325 research outputs found

    MASCOT : metadata for advanced scalable video coding tools : final report

    Get PDF
    The goal of the MASCOT project was to develop new video coding schemes and tools that provide both an increased coding efficiency as well as extended scalability features compared to technology that was available at the beginning of the project. Towards that goal the following tools would be used: - metadata-based coding tools; - new spatiotemporal decompositions; - new prediction schemes. Although the initial goal was to develop one single codec architecture that was able to combine all new coding tools that were foreseen when the project was formulated, it became clear that this would limit the selection of the new tools. Therefore the consortium decided to develop two codec frameworks within the project, a standard hybrid DCT-based codec and a 3D wavelet-based codec, which together are able to accommodate all tools developed during the course of the project

    On the Effectiveness of Video Recolouring as an Uplink-model Video Coding Technique

    Get PDF
    For decades, conventional video compression formats have advanced via incremental improvements with each subsequent standard achieving better rate-distortion (RD) efficiency at the cost of increased encoder complexity compared to its predecessors. Design efforts have been driven by common multi-media use cases such as video-on-demand, teleconferencing, and video streaming, where the most important requirements are low bandwidth and low video playback latency. Meeting these requirements involves the use of computa- tionally expensive block-matching algorithms which produce excellent compression rates and quick decoding times. However, emerging use cases such as Wireless Video Sensor Networks, remote surveillance, and mobile video present new technical challenges in video compression. In these scenarios, the video capture and encoding devices are often power-constrained and have limited computational resources available, while the decoder devices have abundant resources and access to a dedicated power source. To address these use cases, codecs must be power-aware and offer a reasonable trade-off between video quality, bitrate, and encoder complexity. Balancing these constraints requires a complete rethinking of video compression technology. The uplink video-coding model represents a new paradigm to address these low-power use cases, providing the ability to redistribute computational complexity by offloading the motion estimation and compensation steps from encoder to decoder. Distributed Video Coding (DVC) follows this uplink model of video codec design, and maintains high quality video reconstruction through innovative channel coding techniques. The field of DVC is still early in its development, with many open problems waiting to be solved, and no defined video compression or distribution standards. Due to the experimental nature of the field, most DVC codec to date have focused on encoding and decoding the Luma plane only, which produce grayscale reconstructed videos. In this thesis, a technique called “video recolouring” is examined as an alternative to DVC. Video recolour- ing exploits the temporal redundancies between colour planes, reducing video bitrate by removing Chroma information from specific frames and then recolouring them at the decoder. A novel video recolouring algorithm called Motion-Compensated Recolouring (MCR) is proposed, which uses block motion estimation and bi-directional weighted motion-compensation to reconstruct Chroma planes at the decoder. MCR is used to enhance a conventional base-layer codec, and shown to reduce bitrate by up to 16% with only a slight decrease in objective quality. MCR also outperforms other video recolouring algorithms in terms of objective video quality, demonstrating up to 2 dB PSNR improvement in some cases

    Cubic-panorama image dataset analysis for storage and transmission

    Full text link

    Segmentation-based mesh design for motion estimation

    Get PDF
    Dans la plupart des codec vidéo standard, l'estimation des mouvements entre deux images se fait généralement par l'algorithme de concordance des blocs ou encore BMA pour « Block Matching Algorithm ». BMA permet de représenter l'évolution du contenu des images en décomposant normalement une image par blocs 2D en mouvement translationnel. Cette technique de prédiction conduit habituellement à de sévères distorsions de 1'artefact de bloc lorsque Ie mouvement est important. De plus, la décomposition systématique en blocs réguliers ne dent pas compte nullement du contenu de l'image. Certains paramètres associes aux blocs, mais inutiles, doivent être transmis; ce qui résulte d'une augmentation de débit de transmission. Pour paillier a ces défauts de BMA, on considère les deux objectifs importants dans Ie codage vidéo, qui sont de recevoir une bonne qualité d'une part et de réduire la transmission a très bas débit d'autre part. Dans Ie but de combiner les deux exigences quasi contradictoires, il est nécessaire d'utiliser une technique de compensation de mouvement qui donne, comme transformation, de bonnes caractéristiques subjectives et requiert uniquement, pour la transmission, l'information de mouvement. Ce mémoire propose une technique de compensation de mouvement en concevant des mailles 2D triangulaires a partir d'une segmentation de l'image. La décomposition des mailles est construite a partir des nœuds repartis irrégulièrement Ie long des contours dans l'image. La décomposition résultant est ainsi basée sur Ie contenu de l'image. De plus, étant donné la même méthode de sélection des nœuds appliquée à l'encodage et au décodage, la seule information requise est leurs vecteurs de mouvement et un très bas débit de transmission peut ainsi être réalise. Notre approche, comparée avec BMA, améliore à la fois la qualité subjective et objective avec beaucoup moins d'informations de mouvement. Dans la premier chapitre, une introduction au projet sera présentée. Dans Ie deuxième chapitre, on analysera quelques techniques de compression dans les codec standard et, surtout, la populaire BMA et ses défauts. Dans Ie troisième chapitre, notre algorithme propose et appelé la conception active des mailles a base de segmentation, sera discute en détail. Ensuite, les estimation et compensation de mouvement seront décrites dans Ie chapitre 4. Finalement, au chapitre 5, les résultats de simulation et la conclusion seront présentés.Abstract: In most video compression standards today, the generally accepted method for temporal prediction is motion compensation using block matching algorithm (BMA). BMA represents the scene content evolution with 2-D rigid translational moving blocks. This kind of predictive scheme usually leads to distortions such as block artefacts especially when the motion is important. The two most important aims in video coding are to receive a good quality on one hand and a low bit-rate on the other. This thesis proposes a motion compensation scheme using segmentation-based 2-D triangular mesh design method. The mesh is constructed by irregularly spread nodal points selected along image contour. Based on this, the generated mesh is, to a great extent, image content based. Moreover, the nodes are selected with the same method on the encoder and decoder sides, so that the only information that has to be transmitted are their motion vectors, and thus very low bit-rate can be achieved. Compared with BMA, our approach could improve subjective and objective quality with much less motion information."--Résumé abrégé par UM

    A very low bit rate video coder decoder

    Get PDF
    Ankara : Department of Electrical and Electronics Engineering and the Institute of Engineering and Sciences of Bilkent University, 1997.Thesis (Master's) -- Bilkent University, 1997.Includes bibliographical references leaves 81-85.Bostancı, Hakkı TunçM.S

    Disparity compensation using geometric transforms

    Get PDF
    This dissertation describes the research and development of some techniques to enhance the disparity compensation in 3D video compression algorithms. Disparity compensation is usually performed using a block matching technique between views, disregarding the various levels of disparity present for objects at different depths in the scene. An alternative coding scheme is proposed, taking advantage of the cameras setup information and the object’s depth in the scene, to compensate more complex spatial distortions, being able to improve disparity compensation even with convergent cameras. In order to perform a more accurate disparity compensation, the reference picture list is enriched with additional geometrically transformed images, for the most relevant object’s levels of depth in the scene, resulting from projections of one view to another. This scheme can be implemented in any state-of-the-art video codec, as H.264/AVC or HEVC, in order to improve the disparity matching accuracy between views. Experimental results, using MV-HEVC extension, show the efficiency of the proposed method for coding stereo video, presenting bitrate savings up to 2.87%, for convergent camera sequences, and 1.52% for parallel camera sequences. Also a method to choose the geometrically transformed inter view reference pictures was developed, in order to reduce unnecessary overhead for unused reference pictures. By selecting and adding to the reference picture list, only the most useful pictures, all results improved, presenting bitrate savings up to 3.06% for convergent camera sequences, and 2% for parallel camera sequences

    Variable Block Size Motion Compensation In The Redundant Wavelet Domain

    Get PDF
    Video is one of the most powerful forms of multimedia because of the extensive information it delivers. Video sequences are highly correlated both temporally and spatially, a fact which makes the compression of video possible. Modern video systems employ motion estimation and motion compensation (ME/MC) to de-correlate a video sequence temporally. ME/MC forms a prediction of the current frame using the frames which have been already encoded. Consequently, one needs to transmit the corresponding residual image instead of the original frame, as well as a set of motion vectors which describe the scene motion as observed at the encoder. The redundant wavelet transform (RDWT) provides several advantages over the conventional wavelet transform (DWT). The RDWT overcomes the shift invariant problem in DWT. Moreover, RDWT retains all the phase information of wavelet coefficients and provides multiple prediction possibilities for ME/MC in wavelet domain. The general idea of variable size block motion compensation (VSBMC) technique is to partition a frame in such a way that regions with uniform translational motions are divided into larger blocks while those containing complicated motions into smaller blocks, leading to an adaptive distribution of motion vectors (MV) across the frame. The research proposed new adaptive partitioning schemes and decision criteria in RDWT that utilize more effectively the motion content of a frame in terms of various block sizes. The research also proposed a selective subpixel accuracy algorithm for the motion vector using a multiband approach. The selective subpixel accuracy reduces the computations produced by the conventional subpixel algorithm while maintaining the same accuracy. In addition, the method of overlapped block motion compensation (OBMC) is used to reduce blocking artifacts. Finally, the research extends the applications of the proposed VSBMC to the 3D video sequences. The experimental results obtained here have shown that VSBMC in the RDWT domain can be a powerful tool for video compression

    Low bit-rate image sequence coding

    Get PDF
    corecore