) are dominated by the first overtones of
fundamental stretching vibrations of the hydroxyl groups. The OH-related absorption features in this range are
characteristic for hydroxylated mineral groups, such as hydroxylated silicates and sulphates. The location and
intensity of these features are controlled by the type of cation bonded to the OH group. In this regard, Al and
Mg sheet silicates present absorption at lower wavelengths compared to Fe silicates (The same observation can
be made for hydroxylates sulphates. In this spectral range the composition of alunite can be evaluated based
on the location of the 1470 nm feature. The lower wavelengths indicate a sodic composition while the longer
wavelengths are characteristic of a potassic composition (Bishop and Murad, 2005). Additional mineral
diagnostic features which can be identified in this range are overtones of H>O-related bending vibrations, such
as in the case of gypsum and montmorillonite (Figure 2-4), and combinations of NHs-related fundamental

stretching vibrations, such in the case of buddingtonite (Krohn and Altaner, 1987).

In the higher wavelength range of the SWIR (1950-2500 nm) the main mineral-related absorption
features are caused by OH-related fundamental stretching and bending vibrations, combinations or overtones
of COs-related fundamental stretching vibrations as well as overtones of NH.-related fundamental vibrations
located in the LWIR. The OH-related absorption features are controlled by the crystal structure and the cation
the OH group is bonded to. Kaolinite group minerals such as kaolinite (Figure 2-4) show an absorption doublet,
with the deepest feature located at 2209 nm caused by the stretching vibration of the inner OH group and a
shallower feature at around 2160 nm caused by the stretching vibrations of the outer OH layer. The changes in
this second absorption feature are sensitive to the changes in the crystal structure and crystallinity of the

kandite-group minerals (Laukamp et al., 2021; Murray and Lyons, 1955).

White micas, exemplified by muscovite in Figure 2-4, present the main diagnostic absorption feature
around 2200 nm, given by the Al-OH bond. The location of this feature is sensitive to the replacement of Al in
octahedral configuration by Fe> or Mg, and the resulting replacement of Al by Si in tetrahedral configuration
to compensate for the charge. The replacement of the OH group by F for some micas such as lepidolite also
leads to the decrease and shift of the 2200 nm feature to longer wavelengths. Additionally, the increase in
Fe2+ and Mg leads to more prominent features around 2350 and 2450 nm for micas which are absent in the
case of smectites such as montmorillonite. Similar to white micas, smectites show a shift in the location of the
Al-OH absorption features, from 2183 nm for beidellite (Al-rich) to 2215 nm for montmorillonite (Post and
Noble, 1993; Scott and Yang, 1997; Yang et al., 2011).

Biotites and chlorites present diagnostic absorption features around 2250 nm caused by the OH groups
bound to the octahedral layers (Figure 2-4). The Mg:Fe ratio in this layer influences the location of the position
of this absorption feature. High molar Mg# leads to minima of the absorption at lower wavelengths
(Lypaczewski and Rivard, 2018). Both minerals present a second absorption feature around 2350 nm,

variations in composition leading to the change in the location of the minima between 2330 nm and 2390 nm.
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As this absorption presents overlaps with those of other SWIR diagnostic minerals such as amphiboles or

carbonates, the interpretation of chlorite or biotite composition, unless dealing with pure samples is not

recommended (Laukamp et al., 2021). In the case of amphiboles, the absorption feature around 2320 nm is

assigned to combinations of overtones OH stretching fundamentals related to Fe> and Mg bonds in the MWIR.

The second diagnostic absorption feature around 2380 nm is believed to be related to the OH stretching

fundamentals. Actinolite is used as an example in Figure 2-4. Epidote presents similar absorption features to

those of chlorites and biotites in the SWIR. However, a deeper feature at 2250 nm can be observed and

sometimes a shift to higher wavelengths as a result of Fe3+ and Al bonded to the OH group. In chlorites and

biotites, Mg and Fe2+ are usually the main cations bonded to OH (Laukamp et al., 2021).
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epidote, tour = tourmaline, act = actinolite, kao = kaolinite, ms = muscovite, mm = montmorillonite, phl =
phlogopite, chl = chlorite). Compiled based on Clark, 1999; Hunt, 1977, Laukamp et al., 2021, spectra from

the USGS spectral library (Kokaly et al., 2017).
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Tourmaline presents diagnostic absorption features in the higher wavelength of the SWIR at 2174, 2204,
2256, 2302 and 2290 nm (Laukamp et al., 2021). The origin of these features is assigned by many authors to
overtones of OH group fundamental stretching and bending combinations. The subject is however still
controversial, other authors suggesting that some of the features can be assigned to the B-O bond (Bierwirth,

2008; Clark, 1999; Hunt, 1977).

Besides hydroxylated silicates, also carbonates and hydroxyl-bearing sulphates present absorption
features in the higher wavelength range of the SWIR. Carbonates have a diagnostic absorption feature in the
2300-2340 nm range as a result of C-O stretching vibrations. Calcite is used as an example in Figure 2-4

(Laukamp et al., 2021).
2.2.3  Hyperspectral imaging and ore deposits

Hyperspectral analyses have become increasingly attractive tools within the exploration industry in the
last decades (Laukamp et al., 2021; van der Meer et al., 2012). Mapping of alteration patterns used as proxies
for mineralization in early exploration stages remains the main driver for the use of hyperspectral imaging in
exploration, particularly for the use of VNIR-SWIR sensors. These sensors allow for the mapping of key
minerals and assemblages for exploration of various deposit types. Figure 2-5 showcases examples of deposit
types and the key spectrally diagnostic minerals for the exploration and characterisation of each of these
deposits. The figure illustrates that specific mineral assemblages serve as a proxy for the location within an

epithermal or hydrothermal system.

In the case of epithermal deposits, alteration minerals used as proxies for their discovery and
characterisation are clays of the kaolinite group for the advanced argillic, transitioning towards a kaolinite-
smectite assemblage in the argillic and intermediate argillic zones. White micas, such as muscovite and illite
are key components of the phyllic alteration assemblage. The clay crystallinity can be used as an indicator for
the forming process of the minerals as well as a proxy towards mineralization. It is defined as the degree of
hydration based on the ratio of the water feature around 1900 nm and the AI-OH feature located around 2200
nm. The same applies to the composition of these micas, evaluated based on the shift in the location of the
minimum of the Al-OH feature located around 2184 nm for paragonitic compositions to 2228 for phengitic
compositions. Chlorite can also serve as a proxy for mineralization in several systems, either based on its
presence in the phyllic and propylitic alteration zones or based on its composition. The Mg:Fe ratio can be
calculated based on the shift of the Al(Mg,Fe)-OH absorption feature around 2250 nm. Lower wavelengths
indicate a magnesian composition while higher wavelengths an increase in iron content. These changes in
chlorite composition are related to formation temperature and can be used as proxies for mineralization in skarn
(Markowski et al., 2006) and VMS deposits (Gisbert et al., 2021).

With regards to porphyry systems, used as a case study in this work (Section 1.2), a characteristic
alteration-mineralization zoning pattern is exhibited. From the centre of the system and upwards, alteration
comprises sodic-calcic, potassic, chlorite-sericite, phyllic and argillic domains. Distal alteration consists of

propylitic and sometimes shallow chloritic alteration (Lowell and Guilbert, 1970; Sillitoe, 2010).
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Figure 2-5. Common SWIR diagnostic alteration mineralogy in hydrothermal systems (modified after
(Corbett and Leach, 1998). For minerals in bold the mineral chemistry can be identified through spectral
analysis, while for minerals in italic their crystallinity can be estimated.

2.2.4  Towards hyperspectral drill-core scanning in the mining industry

In the context of mineral exploration, several well-established platforms for hyperspectral data
acquisition are currently available for use. Within regional exploration satellite or airborne hyperspectral
imaging for mapping alteration minerals has become increasingly used since the launch of the Advanced
Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) and, more recently, higher resolution
sensors such as Worldview and Hyperion (Booysen et al., 2020). Such spectral information has been used for
mapping alteration patterns characteristic of various mineral deposits such as epithermal gold or porphyry-
copper (Crosta et al., 2003; Di Tommaso and Rubinstein, 2007; Pour and Hashim, 2011) or for lithological
mapping (Mars and Rowan, 2011).

In the context of advanced exploration projects, with drill-core intersections providing a first three-
dimensional access to the orebody explored, higher spatial and spectral resolution are possible and are required
for ore characterisation. The increased spatial resolution allows for distinguishing more subtle mixtures while

the increased spectral resolution for the differentiation of fine variations in mineral composition. Point
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spectrometers such PIMA-II were the first to provide high spectral information on geological materials. These
spectrometers are used for either point measurements on field samples (Herrmann et al., 2001), cores or on
crushed core pulps over meter intervals (Yang et al., 2000). Whilst both of these approaches provide
mineralogical information, they are unsuitable to obtain spatial and textural information needed for
geometallurgical modelling. Kruse (1996) was the first to identify and tackle this limitation. He used a PIMA
II spectrometer for spectral sampling in a grid to create a dataset similar to an HS datacube. Since then, the use
of spatial hyperspectral sensors for drill-core analysis became increasingly attractive with new systems being
developed. The most widely used spectral point sampling systems are geoLOGr and the HyLogger (Mason,
2012; Schodlok et al., 2016), which integrate a point spectrum over several measurements and can cover VNIR,
SWIR and LWIR. It is widely used for drill-core logging in mineral exploration (Arne et al., 2016; Ayling et
al., 2016; Gordon et al., 2016; Tappert et al., 2011). Further need for increased speed, spatial resolution and
coverage extent have led to the development of so-called push broom sensors (Lorenz, 2019). To achieve a
high spectral quality at a sufficient throughput, the spatial resolution is relatively low (around 1-2 mm).
Examples for such cameras are the Specim AisaFENIX (VNIR-SWIR) and AisaOWL (LWIR). The acquisition
and processing of the data is often provided by external companies specialized in HS drill-core scanning (e.g.,
TerraCore Geospectral Imaging, Corescan Pty Ltd), therefore not all technical developments in hyperspectral

data processing are published (Lorenz, 2019).
2.2.5 Application of hyperspectral imaging — tools and workflows

For exploration purposes, traditional hyperspectral mapping methods include band ratios, or mapping
of wavelength parameters such as position, depth and width of the absorption features. These tools provide
good results for exploration targeting when the composition of the mineralogical proxies for mineralisation are
known. In such cases, band ratios and wavelength parameters are used to map the distribution and relative
abundance of specific minerals (Asadzadeh and De Souza Filho, 2016; Kopackova and Koucka, 2017
Laukamp et al., 2021; Mathieu et al., 2017; Roache et al., 2011; Tappert et al., 2011; Turner et al., 2014; Van
Ruitenbeek et al., 2014). In order to investigate the variation in mineralogy and extract distinct endmembers
from a dataset, one of the most common procedures makes use of some of available tools in the Environment
for Visualizing Images software (ENVI, Exelis Visual Information Solutions, Boulder, Colorado). Such tools
comprise endmember extraction (Farooq and Qurat-ul-ain, 2012), identification of the minerals using the
Spectral Analysis or Material Identification by comparison to a specific library in the software (e.g., in ENVI)
or online reference (e.g., USGS - Kokaly et al., 2017), and finally the mineral mapping task using similarity
measure algorithms or determination of partial abundances using unmixing algorithms (Calvin and Pace, 2016;
Kratt et al., 2010; Littlefield et al., 2012). These methods have, however, been difficult to automate on large
datasets in order to provide real-time results. Further advances in mineral mapping using supervised machine
learning algorithms have shown great improvements in the automation of the mapping process. An example
is the contribution of Contreras et al. (2019) proposing the fusion of hyperspectral and high-resolution

mineralogical data for accurate mineral identification.
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In the context of mining and mineral beneficiation, hyperspectral sensors have not been widely used due
to the lack of diagnostic absorption features of the ore minerals in the spectral ranges of most commercially
available sensors. Successful use of SWIR sensors for pre-sorting of ores has been achieved mostly on
industrial minerals because they are spectrally active in the SWIR (Robben and Wotruba, 2019). There are
underlying cogenetic relationships in most metalliferous ores between alteration (i.e. gangue) and ore minerals
(Kern et al., 2018a). These relationships are widely applied within the context of mineral exploration. Such
intimate cogenetic relations may, however, also be exploited during eventual mining through the evaluation of
the preferential association of ore and gangue minerals using statistical methods - as shown in some previous
studies (Dalm et al., 2018, 2014; Kern et al., 2019). Additionally, Johnson et al. (2019) were among the first
to present the use of HSI of blast hole cuttings to predict metal recovery and throughput in a processing plant.
These previous studies also illustrate that the relationship between ore mineralogy and grade, and spectral
response of alteration minerals is not always linear or simple. While for some ores a specific gangue mineral
can be used to predict the grade, for some others a combination of minerals and even variation in their

composition would be needed. Further method developments to identify all these features are needed.

While hyperspectral data has been increasingly used in the last decade for exploration targeting, and less
for ore characterization and pre-concentration, little has been done to for the development of a geometallurgical
model already during the exploration stage. Studies were conducted in the use of either hyperspectral drill-core
scanning system on blast hole chips (Johnson et al., 2019) or mounted on tripods for the scanning of mine faces
(Barton et al., 2021), however, these approaches are implemented once mining has already started. Integrating
the information from spectral analysis gained during the exploration stage into the definition of
geometallurgical domains is an obvious opportunity. Such an integrated approach can lead to a better
understanding of the ore types and thus allow for improved decision making on material handling, processing

routes and waste disposal.
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Chapter 3 Assessment of alteration mineralogy and vein types using
hyperspectral data

Preface

The mapping of alteration assemblages, both pervasive and related to veins are key in the understanding
the architecture of mineral deposits. Hyperspectral drill-core scanning has the potential to be an excellent tool
for providing this type of information in a fast, non-destructive and reproducible manner. However, there is a
distinct lack of data processing tools for the automated discrimination of vein-related and pervasive alteration.
For this purpose, a methodology was set in place combining algorithms previously applied in different fields
of hyperspectral image processing. The developed methodology allows for endmember extraction and
unmixing and further subjecting the mineral abundance maps obtained from the unmixing process to

morphological analyses leading to vein extraction. This approach therefore allows for:

(1) Identifying the main alteration minerals in the core and mapping their abundance
(2) Discriminating mineral abundances related to both veins and pervasive alteration

(3) Estimation of vein abundance and orientation (azimuth).

The early-stage results of this research were presented at the 2018, IEEE International Geoscience and
Remote Sensing Symposium (IGARSS) [1] in Valencia. Later, the full paper presented in this thesis was
published in the MDPI Minerals [2] journal in 2019 under the title “Mineral Mapping and Vein Detection in
Hyperspectral Drill-Core Scans: Application to Porphyry-Type Mineralization”. This contribution was later
awarded the MDPI Minerals best paper award in 2020. This achievement highlighted the need for automated
methods for hyperspectrald data analysis in the field of mineral exploration and mining, motivating further

developments such as those presented in the later chapters.
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Abstract
The rapid mapping and characterization of specific porphyry vein types in geological samples represent

a challenge for the mineral exploration and mining industry. In this paper, a methodology to integrate
mineralogical and structural data extracted from hyperspectral drill-core scans is proposed. The workflow
allows for the identification of vein types based on minerals having significant absorption features in the short-
wave infrared. The method not only targets alteration halos of known compositions but also allows for the
identification of any vein-like structure. The results consist of vein distribution maps, quantified vein
abundances, and their azimuths. Three drill-cores from the Bolcana porphyry system hosting veins of variable
density, composition, orientation, and thickness are analysed for this purpose. The results are validated using
high-resolution scanning electron microscopy-based mineral mapping techniques. We demonstrate that the use
of hyperspectral scanning allows for faster, non-invasive and more efficient drill-core mapping, providing a

useful tool for complementing core-logging performed by on-site geologists.

Graphical abstract

Validation - ROI

SEM - MLA SEM - MLA
mineral map vein map

. )
2 3
=
= &
m :
O | (e
& o =
e )
> =
28 = HSI HSI
_‘.’ ; 7 mineral ma vein ma
= S
A £
[«P]
=

47 mm

Keywords: hyperspectral imaging; drill-core; mineral mapping; short-wave infrared; porphyry-type veins

3.1 Introduction
With global demand for raw materials steadily increasing, large exploration investments are required to

discover the ore deposits needed to satisfy the demand. Exploration includes thousands of kilometres of

diamond drill-cores that are obtained to test subsurface regions with high mineral resource potential. The
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drilling consists of the extraction of cylindrical core samples, which are traditionally analysed visually by on-
site geologists and subjected to geochemical analyses (Kruse, 1996; D. Wang et al., 2017). These methods are
slow, and the mineralogical information extracted from the cores is limited and usually influenced by the
subjectivity of the observer. During the last decade, hyperspectral imaging techniques have been increasingly
used to complement traditional logging methods and provide fast, efficient, and unbiased means of extracting
valuable compositional information (Clark et al., 2006; Kruse et al., 2010, 2012; Tappert et al., 2011).
However, most existing hyperspectral data processing tools only target the compositional mineralogical
information and not the spatial distribution and geometry of minerals comprising the ore. For this purpose, a
workflow integrating the analysis of mineral abundance with mineral spatial distribution is proposed in this
paper.

Common hyperspectral sensors cover the visible to near-infrared (VNIR) and short-wave infrared
(SWIR) regions of the electromagnetic spectrum. In these ranges, specific absorption features allow the
identification of common mineral groups such as phyllosilicates, amphiboles, iron oxides and hydroxides,
carbonates and hydrated sulphates, phosphates and arsenates (Pontual et al., 1997). Several of these mineral
groups are associated with hydrothermal alteration and are known to occur in different mineral systems
(Schwartz, 1959). They are commonly used as proxies for mineralization vectoring (Pour and Hashim, 2011;
Roache et al., 2011; Wilkinson et al., 2015) making their identification key to the discovery and mapping of

mineral exploration targets.

Several techniques have been proposed in the literature for the analysis of hyperspectral drill-core data
and mineral mapping (Asadzadeh and De Souza Filho, 2016; Huntington et al., 2006; Kruse, 1996; Kruse et
al., 2012; Mathieu et al., 2017; Mauger et al., 2007; Tappert et al., 2011; Taylor, 2000). Among these, band
ratios and minimum wavelength maps are useful tools for the evaluation and visualisation of the relative
abundance of chemical groups characteristic for specific minerals (Asadzadeh and De Souza Filho, 2016;
Kopackova and Koucka, 2017; Simpson, 2015; Turner et al., 2014; Van Ruitenbeek et al., 2014). Another
approach for mineral mapping consists of the use of the spectral angle mapper (SAM), a classifier which works
based on the similarity measure between an unknown spectrum and reference spectra. The reference spectra
are acquired from either spectral libraries or from endmembers, for instance, obtained by the pixel purity index
method followed by the n-Dimensional visualiser (Farooq and Qurat-ul-ain, 2012). This approach is widely
used due to the availability of the algorithms in common software such as ENVI (Exelis Visual Information
Solutions, Boulder, CO, USA). Although the aforementioned mineral mapping tools can provide good results,

batch implementation is difficult, as it requires extensive human interaction.

While progress has been made on (semi-)automated mineral mapping, few studies have addressed the
identification and extraction of structural features. Yet, this kind of analysis is particularly relevant for vein-
type mineralization such as encountered in porphyry style deposits (Lowell and Guilbert, 1970; Sillitoe, 2010).
The characterization of alteration halos, both in terms of width and composition, is critical for assessing the
mineralization/alteration stage. The composition of the pervasive alteration and the vein halos also represents
an indicator on the location of the sample within the mineralized system as well as on the expected vein

composition in terms of ore mineralogy. Wang et al., (2016) used a seeded region growing method combining
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a similarity and homogeneity analysis of optical data (unmixing of short-wave infrared spectra and RGB 3-
band natural-colour imagery) with an edge map to extract quartz and carbonate veins. The results cover the
extraction of predefined vein types and do not include their orientation, which for the mapping and modelling

of a porphyry-style mineral system would be a key attribute.

In the last two decades, a broad variety of methods has been proposed to extract linear features from
images. The most commonly used approaches are based on edge detection algorithms, which identify
discontinuities in greyscale images (e.g., Papari and Petkov, 2011, and references therein). These methods have
been widely used in Earth sciences to extract structural features such as faults scarps and lineaments, but are
often difficult to apply to the extraction of structural entities such as veins. Edge detection methods perform
poorly when the edges of the object are smooth (i.e., gradual transitions from vein alteration halo to matrix)
and are very susceptible to noise. An alternative approach relies on ridge detection algorithms (e.g., Kirbas and
Quek, 2004, and references therein). While the purpose of edge detectors is to extract the boundary of an object,
ridge detection makes it possible to identify the major axis of symmetry of an elongated object using the
curvature associated with the brighter or darker components in a greyscale image. These algorithms make it
possible to specifically target the linear components of an image and have been broadly used in various fields
such as medical sciences and geographic information sciences to extract curvilinear features such as blood

vessels (Frangi et al., 1998; Jin et al., 2013)and road or drainage networks (Steger, 1998).

In this paper, a workflow that enables extraction of both the mineralogical and structural information
from drill-core samples is developed and tested. The approach combines hyperspectral data analysis and image
processing techniques. The workflow consists of three main steps: (1) endmember extraction and spectral
unmixing, followed by (2) mineral mapping, and (3) vein extraction. The results provide mineral maps
illustrating the distribution of the main mineral assemblages and vein distribution maps including the
composition, calculated abundance and azimuth of different vein-types. This type of information can become
a valuable tool for exploration. For vein-hosted mineralization, the identification of the vein composition and
density and the assessment of the abundance of different vein types can represent key parameters to be used in

ore body modelling and evaluation.

The workflow performance is assessed based on three selected samples from the Bolcana porphyry-
copper gold project in Romania. The samples were collected from typical alteration zones at different depths
in order to showcase different vein compositions and structures. The validation is achieved based on high
resolution mineralogical analyses of thin sections using a Scanning Electron Microscopy (SEM) equipped with
the Mineral Liberation Analyser (MLA) software (Gu, 2003).

3.2 Test Site

The Bolcana copper-gold mineralized system is located in the Brad-Sacaramb metallogenic district
within the Golden Quadrilateral in South Apuseni Mountains, Romania (Figure 3-1). The Golden Quadrilateral
hosts around 20 porphyry-type deposits and represents Europe’s largest epithermal Au-Ag-Te province. The
region is also one of Europe’s most important porphyry Cu—Au provinces (Berbeleac et al., 2014; Cioacd et
al., 2014; Milu et al., 2003). The mineralization in the Golden Quadrilateral is conditioned by the emplacement
of Neogene volcanic rocks, mainly between 14.9 and 9 Ma (Cioacd et al., 2014; Neubauer et al., 2005; Pécskay
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et al., 2006; Rosu et al., 2004, 1997). The main direction of the distribution of the ore deposits follows an ESE-
trending, dextral, strike-slip fault system (Neubauer et al., 2005). Here, the basement consists of Middle
Jurassic—Lower Cretaceous basaltic andesites, basaltic lava flows and pyroclastics, and Lower Cretaceous

rhyolite overlain by Paleocene and Miocene sedimentary series. Neogene volcanic and subvolcanic bodies are
intruding the basement and Paleocene sedimentary units.

Bolcana is a porphyry-type Cu—Au ore deposit with associated epithermal veins hosted by the Bolcana
microdioritic subvolcanic body. The mineralization is represented by chalcopyrite, bornite, chalcocite,
covellite, pyrite, magnetite, hematite, molybdenite. The gold is predominantly present as fine inclusions in the
copper sulphides. The mineralized body shows a large extension at depth being characterized by a large

potassic core with a wide transition to sodic-calcic alteration. The transition is characterized by the presence
of chlorite as the main pervasive alteration phase (Blannin et al., 2019).
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Figure 3-1. Geological map of the Brad-Sacaramb metallogenic district (left) and E-W cross section through

the Bolcana porphyry system with shown location of the sampled drill-holes (right).

3.3 Data Acquisition

Three drill-core samples (here labelled DC-1, DC-2 and DC-3), which show variability in terms of

pervasive alteration and vein types, were selected for testing of the proposed workflow. The drill-core samples

were collected from the potassic, sodic-calcic and intermediate zones of the Bolcana porphyry copper-gold

prospect. The samples are representative in terms of vein and alteration styles for a larger drill-core interval

(Figure 3-2). The three samples described in the current work consist of half cores. The analysed surfaces have

47 mm width for all samples and lengths around 290 mm. The drill-cores were selected from intervals of

23



Assessment of alteration mineralogy and vein types using hyperspectral data

uniform appearance based on visual observations by a specialist. The presence of different vein types in terms
of composition and thickness was also considered in the sampling.

N ———

- -

Figure 3-2. Representative sample selection from homogenous drill-core intervals.

3.3.1  Hyperspectral Drill-Core Scanning

The hyperspectral data was acquired using a SisuROCK drill-core scanner (Spectral Imaging Ltd., Oulu,
Finland) equipped with an AisaFENIX VNIR-SWIR hyperspectral sensor (Spectral Imaging Ltd., Oulu,
Finland). The sensor specification and chosen settings are listed in Table 3-1. The spatial resolution of the

resulting hyperspectral scans is 1.5 mm/pixel.

Table 3-1. Specifications and setup parameters of the SisuROCK drill-core scanner and AisaFENIX VNIR-
SWIR hyperspectral sensor.

Parameter Value
VNIR 380-970 nm
Wavelength Range SWIR 970-2500 nm
Sampling Distance ;/VI:I&E é; EEII
Number of Bands 450
Spectral Binning ;@2& 41‘
Field of View (FOV) 32.3°
Samples 384
Frame Rate 15 Hz
Scanning Speed 25.06 mm/s
. . VNIR 15 ms
Integration Time SWIR 4 ms
Spatial Binning ;]\I;gi %

The conversion to reflectance was performed with the acquisition software (LUMO Scanner version

2018-5, Spectral Imaging Ltd., Oulu, Finland) using PTFE reference panels (>99% VNIR and >95% SWIR).
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For the pre-processing, the scans of the selected core samples were corrected and averaged using the
MEPHySTo toolbox (Jakob et al., 2017). A correction was applied between the VNIR and SWIR sensors to
compensate for the spatial shift and a geometric correction was used to neutralize the lens effect. The corrected
hyperspectral data were smoothed using the Savitzky-Golay (SavGol) filter (Ruffin and King, 1999) in order
to correct for the noise present particularly at the beginning of the spectrum in the VNIR. The smoothing was
considered necessary, as noise in this region of the spectrum would otherwise strongly influence the
performance of the endmember extraction algorithms. After testing different parameters, a radius of 5 and a

3rd degree polynomial were used for the SavGol filter.
3.3.2 SEM-MLA

Regions considered representative for the entire core samples were cut and prepared into 25 mm X 40
mm thin sections and further analysed with scanning electron microscopy. The sample preparation consisted
of grinding and polishing of the sample surface. This leads to the removal of a small fraction of the material of
a thickness up to 0.5 mm. The change in analysed surface causes a small shift in the location of the veins, but

for the current purpose it is considered neglectable.

Quantitative mineralogical data were collected from each thin section using an automated approach
(Fandrich et al., 2007; Gu, 2003). The analyses were performed using a Mineral Liberation Analyser (MLA)
equipped with a FEI Quanta 650 F field emission SEM (FEI, Hillsboro, OR, USA) with two Bruker Quantax
X-Flash 5030 energy-dispersive X-ray (EDX) detectors (Bruker, Billerica, MA, USA). Backscattered electron
(BSE) images are used to define mineral grains. BSE images are greyscale images, in which the greyscale level
ranges from 0-255 according to the average atomic number (AAN) of the elements comprising a mineral/phase.
Lower AAN values correspond to darker grey appearance and indicate that minerals comprise of light elements
(in this case, for example, quartz and silicates). Brighter grey shades, in contrast, reflect higher AAN values,
and indicate minerals comprised of elements with high atomic weight (e.g., native gold). Mineral grains were
discriminated based on their grayscale level in the BSE images and then identified by performing EDS X-ray
measurements on a closely spaced grid. The operating conditions used for SEM and MLA are listed in Table
3-2.

Table 3-2. SEM-MLA data acquisition parameters.

SEM Settings MLA Settings

Acceleration voltage (kV) 25 Pixel size (um) 3

Probe current (nA) 10 Resolution (pixels) 1000 x 1000
Spot size (um) 5.6 Step size (pixels) 6x6
Frame width (pixels) 1500 Acquisition time (ms) 5
Brightness 96.2 BSE trigger 26-255
Contrast 18.5 Minimum particle size (pixels) 3

BSE calibration (Au) 254  Minimum grain size (pixels) 3

Data processing was carried out using the MLA Suite software package (version 3.1.4.686, FEI,
Hillsboro, OR, USA) (MLA Image Processing, MLA Mineral Reference Editor and MLA Dataview). The
mineral reference editor was used in online mode in order to complete the mineral list required for the

classification of the tested samples. MLA Image Processing software was used for preliminary corrections of
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data, such as frame edge removal, and for further processing steps. The first processing step consists of the
spectral classification with a spectrum matching threshold of 90% and a low count threshold of 2000 counts.
Two touch-up scripts were used in order to assign the glass spectrum from voids to the background and to
assign minerals with a grain size lower than 4 um to the host mineral.
3.4 Proposed methodology

The proposed methodology includes a parallel workflow consisting of mineral mapping on one side and
extraction of linear features, here veins, on the other (Figure 3-3). Additional tools are used for endmember

analysis, mineral chemistry and abundance mapping.
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Figure 3-3 Schematic workflow of the proposed methodology (HSI = hyperspectral images, EM =
endmembers, FC-LSU = fully constrained linear spectral unmixing).

3.4.1 Mineral Mapping

The first step of the proposed technique consists of endmember extraction. Several algorithms for
endmember extraction were tested. Among all tested methods, the N-Findr algorithm proved to give the best
results with the current dataset and is thus used in the current study. This method assumes that the N-volume
contained by a simplex formed by the purest pixels in a dataset is larger than any other potential volume formed
from other selected combinations (Plaza and Chang, 2005; Winter, 1999). Virtual dimensionality estimation
techniques are known to be used for the estimation of the appropriate number of endmembers in hyperspectral
data. An attempt to implement these techniques was made. However, results yielded a higher number of

endmembers than minerals actually present according to the previous knowledge of the samples (petrographic
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observations and validation data). The choice of three endmembers for each of the selected drill-cores proves
to be appropriate considering the variability within the samples. The endmember spectra are then subjected to
wavelength analyses in different ranges in order to identify the main occurring SWIR active minerals such as
white mica, chlorite group minerals, gypsum, biotite, phlogopite, amphiboles and carbonates. SWIR inactive
phases such as some rock-forming minerals (e.g., quartz, feldspars, pyroxenes) or sulphides cannot be
identified with the spectral ranges used. For the purpose of defining veins with specific alteration halos,
consisting dominantly of SWIR active minerals; however, the used sensors provide the necessary information. The
selected minerals are identified based on the depth of their specific absorption features. The location of the minima
in the selected spectral ranges indicates the presence or absence of a specific mineral as well as the relative chemical

variation within specific mineral groups.

The obtained endmembers are used for unmixing to develop mineral abundance maps. The fully
constrained linear spectral unmixing (FC-LSU) method is used for this purpose based on the consideration of
a linear contribution of each mineral within the pixel. The method is based on the hypothesis that meaningful
endmember fractions must respect two constraints: they must sum up to one and they must be nonnegative.
The fractional contribution of each endmember is then calculated through an inversion of the linear model (Li
and Chang, 2015; Silvan-Cardenas and Wang, 2010). Once the endmember abundance maps are obtained, each

pixel is classified corresponding to the maximum abundance of the endmembers.

3.4.2 Vein Extraction

An approach based on Steger’s detector of curvilinear structures (Steger, 1998) was developed. This method
allows for the extraction of vein traces from mineral abundance maps together with their true shapes and extents
(Figure 3-4).

The first step of the vein extraction process consists of the identification of the points of maximum
curvature in an image. These correspond to the specific signature of a mineral or mineral association related to
the vein composition or vein alteration halo. The analysis of the image curvature is based on the eigenvalues
of the Hessian matrix (Frangi et al., 1998; Jin et al., 2013). The 2 x 2 Hessian matrix is composed of second-
order partial derivatives of an input image. The second-order partial derivatives are defined as a convolution
with derivatives of Gaussian filter at scale . The eigenvalue analysis allows for the extraction of the principal
directions and the magnitude in which the local second order structure of the image can be decomposed. Each
pixel is assigned a set of eigenvectors such as 11| < |A2|. Linear features are characterised by a very small
magnitude of 11 (ideally close to zero) and a large magnitude of 2. Point features will show similar magnitudes
of 11 and /2 and features without preferential directions or random variation will have low magnitudes for both
of the eigenvectors. The approach developed by Steger (Steger, 1998) is used, and this allows us to identify
the points of maximum curvature within the image. These points are then connected into lines using a recursive
approach. Each line is constructed by identifying the point with maximum second derivative and then by adding
the appropriate neighbours to the current line. The choice regarding the appropriate neighbour is based on the
distance as well as the angle difference between the points. The procedure is repeated until no more points with
a curvature above a defined threshold are left. This threshold is introduced to avoid extracting “weak” features.

Edges can be detected using the absolute gradient derived from the first-order partial derivatives. A Gaussian

27



Assessment of alteration mineralogy and vein types using hyperspectral data

filter is first applied in order to remove the noisy component of the image. However, the smallest possible scale
(o = 3) is used in order to obtain the most accurate localisation of the edge points. For each pair of points of an
extracted line, the closest absolute gradient maxima along an orthogonal line with a defined length are located in
order to extract the contours of the veins. In case no peak values are found in the vicinity of a pair of points, the

position of the edge is interpolated based on valid edges for previous and following pairs.

This approach is highly sensitive to the scale of the Gaussian filter used to extract the axial traces of the
veins in the first place. To tackle this problem, the procedure is repeated for a range of parameters and then the

results are combined, ensuring the detection of both thin and thick veins.
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Figure 3-4. Proposed workflow for vein extraction.
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3.5 Results
The potential and limitations of the proposed method are illustrated on three samples from the Bolcana

porphyry system (DC-1, DC-2 and DC-3). The samples contain different vein types and styles of pervasive
alteration. Macroscopic observations of the drill-core pieces and SEM-MLA data acquired on polished thin

sections are used as ground truth for data validation.
3.5.1 Validation Data

Minerals that absorb parts of the incoming light between 1000 and 2500 nm are further called SWIR-
active minerals. The SWIR active minerals identified in the samples are white micas, chlorites, biotite, epidotes,
carbonates and amphiboles. Calcium sulphates are present as either gypsum (SWIR active) or anhydrite (SWIR
inactive). MLA mineral maps are used for the identification and validation of the main alteration styles and

mineral assemblages recognized in the samples (Figure 3-5).

The distribution of SWIR active and non-active minerals is illustrated in these results. The association
of specific SWIR active and inactive minerals can help define a specific alteration zone. In this way, specific
SWIR-active assemblages can be further linked to a defined location within the porphyry system. The main
alteration styles encountered in the samples are phyllic (quartz—white mica—pyrite), potassic (k-feldspar—
biotite) and calcic-sodic (plagioclase-chlorite/actinolite and subordinate white mica). Additionally, transitions
between these alteration styles are noted. The main vein types present in the samples are B-type veins consisting
of mainly quartz or calcium sulphate with a sulphide dominant centreline and D-type late veins consisting
dominantly of sulphides and subordinately calcium sulphate. The nomenclature of the vein stage and

morphology follows the description provided by Gustafson and Hunt, 1975.

Sample DC-1 is marked by pervasive potassic alteration characterized by the presence of
K-feldspars, biotite and minor chlorite. Two main vein types are present in this sample. D-type veins consist
of sulphides and show a strong phyllic alteration halo caused by the late reaction of mineralizing hydrothermal
fluids with the host rock. B-veins consist dominantly of quartz with sulphide or sulphide and calcium sulphate

(gypsum or anhydrite) centreline.

Sample DC-2 shows a less intense potassic alteration with a transition towards sodic-calcic alteration.
The matrix is composed of feldspars, chlorite and minor amounts of biotite. Two main vein types are
encountered. These are quartz B-veins with a centreline of sulphides and calcium sulphate, and calcium
sulphate B-veins with a sulphide centreline and a transition towards D-veins. The complexity of the vein
architecture can be explained by a late opening of a B-vein and a D-vein overprint. This overprint also explains
the formation of an alteration halo of strong phyllic composition. A sodic-phyllic rock matrix hosting two main
vein-types characterizes sample DC-3. The first vein type is a D-vein with a large white mica alteration halo.
The second vein type consists predominantly of quartz, calcium sulphate and sulphides. The changing
symmetry and mineral association in these latter veins indicate the reopening of an initially present quartz or

B-vein.
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Figure 3-5. SEM-MLA mineral maps used for the validation and evaluation of the mineral mapping based on
hyperspectral scans.

3.5.2 Mineral Mapping

As a first stage of the hyperspectral data processing, endmembers are extracted using the
N-Findr algorithm. Three endmembers are considered in the present study, as they cover the strongest
variability within the alteration mineralogy (Figure 3-6). The analysis of the endmembers is performed using
a decision tree-based wavelength analysis tool for the identification of the main minerals present in the
endmembers. For white mica, for instance, three types are identified based on the minimum wavelength
position within the selected ranges: paragonitic (2180-2195 nm), intermediate (2195-2210 nm) and phengitic
(2210-2228 nm).

After applying FC-LSU for estimation of the abundance, the final mineral maps are obtained by using
the maximum abundance among the three endmembers in each pixel. Please note that in FC-LSU the
endmember abundances sum to one (Figure 3-7). The main spectrally active assemblages observed in sample
DC-1 are chlorite-white mica, white mica—chlorite and chlorite-biotite. The first two constitute alteration
selvages around the main vein types, while the latter assemblage is dominant in the rock matrix. In sample DC-
2, the main vein-related alteration assemblages are white mica and white mica—gypsum—chlorite. The matrix
in sample DC-2, as in sample DC-1, is characterized by the dominance of chlorite and biotite among the SWIR
active minerals. In sample DC-3, an aspectral endmember corresponding to the occurrence of sulphide and
quartz is mapped. The alteration selvage of these veins is dominated by white mica whereas the pervasive

alteration consists mostly of a white mica—chlorite assemblage.
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Sample DC-1 hosts two endmembers containing white mica. In the white mica—chlorite endmember,
white mica shows an intermediate composition while in the chlorite—white mica it has a phengitic composition.
The low-intensity absorption white mica endmember (called low white mica) in Sample DC-2 has a paragonitic
composition in comparison to the endmember white mica—gypsum—chlorite, where the white mica has an
intermediate character. Sample DC-3 shows an inverse relationship between the composition of the micas in
the veins and in the matrix compared to sample DC-1. The matrix-characteristic endmember here has a
phengitic composition while the vein selvage has a paragonitic one. These results were confirmed and
supported by minimum wavelength maps in the ranges of 2180-2228 nm for white mica and 22402263 for
chlorite (Appendix 3A).
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Figure 3-6. VNIR-SWIR spectra of the endmembers extracted from the three drill-core scans.
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Figure 3-7. RGB image of the drill core samples and mineral maps obtained from N-Findr, FC-LSU and
maximum abundance mapping using 3 endmembers.

3.5.3 Structural Feature Extraction

The extraction of structural features is performed on each of the endmember abundance maps obtained
by FC-LSU (Figure 3-8). For each of the samples, endmembers 1 and 2 correspond to vein alteration selvage

or vein internal composition, while endmember 3 reflects pervasive alteration.

For sample DC-1, a combination of two vein types is present. One of the endmembers shows a white
mica-dominant alteration selvage, while the other a chlorite-dominant selvage. However, in places, due to vein
reopening and compositional complexity, the endmember abundances as well as the extracted vectors show a
partial overlap of the two vein-related endmembers. This can be observed particularly in the left-hand side of
the sample.

For sample DC-2, the mineral mapping and vein extraction results show a good overlap in terms of vein
mineralogy mapping. For endmember 1, a good performance of the extraction consistent with the macroscopic
observations and the validation data is achieved. Moreover, the artefacts from mineral mapping observed in

the vicinity of the second vein type are not present here. Additionally, a distinction between the thick, sub-
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horizontal vein at the top of the image and the intersecting oblique vein is made, which was not possible in the
mineral maps. For endmember 2, due to the low intensity in the endmember abundance map, the third vein
present and mapped at the centre of the image is not extracted here with the selected parameters. Yet, with a
decrease in the sigma value or in the threshold ranges it was possible to extract this vein. However, the
drawback of decreasing the sigma value or the minimum threshold would be the risk to map noise as veins.

We therefore refrained from pursuing this further.

Sample DC-3 was chosen as an example with exceptionally thick alteration selvages exceeding one
centimetre in width. The D-vein present in this sample shows a particularly wide alteration halo of similar
composition to the quartz—anhydrite—sulphide vein. Extending the ranges for the sigma parameter would still
not allow for an accurate extraction of this vein. Here, the use of endmember 1 corresponding to the alteration
halo of both veins leads to the extraction of two features parallel to the D-vein. The vein extraction from the
abundance map of endmember 2, characterized as aspectral, leads to the detection of structural features

characteristic to the intrinsic composition of both veins.

For all three samples, endmember 3 is characteristic of the pervasive alteration. The vein extraction
should allow for the mapping of all veins based on the areas of minimum abundance of endmember 3. For
samples DC-1 and DC-2, the results show an overlap of the vein types mapped from the first 2 endmembers.
Exceptions occur particularly for sample DC-2, where some veins are very thin and the alteration halo has a
low intensity in comparison to the matrix and in relation to the compositional variability of the pervasive
alteration. The expected vein thickness to be extracted is estimated at 0.5 mm. This value, however, can vary,
as the performance of the method is highly dependent on the abundance of the SWIR active phases in the veins
or vein alteration halos. Depending on the location within the system, as well as the stage of mineralization,
the contrast between the abundance of the SWIR active phases within and in proximity to veins compared to

the matrix varies.

In addition to the use of the linear extraction tool for the extraction of veins from endmember abundance
maps, the same approach can be used for other input files such as images resulting from band math calculation
or minimum wavelength analysis. The band math (2170/2206 nm) characteristic of white mica’s distribution
for the studied samples is performed on continuum-removed spectra (Gomez et al., 2008). As only the
intermediate composition white mica is considered here, the vein extraction results (Appendix 3B) will not be

entirely consistent with the distribution of all white mica types illustrated in the endmember abundance maps.

By using the centreline of the extracted features, the azimuth of the different vein types can be evaluated
in each of the endmembers (Figure 3-9). An E-W horizontal orientation of the drill-cores is considered as
shown in Figure 3-8, for illustrative purposes. For the integration of the data into a 3D model, the orientation
of the drill-hole should be considered. The orientation and abundance of the veins are highly variable within
the three tested drill-core samples, particularly in samples DC-1 and DC-2, which were taken from the same
drill-hole at different depths. Additionally, an overlap in the orientation of the veins identified in the two vein-
related endmembers can also be observed. In sample DC-2, the overlap between the two orientations is mostly

caused by the similar dominant azimuth between the two main vein types. In sample DC-3, however, the
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overlap is due to the extraction of the inner composition of the vein from the first endmember and the extraction

of the vein alteration halo from the second endmember.
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Figure 3-8. Results of the vein extraction performed on the endmember abundance maps obtained by FC-

LSU. I = endmember abundance map, Il = extracted ridges for sigma ranging from 3 to 10 and thresholds

ranging from 98% to 92%, 111 = overlapping polygons after connecting extracted lines to their respective
edges (features detected with wider range of sigma are brighter), IV = extracted veins after merging all

polygons.

Endmember 1
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Figure 3-9. Rose diagrams illustrating the orientation of the veins in the first two endmembers of each
sample. The azimuth is calculated here based on the horizontal (E—W) layout of the drill-cores as illustrated
in Figure 3-7.
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The abundance of each vein type is quantified based on the surface percent within the samples (Table

3-3).

Table 3-3. Summary of vein extraction results (EM = endmember, BR = band ratio). The estimated density is
represented by the surface percent covered by a particular vein type extracted from the input image; for the
extracted features, bright indicates high abundance, while dark indicates low abundance.

Sample  Input Mineralogy Distribution Extracted Feature Estimated Surface

Abundance (%)

EM 1 Chlorite—white mica Vein halo Bright 22

DC-1 EM 2 White mica—chlorite Vein halo Bright 14
EM3 Biotite—chlorite Matrix Dark 23

BR White mica Vein halo Bright 18

EM 1 White mica—gypsum—chlorite Vein halo Bright 13

DC-2 EM 2 Low white mica Vein halo Bright 23
EM3 Chlorite-biotite Matrix Dark 30

BR White mica Vein halo Bright 26

EM 1 White mica Vein halo Bright 33

DC-3 EM2 Aspectral Vein halo Bright 13
EM3 White mica—chlorite Matrix Bright 11
BR White mica Vein halo Dark 145

For samples DC-1 and DC-2, endmembers 1 and 2 are representative of particular vein types. For sample
DC-3, endmember 1 is representative of the alteration halo whereas endmember 2 is characteristic of the
internal vein composition, which is aspectral, being composed predominantly of sulphides. Endmember 3, for
samples DC-1 and DC-2, refers to the rock matrix, so by mapping the minimum abundance in the image (dark
phase), the total amount of veins with a considerable thickness or distinct alteration halo are extracted. Due to
the large thickness of the alteration halo of the D-vein in Sample DC-3, for endmember 3, mainly characteristic
of pervasive alteration, the edges of the alteration halo and the small presence of chlorite with the sulphide in

the vein are extracted as linear structures.

The structural features extracted from images obtained from band ratios are characteristic of white mica
abundance. Due to the location of the samples in the potassic and sodic-calcic zones of the system, the phyllic
alteration is be dominantly related to vein halos.

3.6 Validation of Results

MLA mineral maps can be used to locally validate hyperspectral data processing results. As a first step,
the RGB images, HSI-based maximum abundance mineral maps and vein distribution maps are illustrated
together with markings of the location of the thin sections analysed by MLA on the RGB images (Figure 3-10).
For  further analysis, the MLA  mineral maps, digitised simplified MLA  maps,
HSI-based maximum abundance maps, and the vein distribution maps are presented together at the field of
view of the thin section (Figure 3-11). A slight but consistent shift between the MLA maps and HSI vein maps
can be observed for most of the samples. This shift is caused by the orientation (dip) of the vein, as around 0.5
mm of material is lost during sample preparation between the analysed surface of the drill-core and the surface
of the thin section. As most vein types are vertical and subvertical in relation to the surface of the sample, the
presence of the small shift in the location of the vein is generally 1 mm or smaller, and it does not strongly

impact the hyperspectral data classification validation procedure.
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Figure 3-10. lllustrative diagram of data validation for each of the three samples. I = RGB image of the drill
cores with marked area of the location of the SEM-MLA mineral map, Il = HSI-based maximum abundance
mineral map, Il = vein distribution maps.
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Figure 3-11. Comparison of SEM-MLA and HSI-based analyses: [—SEM-MLA mineral map at full
resolution, [I—HSI-based maximum abundance mineral map, IlI—digitised SEM-MLA map emphasizing the
main vein types, [V—HSI-based vein distribution map.
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For the three studied samples, the evaluation of the SWIR-active mineralogy is consistent with the main
minerals identified by MLA, including white mica, chlorites, biotite and calcium sulphate, here described as
gypsum. The presence of calcium sulphate in some of the MLA maps and the absence of gypsum in the mineral

maps suggests the occurrence of SWIR inactive anhydrite rather than SWIR-active gypsum.
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Based on the abundance of the different veins in each sample, several features were selected and marked
on the simplified MLA vein maps, for the evaluation of the vein extraction performance (Figure 3-12). Five
veins were selected in sample DC-1, three in sample DC-2, and three features characteristic of either vein, or

vein halos in sample DC-3.

Most of the marked features in sample DC-1 show a good correspondence between the data obtained
from MLA and the extracted structural features. The areas where 2 veins crosscut each other cause, however,
overlaps and shifts between the extracted features. This is similar in sample DC-2, where features 1 and 2 are
well extracted. Yet, one of the veins described in the MLA map (in purple) is not identified in the HSI-based
vein distribution map as distinct but rather as a mixture or overlap between two vein types. The reason for this
is the small width of the vein in relation to the spatial resolution of the hyperspectral camera (1.5 mm/pixel),
as well as its composition, intermediate between the two main veins, which were extracted. In sample DC-3, a
relatively good extraction of feature 1, representative of the sulphide vein, is observed, as well as a good overlap
of its alteration halo extent (feature 3). The thicker aspectral vein (feature 2), on the other hand, was not well

extracted from the HSI data.
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Figure 3-12. Simplified MLA mineral maps with markers on selected features for the vein width and azimuth
validation.

For numerical evaluation of the performance of the vein extraction tool, vein distribution maps and
digitised simplified MLA maps are used. For this purpose, the orientation and thickness accuracy of each
selected feature is analysed where possible (). Features 2 and 3 in sample DC-3 could not be evaluated in terms

of thickness and orientation due to their incomplete capture in the MLA mineral map.

The orientation is analysed using the average angle of the veins on different centre segments. The
average thickness calculated on the intersection of the overlap is used for the vein thickness evaluation. Up to
4.5° azimuth deviation was observed for the vein orientation between the HSI and MLA-based vein analysis.
Regarding the extracted thickness, the accuracy ranged between 65% and 95%, with a mean value of 81%, by
considering all the veins and of 85% by considering only veins of thickness higher than the spatial resolution

of the used hyperspectral sensor.
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Table 3-4. Results of vein extraction validation for selected features.

DC-1 DC-2 DC-3
Feature Azimuth Width Azimuth Width Azimuth Width
Deviation (°) Accuracy (%) Deviation (°) Accuracy Deviation (°) Accuracy (%)
(%)
F1 1.3 91 4 82 4.5 75
F2 4 95 0.5 90 - -
F3 3.7 93 0.5 92 - -
F4 0.2 67 - - - _
F5 2.5 65 - - - _

3.7 Discussion
The suggested workflow for processing of the VNIR-SWIR hyperspectral drill-core scans consists of a

sequence of endmember extraction, spectral unmixing, mineral mapping and vein extraction techniques. The
workflow is used for development of mineral maps; a suite of geomorphological analysis tools can then be

used to extract the vein distribution and architecture from endmember abundance and band ratio images.

The mapping of veins, quantification of their distribution and understanding of the dependency between
the alteration assemblage surrounding different vein-types is essential to the mapping and evaluation of
stockwork-type deposits, such as Cu porphyry type deposits. The proposed methodology is shown to provide
insight into the vein type variability, distribution and quantification within the selected samples. This
methodology has the potential to provide fast and unbiased compositional and quantitative vein information
which can become a valuable tool for a running exploration project, allowing for fast evaluation of the

distribution and abundance of vein-related and pervasive alteration assemblages.

Visual analysis of drill-core trays from the studied porphyry has shown that in the core of the system,
the degree of mineralogical variation in one drill-core tray is similar to what is observed and analysed at drill-
core sample scale. As a result, implementation of the proposed method at the scale of the drill-core tray (Figure
3-2) would be appropriate for providing a fast evaluation of the main vein and alteration styles. Even though
the three endmembers provide sharp abundance maps for both mineral mapping and vein extraction, a necessity
for more information on the composition of the alteration minerals arises. It is common that a general zonality
of the white mica and chlorite compositions is observed at deposit scale (Maydagan et al., 2018); however, in
the case of porphyry deposits, this zonation can also be observed at drill-core scale. Both white mica and
chlorite tend to be present in variable amounts within the sample, but their composition is highly dependent on
the proximity to the different vein types. In samples DC-1 and DC-2, the mica shows a more phengitic
composition, and the chlorites a rather high Fe: Mg ratio in the proximity of the veins, while in sample DC-3,
an inverse relationship is observed. Although the location of the absorption minima for white mica is likely to
be shifted to higher wavelengths when chlorite is abundant, a strong heterogeneity in white mica chemistry
was observed in SEM spectra. The dependency of the white mica and chlorite chemistry to the stage of the

mineralization or to the composition of the pervasive alteration is still to be researched.

For vein extraction, the results appear promising, in terms of both vein thickness and orientation
estimation, considering the high degree of automation of the method. By using different values of the sigma

filter for each sample a more controlled extraction of the veins could be achieved. However, using thresholds
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for vein thickness is difficult when the alteration halo around veins shows a diffuse character and gradual
transition into the (less altered) host rock. In such cases, the choice in threshold remains rather subjective.

Furthermore, features which do not represent veins but rather clusters in the matrix may also be included.

Due to the difficulty in the selection of the number of endmembers in an industry-scale operation, the
extraction of veins could also be achieved from minimum wavelength maps or band ratio images characteristic
of a specific mineral or mineral assemblages such as hydrated calcium sulphate in any pervasive alteration
zone, white mica in the potassic and sodic-calcic alteration zones, or chlorite in the phyllic zone. The high
abundance-based extraction of these features could lead to the mapping of selected veins. A positive
performance for this purpose was obvious for sample DC-1 where some of the thinner veins, which are not
extracted from endmember abundance maps, were recognized in the band ratio image illustrative of white mica
abundance. Another approach could be the mapping of the low abundance of hydrated phases using the
abundance of the water feature around either 1400 nm or 1900 nm. In this manner, wide sulphide veins
presenting an alteration halo would be extracted. Such an example can be seen also for the band ratio for sample
DC-3 where the sulphide and sulphide-quartz veins are extracted.

3.8 Conclusions

In this contribution, a novel methodology for extracting and complementing mineralogical and structural
features from hyperspectral drill-core scans is introduced. The workflow consists of three main steps: (1)
endmember extraction and spectral unmixing, followed by (2) mineral mapping, and (3) vein extraction. The
N-Findr algorithm is used on hyperspectral scans to extract potential endmembers. Fully constrained linear
spectral unmixing is then performed in order to obtain mineral abundance maps. These maps are further used
for mineral mapping by the analysis of the maximum abundance in each pixel. Finally, potential veins are
identified in abundance maps using an approach based on Steger’s detector of curvilinear features, which
combines ridge and edge detection. This approach allows for the extraction of veins as vectorised lines or

polygons. The proposed methodology shows very good performance with regard to:

o Distinguishing between pervasive and vein-related alteration mineralogy through mineral maps and vein
distribution maps;

e  Mapping different vein types based on their alteration halo or intrinsic composition when minerals such as
gypsum or carbonates are part of the vein;

e Vein density estimation based on their surface abundance;

o Evaluation of the orientation (azimuth) of different vein types;

e The degree of automation in comparison with existent techniques;

e High potential for the compositional and numerical data to be integrated in a 3D model in ongoing
exploration campaigns;

There is a strong link between the performance of the vein extraction tool, the chosen number of
endmembers, and the performance of the endmember extraction algorithm. With an increase in the selected
number of endmembers, a higher resolution is added to the mineralogical variation within the samples.

However, this will lead to abundance maps of reduced sharpness, and therefore will negatively influence the
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performance of the vein extraction algorithm. Further work is necessary for the development of algorithms for

the estimation of the virtual dimensionality of the data and therefore a consistent number of endmembers.

Appendix 3A

The analysis of the white mica composition and abundance is performed in the wavelength range of
2175 and 2235 nm and for chlorites between 2235 and 2273 nm on continuum removed spectral subsamples
in the mentioned ranges. However, only the ranges with a minimum representative of mica (2180-2228 nm)
and chlorite (2240-2263 nm) are illustrated (Figure 3-13), lower and higher wavelengths of minima being
masked. A variation in the maximum feature depth between the samples is present for both chlorite and white
mica and therefore the different depths are shown for each drill-core. For the first two samples it can be
observed that an intermediate phengitic (higher wavelength) composition of the white mica and an intermediate
to iron-rich composition of the chlorites are dominant surrounding the veins, while the pervasive alteration is
characterized by a low abundance of the mica of paragonitic composition and a high abundance of chlorites
and biotite of magnesian composition. These properties are inversed in the third sample. For the thinner
sulphide vein where the white mica has a paragonitic composition next to the vein and an intermediate
composition in the halo with phengitic spots. The chlorite composition for this vein halo is intermediate towards
magnesian. In the matrix the chlorite shows a strong ferric composition. The second vein, however, exhibits a
dominance of the intermediate mica and intermediate to ferric chlorites. The spectral analyses results obtained

from minimum wavelength are overall consistent with the analyses of the endmembers spectral features.
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Figure 3-13. Minimum wavelength maps for white mica (left) and chlorites (right) for the three analysed
samples (WM = white micas, Chl = chlorites).
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Appendix 3B
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Figure 3-14. Results of the vein extraction performed on binary images resulting from a band math
calculation representative of the abundance of white mica: 2170/2206. I = endmember abundance map, Il =
extracted ridges for sigma ranging from 3 to 10 and thresholds ranging from 98% to 92%, IIl = overlapping

polygons after connecting extracted lines to their respective edges (features detected with wider range of
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Chapter 4 Hyperspectral imaging for quasi-quantitative mineralogical
studies

Preface

Quantitative mineralogical data becomes essential with the evolution of an exploration process. Most of
the available techniques are either applied on small samples only (such as thin sections or hand specimens) or
on homogenized and granulated bulk samples that lack textural and spatial information. Hyperspectral imaging
can serve as a tool to provide extensive imaging data over entire boreholes, however, most standard spectral
analysis routines cannot deliver a quantitative mineralogical assessment. To overcome the limitations related
to both analytical approaches, within this chapter a methodology for fusing high resolution mineralogical and
hyperspectral data is proposed for upscaling the quantitative mineralogical information from thin section to
drill-core scale. In addition, several machine learning regression algorithms are evaluated both visually and
numerically for their performance for mineralogical applications. Mineral abundance maps and modal
mineralogy estimates for spectrally diagnostic minerals in the short-wave infrared spectrum is the one
important outcome of this study, complemented by quasi-quantitative estimates of non-diagnostic minerals and
mineral groups based on their subtle association with the spectrally diagnostic phases. Further mineralogical
parameters can be defined from these datasets such as an adapted mineral association calculation at the coarse
resolution of the hyperspectral data. While only presented here for a limited number of samples, the

methodology can be applied at deposit scale. They will contribute to exploration and mining projects through:

(1) Understanding of the modal mineralogy related to different domains within an ore deposit
(2) Support in metallurgical design based on modal mineralogy and mineral association

(3) Definition of geometallurgical domains.

Preliminary results of this work were firstly presented at the EGU General Assembly [1] in 2019 and
the complete content of this chapter was published in the journal Remote Sensing [2] under the title “Drill-
Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data”.
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Abstract

Due to the extensive drilling performed every year in exploration campaigns for the discovery and evaluation
of ore deposits, drill-core mapping is becoming an essential step. While valuable mineralogical information is
extracted during core logging by on-site geologists, the process is time consuming and dependent on the
observer and individual background. Hyperspectral short-wave infrared (SWIR) data is used in the mining
industry as a tool to complement traditional logging techniques and to provide a rapid and non-invasive
analytical method for mineralogical characterization. Additionally, Scanning Electron Microscopy-based
image analyses using a Mineral Liberation Analyser (SEM-MLA) provide exhaustive high-resolution
mineralogical maps, but can only be performed on small areas of the drill-cores. We propose to use machine
learning algorithms to combine the two data types and upscale the quantitative SEM-MLA mineralogical data
to drill-core scale. This way, quasi-quantitative maps over entire drill-core samples are obtained. Our upscaling
approach increases result transparency and reproducibility by employing physical-based data acquisition
(hyperspectral imaging) combined with mathematical models (machine learning). The procedure is tested on 5
drill-core samples with varying training data using random forests, support vector machines and neural network
regression models. The obtained mineral abundance maps are further used for the extraction of mineralogical

parameters such as mineral association.
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4.1 Introduction
Exploration campaigns are fundamental steps towards the discovery and evaluation of mineral deposits

required to fulfil the global demand of raw materials. Drilling is an essential part of exploration surveys and
consists of the extraction of long cylindrical core samples from underground areas associated with relevant
exploration potential. Traditionally, drill-cores are visually analysed by on-site geologists, who document
characteristics such as mineralization type, lithology, structures and alteration types (Gandhi et al., 2016).

Subsequently, core samples are used for laboratory-based geochemical and mineralogical measurements to
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complement core logging results. While bulk geochemical analyses are often available for entire boreholes,
quantitative mineralogical information is usually restricted to selected representative regions of interest.
Standard quantitative analyses include X-Ray diffraction (XRD) applied on powder samples (Lindholm, 1987)
or Scanning Electron Microscopy (SEM) based image analyses techniques (Fandrich et al., 2007) applied on
polished thin sections prepared from areas of interest in the drill-cores. Additionally, qualitative mineralogical
analyses are performed through optical microscopy on thin sections. These laboratory techniques provide
valuable mineralogical information and derived mineralogical and metallurgical parameters, but they are of
small scale, highly time-consuming, destructive, and rather expensive. This represents a challenge since

thousands of meters of core are acquired during exploration campaigns.

Hyperspectral imaging is currently being used in the mining and exploration industries as an alternative
tool to complement traditional logging techniques and to provide a rapid and non-invasive analytical method
to obtain mineralogical information (Calvin and Pace, 2016; Contreras Acosta et al., 2019; Kirsch et al., 2018;
Kruse, 1996). Typical hyperspectral core imaging systems can deliver data from a whole core tray (which holds
approximately 5 m of core) in a matter of seconds. Available sensors cover a wide range of the electromagnetic
spectrum and record data in several hundreds of contiguous spectral bands. Minerals have different spectral
responses in specific portions of the electromagnetic spectrum. These responses are influenced by the
vibrational and electronic absorption processes dependent on the bonds between atoms and electron orbitals
(Clark, 1999). Sensors covering the visible to near-infrared (VNIR) and short-wave infrared (SWIR) are
commonly used to identify and estimate the relative abundance of minerals such as phyllosilicates, amphiboles,

carbonates, iron oxides and hydroxides as well as sulphates (Pontual et al., 1997).

Because of the increasing interest in hyperspectral data in the raw materials industry, with a wealth of
hyperspectral data becoming available, the development of methods to effectively analyse these data is
required. Traditional mapping methods include the use of spectral reference libraries (e.g., USGS spectral
library) for mineral identification and mapping on hyperspectral imagery (Huntington et al., 2006; Mauger et
al., 2007). Slightly more automatic approaches, such as band ratios, or wavelength parameters such as position,
depth and width of the absorption features are also used to map the distribution and relative abundance of
specific minerals (Mathieu et al., 2017; Roache et al., 2011; Tappert et al., 2011). One of the most common
procedures makes use of some of available tools in a software called Environment for Visualizing Images
(ENVI, Exelis Visual Information Solutions, Boulder, Colorado). Such tools comprise endmember extraction,
identification of the minerals using the Spectral Analysis or Material Identification by comparison to a specific
library in the software (e.g., in ENVI) or online reference (e.g., USGS), and finally the mineral mapping task
using similarity measure algorithms or determination of partial abundances using unmixing algorithms (Calvin

and Pace, 2016; Kratt et al., 2010; Littlefield et al., 2012).

Although these approaches may produce good results, they require continuous expert input and thus,
they tend to be time-consuming and difficult to automate for large dataset analysis. More importantly, the
performance of available unmixing algorithms highly relies on the determination of the number of end-
members and the selection of their representative spectra. In drill-core hyperspectral data, highly mixed pixels
of hardly pure mineral associations represent a challenge. Methods such as unmixing, band ratios and minimum

wavelength analysis can only provide mineral abundances for spectrally diagnostic phases. Additionally, due
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to the nature of the hyperspectral data and the spatial resolution allowed by commercially available sensors,
the estimation of important mineralogical parameters in the characterization of complex ores (e.g., mineral

association), is currently challenging.

We propose a novel machine learning approach to estimate mineral quantities in drill-core hyperspectral
data. The procedure comprises four steps: 1) drill-core hyperspectral scanning (VNIR —SWIR), 2) computing
mineral abundances in a small but representative area of a drill-core by using high-resolution mineralogical
analyses (e.g., SEM-based image analyses using a Mineral Liberation Analyser), 3) linking the mineral
abundances in this small area to their corresponding spectra by a multivariate regression model, and 4)
estimating mineral abundances for the whole drill-core hyperspectral data by using the learned model. The
multivariate regression problem in the proposed scheme is solved using three algorithms: random forest (RF),
support vector machines (SVM) and feedforward artificial neural networks (FF-ANN). The proposed
procedure allows the abundance estimation of the main mineral groups using their spectral characteristics
(SWIR active) and using those SWIR active minerals additionally as proxies for the SWIR non-active minerals
or mineral groups such as quartz, feldspar and sulphide. The obtained mineral abundance mapping results can
be used for the calculation of additional mineralogical parameters, relevant to exploration and mining projects.
As an example, the concept of mineral association at hyperspectral pixel scale based on relative abundances is

introduced in the current study.
4.2 Data Acquisition
4.2.1  Hyperspectral Data

The hyperspectral data used in this study were acquired from unpolished halves of diamond drilling core
samples with a SisuROCK drill-core scanner equipped with an AisaFENIX hyperspectral sensor (Spectral
Imaging Ltd., Oulu, Finland). The scanner is a fully automatic hyperspectral imaging workstation which
employs a tray table which carries the drill-core trays or samples under the field-of-view of the spectrometer.
The AisaFENIX camera implements two sensors to cover the VNIR and SWIR regions of the electromagnetic

spectrum. The sensor specifications and acquisition settings are presented in Table 4-1.

Table 4-1 AisaFENIX sensor specification and setup for hyperspectral data acquisition.

VNIR 380-970 nm . . VNIR 15 ms
Wavelength Range SWIR 970-2500 nm Integration Time SWIR 4 ms
Sampling Distance ;’\I)\\I/?; ;; IrllrrE Spatial Binning ;/\I)\\I[il;?
Number of Bands 450 Frame Rate 15 Hz
Samples 384 Scanning Speed 25.06 mm/s
Spatial Resolution 1.5 mm/pixel Field of View (FOV) 32.3°
Detector CMOS (VNIR) Spectral Binning VNIR 4

Stirling cooled MCT (SWIR) SWIR 1

The conversion from radiance to reflectance of the hyperspectral data was performed within the
acquisition software (LUMO Scanner version 2018-5, Spectral Imaging Ltd., Oulu, Finland) using PTFE
reference panels (>99% VNIR and >95% SWIR). To correct the sensor-specific optical distortions (i.e., fish-
eye and slit-bending effects on the images) and the spatial shift between the VNIR and SWIR sensors, the

toolbox MEPHySTo (Jakob et al., 2017) was used. To avoid bands with little or no coherent information, the
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data were spectrally resampled to 480—2500 nm by removing the first 30 bands. The Savitzky—Golay filter
was applied to decrease noise while preserving spectral features (Ruffin and King, 1999). Principal component
analysis (PCA) (Rodarmel and Shan, 2002) was performed on the hyperspectral dataset for data dimensionality

reduction and de-correlation while preserving 99.9% of the information.
4.2.2 Scanning Electron Microscopy-Based Mineral Liberation Analysis.

Regions considered representative based on visual observations for the mineralogical variation within
the drill-core samples were cut and prepared into polished thin sections. The preparation process consisted of
grinding and polishing the sample surface followed by coating with a thin carbon layer to avoid surface
charging during data acquisition. The grinding and polishing led to the removal of around 300 pm of material
between the surface analysed with the hyperspectral sensor and the surface subjected to the high-resolution
mineralogical analysis. Considering the sample morphology and orientation of structural features the

mineralogical variation is considered negligible for the encountered shift.

The quantitative mineralogical data were acquired from the thin sections using an automated approach.
The analyses were carried out using Scanning Electron Microscope (SEM)-based Mineral Liberation Analysis
(MLA) (Fandrich et al., 2007; Kern et al., 2018b). For this, a FEI Quanta 650 F field emission SEM instrument
(FEL Hillsboro, OR, USA), equipped with two Bruker Quantax X-Flash 5030 energy dispersive X-ray (EDX)
detectors (Bruker, Billerica, MA, USA) and the MLA Suite software package (version 3.1.4.686, FEI,
Hillsboro, OR, USA) were used. The grain-based X-ray mapping (GXMAP) mode was used to collect the
mineralogical information as follows: the MLA software collects the back-scattered electron images (BSE) and
uses them to effectively distinguish individual mineral grain boundaries based on the grey scale variations. The
grey scale values of the BSE images are proportional to the average atomic density of the mineral grains and
are used to provide a first mineralogical segmentation. The identification of minerals is performed based on X-
ray analysis by placing a closely-spaced grid on a particle in the BSE image and collecting the X-ray data at
the defined points of the grid. When dealing with fine grained material of lower size than the placed grid, the
GXMAP mode allows us to collect additional spectra where variations in the BSE image are observed in
between the measured grid points. Finally, the mineral is determined by matching the resultant spectrum of
energy peaks with a reference library of X-ray spectra provided by the instrument company (FEI, Hillsboro,
OR, USA), or from sample extracted spectra analysed based on peak locations and intensities (Gu, 2003).

Specifications of the operating conditions used in this study are shown in Table 4-2.

Table 4-2 Operating conditions and parameters used for the acquisition of high-resolution SEM-MLA
mineralogical data.

SEM Settings MLA Settings
Acceleration voltage (kV) 25 Pixel size (um) 3
Probe current (nA) 10 Step size (pixels) 6%x6
Frame width (pixels) 1500 Acquisition time (ms) 5

Minimum grain size

BSE calibration (Au) 254 .
(pixels)
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For classification, a mineral list was developed using the mineral reference editor in online mode. The
resulting mineral list contained a total of 59 entries. However, for the integration of the HSI with SEM-MLA,
further grouping was performed in this paper, such as considering all feldspars in one class, all white micas in
another or, all sulphides, sulphosalts and gold in another. Accessory minerals were included in the final
grouping labelled as “others”. As a result, ten main mineral groups are considered: white mica (WM), biotite
(Bt), chlorite (Chl), amphibole (Amp), carbonate (Cb), gypsum (Gp), feldspar (Fsp), quartz (Qz), sulphide (Sp)
and other.

4.3 Data Description

For testing the proposed methodology, 5 samples, labelled DC-1 to DC-5, from different locations
within the Bolcana porphyry copper-gold system (Blannin et al., 2019; Ivascanu et al., 2019; Milu et al., 2003;
Laura Tusa et al., 2019) were analysed. Hyperspectral images were acquired on the halves cores after which
thin sections were prepared from selected regions of interest and analysed by SEM-MLA. Each region is further
labelled as a, b and/or ¢ starting from the left-hand side of the drill-core sample as illustrated in Figure 4-1. The
ore minerals in the studied system are chalcopyrite, bornite, covellite, chalcocite and gold. Gold is dominantly
present as fine inclusions in pyrite and chalcopyrite. The main encountered alteration types are potassic,
sodic—calcic, phyllic and argillic. In the studied samples the first three are present, some samples presenting
a transitional character and are described in this section. Please see Sillitoe, (2010) for details on the

mineralogical characteristics of the alteration styles typically associated with porphyry Cu-Au systems.

While the summary of the results for each sample is presented in the results section, an emphasis is made
on DC-1 in order to illustrate all the potential information that can be extracted using the proposed
methodology. Therefore, a more detailed description of this sample is available in the current section. Sample
DC-1 consists of a diorite porphyry. Hydrothermal alteration in this sample appears transitional between
potassic, represented by the presence of biotite and potassic feldspar and sodic-calcic characterized by the
plagioclase-chlorite assemblage. Chlorite is more abundant than biotite in the first two thin sections, “a” and
“b”. The third thin section, though, due to the lower vein density and implicit associated alteration presents

significant amounts of biotite disseminated as well as in clusters in the matrix. Plagioclase feldspar is dominant

in all three thin sections, near the veins however, an increase in potassic feldspar is observed.

[3¥S 1)

Thin section “a” of sample DC-1 captures three main vein types: an oblique early quartz vein which
exhibits a low intensity white mica alteration halo likely associated with a younger cross-cutting gypsum vein
that has a sulphide centerline and a wide white mica-chlorite alteration halo (top). The alteration halo here is
mica-dominant in the proximity of the vein and chlorite-dominant towards its edges. The third vein present in
section “a” consists of quartz with a gypsum centerline and a spotty, low intensity white mica alteration halo
(bottom). Thin section “b” captures three main vein types as well: two sub-vertical veins consist of variable
ratios of gypsum and quartz and are surrounded by a strong white mica low-chlorite alteration halo.
Compositionally, these veins appear to be a mixture between the first and third veins mentioned for thin section
“a”; they have, however, a different morphology. In proximity to sub-horizontal veinlets in the lower half of
the thin section, an increase in the pyrite and chlorite content is observed. The two sub-horizontal veinlets show
strong similarity with the horizontal veins in the first thin section. The alteration intensity surrounding the sub-

horizontal veinlets appears to be related to complex interactions with pre-existing veinlets in this area of section

48



Hyperspectral drill-core scanning in geometallurgy

“b”. Thin section “c” hosts several fine veinlets, of highest width, the two cross-cutting ones near the top of
the thin section. The veinlets consist of variable amounts of quartz, gypsum, pyrite and white mica and present
a white mica and chlorite alteration halo. Similar to the subvertical veins in thin section “b” these veins appear
to have a composition intermediate between the horizontal veins in thin section “a”. Unlike the two veins in

thin section “b” however, the extent of the alteration halo is much lower.

a b C

[ IWhite mica  [JlBiotite B Chlorite Bl Amphibole [ ]Carbonate
B Gypsum Il Feldspar [ ]Quartz [ ISulphide [ JOther

Figure 4-1 RGB photograph of the analysed drill-cores (labelled on the left-hand side from DC-1 to DC-5)
with overlain high-resolution mineral maps (labelled a, b and c) obtained by SEM-MLA.

Sample DC-2 is marked by pervasive potassic alteration characterized by the presence of K-feldspar,
biotite and minor chlorite. Two main vein types are present in this sample: veins hosting dominantly sulphide
which show a strong phyllic alteration halo caused by the late reaction of mineralizing hydrothermal fluids

with the host rock. The second vein type comprises dominantly quartz with sulphide or with sulphide-calcium
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sulphate (gypsum or anhydrite) centreline. Additional veins of varying composition are present in the sample
(left-hand side as illustrated in Figure 4-1). They appear to be the result of complex reopening and cross-cutting

of the previously described veins.

A sodic-phyllic rock matrix hosting two main vein-types characterizes sample DC-3. The first vein
comprises of sulphide and presents a large white mica alteration halo. The second vein type consists
predominantly of quartz, calcium sulphate and sulphide. The changing symmetry and mineral association in

these latter veins indicate the reopening of an initially present quartz vein.

Sample DC-4 is characterized by the presence of intense phyllic alteration in the matrix related to the
thick pyrite-quartz-gypsum vein cross-cutting the sample. Additional fine veinlets comprising mostly quartz

and pyrite are cutting the mica-rich matrix.

The matrix in sample DC-5 consists of dominantly feldspar and subordinately white mica. Three main
vein types can be observed in the samples: a sulphide dominant vein with a broad white mica alteration halo,

quartz veinlets and carbonate iron-oxide veins which show low or absent alteration halos.

For the understanding of the modal composition of the available thin sections, the abundances of the
minerals or mineral groups for all the analysed thin sections are illustrated in the bar charts in Figure 4-2 (left).
For most samples, quartz and feldspar represent the main rock-forming minerals. There is, however, a variation
in the extent of alteration of feldspar to white mica ranging from low (DC-2a) to high (DC-4). In most of the
analysed samples, the amphibole is to a large extent altered to chlorite and/or biotite. Biotite is only present in
significant amounts in sample DC-2 and DC-1 “c”. The variation of the quartz, carbonate and gypsum contents
is related to the surface abundance of the veins and veinlets filled mostly by these three minerals. While quartz
and gypsum are present in significant amounts in all thin sections, carbonate is mainly represented in sample
DC-5. The class “sulphide” comprises mainly pyrite, chalcopyrite, bornite, chalcocite and covellite but minor
amounts of native gold hosted as inclusions in pyrite and chalcopyrite is also considered. While pyrite is not
an ore mineral by itself, it frequently represents the host of micron-size native gold inclusions. The sulphide
content in the thin sections ranges from around 1 area % in DC-5b to almost 30 area % in DC-4b. The main
target being the quantification and understanding of the distribution of sulphide minerals within the presented

samples, their mineral association is also analysed and presented in the bar chart in Figure 4-2 (right).

While an influence of the modal mineralogy can be observed on the mineral association, a strong
increase in the white mica, chlorite, biotite, carbonate and gypsum can be seen. This is the result of the
distribution of these minerals within or surrounding the veins also hosting the bulk of sulphides. The listed
gangue minerals, unlike the sulphide, show distinct absorption features in the VNIR-SWIR region of the

electromagnetic spectrum and may, therefore, be used as proxies for the distribution of the ore minerals.

While an influence of the modal mineralogy can be observed on the mineral association, a strong
increase in the white mica, chlorite, biotite, carbonate and gypsum can be seen. This is the result of the
distribution of these minerals within or surrounding the veins also hosting the bulk of sulphides. The listed
gangue minerals, unlike the sulphide, show distinct absorption features in the VNIR-SWIR region of the

electromagnetic spectrum and may, therefore, be used as proxies for the distribution of the ore minerals.
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Figure 4-2 Modal mineralogy and mineral association of analysed thin sections illustrated through mineral
maps in Figure 4-1. The labels of each sample and thin section are illustrated between the two bar charts.
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4.4 Methodological Framework
4.4.1 HSI—SEM-MLA Data Integration

For the proposed approach, the SEM-MLA data is upscaled by adopting a re-sampling procedure. The
two-dimensional SEM-MLA mineral map with high spatial resolution is transformed to a three-dimensional
mineral abundance map with the lower spatial resolution of the hyperspectral data (Contreras Acosta et al.,
2019). The third dimension consists of the relative abundance of each mineral present in each SEM-MLA map
re-sampled to the hyperspectral pixel size (Figure 4-3). Note that a co-registration stage is needed after the re-
sampling of the SEM-MLA data. Following Acosta et al., 2019, the structural features, such as veins, the
mineral composition, and spectral responses are used to find suitable tie points. As a result of the co-registration
each pixel where the SEM-MLA data is available is characterised by two vectors: the hyperspectral feature
vector Xi of dimension d (i.e., the number of bands in the hyperspectral data) or r (number of extracted features)
and a mineral abundance vector Yi containing the corresponding fractional abundances of the minerals

identified by SEM-MLA.

Once the hyperspectral and SEM-MLA data are co-registered, they are divided into training and testing.
For this procedure the following approach is adopted:

Using 50% randomly selected pixels from all thin section regions within one drill-core sample for
training, the remaining drill-core hyperspectral data for testing. The validation is performed using the remaining

50% data points from the MLA regions.
Using 1 thin section for training and the second for testing and validation for all drill-core samples.

For DC-1, where 3 thin sections are available, an additional test is performed using 2 thin sections for

training and the last for testing and validation.
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As can be seen from the main flowchart, shown in Figure 4-4, the proposed workflow is carried out in

three main phases. In the training phase, different regression models (i.e., RF, SVM and FF-ANN) are trained

following any of the three approaches mentioned before. In the prediction phase, the learned models are used

to predict the mineral abundances on the entire drill-core samples. Finally, in the validation phase, the root

mean square error (RMSE) (Draper et al., 2013) is calculated on the remaining SEM-MLA test data to assess

the performance of the abundance mapping.

Hyperspectral Data

Reflectance

Reflectance

Wavelength (nm)

Wavelength (nm)

Reflectance

Wavelength (nm)

Reflectance

Wavelength (nm)

SEM-MLA Data

Mineral Abundances = [5,20,0]

White mica
Chlorite
Feldspar

Figure 4-3 Graphical illustration of the co-registration and resampling process for the SEM-MLA to
hyperspectral data. In red, the size of a hyperspectral pixel characterized by a mineral mixture in the SEM-
MLA data and a spectrum in the hyperspectral data. The colour of the spectra (left) is given by the mixture
ratio of the minerals illustrated in the SEM-MLA simplified example (right).

52

Prediction

Validation

Training

...............................................................
K

Hyperspectral
Training Data

SEM-MLA
Quantitative
Training Data

Regression

Model

.................

Hyperspectral
Test Data

Learned
Model

..............................................................................................

Mineral
Abundances

..............

..............................................................................................

SEM-MLA
Quantitative
Validation Data

Performance
evaluation

........

Figure 4-4 Flowchart illustrating the three main stages of the proposed workflow.
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Two analysis types are further performed on the resulting mineral abundance data. For each validation
set, the modal mineralogy is calculated based on the average abundance of each mineral phase in each pixel
and compared to the modal mineralogy data obtained from SEM-MLA. Additionally, the concept of mineral
association is adapted from the automated mineralogy field (Figure 4-2). There, the mineral association is
calculated by counting the neighbouring pixels to a specific target mineral. Slight changes in the approach have
to be made when the spatial resolution of the hyperspectral data is used. The association of the main target
group, i.e., sulphide, is a fundamental aspect in the present geological study. For each hyperspectral pixel the
estimated mineral abundance of each mineral phase, except of the target, is normalized by the abundance of
sulphide in the respective pixel. While this approach does not directly indicate the grain contact between the
two minerals (or rather mineral groups) it can be seen as the probability of their association and occurrence at
the scale of hyperspectral data resolution. The mineral association is calculated on the ground truth or validation

data as well as on the estimated abundances calculated with the three proposed regression models.
4.4.2 Random Forest Regression

Random forests (RFs) are currently one of the most popular supervised learning techniques for
classification and regression problems (Ghamisi et al., 2017; Rodriguez-Galiano et al., 2015; Waske et al.,
2009). RFs are ensemble-based algorithms in which several models (trees) are running in parallel with
randomized sampling. The individual results of these trees are then combined into the final prediction by an
averaging process (Breiman, 2001). For regression purposes, the trees are given numerical values as predictors
whereas in classification problems they are fed class labels. The RF technique is desirable in cases where only

few training samples are available, as is usually the case in drill-core hyperspectral imaging.
4.4.3  Support Vector Regression

The aim of support vector machines (SVMs) is to search for hyperplane decision boundaries to define a
linear prediction model (Cortes and Vapnik, 2001; Vapnik, 1999). To locate and orientate the hyperplane, only
the samples that are close to the hyperplane, so-called support vectors, have an influence. Therefore, SVMs
perform well when a limited number of well-chosen training samples are available (Cortes and Vapnik, 2001;
Ghamisi et al., 2017; Vapnik, 1999). This model can be used for classification or regression tasks. SVMs were
originally proposed to solve linear problems. However, decision boundaries are often non-linear. To cope with
the non-linearity problem, the kernel-based SVMs were introduced to project the data points into a higher

dimensional feature space where the samples are linearly separable (Ghamisi et al., 2017).
4.4.4  Artificial Neural Network Regression

Artificial neural networks have become some of the most popular methods in regression and
classification because of their success in capturing the non-linearity relation between independent and
dependent variables (Specht, 1991). We chose a so-called “feedforward neural network” (FF-ANN)
(Rumelhart and Hintont, 1986), as it fits the requirements of the problem at hand. In a feedforward network,
each neuron in one layer is directly connected to neurons of the next layer with no cycle between layers. The

applied neural network consists of an input layer, one hidden layer, and an output layer. Each neuron of a layer
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is computed by the product sum of the neurons of the previous layers plus a bias for the neuron (Ghamisi et

al., 2017). A sigmoid function is applied for activation.

4.5 Experimental Results
In order to showcase the suitability of the proposed approach, the first drill-core sample presented in the

data section (DC-1) is used. The remaining four samples have been analysed following the same procedure. A
summary of the results is presented in this section followed by a complete illustration of the results in Appendix

4A. Additionally, all numerical results are presented in the Electronic Supplementary Materials (Table S1).

From the entire drill-core sample (DC-1), the VNIR-SWIR hyperspectral data of size 33 by 189 pixels.
The 420 spectral bands cover wavelengths from 480 nm to 2500 nm. The hyperspectral data is subjected to
PCA leading to the reduction in dimensionality to 13 principal components in the third dimension. Moreover,
the high-resolution mineralogical data obtained from representative regions (thin sections “a”, “b” and “c”)
were used. In the thin section regions of the drill-core sample, each hyperspectral pixel covers an area of 1.5
by 1.5 mm? which is characterized by about 250,000 pixels in the SEM-MLA image. The fractional
abundances were computed by considering the frequency of the identified minerals in the corresponding region
of the SEM-MLA image for each hyperspectral pixel. To have more consistent results, we considered a
threshold of 250,000 pixels (i.e., a hyperspectral pixel size) in each thin section region, for discarding minerals
which have a very low frequency in the original SEM-MLA image. Taking this factor into consideration, the
following six mineral classes remained: white mica (WM), biotite (Bt), chlorite (Chl), amphibole (Amp),
gypsum (Gp), feldspar (Fsp), quartz (Qz), sulphide including sulphosalts and native gold (SP); less abundant
minerals were grouped as “other”. Because of the low abundance of biotite and accessory minerals in thin
sections “a” and “b”, the number of mineral classes considered was decreased accordingly. The test setups

presented in the methodological framework section are used.

Cross-validation has been used to find the optimal parameters in order to train three models by internally
resampling the training data. The main tested parameter ranges for each algorithm are presented in Table 4-3.
The setups were chosen according to the lowest associated root-mean-square error (RMSE) based on cross-

validation within 30 averaged iterations.

Table 4-3 Parameters and parameter ranges for the choice in optimum setup of the three tested algorithms.

RF SVM FF-ANN
B . . . Training function — Scaled conjugate
Nb. of trees — 500 : Kernel - Radial Basis Function gradient backpropagation
600 Cost—2:05:4 Nb. of hidden layers — 1
Sigma—5:0.5:7 Nb. of neurons — 30 : 10 : 80

4.5.1 Mineral Abundance and Association Mapping

With the first experimental setup, presented in the methodological framework, 50% randomly
distributed samples of the available thin section regions were used to train the regression models the mineral

abundances estimation in the entire drill-core sample (Figure 4-5).

Based on the visual analysis of the core and results analysis, RF and FF-ANN show better results in

estimating the abundance of minerals with local distribution and small concentrations. With respect to matrix
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mineralogy, while biotite is well estimated by SVM in comparison with RF and FF-ANN, other major
components of the matrix such as feldspar present a rather poor estimation. Similar performances of the

algorithms can be observed for vein mineral components such as gypsum and sulphide.

Figure 4-5 Drill-core mineral abundance maps of white mica (WM), biotite (Bt), chlorite (Chl), amphibole
(Amp), gypsum (Gp), feldspar (Fsp), quartz (Qz), sulphide (SP) and accessory minerals (Other) using
randomly distributed 50% of the available ground truth data for training for random forest (RF), support
vector machine (SVM) and feed-forward neural network (FF-ANN) regressions.

With regards to the samples DC-2 (Figure 4-10), DC-3 (Figure 4-12), DC-4 (Figure 4-14) and DC-5
(Figure 4-16), using 50% of the available ground truth data for training, RF and FF-ANN show good, similar
performances, while SVM shows limitations specifically in transitional areas between veins and matrix.
Among the SWIR-diagnostic minerals, white mica, biotite and carbonate appear well mapped in all the
samples, chlorite is slightly underestimated in samples DC-2 and DC-3 and gypsum is overestimated in sample
DC-5. Among the SWIR non-diagnostic minerals, quartz shows the highest mapping inconsistencies between
vein and matrix, particularly for samples DC-4 and DC-5. Sulphide, however, appears to be well mapped in

most areas of the samples.

The quantitative evaluation of the mineral abundance mapping through the calculation of the RMSE
supports the visual observations (Table 4-4). All three tested algorithms present low RMSEs and prove suitable
to be used for mineral abundance mapping purposes. RF shows the lowest overall RMSE of 0.07, followed by
FF-ANN with 0.08 and SVM with 0.1. Regarding the per class RMSE, RF and FF-ANN show similar results
with the largest error associated with quartz, which can be the result of the lack of diagnostic absorption features
in the VNIR-SWIR regions of the electromagnetic spectrum. SVM on the other hand shows larger per class
errors for feldspar together with an increase in the error on white mica distribution. This can be explained by a
misclassification between the two mineral groups. The mineral association of the sulphide in each pixel was

calculated from the results of the mineral abundance mapping. Based on this calculation an equivalent overall
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performance of the methods was obtained (Table 4-5). For each of the methods, the error for the association of

sulphide with feldspar is the largest.

Table 4-4 Evaluation of the three tested methods for the mineral abundance mapping of DC-1 through
overall RMSE and per class RMSE values.

RMSE per Class
Method  RMSE 505 Cml_Amp Gp _ Fsp __Qz _ SP__ Other
RF 007 006 006 006 006 006 005 008 006 005
SVM 010 012 003 005 00l 012 021 012 004 002
NN 0.08 006 006 007 006 006 007 009 007 007

Table 4-5 Evaluation of the three tested methods for the mineral association mapping of DC-1 through
overall RMSE and per class RMSE values.

RMSE per Class
Method — RMSE WM Bt Chl Amp Gp Fsp Qz Other
RF 0.05 0.05 0.00 0.01 0.00 0.02 0.13 0.05 0.00
SVM 0.06 0.06 0.01 0.02 0.00 0.02 0.15 0.06 0.00
NN 0.05 0.05 0.00 0.01 0.00 0.02 0.13 0.05 0.00

To assess the importance of sampling and representativeness of the SEM-MLA regions, thin sections
“a”, “b” (Figure 4-6) and “a + b” (Figure 4-7) of sample DC-1 were used for training the models in order to

cn E3]

estimate the mineral abundance and association in thin section

[3P% L)

For the three used methods, strong differences in the estimates of sample “c” mineralogy can be observed
when using thin sections “a” and “b” for training (Table 4-6).
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Figure 4-6 White mica (WM), chlorite (Chl), amphibole (Amp), gypsum (Gp), feldspar (Fsp), quartz (Qz) and
sulphide (SP) abundance maps of TS-1c using TS-1a and TS-1b, respectively, for the training of random
forest (RF), support vector machine (SVM) and feed-forward neural network (FF-ANN) regressions. The
ground truth (GT) resized MLA data is presented for comparison.
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Figure 4-7 White mica (WM), biotite (Bt), chlorite (Chl), amphibole (Amp), gypsum (Gp), feldspar (Fsp),

quartz (Qz), sulphide (SP) and accessory minerals (Other) abundance maps of TS-c using TS-a + TS-b for

the training of random forest (RF), support vector machine (SVM) and feed-forward neural network (FF-
ANN) regressions. The ground truth (GT) MLA data is presented for comparison.

Table 4-6 Evaluation of the three tested methods for the mineral abundance mapping of DC-1 thin section
“c” through overall RMSE and per class RMSE values using different samples for training.

Train and Valid. Overall RMSE per Class
Data RMSE WM Bt Chl Amp Gp Fsp Qz SP Other
50%—50% rand. sel 0.07 0.06 0.06 0.06 0.06 006 0.05 0.08 0.06 0.05
§ Train a—Test ¢ 0.10 0.08 0.06 0.01 0.06 0.18 0.13 0.03
Train b—Test ¢ 0.12 0.15 0.05 0.01 0.05 0.24 0.09 0.03

Train a + b—Test c 0.08 0.09 0.04 0.05 0.01 0.04 0.18 0.11 0.03 0.01
50%—-50% rand. sel 0.10 0.12 0.03 0.05 0.01 012 021 0.12 0.04 0.02

2  Train a—Test—c 0.10 0.10 0.06 0.02 0.06 020 0.12 0.04
% Train b—Test—c 0.09 0.11 0.06 0.02 0.04 0.18 0.10 0.04

Train a + b—Test c 0.09 0.09 0.05 0.06 0.03 0.07 021 0.09 0.05 0.03
7z 50”-50% rand. sel 0.08 0.06 0.06 007 0.06 0.06 0.07 0.09 0.07 0.07
<Z: Train a—Test—c 0.17 0.12 0.07 0.02 0.14 0.28 0.27 0.06
@ Train b—Test—c 0.12 0.12 0.07 0.02 0.06 0.25 0.14 0.04
=

Train a + b—Test c 0.10 0.10 0.05 006 0.01 0.05 020 0.16 0.04 0.01

I3 1)

The use of thin section “a” provides particularly better results for white mica and feldspar, which are
confused using region “b” that hosts distinctly lower amounts of feldspar. On the other hand, using thin section
“a” for training leads to an overestimation of the gypsum content. The use of both thin sections (“a” + “b”) for
training improves the classification leading to lower overall and per class RMSE values. As for the remaining
drill-core samples, RF outperforms SVM and FF-ANN for most training scenarios, except when using thin
section “b” for training. A similar effect of sampling on the RMSE evaluation can be seen for the mineral

association mapping of DC-1 in all the scenarios (Error! Not a valid bookmark self-reference.).
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Table 4-7 Evaluation of the three tested methods for the mineral association mapping of DC-1 thin section
“c” through overall RMSE and per class RMSE values using different samples for training.

Train and RMSE per Class
Validation data Overall RMSE WM Bt Chl Amp Gp Fsp Qz Other
50%—50% rand. sel  0.05 0.05 0.00 0.01 0.00 0.02 0.13 0.05 0.00
E Train a—Test—c 0.06 0.05 0.04 0.01 0.05 0.05 0.10
Train b—Test—c 0.03 0.04 0.03 0.00 0.01 0.01 0.02
Traina+b—Testc 0.02 0.01 0.01 0.04 0.01 0.00 0.01 0.06 0.00
50%—50% rand. sel  0.06 0.06 0.01 0.02 0.00 0.02 0.15 0.06 0.00
2  Train a—Test—c 0.05 0.05 0.02 0.02 0.07 0.06 0.06
% Train b—Test—c 0.04 0.05 0.05 0.01 0.01 0.02 0.05
Traina+b—Testc 0.03 0.05 0.03 0.01 0.03 0.06 0.03 0.00 0.03
7. 50%—-50% rand. sel  0.05 0.05 0.00 0.01 0.00 0.02 0.13 0.05 0.00
<Zﬂ Train a—Test—c 0.17 0.13 0.05 0.01 0.15 0.24 0.28
@ Train b—Test—c 0.07 0.07 0.04 0.00 0.04 0.15 0.00
= Traina+b—Testc 0.05 0.09 0.00 0.05 0.01 0.02 0.06 0.10 0.00

For the remaining samples, each having two regions analysed by SEM-MLA, the mineral abundance
estimations obtained using the second setup are illustrated in Figure 4-11 (DC-2), Figure 4-13 (DC-3), Figure
4-15 (DC-4) and Figure 4-17 (DC-5).

The tested methods show similar results for mineral abundance and association mapping on the
remaining four drill-cores (Table 4-8). Overall, RF performs best, followed by FF-ANN and then SVM. For
samples DC-1, DC-2, DC-3 and DC-5 each method results in comparable errors where similar amounts of
training data are used. For sample DC-4 the overall RMSE values are higher, exceeding 0.2 depending on
training data. For each sample the selection of the training data location plays an important role that is reflected

into the RMSE evaluation.

Table 4-8 Methods evaluation for the mineral abundance and association mapping of the remaining four
samples through overall RMSE and per class RMSE values using different data for training.

Sample ID Train and Mineral abundance mapping Mineral association mapping
Validation data RF SVM FF-ANN RF SVM FF-ANN

50%—50% rand. sel  0.07  0.09 0.08 0.07  0.07 0.07

DC-2 Train a—Test—b 0.11 0.18 0.10 0.09 0.17 0.09
Train b—Test—a 0.14 0.14 0.19 0.13 0.16 0.13
50%—50% rand. sel  0.08  0.11 0.09 0.12  0.12 0.12

DC-3 Train a—Test—b 0.14 0.14 0.17 0.09  0.18 0.07
Train b—Test—a 0.11 0.14 0.14 0.10  0.11 0.09
50%—-50% rand. sel  0.12  0.20 0.14 0.12  0.12 0.12

DC-4 Train a—Test—b 024  0.29 0.24 0.08 0.10 0.05
Train b—Test—a 0.16  0.20 0.19 0.04 0.16 0.07
50%—50% rand. sel  0.07  0.10 0.08 0.03  0.03 0.03

DC-5 Train a—Test—b 0.11 0.13 0.11 0.05 0.18 0.05

Train b—Test—a 0.13 0.13 0.15

4.5.2 Modal Mineralogy

The modal mineralogy in area % is calculated by averaging the mineral abundances over the entire tested
sample. To evaluate the modal mineralogy estimates sample DC-1 is used and the estimates are compared to

the ground truth, using 50% of the available SEM-MLA data for training and 50% for testing (Table 4-9).
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Table 4-9 Ground truth and estimated modal mineralogy of the SEM-MLA test regions of DC-1, using 50%
randomly selected data for training.

Modal Mineralogy (Area %)

Method  — o8 B¢ Chi_ _Amp _ Gp __ Fsp Qz SP___ Other
GT 160% 1.1%  43%  1.8%  73%  423% 24.9% 18%  0.5%
RF 158%  1.1%  43%  17%  74%  422% 251% 2.0%  0.5%
SVM 142% 12%  3.8%  1.8%  7.8%  443% 24.4% 18%  0.6%
NN 15.8%  1.1%  43%  17%  73%  42.6% 24.8% 19%  0.5%

The estimates for all methods show good results with the highest RMSE value of 0.01 obtained with
SVM. The complete modal mineralogy results are available in Table S1. The results for all the setups and all
samples and methods are illustrated in Figure 4-8 by plotting the estimated values from RF (left), SVM (centre)
and FF-ANN (right) against the ground truth values known from the re-sampled SEM-MLA data.
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Figure 4-8 Scatter-plots of the ground truth vs. estimated mineral area % in all analysed scenarios and
samples using A. RF, B. SVM and C. FF-ANN.

The estimated and true values for RF and FF-ANN show overall a good correlation with local outliers
related to mineral groups such as feldspar, as these do not have distinct spectral features in the VNIR-SWIR
regions of the electromagnetic spectrum. Outliers can also be observed for white mica where the training and
testing classes were unbalanced and confusions between mica and feldspar occurred. SVM, on the other hand,
shows higher deviations from a linear correlation. Additionally, an important factor influencing the results is
the data used for sampling. All test scenarios results are included in Figure 4-8 and as observed in the mineral

abundance mapping results (Table 4-8), sampling plays a critical role in method performance.

4.5.3 Mineral Association

The overall mineral association is calculated by averaging the sulphide association in each classified
pixel. The results for the setup consisting of 50% of the SEM-MLA regions of DC-1 for training and 50% for
testing are presented in Table 4-10. For each regression method, the association of sulphide with white mica,
chlorite, gypsum and quartz is underestimated, while the feldspar association is overestimated. The same
tendency is observed for the rest of the calculated mineral associations in all samples and setups (Appendix
4A, Figure 4-10 — Figure 4-17). The relationship between ground truth and estimated data is illustrated in the
scatter-plots in Figure 4-9. The results of the mineral association are strongly influenced by the estimation of
the sulphide abundance as well as of the other mineral groups. Therefore, the highest errors in sulphide

abundance mapping are consistent with the largest errors for sulphide association.
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Table 4-10 Ground truth and estimated mineral association of the SEM-MLA test regions of DC-1, using
50% randomly selected data for training.

Sulphide Association

Method WM Bt Chi__Amp _ Gp Fsp Qz Other
GT 21.0% 0.7% 5.6% 1.5% 9.9% 30.1% 30.5% 0.6%
RF 16.2% 1.1% 4.4% 1.8% 7.6% 42.8% 25.7% 0.5%
SVM 14.5% 1.2% 3.9% 1.9% 7.8% 45.1% 24.8% 0.6%
NN 16.2% 1.1% 4.4% 1.8% 7.5% 43.2% 25.3% 0.5%
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Figure 4-9 Scatter-plots of the ground truth vs. estimated mineral association in all analysed scenarios and
samples using A. RF, B. SVM and C. FF-ANN.

4.6 Discussion

The proposed approach for data preparation and analysis illustrates the potential to arrive at robust
quantitative mineral abundance estimates from hyperspectral drill-core data—even for those minerals that do
not have diagnostic absorption features in the VNIR-SWIR regions of the electromagnetic spectrum (e.g.,
feldspars, quartz, sulphides). Three regression methods were tested in this paper for mineral abundance
estimation: random forest (RF), support vector machines (SVM) and feedforward artificial neural networks
(FF-ANN). These methods were applied to quantify mineral abundances—also of minerals devoid of
characteristic HS spectral features (here sulphide minerals). In addition, attempts were made to extract mineral
association data from HS information at a lateral resolution far below the actual size of mineral grains in the
studied ore. For this purpose, the abundance of each gangue mineral in each HS pixel is normalized to the
content of ore minerals that are the main target in the currently studied porphyry system, thus constituting a
rather simple proxy for the opportunity of two minerals or mineral groups to occur in direct contact with each

other.

The abundance estimation of SWIR diagnostic mineral phases and groups is good overall, particularly
for white mica, amphibole and chlorite. For the case of gypsum, however, due to its pervasive association with
white mica in some training samples, errors in the abundance estimation occurred. Even though it is present in
minor amounts in comparison to white mica, the estimation error can reach similar amplitudes as those of white
mica. An additional reason for high errors associated with gypsum is related to its composition. The higher the
degree of hydration of anhydrite towards gypsum the stronger and more distinct its absorption features. While
SEM-MLA methods cannot measure the amount of water in the structure of the hydrated calcium sulphate,
hyperspectral sensors are highly sensitive to these changes. Therefore, having training samples hosting mostly

calcium sulphate with low amount of water can cause miss-estimation in test samples which may have low
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amounts of highly hydrated calcium sulphate. The local high errors in the estimation of biotite content can be
assigned to the low amount of training samples containing relevant amounts of biotite. Sulphide is the main
target in the current case study and this group comprises dominantly of pyrite, chalcopyrite, bornite, covellite,
chalcocite, minor sulphosalts and native gold as an inclusion in the sulphides. While locally sulphide can be
present as disseminations in the matrix, the highest fraction is present in veins. For all methods, the abundance
estimation for SWIR non-diagnostic minerals is highly dependent on their association with the hydrothermal
alteration minerals. To be able to estimate their abundance, representative sampling is required to avoid the
erroneous estimation of these minerals based on local association with SWIR minerals that are not consistent
at drill-core scale. For the analysed samples the highest per-class errors are obtained for feldspar and quartz,
both SWIR non-diagnostic minerals. In many cases feldspar was overestimated, particularly in samples where
white mica abundance was underestimated. As white mica is present as an alteration product of feldspar in the
proximity of veins, it can be assumed that the training samples consisted of lower alteration degrees of the
feldspar to white mica while the test samples showed contrasting composition. As a result, feldspar particularly
represented a bottleneck for the evaluation of the mineral association where their association with sulphide was
in each case overestimated. Besides the fact that this mineral group does not show distinctive absorption
features in the VNIR-SWIR regions of the electromagnetic spectrum, the spatial resolution of the used sensor
can highly influence the misclassification and the overestimation in its association with sulphide. Feldspar is
usually present in the host-rock matrix and is expected to have a low association with sulphide, usually being
altered to white mica in the proximity of the sulphide-bearing veins. When the vein alteration halo is thinner
than the spatial resolution of the sensor (here 1.5 mm), an increase in the apparent association of sulphide with

feldspar is observed.

A potential limitation resides in the removal of the mineral fractions present in low concentrations (lower
total surface abundance than the size of a hyperspectral pixel). Additionally, the compositional variation of
minerals such as white mica and chlorites is not analysed in the current work, but could be performed by

auxiliary methods such and minimum wavelength analysis.

To evaluate the performance of the three regression methods employed in this paper, the RMSE was
calculated. In general, for the mineral abundance estimation RF performed well and derived the lowest errors.
The errors produced by FF-ANN tend to be higher than by SVMs in all the test scenarios, except in the case
when 50% of the ground truth was randomly selected as the training data. This highlights the capabilities of
SVM to perform well when a limited number of training samples are available and of FF-ANN to achieve good
results when enough training data are available. The random selection of the training data allows for a more
representative sampling per class than it is for the other two test scenarios where one thin section is used for
training and the other thin section is used for the test. This is because certain minerals can be more abundant
in one part of the core than in the other as it was previously stated for DC-1 in the results section. Although
larger per class RMSE are obtained by minerals without diagnostic absorption features in the VNIR-SWIR,
this is countered by random sampling and errors decrease considerably. From the analysis and evaluation of
the results obtained by the utilized regression methods, the RF algorithm is the most suitable for the current

dataset.
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The proposed framework allows for fast evaluation of the modal mineralogy of analysed samples and it
shows potential for further upscaling. It proves that hyperspectral drill-core scanning provides a fast, non-
invasive mineral identification and quantification if suitable training samples are available. Domaining of the
hyperspectral data before the selection of representative samples for detailed analysis can minimize and focus
the effort and amount of invasive measures related to sampling and high-resolution mineralogical analyses.
The automated character of the approach can be later used on mine sites provided that hyperspectral drill-core
scanning is available to support the geologists in the core-logging procedure, as well as training samples
characterized by high resolution methods of mapping mineral distributions, such as SEM-based image
analyses. The derived mineralogical parameters such as modal mineralogy and mineral association can
additionally prove useful past exploration stages as they are essential in defining geometallurgical domains
(van den Boogaart and Tolosana-Delgado, 2018).

4.7 Conclusion and Remarks

Hyperspectral drill-core imaging provides fast, extensive and non-destructive mapping of certain
minerals with spectral characteristic features in the VNIR-SWIR regions of the electromagnetic spectrum.
SEM-MLA analyses allow a precise and exhaustive mineral mapping of selected small samples. We propose
to combine both analytical techniques using machine learning in order to provide mineral abundance and
association mapping over entire drill-cores. The proposed methodological framework is illustrated on samples
collected from a porphyry type deposit, but the procedure is easily adaptable to other ore types. All tested ML
algorithms deliver good results but RF is more robust to unbalanced and sparse training sets and is
recommended for further work. As a result, quasi-quantitative maps are also produced and evaluated. The
mineral abundance results can be further used to calculate parameters such as modal mineralogy, mineral
association and other mineralogical indices. Therefore, this approach can be integrated in the standard core-
logging procedure, complementing the on-site geologists, and can serve as background for the geometallurgical

analysis of numerous ore types.

Supplementary Materials: The following are available as electronic appendices: Table S1:

Compilation of numerical results for mineral abundance and mineral association estimation.
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Appendix 4A: The results of mineral abundance mapping for DC-2 to DC-5 are shown in Figure 4-10 — Figure

4-17 using all test scenarios.
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Figure 4-10 Drill-core abundance maps of white mica (WM), biotite (Bt), chlorite (Chl), amphibole (Amp),
gypsum (Gp), feldspar (Fsp), quartz (Qz), sulphide (SP) and accessory minerals (Other) for DC-2 using
randomly distributed 50% of the available ground truth data for training for random forest (RF), support
vector machine (SVM) and feed-forward neural network (FF-ANN) regressions.
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Figure 4-11 White mica (WM), biotite (Bt), chlorite (Chl), amphibole (Amp), gypsum (Gp), feldspar (Fsp),
quartz (Qz) and sulphide (SP) abundance maps of TS-2a using TS-2b for training and of TS-2b using TS-2a
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respectively for training of random forest (RF), support vector machine (SVM) and feed-forward neural
network (FF-ANN) regressions. The ground truth (GT) represented by resized MLA data is presented for
comparison.
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Figure 4-12 Drill-core abundance maps of white mica (WM), biotite (Bt), chlorite (Chl), amphibole (Amp),
gypsum (Gp), feldspar (Fsp), quartz (Qz), sulphide (SP) and accessory minerals (Other) for DC-3 using
randomly distributed 50% of the available ground truth data for training for random forest (RF), support
vector machine (SVM) and feed-forward neural network (FF-ANN) regressions.
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Figure 4-13 White mica (WM), chlorite (Chl), amphibole (Amp), gypsum (Gp), feldspar (Fsp), quartz (Qz)
and sulphide (SP) abundance maps of TS-3a using TS-3b for training and of TS-3b using TS-3a respectively
for training of random forest (RF), support vector machine (SVM) and feed-forward neural network (FF-
ANN) regressions. The ground truth (GT) represented by resized MLA data is presented for comparison.

Chl WM

Amp

64



Hyperspectral drill-core scanning in geometallurgy

FF-ANN

Figure 4-14 Drill-core abundance maps of white mica (WM), chlorite (Chl), gypsum (Gp), feldspar (Fsp),

quartz (Qz) and sulphide (SP) for DC-4 using randomly distributed 50% of the available ground truth data

for training for random forest (RF), support vector machine (SVM) and feed-forward neural network (FF-
ANN) regressions.
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Figure 4-15 White mica (WM), gypsum (Gp), feldspar (Fsp), quartz (Qz) and sulphide (SP) abundance maps
of TS-4a using TS-4b for training and of TS-4b using TS-4a respectively for training of random forest (RF),
support vector machine (SVM) and feed-forward neural network (FF-ANN) regressions. The ground truth
(GT) represented by resized MLA data is presented for comparison.
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Figure 4-16 Drill-core abundance maps of white mica (WM), biotite (Bt), chlorite (Chl), amphibole (Amp),
carbonate (Cb), gypsum (Gp), feldspar (Fsp), quartz (Qz), sulphide (SP) and accessory minerals (Other) for
DC-5 using randomly distributed 50% of the available ground truth data for training for random forest (RF),
support vector machine (SVM) and feed-forward neural network (FF-ANN) regressions.
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Figure 4-17 White mica (WM), chlorite (Chl), amphibole (Amp), carbonate (Cb), gypsum (Gp), feldspar
(Fsp), quartz (Qz) and sulphide (SP) abundance maps of TS-5a using TS-5b for training and of TS-5b using
TS-5a respectively for training of random forest (RF), support vector machine (SVM) and feed-forward
neural network (FF-ANN) regressions. The ground truth (GT) represented by resized MLA data is presented
for comparison.
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Chapter 5 Hyperspectral sensors for ore beneficiation

Preface

With the increase of complexity and decrease of grades of mined commodities, sensor sorting technologies
are becoming increasingly used for the preconcentration of ores. Most commonly used sensors for this purpose
are X-ray fluorescence and X-ray tomography. However, frequently the low grade of the ore and fine grain
sizes represent bottlenecks for this purpose, rendering these sensors unsuitable for ore sorting. While frequently
hyperspectral sensors can’t allow for direct identification of the ore minerals, they can prove suitable for
identifying proxies for mineralization. In a previous study we presented the possibility of the use of Short-
Wave infrared sensors and basic spectral analysis for the detection of chlorite, a key proxy for the distribution
of cassiterite and therefore tin grade. As direct spectral analysis such is not always suitable of the detection of
proxies for mineralisation, in this chapter a machine learning approach is tested for the estimation of
commodity grade for both the skarn ore presented in the previous study as well as for samples from the Bolcana
porphyry system in Romania. The methodology relies, such as in the previous chapter, on the resampling and
coregistration of the SEM-MLA data with the hyperspectral data and training different classifiers to predict the

ore grade. The results have proved the following:

(1) Improved performance for the skarn ore compared to the basic spectral analysis presented in [1]
(2) Potential to identify subtle proxies for the porphyry mineralization which are not clear by direct
spectral and mineralogical analysis
(3) Results include estimated modal mineralogy and mineralogical properties of both the concentrate and
tail which have implications for the further processing stages
The original concept and preliminary results of this work were firstly presented in 2019 at the MEI
Physical Separation conference [2] and complete content of this chapter was published in the journal Minerals
Engineering [3] under the title “Evaluating the performance of hyperspectral short-wave infrared sensors for

the pre-sorting of complex ores using machine learning methods”.
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Abstract

Sensor-based sorting is increasingly used for the concentration of ores. To assess the sorting performance
for a specific ore type, the raw materials industry currently conducts trial-and-error batch tests. In this study, a
new methodology to assess the potential of hyperspectral visible to near-infrared (VNIR) and short-wave
infrared (SWIR) sensors, combined with machine-learning routines to improve the sorting potential evaluation,
is presented. The methodology is tested on two complex ores. The first is a tin ore in which cassiterite—the
target mineral—is variable in grain size, heterogeneously distributed and has no diagnostic response in the
VNIR-SWIR range of the electromagnetic spectrum. However, cassiterite is intimately associated with SWIR
active minerals, such as chlorite and fluorite, which can be used as proxies for its presence. The second case
study consists of a copper-gold porphyry, where copper occurs mainly in chalcopyrite, bornite, covellite and
chalcocite, while gold is present as inclusions in the copper minerals and in pyrite. Machine-learning techniques
such as Random Forest and Support Vector Machine applied to the hyperspectral data predict excellent sorting
results in terms of grade and recovery. The approach can be adjusted to optimize sorting for a variety of ore

types and thus could increase the attractivity of VNIR-SWIR sensor sorting in the minerals industry.
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5.1 Introduction
Sensor-based sorting technologies are being increasingly used in the mining industry for the pre-

concentration of ores usually at particle sizes between 1 and 10 cm (Knapp et al., 2014; Salter and Wyatt, 1991;
Wills, 2016). Sensor sorting is applied to remove individual particles from a stream based on their physical-
chemical properties identified by a suitable sensor or combination of sensors. As crushing and grinding account
for a large portion of the total energy consumption within a mining operation, the implementation of sensor
based sorting can be expected to result in a significant reduction in energy consumption and thus also
operational expenditure by early removal of barren particles (Lessard et al., 2014). Properties used as proxies
and sensor technologies for sorting include colour, fluorescence, visible to near-infrared (VNIR) and short-

wave infrared (SWIR) radiation, X-ray fluorescence and luminescence, laser triangulation, laser induced
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breakdown spectroscopy or laser induced fluorescence (Dalm et al., 2018; Iyakwari and Glass, 2014; Knapp et
al., 2014; Robben and Wotruba, 2010, 2019). In mining operations, however, the most commonly targeted
property is atomic density, which is analysed with DE-XRT detectors (Knapp et al., 2014; Neubert and
Wotruba, 2017; Robben and Wotruba, 2019). This method is well suited for ores in which the ore minerals
have a marked density contrast to the associated gangue. The success of this method can be limited by other
minerals besides the target having high atomic densities, the target commodity being present in much finer

grain sizes than the voxel size of the sensor system or simply having a highly variable grain size.

The potential of VNIR-SWIR sensors is still not widely exploited in the mining industry due to the lack
of diagnostic absorption features of most ore minerals in this range of the electromagnetic spectrum. Successful
use of SWIR sensors for pre-sorting of ores has been achieved mostly on industrial minerals such as calcite,
dolomite, fluorite, barite and borates (Robben and Wotruba, 2010). There are, however, underlying
relationships in most metalliferous mineralized systems between alteration (i.e. gangue) and ore minerals (Kern
et al., 2018a). These relationships are widely applied within the context of mineral exploration. Minerals such
as chlorites and epidotes, for example, can be used as proximity indicators for certain mineralization styles
(Pour and Hashim, 2011; Roache et al., 2011; Wilkinson et al., 2015). Such intimate cogenetic relations
between rare ore- and common, rock-forming gangue minerals may, however, also be exploited during eventual
exploitation - as shown in some previous studies (Dalm et al., 2018, 2014; Kern et al., 2019). These previous
studies also illustrate that the relationship between ore mineralogy and grade, and spectral response of alteration

minerals is not always simple.

Machine learning approaches may provide solutions to resolve complex relations between ore and
gangue minerals. In the current study, the relationship between the VNIR-SWIR responses of raw material
particles and the target commodities for two case studies, one a porphyry deposit, the other from a skarn
orebody, are investigated in order to evaluate the sorting potential using two state-of-the-art machine learning
algorithms. For this purpose, batches of samples are subjected to high resolution mineralogical analyses and
VNIR-SWIR hyperspectral imaging in order to evaluate the sorting potential of the two ores as well as the
amount of training samples required for an estimation of the metal grade. Polished thin sections prepared from
cut blocks are analysed by scanning-electron microscopy-based image analysis to obtain high resolution
mineralogical maps. The remaining blocks are scanned with a hyperspectral sensor. The obtained images are
re-sampled and co-registered in order to obtain a direct correspondence between the modal mineralogy and
spectral response. A data-driven approach is adopted for the estimation of metal content from VNIR-SWIR
spectra. For the classification of the hyperspectral data, random forest (RF) (Breiman, 2001) and support vector
machine (SVM) (Vapnik, 1999) are used as binary classifiers.

5.2 Case studies

As two suitable case studies, complex ores from the Himmerlein Sn-In-Zn skarn deposit located in the
Ore Mountains of Germany (Kern et al., 2018a; Schuppan and Hiller, 2012), and the Bolcana Cu-Au porphyry
located in the "Gold Quadrilateral" of the South Apuseni Mountains, Romania (Berbeleac et al., 2014; Cioaca
et al., 2014; Ivascanu et al., 2018), were selected. Both deposits are geologically well-studied, but await

industrial exploitation.
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5.2.1 Himmerlein

The polymetallic Himmerlein deposit is currently explored by Saxore Bergbau GmbH. The deposit
comprises two lithologically distinct units: a Sn-In-Zn skarn (skarn ore) and greisenized mica schist, known as
Schiefererz (Schuppan and Hiller, 2012). In this study, only the mineralogically complex skarn is analysed.
The main commodity of economic interest in the skarn is Sn contained in cassiterite (SnO,). Cassiterite is
present in a large variability of grain sizes, ranging from 5 um to 3 mm. Economically significant tin
mineralization in the skarn ore is related to a late metasomatic overprint expressed by the mineral assemblage
cassiterite-chlorite-fluorite-sulphides (Kern et al., 2018a). This assemblage occurs in irregular pods, lenses and
veins. The preferred association between the minerals of the cassiterite assemblage was quantified in a previous

study using the MAMA ratio (Kern et al., 2018a).
5.2.2 Bolcana

The Bolcana porphyry copper-gold deposit is explored by Eldorado Gold Corporation through its
subsidiary Deva Gold S.A.. It comprises variable chalcopyrite, pyrite, chalcocite, covellite, bornite, magnetite,
molybdenite and native gold, occurring as disseminations in the host rock, stockworks and hydrothermal
breccias (Ivascanu et al., 2018; Milu et al., 2003). The variability of copper and gold throughout the deposit
are controlled by key factors including lithology, vein types, alteration, and how these factors vary with depth.
Copper occurs mainly in chalcopyrite, with minor contributions from bornite, chalcocite, covellite and
sulphosalts. Chalcopyrite is predominantly hosted by thin veinlets cutting across sodic, sodic-calcic, magnetite-
albite-chlorite-epidote or potassic altered intermineral porphyries. At shallow depths, bornite, chalcocite and
covellite occur as rims around chalcopyrite grains, as a result of supergene and/or epithermal overprints
(Blannin et al., 2019). At greater depths, primary bornite occurs, with both chalcopyrite and bornite grains
commonly having rims of chalcocite and covellite. Gold typically occurs as <10 um grains, hosted by copper
minerals and to a lesser extent by pyrite and in the host rock in the vein alteration halos. The copper minerals
and chalcopyrite- and bornite-hosted gold dominantly occur at higher depths in the magnetite-albite-chlorite-
epidote, sodic-calcic and potassic alteration zones. Pyrite-hosted gold is common in the near-surface zones;
here it is related to phyllic alteration (Blannin et al., 2019).

5.3 Data acquisition

Observational data for the two case studies was obtained on sets of samples that were deemed
representative of the two ore deposits. Yet, given the fact that both deposits are currently in the exploration
stage, full representativity cannot be assured due to limited exposure of mineralization in accessible

underground mine workings (Himmerlein) and exploration drill-core (Bolcana), respectively.
5.3.1 Sample selection and preparation

The skarn samples were collected from the +590 m level of the Himmerlein deposit. The hand specimens
represent various litho-units, ore types and host rocks encountered in the area of the mine which was accessible
for sampling. 68 samples are used for the SWIR sorting simulation. For the porphyry case study, 24 samples
were collected from two drill-holes intersecting the top, high-grade, part of the Bolcana porphyry. The samples

are considered representative of the main alteration, vein styles and grade observed in this region of the deposit.
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The samples were cut into cuboid blocks from which polished thin sections of around 25x40 mm in lateral
dimension were prepared. The thin sections were analysed by scanning electron microscopy. The remaining

blocks after thin section preparation were scanned using an VNIR-SWIR hyperspectral sensor.

Thin section preparation consisted of milling and polishing of the sample surface. Firstly, one surface of
the cuboid block is polished and glued to the glass. Further, part of the sample block is cut leaving only around
0.3-0.4 mm thick sample attached to the glass. The remaining material is then milled in order to reduce the
thickness of the thin section to around 30 pm and to obtain a polished surface. This leads to the removal of a
small fraction of the material of a thickness up to 0.3 mm. The change in analysed surface causes a small shift
in the location of the main features such as veins. However, for the spatial resolution of the chosen sensor

(1.5mm/pixel) the shift is considered negligible.
5.3.2 Scanning electron microscopy mineral maps

Quantitative mineralogical data were collected from each polished thin section using the modified
approach for automated mineralogy developed by Kern et al. (2018). The analyses were performed using a
Mineral Liberation Analyser (MLA) equipped with a FEI Quanta 650 F field emission SEM with two Bruker
Quantax X-Flash 5030 energy-dispersive X-ray (EDX) detectors. Backscattered electron (BSE) images are
used to define mineral grains. The greyscale level in the BSE images ranges from 26-255 according to the
average atomic number (AAN) of the elements comprising a mineral / phase (Fandrich et al., 2007). Lower
AAN values correspond to darker grey BSE appearance and correspond to minerals comprising of light
elements (in this case, for example, quartz and silicates). Brighter grey shades, in contrast, reflect higher AAN
values and indicate that minerals comprise of elements of high atomic number (e.g., cassiterite, gold). Mineral
grains were discriminated based on their grayscale level in the BSE images and then identified by performing
EDS X-ray measurements on a closely-spaced grid (Fandrich et al., 2007). The operating conditions used for
SEM and MLA are listed in Table 5-1. The acquisition parameters may vary somewhat for different samples,

depending on the exact set-up of the MLA.

Table 5-1. SEM-MLA data acquisition parameters.

SEM settings MLA settings
Acceleration voltage (kV) 25 Pixel size (um) 2/3
Probe current (nA) 10 Step size (pixels) 6x6
Frame width (pixels) 1000/1500 Acquisition time (ms) 5
BSE calibration (Au) 254/243/246 Minimum grain size (pixels) 3/4

Data processing was carried out using the MLA Suite 3.1.4.686 software package. The mineral reference
editor was used in online mode in order to complete the mineral list required for the classification of the tested
samples. MLA Image Processing software was used for preliminary corrections of data, such as frame edge
removal. In the classification script, the spectrum matching threshold was set to 90% and the low counts
threshold was set to 2000 counts. Additional pre-processing consists of mineral grouping based on the main

occurrence of the targets/commodities.
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5.3.3  Hyperspectral imaging

Hyperspectral data was acquired using a SisuROCK drill-core scanner equipped with an AisaFENIX
VNIR-SWIR hyperspectral sensor. The obtained spatial resolution of the resulting images is 1.5 mm/pixel. A
listing of the sensor specification and applied settings is available in Table 5-2

Table 5-2. Specifications and setup parameters of the SisuROCK drill-core scanner and AisaFENIX VNIR-
SWIR hyperspectral sensor.

Wavelength range VNIR 380-970 nm Integration time VNIR 15 ms
SWIR 970-2500 nm SWIR 4 ms
Sampling distance VNIR 1.7 nm Spatial binning VNIR 2
SWIR 5.7 nm SWIR 1
Number of bands 450 Frame rate 15 Hz
Samples 384 Scanning speed 25.06 mm/s
Field of view (FOV) 32.3° Spectral binning VNIR 4
SWIR 1

The conversion of raw digital number over radiance to reflectance was performed with the acquisition
software (LUMO Scanner version 2018-5, Spectral Imaging Ltd., Oulu, Finland) using PTFE reference panels
(>99% VNIR and >95% SWIR) and closed shutter scans for dark current subtraction. For the pre-processing,
the hyperspectral images were corrected using the MEPHySTo toolbox (Jakob et al., 2017). A correction was
applied to compensate the spatial shift between the VNIR and SWIR sensors and a geometric correction for
the lens effect. The corrected hyperspectral data were smoothed using the Savitzky-Golay (SavGol) filter
(Ruffin and King, 1999), with a radius of 5 and a 3™ degree polynomial. Additionally, the first 20 bands were
removed from further processing steps in order to avoid the impact of noise on the classifier. The hyperspectral
dataset contains 430 bands between 446 and 2503 nm. Additionally, dimensionality reduction is achieved using
principal component analysis (PCA) (Rodarmel and Shan, 2002).

5.4 Proposed methodology

Several steps are taken for the integration and processing of hyperspectral and SEM-MLA data (Figure
5-1). The MLA data is resized to the spatial resolution of the hyperspectral images. Cut-off thresholds have to
be selected for each ore type in order to convert the SEM-MLA data into a binary map. Selected training
samples are then used in order to train two classifiers to predict the belonging of test samples to either
concentrate or tailing. For each sample the probability of belonging to the class concentrate is analysed based
on the classification scores. This probability also provides a proxy for the metal content of the sample. Based
on the metal grade estimates and probability curves a target grade or metal recovery can be chosen for defining
optimal metal grade classes. Once the samples are assigned to either concentrate or waste the modal mineralogy
of each class can be calculated from the surface abundances and density of each mineral. The performance of

the classifiers is assessed based on confusion matrices, average and overall accuracies.
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Figure 5-1. Flowchart presenting the main data processing steps in the proposed methodology.

5.4.1 SEM - HSI data integration

In order to integrate the two types of measurements, the SEM-MLA mineral maps have to be resampled
to the HSI resolution. To achieve this, the high-resolution labelled images are converted into low resolution
multiband images, each band consisting of the abundance of a specific mineral. Once the data are at the same
resolution, they are co-registered in order to have the mineral abundance, in area and weight percentage, and
the spectral response of the analysed surface in the VNIR-SWIR region of the electromagnetic spectrum, for
each pixel. The co-registration is performed manually using the false-colour RGB image of the blocks and the
abundance resized abundance ML A image. Specific mineral phases are chosen for the SEM-MLA data, which
have heterogeneous distribution in the thin section. This facilitates the selection of representative tie-points to
be used in the co-registration. Once the SEM-MLA data is resized and co-registered, only the abundances of
the target commodities are further considered. Thresholds are then selected for the cut-off grade of each
commodity and the MLA data is transformed to a binary image where each pixel is labelled as either waste or
concentrate. Note that a co-registration stage is needed after the re-sampling of the SEM-MLA data. The
structural features, such as veins, mineral abundances, and spectral responses, are used to find tie points to
perform the co-registration of the two images. As a result of the co-registration, each pixel will be characterised
by two vectors: the hyperspectral feature vector X.of dimension d (i.e., the number of spectral bands) and a Y.
vector containing the corresponding fractional abundances, summing up to 1, of the minerals identified by

SEM-MLA. Figure 5-2 shows a simple example of the resampling procedure (Contreras Acosta et al., 2019).

The main commodity in the skarn ore is tin contained in cassiterite, SnO»(78.77 wt% Sn content) and
therefore cassiterite is used in this case as a target. Two target commodities are present in the studied porphyry
ore: copper and gold. Copper is dominantly present in chalcopyrite and subordinately in bornite, chalcocite and
covellite. Electron probe microanalyses were performed on the four copper-bearing sulphides in order to
quantify the copper content (Table 5-3). Gold is mostly present in native form as fine inclusions in sulphides
and disseminations in the proximity of veins. To estimate the sorting potential of the ore, both copper and gold-
bearing minerals have to be considered. As a result, the equivalent copper grade (eq. Cu) is calculated (Osanloo

and Ataei, 2003).

Cut-off grades are defined for both ores. The cut-off grade considered for the skarn ore is 0.1 wt% Sn. The
value is lower than the usual cut-off grade for mining but is considered appropriate at the sorting stage (Kern
et al., 2019). For the porphyry ore on the other hand a high cut-off grade of 1 wt% eq. Cu for the purpose of
testing the proposed methodology. While lower cut-off grades may be used in industrial operations, the
available samples were collected from high grade areas of the mineralized system and therefore a higher
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threshold is required to obtain enough training samples in each class. The training data is then split into class

tailing (below cut-off) and class concentrate (above cut-off).
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Figure 5-2. Graphical illustration of the co-registration and resampling process for the SEM-MLA image
(foreground) to the hyperspectral image (background).

Table 5-3. Empirical formulae of the main copper-bearing minerals in the porphyry ore and the considered
copper grades obtained by electron probe microanalyses.

Mineral Empirical formula Used copper content
Chalcopyrite CuFeS; 36%
Bornite CusFeS, 65%
Chalcocite CuxS 78%
Covellite CuS 61%

5.4.2  Hyperspectral data classification

Two well-known classifiers are used to evaluate the potential of the proposed methodology: Random
Forest (RF) and Support Vector Machine (SVM). These two were selection due to their robustness when there
is no balance between data dimensionality and number of available training samples (Ghamisi et al., 2017).
Additionally, SVM has the advantage of being specifically designed for binary classification problems. For the
evaluation of the belonging of each sample to class concentrate or class tailings the scores are calculated in

Matlab release 2019a as posterior probabilities for each algorithm.
5.4.3 Random Forest (RF)

RF is an ensemble learning method used for both classification and regression. For classification problems,
a set of decision tree classifiers is trained. Further, their individual results are combined through a voting
process. A classification label is allocated to the input vector (X) through a majority vote: yRFB= majority vote

B

{ys(X)} |, where X is the input vector, y»(X) is the class prediction of the bth tree, and B shows the total
number of trees (Breiman, 2001).
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The training algorithm for RFs applies the general technique of bootstrap aggregating, or bagging, to tree
learners. Bootstrap aggregating is used for training data creation by resampling the original data set in a random
fashion with replacement. This leads to more efficient model performance. While the predictions of a single
tree are highly sensitive to noise in its training set, the average of many trees is not that sensitive as long as the

trees are not correlated (Ghamisi et al., 2017).
5.4.4  Support Vector Machine (SVM)

The goal of an SVM classifier is to identify the separating hyperplane, defined as a class boundary that
separates the feature space in two classes with the largest margin for each class. The hyperplane is identified
using an optimization problem solved by structural risk minimization. To train the classifier, only the samples
located closest to the hyperplane, and therefore to the class boundaries are needed (Cortes and Vapnik, 2001;
Ghamisi et al., 2017; Vapnik, 1999). As only these samples are influential, SVM can classify the input data
efficiently even if only a limited number of training samples is available. In addition, SVMs can efficiently
handle the classification of noisy patterns and multimodal feature spaces (Ghamisi et al., 2017; Vapnik, 1999).
5.5 Results

The results of the classification are analysed based on the scores that indicate the probability of a pixel
reporting to the concentrate class. In each recovery vs. mass pull plot, the commodity (cassiterite or equivalent
copper) recovery is illustrated as a function of three proxies: the first one consists of the true commodity
recovery in each block known from SEM-MLA analyses, labelled as mineralogical barrier, followed by the
second and third, which represent estimated commodity recovery from hyperspectral data by random forest
and support vector machine, respectively. By selecting a target commodity recovery or mass pull, the mineral
composition and metal content in each of the products can be analysed. For the current study, two target
recoveries are considered for each analysis, 90 % and 95 %. At these target values the products are analysed in
terms of metal content and mineral composition. The following subchapters present the results of the two tested

ore types.
5.5.1 Skarn ore

The skarn ore samples show a high variability in modal mineralogy, textures, mode of occurrence of
cassiterite and cassiterite content (in this context representing the ore grade). The analysed samples can vary
from feldspar-epidote-dominated lithologies to iron oxide-dominated lithologies (Figure 5-3). The skarn ore is
sorted based on cassiterite content. Its association with SWIR active minerals such as chlorite and fluorite, has
a strong impact on the performance of the grade estimation and recovery at low mass pull values using both
RF and SVM as classifiers (Figure 5-4). RF shows better results for sorting high grade blocks in the first stages.
However, a shift in the performance can be observed for the low-grade blocks, where SVM shows a better

grade estimation.

At a chosen target recovery of 90%, both classifiers show a good separation curves for sorting the high-
grade ore at a mass pull of 27 wt% (Figure 5-4). However, when sorting the low grade ore, SVM is able to sort
the skarn ore with 95 % recovery at a mass pull of 53 wt% while RF reaches the same recovery at a mass pull

of 83 wt%, illustrating poor selectivity. This leads to a high difference in the concentrate tin grades; using RF
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a strong dilution of the tin grade occurs in the concentrate (Table 5-4). By selecting recovery thresholds, the
performance of the methods in terms of accuracy and the modal mineralogy of the expected sorting products

can be estimated from SEM-MLA data.
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Figure 5-3. Skarn ore samples: RGB images of the analysed blocks, SEM-MLA high resolution mineral maps
and resized cassiterite abundance from SEM-MLA to hyperspectral data spatial resolution. Three examples
illustrate three lithotypes, including feldspar-epidote skarn (left), cassiterite-chlorite-fluorite-sulphide-quartz
(central) and iron oxide-rich skarn (right).

The evaluation of the performance of the classifier can be assessed for each of the target recoveries and
respective mass pull. This is achieved by comparing the labelled samples that lead to a selected recovery target
at the respective mass pull to the ideal samples. These ideal samples would give the same mass pull in the ideal
scenario (mineralogical barrier), which can be obtained from SEM-MLA data (Figure 5-5). With a recovery
target of 90 %, 5 samples are misclassified by RF in both products, leading to an overall accuracy of 85 %, and

6 samples are misclassified by SVM, resulting in an overall accuracy of 82 %. An increase in misclassified
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samples for both algorithms can be observed for a target recovery of 95 %. The average and overall accuracies

are listed in Table 5-5.

By achieving 90% recovery, mostly the high grade ore is being sorted out. In this case, a preferential
recovery of specific minerals such as chlorite and fluorite, together with cassiterite, can be observed (Figure
5-6). Other abundant minerals in the deposit, such as quartz, amphiboles, iron oxides and sulphides, are also
recovered but do not show a preferential distribution into concentrate or waste. Another group of minerals such
as feldspars, garnets and epidotes are markedly enriched in the waste stream. Increasing the target recovery to
95 % results in a change in the mineralogy of the concentrates, as the iron oxide content in the concentrate
shows a marked increase. Additional mineralogical parameters such as grain sizes and mineral association can
also be calculated for both products and will provide valuable information for the subsequent beneficiation

stages.
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Figure 5-4. Mass pull vs. recovery plots for cassiterite (true grade — mineralogical barrier, estimated grade
by RF and estimated grade by SVM)

Table 5-4. Sorting performance in terms of mass pull and products tin grade at selected recoveries for the
two tested algorithms (RF and SVM).

Recovery Mass pull Sn grade (%)
(%) (%) Conc. Tail.
90 27 1.46 0.05
RF 95 83 0.49 0.02
90 27 1.46 0.05
SVM 95 53 0.82 0.03
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Figure 5-5. Confusion matrices for the evaluation of the two classifiers (RF and SVM) at a target of 90%
cassiterite recovery in the skarn ore.

Table 5-5. Evaluation of average and overall accuracies of the two classifiers (RF and SVM) at a target of
90% cassiterite recovery in the skarn ore.

. 90 % Recovery 95 % Recovery
Accuracies
RF SVM RF SVM
AA 82% 78% 49% 74%,
04 85% 82% 71% 74%
RF - 90% cassiterite recovery RF - 95% cassiterite recovery
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Figure 5-6. Modal mineralogy of skarn pre-sorting products at 90 % and 95 % cassiterite recoveries by RF
and SVM.
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5.5.2  Porphyry ore

In comparison to the skarn samples, the host lithology in the porphyry is more simple and homogeneous
in composition. Major rock-forming minerals are plagioclase feldspars, quartz and amphiboles. The feldspars
and amphiboles show different degrees of alteration to white micas and chlorite and biotite, respectively,
depending on vein abundance and vein types. The variability in vein types and their associated alteration halos

can be seen in three examples of samples illustrated in Figure 5-7.
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Figure 5-7. Porphyry ore samples: RGB images of the analysed blocks, SEM-MLA high resolution mineral
maps and resized equivalent copper abundance from SEM-MLA to hyperspectral data spatial resolution.
Several vein types are present in the illustrated samples: late pyrite-chlorite vein with a strong phyllic
alteration halo (left), quartz-gypsum-magnetite-chalcopyrite vein (centre), pyrite-chalcopyrite veins and
quartz vein with a distinct chalcopyrite centreline (right);
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The equivalent copper grades on the porphyry samples are greatly influenced by the highly variable
distribution of Au. Unlike the skarn ore, a higher fraction of the selected porphyry samples hosts considerable
amounts of the target commodities. This aspect is supported by the shape of the mass pull vs recovery curves
(Figure 5-8). Here, the equivalent copper recovery, calculated based on the metal concentrations estimated by
SEM-MLA, is presented as the mineralogical barrier and it represents the best sorting scenario that can be
achieved. The following curves consist of the RF and SVM sorting results and closely follow the mineralogical

barrier.

At a chosen recovery target of 90 % equivalent copper, the mass pull estimated by RF is 43 wt%, and 50
wt% by SVM. As with the skarn ore, the SVM performs better for lower grade ore, at 95 % equivalent copper
recovery the mass pull obtained is 67 wt%, while for RF the mass pull is 71 wt% (Table 5-6). However, the

discrepancy between the two methods is lower for the porphyry ore compared to the skarn ore.
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Figure 5-8. Mass pull vs. recovery plots for equivalent copper (true grade — mineralogical barrier, estimated

grade by RF and estimated grade by SVM).

Table 5-6. Sorting performance in terms of mass pull and products equivalent copper, copper and gold
grades at selected recoveries for the two tested algorithms (RF and SVM).

Recovery Mass eq. Cu grade (%) Cu grade (%) Au grade (ppm)

(%) pull (%) Conc. Tail. Conc. Tail. Conc. Tail.

RF 90 43 8.47 0.6 2.08 0.24 8.63 0.49
95 71 5.35 0.61 1.38 0.16 5.36 0.61

SVM 90 50 7.32 0.55 1.8 0.24 7.45 0.43
95 67 5.7 0.35 1.42 0.22 5.83 0.17

The confusion matrices for the classification of the porphyry samples at a target equivalent copper
recovery of 90 % (Figure 5-9) show that no samples are misclassified for RF and only one sample for SVM (of

24 samples classified). At a 95 % target recovery an increase in the number of misclassified samples to 3 for
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RF and 2 to SVM occurs. The classification accuracies are higher for the porphyry ore in comparison to the

skarn ore, particularly at a target recovery of 90 % (Table 5-7).

The modal mineralogy of the expected products can be calculated from SEM-MLA data for both selected
recovery thresholds (90 and 95 % respectively) (Figure 5-10). Unlike for the skarn, preferential relationships
between the ore minerals and gangue are not as clear. At a targeted recovery of 90 %, it can be seen that the
mineralogy of the products appears relatively similar for both of the estimation methods. However, a reduction
in the white micas and clay minerals contents in the concentrate is observed, both of which could have a strong
impact on the subsequent separation stages. Additionally, a large fraction of the pyrite is not recovered to the
concentrate, leaving the copper minerals as the main sulphides in the concentrate. With an increase in the

equivalent copper recovery to 95 %, a decrease in electivity can be observed as larger fractions of the white

micas and pyrite are now present in the concentrates.
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Figure 5-9. Confusion matrices for the evaluation of the two classifiers (RF and SVM) at a target recovery of
90 % and 95 % equivalent copper in the porphyry ore.

Table 5-7. Evaluation of average and overall accuracies of the two classifiers (RF and SVM) at a target
recovery of 90 % at 95 % equivalent copper in the porphyry ore.

. 90 % Recovery 95 % Recovery
Accuracies
RF SYM RF SVYM
AA 100% 92% 72% 82%
04 100% 92% 75% 83%
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Figure 5-10. Modal mineralogy of porphyry pre-sorting products at 90 % and 95 % cassiterite recoveries by
RF and SVM.

5.6 Discussion

The two case studies presented in this contribution illustrate a new methodology for the estimation of
metal grade from hyperspectral data that can be used to predict the pre-sorting potential of two complex ores
using VNIR-SWIR sensors. Co-registration of the hyperspectral and SEM-MLA data allows for direct
evaluation of spectral response of complex mineral assemblages and associations in each pixel whilst machine
learning approaches are applied to detect complex relations between mineralogy and grade. For both case
studies, the removal of large fractions of rock-forming minerals such as quartz, feldspars, garnets and also iron
oxides during pre-sorting is apparent. This leads to an important reduction of the material flow to further

grinding stages, leading therefore to a significant decrease in energy consumption.

The results for the skarn case study indicate a particularly promising potential for ore sorting using
SWIR sensors, with cassiterite recoveries reaching 90 % at only 27 wt% mass pull. Even though cassiterite
does not show a diagnostic response, its association with VNIR-SWIR active minerals, such as chlorite and
fluorite, is characteristic. The effect of the presence of these minerals is also shown in the estimated
composition of the concentrates. Most of the fluorite will report to concentrate together with a large fraction of
the chlorite. In each case, minerals such as epidote and garnet dominantly report to waste, showing a negative
correlation with cassiterite. A large fraction of the iron oxides is also found in the waste fraction. This represents
an added value since iron oxides have a negative impact on the flotation of cassiterite (Buchmann et al. 2017).
Tests have also documented that magnetic separation applied to the skarn ore resulted in a disproportional loss
of cassiterite (Buchmann et al., 2018). Reducing the iron oxide content in pre-sorting stages will therefore

improve subsequent recovery of cassiterite.

The porphyry case study yields a somewhat lower potential for ore sorting based on the mineralogical
barrier represented by the equivalent copper grade. This is explained by systematic variations in the distribution
of the commodities in the Bolcana deposit. In the near-surface environment, gold is predominantly associated
with pyrite, while copper-bearing minerals are present in low amounts. With depth, the copper content

increases, as well as its association with gold. By considering the equivalent copper grade (rather than Au and
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Cu grade separately), the best scenario achieved is 90 % recovery at 43% mass pull. An important upgrading
of the concentrate is achieved by redirecting of a large fraction of the pyrite to tailings. This will strongly
facilitate the recovery of copper-bearing minerals from the sulphide fraction in the late flotation stages (Chen
et al., 2014). A second achievement is the removal of a large fraction of white micas and clay minerals, which

can strongly impact flotation performance.

Overall, the two tested hyperspectral data classification algorithms show similar results. Slight
differences include the better performance of RF with the high grade ore and better SVM performance with the
low grade ore. The better performance of RF with high grade ore and outliers can be assigned to its design as
a decision tree with bagging, which tend to be robust to noisy data (Hastie et al., 2008). With increase in number
of samples per class and implicitly training samples, SVM shows a better performance due to a better definition
of the support vectors, i.e. a better class separability. It can, however, be stated that both methods present a
high potential for further use for discriminating ore and waste from hyperspectral data in the framework of
sensor-based sorting operations. A particular advantage of using machine learning is apparent for the skarn
case study. Kern et al. (2019) processed the same SWIR data set for the skarn samples by traditional methods
such as band ratios and minimum wavelength analysis (Van Ruitenbeek et al., 2014). By doing so, Kern et al.
(2019) were able to achieve a target recovery of 90 % with a mass pull of 70 wt %. By implementing machine
learning algorithms, we have been able in this study to reduce mass pull to 27% - achieving the same target

recovery.

The general applicability and performance of the proposed framework shows a strong dependence on

sample representativeness.

Another fundamental assumption made is that the mineral content within the volume of each particle is similar
to that exposed at the analysed surface. For the skarn ore, the material loss on average consisting of up to 0.3
mm can be considered negligible based on the knowledge of textures and mineral distribution in the different
domains. For the porphyry ore, the copper mineral content is considered to also be consistent throughout the
veins and the material loss will likely not show a strong impact. Gold, however, is present in very fine grains
only (<20 pm) mostly as inclusions in chalcopyrite and pyrite. In this case, the nugget effect may show a strong
influence on the calculated equivalent copper grade. To compensate for the potential bottlenecks related to the
gold distribution, the addition of high-resolution XRT data slices is recommended in order to calculate the

average gold grade at selected voxel/pixel sizes.

5.7 Conclusions
The use of reflectance spectroscopy for sorting of ores is increasingly becoming a focus of research as it

holds great promise to reduce energy consumption and operational costs in industrial mining operations.
Genetic and spatial relationships between ore minerals and associated gangue minerals may be utilized to
develop of new methodologies for sensor-based sorting. Two case studies are used to illustrate the inherent
potential not only of VNIR-SWIR sensors, but also the predictive assessment of the success of ore sorting by
applying a combination of quantitative mineralogical and reflectance data with well-established machine

learning approaches. Machine learning algorithms, such as Random Forest or Support Vector Machine thus
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become valuable tools for unravelling complex but nevertheless systematic patterns between ore grade, ore

mineralogy and spectral response.
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Chapter 6 3D integration of hyperspectral data for deposit modelling

Preface

The increased geological complexity and decreasing grades of currently mined ores are associated with
increased risks of mining operations related to engineering, environmental and economic factors. To tackle
these risks geometallurgy is becoming an increasingly adapted concept in exploration and mining operations.
The development of a geometallurgical model, combining geological, engineering, economic and
environmental information relies on the availability of continuous mineralogical data acquired through
exploration drilling. These data are then used for the definition of homogeneous domain which would present
constant behaviour throughout the mine cycle. Hyperspectral imaging is probably the only technology which
can deliver these extensive datasets with a short turn-around time and at high resolution and provided suitable
data processing techniques are available it can become a pillar in geometallurgical programmes. Based on the
data processing methods developed and described in chapters 3-5, an integrated workflow is illustrated in this

chapter with the following main outcomes:

(1) Development of broad alteration domains based on point spectral data to be used for the selection
of representative samples

(2) Quantitative mineral abundance estimation based on the fusion of automated mineralogy and
hyperspectral data

(3) Extraction of structural parameters (sulphide vein density) and definition of mineralogical domains
based on the estimated mineral abundance. These domains present homogeneous mineralogical,

textural and structural properties and can serve as geometallurgical domains

Additional to the above points preliminary 3D modelling based on the point spectral data available over
all analysed boreholes was attempted, illustrating the transferability of the spectral data domains to geological

bodies.
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Abstract
There are numerous ore deposits discovered worldwide which have not been mined due to various

reasons, including low grades, tonnages, high mineralogical complexity or environmental impact rendering
them uneconomical. To reduce the related technical and financial risks associated to these projects, the use of

a geometallurgical programme can support the resource characterisation and mining process.

One of the pillars in the development of a geometallurgical model is the acquisition of compositional data
through systematic sampling and analysis. This sampling is usually achieved during exploration campaigns in
which thousands of kilometres of diamond drill-cores are extracted to test subsurface regions with high mineral

resource potential.

This research is motivated by the strong need for continuous data over large drill-core intervals that can
be used to define mineralogical and textural (geometallurgical) domains. Hyperspectral imaging of drill-cores
is identified in this study as a key technology to deliver such data, provided that suitable processing tools are
made available. In this regard, a processing and analysis methodology is developed for the available
hyperspectral data, allowing for a broad domain definition based on spectral point analysis which can be further
used for strategic sampling for higher resolution analyses (for example by SEM-based image analysis at
micrometer-scale). These local high-resolution data can be co-registered to the hyperspectral data. The
mineralogical and textural information is further upscaled to entire drill-core samples for mineral abundance
estimation, using random forest, the algorithm identified in previous works (Tusa et al., 2020) as best suited
for the analysed dataset. The mineral abundances obtained can in a next step be used for extraction of structural
or morphological features as well as for defining domains of known average mineralogical composition. This
mineralogical knowledge can further support decision making for metallurgical testing and can be incorporated

into a 3D model for predicted metallurgical performance in the subsequent mining stages.

6.1 Introduction
Decreasing grades and increasing geological complexity of mineral deposits challenge exploration and

mining operations. As a consequence, a strong need arises for both resource and energy efficiency to increase
dramatically in the mining industry through the implementation of integrated, multidisciplinary approaches
within exploration and mining operations. To satisfy this need the concept of geometallurgy was introduced
and is increasingly adopted by exploration and mining companies (Michaux and O’Connor, 2020). It relies on
the strategic integration of geological, mining, metallurgical, economical and geoenvironmental parameters to

maximize the project value and reduce risk through responsible resource management (Dominy et al., 2018b).

One of the first steps in the development of a geometallurgical program is the acquisition of continuous
compositional data through systematic sampling and analysis. Based on the obtained data, spatial models are
constructed and geometallurgical domains identified that are marked by limited mineralogical and textural
variability. For each domain, laboratory and/or pilot test analyses are performed in order to evaluate the
different engineering, metallurgical, environmental and economic parameters characteristic of the specific ore
type. However, in order to achieve a representative sampling, extensive data is required for ore characterization

(Dominy et al., 2018a). The characterization of ore deposits is currently based on extensive drilling combined
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with chemical assays and a visual evaluation of the mineralogical properties of the cores (Dominy et al., 2018a).
However, the mineralogy and microfabric of an ore determine its properties and have an important bearing on
all mining and beneficiation processes. Therefore, the acquisition of unbiased and consistent data on

mineralogy and texture over large drill-core intervals is thus essential.

Hyperspectral drill core imaging provides a valuable tool for efficient and unbiased acquisition of
mineralogical and textural data needed to define the geometallurgical domains and respective parameters. First
applications of hyperspectral imaging had a clear focus on exploration and concerned with the mapping of
alteration mineralogy or structures of mineralized systems in satellite and airborne-based remote sensing
approaches (Bedini et al., 2009; Bishop et al., 2011; Kratt et al., 2010; Ngcofe et al., 2013; Pour and Hashim,
2011; Rodriguez-Galiano et al., 2015; Wu et al., 2019) as well as structures related to mineral systems (Jakob
et al., 2016). In addition, the monitoring of mines and their environmental impacts is possible (Imagery et al.,
2011; Jackisch et al., 2018; Rauhala et al., 2017; Riaza and Mu, 2010). Mapping the more subtle mineralogical
changes in outcrops and mines requires a greater spatial resolution. For this purpose, drone and tripod-based
systems are increasingly used (Boubanga-Tombet et al., 2018; Kirsch et al., 2018; Krupnik and Khan, 2019;
Lorenz et al., 2018; Murphy et al., 2015, 2014, 2012). Through the use of near-field sensing platforms such as
laboratory setups, drill-core scanners or conveyor-mounted systems, hyperspectral imaging is today well
established in mineral exploration, especially for mapping spectrally distinct, (alteration) minerals that can be
used as vectors towards mineralization (Arne et al., 2016; Calvin and Pace, 2016; Contreras Acosta et al., 2019;
Huntington et al., 2006; Kruse, 1996; Laukamp et al., 2018; Lypaczewski et al., 2020; Mathieu et al., 2017;
Mauger et al., 2007; Tappert et al., 2011; Taylor, 2000; Laura Tusa et al., 2019).

While hyperspectral data has been increasingly used in the last decade for exploration targeting, it has
received less attention for ore characterization and pre-concentration. Some recent developments in
hyperspectral imaging allow a potential use past the exploration stage and into beneficiation for the pre-
concentration of ores (Dalm et al., 2018, 2014; Gallie et al., 2010; Tusa et al., 2019). Little work has been
done so far in establishing the role of hyperspectral imaging (HSI) in a geometallurgical context. Johnson et
al., (2019)were among the first to present the use of HSI of blast hole cuttings to predict metal recovery and
throughput in a processing plant. The study has highlighted the high potential of linking hyperspectral analyses
to the performance of mineral beneficiation processes. Integrating the information from spectral analysis
gained during the exploration stage into the definition of geometallurgical domains is an obvious opportunity
that has, however, received little attention. Yet, such an integrated approach can lead to a better understanding
of ore types, both in terms of ore mineralogy and the presence of deleterious minerals and thus allows for ore-

waste discrimination and stock-pile and processing route assignment during exploitation and beneficiation.

In this study, a unified methodology integrating point spectral measurements on 2-meter intervals of
crushed material, hyperspectral imaging of drill-core samples and Scanning Electron Microscopy Mineral
Liberation analysis (SEM-MLA) data on thin sections is presented. The scope of the study is to tackle
limitations related to the scale and continuity of the mineralogical information available in exploration and
mining campaigns through the use of the full power of hyperspectral imaging combined with local high

resolution mineralogical data. Through the proposed methodology, this study aims to tackle the limitations
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related to the collection of samples for thorough mineralogical analyses which can provide valuable
information related to the microfabric attributes of the ore, through the use of clustering of point spectral
measurements to define mineralogically homogeneous domains at large scales. Once a suite of samples has
been selected for SEM-MLA analyses the resulting high resolution mineral maps are co-registered with the
hyperspectral data in order to estimate mineral abundances in drill-cores subjected to hyperspectral drill-core
scanning. By adopting this approach, the usual limitations in obtaining continuous mineralogical information
over large drill-core intervals is addressed. The obtained mineral abundance maps can serve as a basis for the
extraction of other parameters such as vein density, which are essential to the characterization of some deposits
as well as to the definition of geometallurgical domains. Furthermore, the estimated compositional maps are
clustered into domains of known mineralogical composition. The knowledge of the modal mineralogy of each
domain can support decision making for further sampling and engineering testing that would add further
valuable information to these drill-core domains. The final drill-core data can then be modelled and integrated
into a geometallurgical domain containing geochemical and mineralogical information as well as predictions
of how each domain will behave in the future mining and beneficiation stages and also in mine closure and

remediation.

We illustrate the potential of the proposed methodological framework with the Bolcana gold-copper
porphyry system. The Bolcana system is marked by high variability of mineralogical composition over short
drill-core intervals. This makes it an ideal case study for the use of hyperspectral imaging.

6.2 Geological setting

The Bolcana porphyry system is located in the Western Tethyan magmatic belt, spanning across
Slovakia, Hungary, Romania, Serbia, Bulgaria, Kosovo, Macedonia, Greece and Turkey (Baker, 2019). The
Bolcana system is currently explored by Eldorado Gold through their Romanian subsidiary, Deva Gold S.A. It
is located in the Golden Quadrilateral in the southern part of the Apuseni Mountains, Romania. This region is
considered one of Europe’s most significant porphyry Cu-Au and epithermal provinces (Berbeleac et al., 2014;
Cioacd et al., 2014). The geodynamic evolution of the magmatic belt commences with Cretaceous magmatism
related to subduction-rollback in the Carpathian arc, transitioning from convergence and collision to post-
orogenic extension from the late Eocene to early Oligocene, followed by widespread post-collisional extension-
related magmatism during the Miocene (Baker, 2019; Richards, 2005). The metallogenic endowment in the
region is related to a Miocene post-collision back-arc extension-related magmatic event, mainly between 14.9
and 9 Ma (Pécskay et al., 2006; Rosu et al., 1997). Bolcana is located in the southern part of the Brad-Sacaramb
extensional basin (Figure 6-1), where the main direction of the distribution of the ore deposits follows a ESE-
trending dextral, strike-slip fault system (Neubauer et al., 2005). The basement in the area consists of Middle
Jurassic-Lower Cretaceous basaltic andesites, lava flows and pyroclastics, as well as Lower Cretaceous
rhyolites, overlain by Paleocene and Miocene sediments. Neogene subvolcanic bodies, of dioritic composition,
intrude the basement and the older sedimentary units (Rhys, 2014). These intrusions are associated with

magmatic-hydrothermal mineralization.
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Figure 6-1 Lefi: simplified geological map of the Brad-Sacaramb extensional basin with marked locations of
the epithermal and porphyry deposits, Centre: N-S cross-section of the hydrothermal alteration styles in the
Bolcana porphyry system and equivalent gold grade contours, Right: W-E cross-section of the hydrothermal
alteration styles in the Bolcana porphyry system and equivalent gold schematic outline (modified after
Ivascanu et al., 2019).

At the surface, the Bolcana system has a broad 2 km by 1 km North-South elongated argillic footprint,

controlled by faults that host late epithermal veins which flank the mineralised system (Ivascanu et al., 2019).
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The Bolcana system consists of a series of polyphase intrusions and has a mapped depth extent of
approximately 1.5 km. The main alteration types encountered in the system follow roughly the standard
zonation characteristic of porphyry deposits (Sillitoe, 2010). The phyllic-argillic assemblages are observed on
the flanks of the system and in near-surface zones, transitioning to a magnetite-chlorite dominant assemblage
and further to a potassic character towards the centre of the system (Blannin et al., 2019; Ivascanu et al., 2019).
Additionally, a sodic-calcic core was described by Ivascanu et al., (2019) (Figure 6-1). The ore minerals are
represented by chalcopyrite, bornite, chalcocite, covellite and native gold and occur mainly as stockworks,
hydrothermal breccias and subordinately as fine disseminations. The gold association varies with the location
in the system. At shallow levels, in the phyllic and argillic zones gold is mostly present as fine inclusions in
pyrite, while with the extension to depth it is dominantly associated with the copper sulphides (Blannin et al.,
2019).
6.3 Sampling and data acquisition

Between 2017 and 2019 several sampling campaigns were conducted targeting exploration drill-cores
in the Bolcana system. Point VNIR-SWIR measurements were collected from crushed assay rejects over 2 m
intervals from around 20 km of core using a field-portable spectrometer. During two sampling campaigns,
conducted in 2017 and 2019, around 200 drill-core intervals ranging in length from 15 to 40 cm were collected.
These intervals were considered representative of the respective lithologies and major alteration and
mineralization styles encountered in the system. 54 polished thin sections were prepared from regions of
interest in the selected core intervals, representing the main vein and alteration types encountered in the system,
and analysed by Scanning Electron Microscopy-based Mineral Liberation Analysis (SEM-MLA). The location
of all samples and a schematic illustration of sample and measurement types is shown in Figure 6-2. The size
of the collected drill-core and SEM-MLA samples was increased here for visualization purposes. The available
samples and data thus consist of around 200 drill-core samples collected from three boreholes together with

point spectral measurements over 2 m intervals from around 20 km of core.
6.3.1  Hyperspectral point measurements on pulps

Point measurements were acquired on the crushed material remaining from geochemical analyses.
Samples represent 2-meter core intervals that were crushed to a particle size passing the 2 mm sieve. The
collected spectra covers the VNIR (350-970 nm) and SWIR (970-2500 nm) regions of the electromagnetic

spectrum. The probe contact surface covers a circular area of a diameter of 2 cm.
6.3.2  Hyperspectral drill-core scanning

The collected drill-core samples consist of half cores and the flat surface was analysed by hyperspectral
imaging using a SisuROCK drill-core scanner equipped with an AisaFENIX hyperspectral sensor (Spectral Imaging
Ltd., Oulu, Finland). The AisaFENIX camera implements two sensors to cover the VNIR (380-970 nm) and SWIR
(970-2500 nm) regions of the electromagnetic spectrum. The acquisition setup follows the framework outlined in
Tusa et al., (2020). The resulting spatial sampling of the hyperspectral images is 1.5 mm/pixel and the spectral

resolution in the VNIR is 1.7 nm and in the SWIR 5.7 nm. The conversion from radiance to reflectance was
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performed within the acquisition software for the hyperspectral data (LUMO Scanner version 2018-5, Spectral
Imaging Ltd., Oulu, Finland) using a PTFE reference panel (>99% VNIR and >95% SWIR). The MEPHySTo
toolbox (Jakob et al., 2017) was used for the correction of the spatial shift between the VNIR and SWIR sensors and
for the sensor specific optical distortions. A Savitzky—Golay filter was applied to decrease noise while preserving
spectral features with a window of 5 bands and a second degree polynomial (Ruffin and King, 1999; Savitzky and
Golay, 1964). Principal component analysis (PCA) (Rodarmel and Shan, 2002) was performed on the hyperspectral

dataset for data dimensionality reduction while preserving 99.9% of the information.
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Figure 6-2 A - Cross-section view, looking North, of the analysed boreholes through the Bolcana deposit by
point VNIR-SWIR spectroscopy. Clearly marked are drill-core samples collected for VNIR-SWIR
hyperspectral imaging and SEM-MLA analyses, respectively. B - schematic illustration of sample and
analyses types.

6.3.3  Scanning Electron Microscopy-Based Mineral Liberation Analysis

The 54 selected samples were prepared into polished thin sections and analysed with Scanning Electron
Microscope (SEM)-based Mineral Liberation Analysis (MLA) using the grain-based X-ray mapping
(GXMAP) mode (Kern et al., 2018b). For this purpose, a FEI Quanta 650F field emission SEM (FEI, Hillsboro,
OR, USA), equipped with two Bruker Quantax X-Flash 5030 energy dispersive X-ray (EDX) detectors
(Bruker, Billerica, MA, USA) ae) was used. The measurements followed the experimental setup presented in

(Tusa et al., 2020). The resulting spatial sampling of the mineral maps is 3 pm/pixel.

For the classification of the obtained EDX data, a mineral list was developed using the mineral reference

editor in online mode resulting in a total of 59 entries. As the MLA data are meant to serve as training/validation
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for a procedure using VNIR and SWIR HSI data, some classes need concatenation. To ensure the relevance of
the products, minerals with extremely low abundances will not be imaged by the HSI data that have a coarser
spatial resolution. Some minerals such as metal sulphides, quartz and feldspars are not identified by the HSI
sensor. Finally, in order to improve the performance and the usability of the procedure for the geometallurgical
modelling, we identified geologically relevant mineral groups. As a result, thirteen main mineral groups are
considered: white mica (WM), clay, biotite (Bt), chlorite (Chl), epidote (Ep), amphibole (Amp), carbonate
(Cb), gypsum (Gp), iron oxides (IO) feldspar (Fsp), quartz (Qz), sulphides (Sp) and other minerals (other). In
order to allow data comparison, MLA data were resized to fit the HSI spatial sampling as proposed by Tusa et
al. (2020). The resulting data is a data cube with the spatial sampling of the HSI data containing the dominant

mineral abundances of the respective MLA data.

As a final step, the SEM-MLA mineral maps were resized to the spatial resolution of the hyperspectral
images by converting the 2D labelled high-resolution image to a 3D image where each pixel contains 13 bands
carrying the abundance information for each mineral or mineral group. This resampling is performed using the

methodology presented in (Tusa et al., 2020).

6.4 Methodology
The proposed methodology relies on the integration of three datasets; (a) hyperspectral point

measurements on crushed material (pulp samples) over 2m intervals, (b) hyperspectral drill-core scans of
selected drill core intervals and (¢) SEM-MLA data resized to the spatial resolution of the hyperspectral drill-

core scans. A schematic summary of the workflow is illustrated in Figure 6-3.

To delineate alteration domains and ensure the representativity of the available core samples to the
alteration styles encountered in the Bolcana porphyry system, the point spectral measurements collected on the
crushed drill-core material every 2 m were clustered into seven clusters or domains. This was achieved using
sparse subspace clustering (SSC) (Elhamifar and Vidal, 2013). The SSC algorithm was chosen upon testing its
performance in comparison with other hyperspectral data clustering algorithms on a selection of samples from
the Bolcana deposit (Khodadadzadeh et al., 2018). Seven domains were considered suitable for the current
dataset based on the knowledge on the alteration domain distribution within the deposit (Blannin et al., 2019;
Ivascanu et al., 2019). To confirm the estimation of the virtual dimensionality of the data leading to the choice

in the number of clusters, the elbow method was additionally used (Ketchen and Shook, 1996).

Then the obtained domains were applied to evaluate the representativity of the available SEM-MLA
samples and measurements. Ensuring that a minimum of two samples is available for each domain, the 54
MLA samples were divided into 36 training and 18 validation samples. Further, the borehole domaining results
are used for the development of a 3D model of the alteration in the Leapfrog Geo software package (version
5.0.4, Seequent Limited). The MLA samples continue to be used for the supervised multivariate regression for

the estimation of modal mineralogy and development of mineral maps for the selected drill-core samples.

94



Hyperspectral drill-core scanning in geometallurgy

Spectral point
measurements
A 4

Drill-core samples MLA-HSI co-
registered data

Training and
ression Training data validation sample SSC
selection
. d —
| Mineral abu.n anee Validation data
evaluation
Mineral
abundance maps
Vein extraction
e 288 R 2 H
i| Mineral maps Vein distribution Spectral borehole ||
i and domains maps domains E
epreereepesepereperepereepeed et 1 _____________________________________ '
Geometallurgical
domaining

- Input data - Process Products

Figure 6-3 Flowchart illustrating the proposed methodology (HSI: hyperspectral images, RF: random forest,
MLA: Mineral Liberation Analysis, SSC: sub-space clustering).

6.4.1 Mineral domaining based on pulp point measurements

For the purpose of dividing the hyperspectral data points into mineralogically relevant domains a
subspace clustering algorithm (i.e., SSC) was used. Given that the point spectral measurements have been
collected from crushed materials of 2 m drill-core samples, the obtained hyperspectral data is expected to
contain a large number of data points containing mixed spectral information. We have demonstrated in our
previous studies (Khodadadzadeh et al., 2018; Shahi et al., 2020) that subspace-based machine learning
algorithms are powerful tools to handle mineral mapping in highly mixed hyperspectral data. Particularly, the
SSC algorithm that performs subspace clustering using techniques from sparse representation theory, has
shown improved performance in hyperspectral data clustering. This algorithm applies spectral clustering to a
similarity graph, which is formed by representing each data point as a linear combination of all the other data

points (Elhamifar and Vidal, 2013; Khodadadzadeh et al., 2018).
6.4.2 Mineral abundance estimation, mapping and vein detection

Following the resampling process, the resulting SEM-MLA mineral maps were manually co-registered
with the hyperspectral scans of the corresponding blocks and drill cores. The training set as defined from the
SSC results was used to train a multivariate Random Forest (RF) (Breiman, 2001) regression for the estimation
of the abundance of each mineral group. This technique was chosen due to its good performance when only

few training samples are available (Ghamisi et al., 2017). Additionally, RF was tested in comparison with other
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methods for a smaller subset of the current dataset in (Tusa et al., 2020); here RF was proven most adequate
for the current regression problem. To ensure the validity of the model within 100 iterations the training data

was subsampled between training (66%) and cross-validation (33 %).

As a next step and because of the compositional character of the data, k-means clustering (Ranjan et
al., 2017) was applied on the estimated mineral abundances. Mineral abundance data are subjected to
collinearity removal and logarithmic transformation, prior to clustering. These transformations are necessary
prior to using machine learning algorithms, such as clustering, when variables are considered collinear,
meaning that two variables lie almost on the same line and therefore the angle between the data vectors is small
(Belsley, 1991). In this investigation, the data are transformed using a centred log-ratio (CLR) algorithm.
Within CLR, the data is scaled by its geometric mean (Egozcue et al., 2003). Further, the transformed mineral
abundance data is clustered into domains using k-means. Within the k-means algorithm the Euclidean distance
is used to measure the similarity between different data points, the points with the lowest Euclidean distances

between them being grouped into clusters and treated in this study as spectral domains.

Furthermore, the estimated average composition of each domain was evaluated. The mineral abundance
maps of the sulphide class, consisting of pyrite, chalcopyrite, bornite, chalcocite, covellite and sulfosalts, are
further used to highlight and quantify the abundances of veinlets containing the bulk of the sulphide minerals.
For this purpose, vessel enhancement filtering (Frangi et al., 1998) was used following the methodology
presented in Tusa et al. (2019).

6.5 Results

This section is divided into (1) the domaining results obtained from the analysis of the point
measurements over 2 m bulk samples and their implications on the choice of training and validation samples
for (2) drill-core mineral abundance estimation, mineral mapping and vein extraction and (3) numerical and
visual validation of the results. The second section presents the results at sample scale as well as at drill core

scale where the implications of the results on the understanding of alteration at deposit scale can be highlighted.
6.5.1 Domaining results

The clustering of the handheld spectrometer data using SSC was performed to define spectral domain
characteristics of the main alteration zones in the Bolcana system. The centre spectra and the interquartile range
for each domain are illustrated in Figure 6-4. Seven domains were considered suitable for the current dataset
and the domaining results highlight the distribution and variation of SWIR-active assemblages throughout the
deposit.

A general zonation in the spatial distribution of the spectral domains can be observed in the analysed
drill cores (Figure 6-5), ranging from the presence of domain (1) - argillic and (2) — phyllic-argillic in the near
surface zone, followed by (3) and (4) as transitional domains to what is expected to comprise the chlorite-
magnetite alteration assemblage described by Ivascanu et al., (2019) as “MACE”, (3) being present more
towards the fringes of the porphyry while (4) towards the centre. Domain (5) constitutes large intervals in the
near-surface zone and short intervals in the core of the Bolcana system. Based on its distribution and spectral

characteristics described below, it is expected that it represents a transition between the phyllic (chlorite-
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sericite) and the propylitic alteration. The sixth spectral domain is distributed as a shell around the potassic

core of the system (domain (7)).
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Figure 6-4 Spectral plot presenting the centre spectra and the associated interquartile range for each of the
spectral domains obtained by subspace clustering of the point spectral measurements.

The spectral features of the first domain (Figure 6-4) indicate the presence of both kaolinite and
muscovite based on the AlI-OH absorption with a small doublet at 2200 nm and the doublet in the range of the
water feature at 1400 nm. By comparison, the second domain does not preserve the doublet in the Al-OH
feature characteristic of kaolinite in most of the spectra but an individual feature at 2208 nm characteristic of
mica of intermediate composition between muscovite and phengite and medium crystallinity based on the ratio
of this feature and the water feature around 1900 nm. It additionally exhibits a shoulder in the Al(Mg,Fe)-OH
range indicating the presence of small amounts of chlorite. The presence of a Fe-rich silicate is supported by
the increase in the iron features in the VNIR range. The third domain shows similar spectral features to the
second domain with an increase in intensity of the chlorite feature and an increase in the crystallinity of the
mica. Spectra of the fourth domain are marked by shallower absorption features compared to domains (1)-(3).

This may indicate a lower alteration intensity or simply a different mineral matrix for these drill-core intervals.
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The fifth domains has once again a similar spectral response to the second domain, but with reduced
crystallinity of the mica, which is expected as most of the extensive intervals of this domain are located either
on the fringes of the system or in the near-surface zones. The two last domains, (6) and (7) are characterized
by the dominance of chlorite in domain (6) and of biotite in (7). These minerals are distinguished based on the
ratio of the Al(Mg,Fe)-OH and (Mg,Fe)-OH features and the shape of the spectra in the VNIR range. A
significant amount of muscovite is present in (7), as identified by the presence of the typical AIOH feature.
This is likely due to the presence of muscovite in the alteration halo of the veins present in the potassic zone.
The composition of mica-group minerals in the different domains varies from paragonitic in domain (2) to
muscovitic in domain (7) based on the location of the minima of the AIOH absorption feature. A slightly
phengitic composition of the mica is observed in some of the spectra of domain (6). However, due to the high
abundance of chlorite in this domain the shift in the position of the minima of the AI-OH feature can be assigned
to the mixture. Slight variations are present in the location of the minima for the Al(Mg,Fe)-OH feature among
these domains, 2252-2255 nm in (3), 2248-2253 nm in (4) and 2250-2253 nm in (5). The lower wavelengths
indicate a more magnesian composition of the chlorite while the higher ones indicate an increase in iron

content.
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Figure 6-5 Left: N view of the spectral clustering of point spectra over the boreholes, Right: N view of the
location of the selected training and validation MLA samples based on the spectral clustering.

Following the interpretation of the spectral response of each domain, based on the location of each SEM-

MLA sample and their belonging to a specific domain, the samples are divided into training and validation
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datasets, making sure that each domain is well represented in each set. These samples are later used for the
mineral abundance mapping. The location of these samples within the Bolcana mineralized system is illustrated

in Figure 6-5.
6.5.2  Drill-core mineral mapping and vein extraction

In the case of the drill-core scans, the domain definition is performed through the clustering of the
mineral abundances obtained from the upscaling of the SEM-MLA data by RF regression. Following a similar
approach as for the point measurements for the estimation of the number of clusters, seven domains were
delineated. In Figure 6-6, five samples are selected to exemplify the mineral abundance, vein distribution and
mineral mapping / domaining results. The mineral composition of each domain is calculated from the estimated
mineral abundance in each domain as an average for all the samples from the three analysed drill cores. The
spectral signatures of each domain are analysed based on the center spectra and interquartile range (Figure
6-7). Further, the dominant label in the mineral maps is considered as the dominant mineralogical domain in
the sample and respective sampling interval. The spatial distribution of the domains in the analysed samples

from the three drill cores (Figure 6-8, Appendix 6A: Figure 6-11, Figure 6-12) are also discussed in this section.

Based on the modal mineralogy of each drill-core domain calculated from the mineral abundance estimates
(Figure 6-6) the following interpretations can be made for the alteration labelling of these domains:

- Domain (1) — dominated by white mica and clay, cumulatively over 40 % - assemblage indicative of the
phyllic alteration transitioning to argillic

- Domain (2) — a decrease in both white mica and clay, cumulatively around 30 % - assemblage defined as
mica dominant phyllic alteration with an increase in gypsum likely related to veins

- Domain (3) — is marked by an increase in the chlorite : white mica ratio compared to domain (2) and is
considered to be characteristic of chlorite-rich phyllic alteration

- Domains (4) and (5) — presents similar chlorite : white mica ratios characteristic to the chlorite-dominant
alteration. The iron oxide and gypsum increase in domain (4) indicate the alteration domain defined by
Ivascanu et al., (2019) “MACE”

- Domains (6) marks the transition to the potassic core (7), presenting increased amounts of biotite and
magnetite and decreased white mica contents

Throughout the domains, the sulphide and quartz contents appear to be proportional. The highest
sulphide contents are present in the two transitional domains (3) and (5) between the potassic and the phyllic
zones. The highest sulphide contents are not only related to the highest amounts of sulphide present in veinlets

but also to the present of disseminated pyrite in the matrix.

The mineral maps presented in Figure 6-6, together with the vein intensity maps indicate that different
vein halo compositions are characteristic to different pervasive alteration domains. The modal mineralogy and
more specifically the abundances of clay, white mica, chlorite, biotite and gypsum are reflected in the spectral
response of the domains illustrated in Figure 6-7. For domain 1 the main absorption features are characteristic
of water and AI-OH characteristic of white mica. The AI-OH feature at 2200 nm presents a shoulder towards
2165 nm indicative of clay as supported by the estimated modal mineralogy. In the second domain spectra the
shoulder for clays is no longer identified due to the low clay concentrations in this domain. Additionally, the

features characteristic of gypsum are observed here through the fine water features between 1450 and 1550 nm
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as well as the feature at 1750 nm. The water feature around 1900 nm presents two absorption minima given by
the mixture of white mica and gypsum. The increase in chlorite content is marked in the spectra of domain 3

through the appearance of a fine Al(Mg,Fe)-OH feature.
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Figure 6-6 Examples of drill-core abundance estimation, vein extraction and clustering into classes or
domains of known mineral composition (white mica (WM), biotite (Bt), chlorite (Chl), epidote (Ep),
amphibole (Amp), carbonate (Cb), gypsum (Gp), iron oxides (10) feldspar (Fsp), quartz (Qz), sulphide (Sp)).

While clay is present in this domain in similar amounts as in domain 2, the shoulder at 2165 nm is more

prominent. The spectra of domain (4) supports the estimated modal mineralogy, particularly the increase in
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chlorite and biotite concentrations given by the Al(Mg,Fe)-OH feature and of gypsum marked by the water
feature between 1450 and 1550 nm. The intensity of the absorption features in this domain is relatively low for
all SWIR diagnostic minerals, and can be assigned to the dark appearance of the samples likely due to the high
content of disseminated magnetite. By comparison to the former domain, the following, (5), presents a strong
decrease in gypsum abundance and an increase in the chlorite, biotite (Al(Mg,Fe)-OH) and white mica (Al-
OH). The two last domains are characterised by further increase in biotite content and decrease in white mica

clearly observed in the change in ratio between the AI-OH and Al(Mg,Fe)-OH features (Figure 6-7).
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Figure 6-7 Spectral plot presenting the centre spectra and the associated interquartile range for each of the
mineralogical domains obtained by the clustering of estimated drill-core mineral abundances by RF.

With regards to the spatial distribution of these domains in the analysed cores, a general transition with
depth and proximity to the core of the system from mica-rich domains to chlorite and biotite-rich domains can
be observed in all three boreholes. However, variations occur depending on the location of each borehole within
the system (Figure 6-2), documenting spatial complexity and successive overprinting of alteration and

mineralization styles in a telescoped magmatic-hydrothermal system (Paul —2019).

Due to its location, BH-1 (Figure 6-8) crosses all the main alteration styles encountered in the Bolcana
system. This borehole crosses part of the system starting from the central zone and bearing towards WSW with

a dip of roughly 74 degrees. The mineral abundance, domain and vein intensity logs are presented in Figure
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6-8. A transition is recognized from argillic and phyllic assemblages in the near-surface zone to a chlorite-rich
zone and further a biotite-rich zone at depth. Intervals with white mica-dominant alteration as well as increased
clay abundance are observed at greater depths. These intervals are frequently related to fracture zones and

epithermal overprints.
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Figure 6-8 BH-1: Borehole mineral abundance, vein extraction and domaining based on drill-core
hyperspectral data analysis (white mica (WM), biotite (Bt), chlorite (Chl), epidote (Ep), amphibole (Amp),
carbonate (Cb), gypsum (Gp), iron oxides (10) feldspar (Fsp), quartz (Qz), sulphide (SP)).

The second borehole, BH-2, starts from the Central-West side of the system towards ESE, with a dip of
roughly 56 degrees. A lower variability of the alteration is encountered in this borehole (Appendix 6A: Figure
6-11), the transitional domain (domain 5) comprising white mica and chlorite being dominant. Three chlorite-

and chlorite-biotite-rich domains are crossed, likely related to the fringes of the cores of one or several porphyry
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bodies. Towards the end of the sampled interval a white mica and clay rich zone is present. This is interpreted

to be related to an epithermal overprint, similar to BH-1.

BH-3 was sampled over a 2000 m depth extent; data was collected more widely spaced than in the two
other holes. BH-3 starts from the Eastern fringe of the exploration license and outside of the porphyry
mineralization. The first two samples in the borehole are chlorite and chlorite-biotite enriched. This can, in this
case, not be attributed to the proximity to the core of the Bolcana hydrothermal system, but is rather
characteristic of propylitic alteration distal to the magmatic-hydrothermal system. Epidote is not present in
relevant amounts in the samples, its absence can be however assigned to the lack of training data from this
domain. Other than that, the zonation appears similar to that encountered in BH-1, ranging from a white mica
and clay-dominant alteration assemblage towards an enrichment in chlorite and biotite with depth and
proximity to the core of the Bolcana porphyry system (Appendix 6A: Figure 6-12). The observed white mica-

dominant intervals represent again areas marked by an epithermal overprint.

6.6 Validation of results
The evaluation of the mineral abundance estimation was performed using 18 thin section blocks with

available MLA data from polished thin section surfaces through RMSE (Root Mean Square Error) calculation.
The overall and per class (mineral group) RMSE values are listed in Table 6-1. The highest errors are associated
with quartz and feldspar abundances. These minerals do not have diagnostic SWIR features and are the most
abundant in the analysed samples. It is likely that these errors are related to the distribution of these minerals
in the matrix of the samples and that overestimation of feldspar leads to the underestimation of quartz and vice-
versa. Among the SWIR diagnostic minerals, the highest RMSE values are obtained for white mica, which is
present in large concentrations. Additionally, gypsum, which is only present in low amounts, has a high error
associated with its abundance estimation. It is, however, important to mention that this class comprises both
gypsum as a hydrated endmember and anhydrite. The abundance estimation results in comparison with the
ground truth MLA validation data for a selection of samples from the set used for numerical validation from
different alteration zones within the system is presented in Figure 6-9.

Table 6-1 Overall and per mineral group Root Mean Square Error (RMSE) values for the mineral abundance

validation dataset consisting of 18 thin section blocks (white mica (WM), biotite (Bt), chlorite (Chl), epidote
(Ep), amphibole (Amp), carbonate (Cb), gypsum (Gp), iron oxides (10) feldspar (Fsp), quartz (Qz), sulphide

(SP)).
Overall Per class RMSE
RMSE | wM cClay Bt Chl Ep Amp Cb Gp 10 Fsp Qz SP
0.10 0.13 004 003 005 002 00l 003 010 005 019 024 0.11
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Figure 6-9 Comparison of mineral abundance estimation and ground truth SEM-MLA data for a selection of
7 from the 18 validation samples collected from different alteration domains and hosting various vein types
(white mica (WM), biotite (Bt), chlorite (Chl), epidote (Ep), amphibole (Amp), carbonate (Cb), gypsum (Gp),
iron oxides (10) feldspar (Fsp), quartz (Qz), sulphide (SP)).

Discussion

The collection and analysis of representative samples is a crucial step in drill core analysis for
exploration as well as for the employment of machine learning routines for upscaling mineralogical data. In
the current study, hand-held spectra collected from pulps representing two-meter intervals of around 20 km of
drill core were used to develop preliminary spectral domains. This allowed representative sampling of each
spectral domain characteristic of a distinct alteration assemblage. Although the point spectral measurements
provide indications on the location within the system, related to the different porphyry bodies, this information
is not suitable to provide spatially resolved information such as on the distribution of the different spectrally
active minerals in matrix or on different vein types. To provide such information, hyperspectral drill core

scanning is an essential tool.

Using the large-scale domains obtained through the clustering of the point spectra by SSC, the 54
available thin section blocks were divided into a training and a validation set to be further used for upscaling

of the mineralogical data obtained by SEM-MLA to drill-core scale. The domaining data was further imported
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into Leapfrog Geo and, using its intuitive 3D modelling tools, a preliminary spectral model was developed
(Figure 6-10). The observed spatial coherence of the model with the porphyry-type zonation of the Bolcana
system represents an important argument that hyperspectral data can be used effectively to provide insight into
the architecture of a porphyry system (Sillitoe, 2010) — and may thus also be used to provide guidance for the
development of a geometallurgical model (Kern et al., 2018a). Additionally, even with only spectral point
measurements it provides more information on the zonation of the main alteration assemblages compared to

traditional logging (Figure 6-1).
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Figure 6-10 N-S and W-E cross-section views through the spectral domain model obtained from the
clustering of handheld spectra.

On the other hand, the use of point measurements only allows for the discrimination of the main
alteration zones in the system, while the use of hyperspectral imaging of the drill core provides valuable
information on the spatial and compositional variability at high resolution. The selected samples subjected to
SEM-MLA analyses were thus used for training a regression model to upscale relevant mineral abundances to

drill core scale.

Drill core scale analysis, through the upscaling of the SEM-MLA mineral maps, has rendered mineral
abundance maps over entire drill cores for twelve important mineral groups: white mica, clay, biotite, chlorite,
epidote, amphibole, carbonate, gypsum group (calcium sulphate), iron oxide, feldspar, quartz and sulphide.

The quality of the mineral abundance estimation through upscaling was evaluated through the calculation of
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the RMSE using 18 thin section blocks analysed by SEM-MLA. Among the SWIR active minerals, white mica
has the highest associated error. This can be assigned to its high abundance in the samples, together with its
strong association with quartz around veins and feldspars in the matrix, leading to local misclassifications. A
similar effect can be observed for calcium sulphate, e.g. anhydrite (SWIR non-diagnostic) or gypsum (SWIR-
diagnostic), which, due to the different intensity of the absorption features, together with its frequent
association with white micas tends to be in some areas overestimated where white mica is dominant and
gypsum only present in small amounts. Epidote is only present in minor amounts in the analysed samples but
had a relatively high error by comparison due to the low number of training samples containing epidote and its
similar spectral response to chlorite. Clay, chlorite, biotite, amphibole, carbonate and iron oxide, key minerals
for the understanding of the system and all having diagnostic features in the spectral range of the used sensor,
present low estimation errors. Sulphide, the key ore mineral group in the system, comprising the copper bearing
minerals together with pyrite, which locally hosts native gold inclusions (Blannin et al., 2021), shows a
relatively good estimation accuracy, particularly in veins. Sometimes the sulphide abundance tends to be
overestimated in the matrix. For this reason, vein extraction was performed on the sulphide abundance maps
in order to significantly improve the identification and quantification of sulphide and therefore ore-bearing
veins. Frangi filters proved successful in enhancing the veins. The resulting mineral abundance can be used to
segment the vein abundance maps into labels indicating areas with and without veins. However, for the purpose
of vein quantification the intensity of the veins after the Frangi filter was used as some of the veins have
thicknesses under the spatial resolution of the hyperspectral sensor (1.5 mm/pixel). This way, the fine veins,
while they are mapped show a lower intensity which appears to be proportional to their thickness as well as to

the abundance of sulphide inside the vein.

Following up the abundance estimation, the mineral abundances were clustered into domains. The vein
distribution is also highly variable between domains. In BH-1 the highest vein densities are present in domains
(4) and (6), while in the second borehole, where domain (4) is only locally present, the highest vein abundance
is observed in domains (2) and (6). In this work, the vein estimation is focused on the sulphide abundance
maps, sulphide being the main copper and gold bearing mineral group (Blannin et al., 2019). Further work on
estimating the vein density on other mineral abundances related to veins, such as gypsum and quartz are

recommended.

The understanding of the modal mineralogy of each domain already provides valuable information for
the estimation of engineering parameters past the exploration stage. When it comes to slope regulation, the
quantification of the abundance of clay and gypsum in the drill cores can indicate the requirements for slope
adjustment: clays increase volume in the presence of water and reduce volume in dry seasons, gypsum can be
dissolved leading to the creation of voids inside the walls. Both minerals can therefore increase the risk of slope
failure if not well handled. These indications combined with the estimation of weathering degree and
quantification of joints following the same methodology as for vein extraction. Additionally, when it comes to
the beneficiation stages, minerals such as clay and white mica can inhibit sulphide flotation through slime

coating and entrainment (Chen et al., 2014).
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6.7 Conclusion

In the current work a methodology for drill-core mineral abundance estimation, mineral mapping and
domaining is presented. The obtained results show high potential for their use in understanding the architecture
of the Bolcana deposit and the use of this data for geometallurgical modelling. Additionally, the clustering of
the mineral abundances and their segmentation into domains support the development of homogeneous
mineralogical domains that are inherently linked to different ore types in terms of composition, vein abundance
and grade. For the Bolcana system, seven main mineral domains were identified, presenting a clear spatial
zonation from white mica dominant assemblages in the near-surface zones to chlorite and chlorite-biotite
dominant assemblages at depth. Additional transitional domains are distinguished based on increased
abundance of other key minerals such as clays, gypsum and iron oxide. The mineral composition in each
domain can give preliminary information on the engineering behaviour of each ore type in different mining

and beneficiation processes.

Besides the understanding of the mineralogical composition within the domains, the current approach
allows for strategic sampling in homogeneous domains for further testing. Domains of homogeneous
composition are expected to illustrate a similar behaviour in different processes such as comminution and
flotation. [JG1] By collecting samples for testing from each domain and the creation of a digital twin of each
process, the obtained information can be further extrapolated to deposit scale leading to the ultimate
development of a predictive geometallurgical model (van den Boogaart and Tolosana-Delgado, 2018). The
automated character of the proposed methodology could be easily transferred to other deposit types as well as

other data acquisition setups and other sensors.
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Appendix 6A. Mineral abundance, vein intensity and mineral domain logs for BH-2 and BH-3

Figure 6-11 BH-2: Borehole mineral abundance, vein extraction and domaining based on drill-core
hyperspectral data analysis (white mica (WM), biotite (Bt), chlorite (Chl), epidote (Ep), amphibole (Amp),
carbonate (Cb), gypsum (Gp), iron oxides (10) feldspar (Fsp), quartz (Qz), sulphide (SP)).
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Figure 6-12 BH-3: Borehole mineral abundance, vein extraction and domaining based on drill-core
hyperspectral data analysis (white mica (WM), biotite (Bt), chlorite (Chl), epidote (Ep), amphibole (Amp),
carbonate (Cb), gypsum (Gp), iron oxides (10) feldspar (Fsp), quartz (Qz), sulphide (SP)).
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Chapter 7 Concluding remarks

This thesis develops a comprehensive framework for the use of hyperspectral drill-core scanning for the
acquisition and delivery of continuous mineralogical and textural data for mineral exploration and early

establishment of a geometallurgical model.

The Bolcana porphyry copper-gold system in Romania is used as a case study as it shows variable and
complex mineralogy and mineralization styles, representing therefore a challenge for most established methods
for ore characterisation and geometallurgical models. Additionally, the variable copper grades represent a
strong motivation for the understanding of the different ore types and their composition as well as for the pre-

concentration of the ore after crushing, prior to further beneficiation.

Different methodological approaches are used relying on different levels of understanding of a deposit
and available ground-truth mineralogical and textural data. As a result, a variety of tools were developed to

provide the following outcomes or deliverables:

1. Identifying and mapping of the main alteration minerals in the system based on unsupervised
mineral mapping techniques and spectral analysis

2. Discriminating mineral abundances related to both veins and pervasive alteration from the
aforementioned maps through morphological analysis.

3. With the availability of ground truth mineralogical data, the estimation the modal mineralogy related
to different grade domains through supervised machine learning methods

4. Support in metallurgical design by providing extensive modal mineralogy and mineral association
data

5. Estimation of vein abundance and orientation (azimuth) based on either vein halo mineralogy or
composition of the veins.

6. A framework for the simulation of sensor sorting potential using hyperspectral sensors based on
machine learning approaches which allow for the identification of subtle proxies for mineralization
which are not clear by direct spectral and mineralogical analyses

7. Prediction of the mineralogical and textural composition of different beneficiation products for

different sorting scenarios using hyperspectral sensors.

These products can be used in the different stages of an exploration and mining project (Figure 7-1). In
the case of regional exploration, where samples are collected from outcrops and preliminary drilling is
performed, the methodology presented in the third chapter (Tusa et al., 2019) can be used to identify the
different spectrally diagnostic minerals, map different alteration domains that can help target and delineate
mineralized bodies. Additionally, in this chapter morphological analyses are performed on relative mineral
abundance maps in order to extract and quantify the vein distribution. These analyses can be additionally

performed on other types of maps such as those described in chapters four and five.

With increased availability of mineralogical and textural data, mineral abundances derived from the

hyperspectral data using machine learning techniques can support resource definition and later grade control,
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through not only estimating the metal content in the analysed samples but also the main associated gangue
mineral groups. The presence of specific minerals as well as the overall modal mineralogy derived from the
hyperspectral data using the methodology proposed in the fourth chapter (Tusa et al., 2020) can complement
local geotechnical tests into defining mine slope design and blasting strategy. Additionally, the modal
mineralogy and mineral association estimates can guide the design for further beneficiation. With regards to
direct impact on mineral beneficiation, in Chapter 5 a machine learning framework for the testing of the
suitability of SWIR sensors was presented. In the case of the Bolcana it was shown that provided that
representative samples are made available for training, a machine learning model can be trained to predict the
grade of the ore (Tusa et al., 2019a). Using this methodology, information on the modal mineralogy of the
products can be delivered which will, as in the previous stage support decision making in the further

beneficiation stages.

Drilling and .
¥ g Slope design Beneficiation
U and control optimisation
Regional definition Grade Blast P Closure and
exploration control design remediation

Figure 7-1. Flowchart illustrating the main stages of an exploration and mining project where near-field
hyperspectral imaging and more specifically the methodologies presented in this thesis present relevant
contributions.

The workflows presented in chapters three, four and five can be upscaled to large drill-core intervals
providing continuous mineralogical data which are key in the development of geometallurgical models. Based
on the available drill-core samples, mineralogical and textural data and point spectral measurements, Chapter
6 illustrates a methodology for the integration and use of these datasets to produce 3D models based on the
hyperspectral data. Additionally, this chapter illustrates the level of detail that different datasets provide. While
only the point measurements were available over all the drilled boreholes in the Bolcana system, they can be
used to model the main alteration domains in the system. However, on the three boreholes where drill-core
samples were available the quality and detail of the obtained mineralogical information were highly increased.
While the broad domaining can still be used in geometallurgical modelling, the use of drill-core scanning on
all the boreholes in the system would have provided a better understanding of the mineralization styles and

related alteration assemblages.

Based on the results presented in the previous chapters, conclusions can be drawn on the most suitable
way to plan the use of hyperspectral imaging in the geometallurgical context. In Figure 7-2 a flowchart is
presented for this purpose, the stages where hyperspectral data, more precisely the methods described in detail
in the papers included in Chapters 3-6 can be used, are highlighted in green. The proposed workflow starts
with the scanning of exploration cores and the use of these data to identify spectral (and therefore
mineralogical) domains. The domaining results will support representative sampling for laboratory analyses,
such as Scanning Electron Microscopy-based image analyses. The laboratory analyses results are then upscaled

using the hyperspectral data to entire borehole intervals for the developments of mineral abundance maps.
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These maps are then subjected to the calculation of mineralogical parameters (e.g., mineral association) and
extraction of textural and structural features (e.g., veins). Through supervised classification, these results are
the basis of the definition of mineralogical and textural domains and will support the sampling strategy for
engineering tests, process simulation and digital twin creation. If such a strategy is strictly applied, then the
engineering test results can be used in conjunction with the available hyperspectral data to develop a three-
dimensional predictive geometallurgical model. With the progress of the mine, the geometallurgical model
can be updated through online characterisation of particles on a conveyor belt or mine face mapping before

and after blasting using the same or similar sensor to that used for the mapping of drill-cores.
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Figure 7-2 Proposed workflow for the integration of hyperspectral imaging in geometallurgical modelling from early exploration through mining.
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