332 research outputs found

    Hydrodynamics-Biology Coupling for Algae Culture and Biofuel Production

    Get PDF
    International audienceBiofuel production from microalgae represents an acute optimization problem for industry. There is a wide range of parameters that must be taken into account in the development of this technology. Here, mathematical modelling has a vital role to play. The potential of microalgae as a source of biofuel and as a technological solution for CO2 fixation is the subject of intense academic and industrial research. Large-scale production of microalgae has potential for biofuel applications owing to the high productivity that can be attained in high-rate raceway ponds. We show, through 3D numerical simulations, that our approach is capable of discriminating between situations where the paddle wheel is rapidly moving water or slowly agitating the process. Moreover, the simulated velocity fields can provide lagrangian trajectories of the algae. The resulting light pattern to which each cell is submitted when travelling from light (surface) to dark (bottom) can then be derived. It will then be reproduced in lab experiments to study photosynthesis under realistic light patterns

    A new derivative of midimew-connected mesh network

    Get PDF
    In this paper, we present a derivative of Midimew connected Mesh Network (MMN) by reassigning the free links for higher level interconnection for the optimum performance of the MMN; called Derived MMN (DMMN). We present the architecture of DMMN, addressing of nodes, routing of message and evaluate the static network performance. It is shown that the proposed DMMN possesses several attractive features, including constant degree, small diameter, low cost, small average distance, moderate bisection width, and same fault tolerant performance than that of other conventional and hierarchical interconnection networks. With the same node degree, arc connectivity, bisection width, and wiring complexity, the average distance of the DMMN is lower than that of other networks

    A Learning Automaton-based Scheme for Scheduling Domestic Shiftable Loads in Smart Grids

    Get PDF
    In this paper, we consider the problem of scheduling shiftable loads, over multiple users, in smart electrical grids. We approach the problem, which is becoming increasingly pertinent in our present energy-thirsty society, using a novel distributed game-theoretic framework. In our specific instantiation, we consider the scenario when the power system has a local-area Smart Grid (SG) subnet comprising of a single power source and multiple customers. The objective of the exercise is to tacitly control the total power consumption of the customers’ shiftable loads so to approach the rigid power budget determined by the power source, but to simultaneously not exceed this threshold. As opposed to the “traditional” paradigm that utilizes a central controller to achieve the load scheduling, we seek to achieve this by pursuing a distributed approach that allows the users¹ to make individual decisions by invoking negotiations with other customers. The decisions are essentially of the sort where the individual users can choose whether they want to be supplied or not. From a modeling perspective, the distributed scheduling problem is formulated as a game, and in particular, a so-called “Potential” game. This game has at least one pure strategy Nash Equilibrium (NE), and we demonstrate that the NE point is a global optimal point. The solution that we propose, which utilizes the theory of Learning Automata (LA), permits the total supplied loads to approach the power budget of the subnet once the algorithm has converged to the NE point. The scheduling is achieved by attaching a LA to each customer. The paper discusses the applicability of three different LA schemes, and in particular the recently-introduced Bayesian Learning Automata (BLA). Numerical results, obtained from testing the schemes on numerous simulated datasets, demonstrate the speed and the accuracy of proposed algorithms in terms of their convergence to the game’s NE point.publishedVersionNivå

    A Learning Automaton-based Scheme for Scheduling Domestic Shiftable Loads in Smart Grids

    Get PDF
    In this paper, we consider the problem of scheduling shiftable loads, over multiple users, in smart electrical grids. We approach the problem, which is becoming increasingly pertinent in our present energy-thirsty society, using a novel distributed game-theoretic framework. In our specific instantiation, we consider the scenario when the power system has a local-area Smart Grid (SG) subnet comprising of a single power source and multiple customers. The objective of the exercise is to tacitly control the total power consumption of the customers’ shiftable loads so to approach the rigid power budget determined by the power source, but to simultaneously not exceed this threshold. As opposed to the “traditional” paradigm that utilizes a central controller to achieve the load scheduling, we seek to achieve this by pursuing a distributed approach that allows the users¹ to make individual decisions by invoking negotiations with other customers. The decisions are essentially of the sort where the individual users can choose whether they want to be supplied or not. From a modeling perspective, the distributed scheduling problem is formulated as a game, and in particular, a so-called “Potential” game. This game has at least one pure strategy Nash Equilibrium (NE), and we demonstrate that the NE point is a global optimal point. The solution that we propose, which utilize

    Combining SOA and BPM Technologies for Cross-System Process Automation

    Get PDF
    This paper summarizes the results of an industry case study that introduced a cross-system business process automation solution based on a combination of SOA and BPM standard technologies (i.e., BPMN, BPEL, WSDL). Besides discussing major weaknesses of the existing, custom-built, solution and comparing them against experiences with the developed prototype, the paper presents a course of action for transforming the current solution into the proposed solution. This includes a general approach, consisting of four distinct steps, as well as specific action items that are to be performed for every step. The discussion also covers language and tool support and challenges arising from the transformation

    Security and Privacy for Modern Wireless Communication Systems

    Get PDF
    The aim of this reprint focuses on the latest protocol research, software/hardware development and implementation, and system architecture design in addressing emerging security and privacy issues for modern wireless communication networks. Relevant topics include, but are not limited to, the following: deep-learning-based security and privacy design; covert communications; information-theoretical foundations for advanced security and privacy techniques; lightweight cryptography for power constrained networks; physical layer key generation; prototypes and testbeds for security and privacy solutions; encryption and decryption algorithm for low-latency constrained networks; security protocols for modern wireless communication networks; network intrusion detection; physical layer design with security consideration; anonymity in data transmission; vulnerabilities in security and privacy in modern wireless communication networks; challenges of security and privacy in node–edge–cloud computation; security and privacy design for low-power wide-area IoT networks; security and privacy design for vehicle networks; security and privacy design for underwater communications networks

    The 1st Conference of PhD Students in Computer Science

    Get PDF

    Secure group key agreement

    Get PDF
    As a result of the increased popularity of group-oriented applications and protocols, group communication occurs in many different settings: from network multicasting to application layer tele- and video-conferencing. Regardless of the application environment, security services are necessary to provide communication privacy and integrity. This thesis considers the problem of key management in a special class of groups, namely dynamic peer groups. Key management, especially in a group setting, is the corner stone for all other security services. Dynamic peer groups require not only initial key agreement but also auxiliary key agreement operations such as member addition, member exclusion and group fusion. We discuss all group key agreement operations and present a concrete protocol suite, CLIQUES, which offers all of these operations. By providing the first formal model for group key establishment and investigating carefully the underlying cryptographic assumptions as well as their relations, we formally prove the security of a subset of the protocols based on the security of the Decisional Diffie-Hellman assumption; achieving as a side-effect the first provably secure group key agreement protocolMit der Verbreitung offener Netze, insbesondere des Internets, fand auch die Gruppenkommunikation eine rasante Verbreitung. Eine Vielzahl heutiger Protokolle sind gruppen-orientiert: angefangen bei Multicast-Diensten in der Netzwerkschicht bis hin zu Videokonferenzsystemen auf der Anwendungsschicht. Alle diese Dienste haben Sicherheitsanforderungen wie Vertraulichkeit und Integrität zu erfüllen, die den Einsatz kryptographischer Techniken und die Verfügbarkeit gemeinsamer kryptographischen Schlüssel oft unumgänglich machen. In der folgenden Doktorarbeit betrachte ich dieses grundlegendste Problem der Gruppenkommunikation, nämlich das Schlüsselmanagement, für dynamische Gruppen, die sogenannten "Dynamic Peer-Groups\u27;. Die Dynamik dieser Gruppen erfordert nicht nur initialen Schlüsselaustausch innerhalb einer Gruppe sondern auch sichere und effiziente Verfahren für die Aufnahme neuer und den Ausschluß alter Gruppenmitglieder. Ich diskutiere alle dafür notwendigen Dienste und präsentiere CLIQUES, eine Familie von Protokollen, die diese Dienste implementiert. Ich gebe erstmalig eine formale Definition fü sicheres Gruppen-Schlüsselmanagement und beweise die Sicherheit der genannten Protokolle basierend auf einer kryptographischen Standardannahme, der "Decisional Diffie-Hellman\u27; Annahme. Diese Sicherheitsbetrachtung wird durch eine detaillierte Untersuchung dieser Annahme und ihrer Relation zu verwandten Annahmen abgeschlossen

    Secure group key agreement

    Get PDF
    As a result of the increased popularity of group-oriented applications and protocols, group communication occurs in many different settings: from network multicasting to application layer tele- and video-conferencing. Regardless of the application environment, security services are necessary to provide communication privacy and integrity. This thesis considers the problem of key management in a special class of groups, namely dynamic peer groups. Key management, especially in a group setting, is the corner stone for all other security services. Dynamic peer groups require not only initial key agreement but also auxiliary key agreement operations such as member addition, member exclusion and group fusion. We discuss all group key agreement operations and present a concrete protocol suite, CLIQUES, which offers all of these operations. By providing the first formal model for group key establishment and investigating carefully the underlying cryptographic assumptions as well as their relations, we formally prove the security of a subset of the protocols based on the security of the Decisional Diffie-Hellman assumption; achieving as a side-effect the first provably secure group key agreement protocolMit der Verbreitung offener Netze, insbesondere des Internets, fand auch die Gruppenkommunikation eine rasante Verbreitung. Eine Vielzahl heutiger Protokolle sind gruppen-orientiert: angefangen bei Multicast-Diensten in der Netzwerkschicht bis hin zu Videokonferenzsystemen auf der Anwendungsschicht. Alle diese Dienste haben Sicherheitsanforderungen wie Vertraulichkeit und Integrität zu erfüllen, die den Einsatz kryptographischer Techniken und die Verfügbarkeit gemeinsamer kryptographischen Schlüssel oft unumgänglich machen. In der folgenden Doktorarbeit betrachte ich dieses grundlegendste Problem der Gruppenkommunikation, nämlich das Schlüsselmanagement, für dynamische Gruppen, die sogenannten "Dynamic Peer-Groups';. Die Dynamik dieser Gruppen erfordert nicht nur initialen Schlüsselaustausch innerhalb einer Gruppe sondern auch sichere und effiziente Verfahren für die Aufnahme neuer und den Ausschluß alter Gruppenmitglieder. Ich diskutiere alle dafür notwendigen Dienste und präsentiere CLIQUES, eine Familie von Protokollen, die diese Dienste implementiert. Ich gebe erstmalig eine formale Definition fü sicheres Gruppen-Schlüsselmanagement und beweise die Sicherheit der genannten Protokolle basierend auf einer kryptographischen Standardannahme, der "Decisional Diffie-Hellman'; Annahme. Diese Sicherheitsbetrachtung wird durch eine detaillierte Untersuchung dieser Annahme und ihrer Relation zu verwandten Annahmen abgeschlossen
    • …
    corecore